Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2017-09-01
Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200 mm×200 mm×12 mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.
Investigation of Cd1-xMgxTe as possible materials for X and gamma ray detectors
NASA Astrophysics Data System (ADS)
Mycielski, Andrzej; Kochanowska, Dominika M.; Witkowska-Baran, Marta; Wardak, Aneta; Szot, Michał; Domagała, Jarosław; Witkowski, Bartłomiej S.; Jakieła, Rafał; Kowalczyk, Leszek; Witkowska, Barbara
2018-06-01
In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg) for X and gamma radiation detectors. Since we have had wide technological possibilities of preparing crystals and investigating their properties, we performed crystallizations of the crystals mentioned above. Thereafter, we investigated selected properties of the obtained materials. The crystallization processes were performed by using the Low Pressure Bridgman (LPB) method. The elements used: Cd, Te, Mg were of the highest purity available at present. In order to obtain reliable conclusions the crystallization processes were carried out at identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.
Crystallization processes in pharmaceutical technology and drug delivery design
NASA Astrophysics Data System (ADS)
Shekunov, B. Yu; York, P.
2000-04-01
Crystallization is a major technological process for particle formation in pharmaceutical industry and, in addition, plays an important role in defining the stability and drug release properties of the final dosage forms. Industrial and regulatory aspects of crystallization are briefly reviewed with reference to solid-state properties of pharmaceuticals. Crystallization, incorporating wider definition to include precipitation and solid-state transitions, is considered in terms of preparation of materials for direct compression, formation of amorphous, solvated and polymorphic forms, chiral separation of drugs, production of materials for inhalation drug delivery and injections. Finally, recent developments in supercritical fluid particle technology is considered in relationship to the areas discussed.
Development of silicon growth techniques from melt with surface heating
NASA Astrophysics Data System (ADS)
Kravtsov, Anatoly
2018-05-01
The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.
Wu, Cao; Chen, Zhou; Hu, Ya; Rao, Zhiyuan; Wu, Wangping; Yang, Zhaogang
2018-05-15
Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Patterning technology for solution-processed organic crystal field-effect transistors
Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito
2014-01-01
Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656
Crystallization in lactose refining-a review.
Wong, Shin Yee; Hartel, Richard W
2014-03-01
In the dairy industry, crystallization is an important separation process used in the refining of lactose from whey solutions. In the refining operation, lactose crystals are separated from the whey solution through nucleation, growth, and/or aggregation. The rate of crystallization is determined by the combined effect of crystallizer design, processing parameters, and impurities on the kinetics of the process. This review summarizes studies on lactose crystallization, including the mechanism, theory of crystallization, and the impact of various factors affecting the crystallization kinetics. In addition, an overview of the industrial crystallization operation highlights the problems faced by the lactose manufacturer. The approaches that are beneficial to the lactose manufacturer for process optimization or improvement are summarized in this review. Over the years, much knowledge has been acquired through extensive research. However, the industrial crystallization process is still far from optimized. Therefore, future effort should focus on transferring the new knowledge and technology to the dairy industry. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Choi, Byung Sang
Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.
Packaging of ferroelectric liquid crystal-on-silicon spatial light modulators
NASA Astrophysics Data System (ADS)
Lin, W.; Morozova, Nina D.; Ju, TehHua; Zhang, Weidong; Lee, Yung-Cheng; McKnight, Douglas J.; Johnson, Kristina M.
1996-11-01
A self-pulling soldering technology has been demonstrated for assembling liquid crystal on silicon (LCOS) spatial light modulators (SLMs). One of the major challenges in manufacturing the LCOS modules is to reproducibly control the thickness of the gap between the very large scale integrated circuit (VLSI) chip and the cover glass. The liquid crystal material is sandwiched between the VLSI chop and the cover glass which is coated with a transparent conductor. Solder joints with different profiles and sizes have been designed to provide surface tension forces to control the gap accommodating the ferroelectric liquid crystal layer in the range of a micron level with sub- micron uniformity. The optimum solder joint design is defined as a joint that results in the maximum pulling force. This technology provides an automatic, batch assembly process for a LCOS SLM through one reflow process. Fluxless soldering technology is used to assemble the module. This approach avoids residues from chemical of flux and oxides, and eliminates potential contamination to the device. Two different LCOS SLM designs and the process optimization are described.
Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert
2017-01-01
Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in the pharmaceutical/biopharmaceutical industry with special emphasis on novel membrane techniques for pharmaceutical applications. The method of coating a drug particle with a polymer using the SHFCC method is stable and ready for scale-up for operation over an extended period. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Applications of ultrasound to chiral crystallization, resolution and deracemization.
Xiouras, Christos; Fytopoulos, Antonios; Jordens, Jeroen; Boudouvis, Andreas G; Van Gerven, Tom; Stefanidis, Georgios D
2018-05-01
Industrial synthesis of enantiopure compounds is nowadays heavily based on the separation of racemates through crystallization processes. Although the application of ultrasound in solution crystallization processes (sonocrystallization) has become a promising emerging technology, offering several benefits (e.g. reduction of the induction time and narrowing of the metastable zone width, control over the product size, shape and polymorphic modification), little attention has been paid so far to the effects of ultrasound on chiral crystallization processes. Several recent studies have reported on the application of acoustic energy to crystallization processes that separate enantiomers, ranging from classical (diastereomeric) resolution and preferential crystallization to new and emerging processes such as attrition-enhanced deracemization (Viedma ripening). A variety of interesting effects have been observed, which include among others, enhanced crystallization yield with higher enantiomeric purity crystals, spontaneous mirror symmetry breaking crystallization, formation of metastable conglomerate crystals and enhanced deracemization rates. The objective of this review is to provide an overview of the effects of ultrasound on chiral crystallization and outline several aspects of interest in this emerging field. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.
2016-04-01
A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.
Development of Crystallizer for Advanced Aqueous Reprocessing Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadahiro Washiya; Atsuhiro Shibata; Toshiaki Kikuchi
2006-07-01
Crystallization is one of the remarkable technologies for future fuel reprocessing process that has safety and economical advantages. Japan Atomic Energy Agency (JAEA) (former Japan Nuclear Cycle Development Institute), Mitsubishi Material Corporation and Saitama University have been developing the crystallization process. In previous study, we carried out experimental studies with uranium, MOX and spent fuel conditions, and flowsheet analysis was considered. In association with these studies, an innovative continuous crystallizer and its system was developed to ensure high process performance. From the design study, an annular type continuous crystallizer was selected as the most promising design, and performance was confirmedmore » by small-scale test and engineering scale demonstration at uranium crystallization conditions. In this paper, the design study and the demonstration test results are described. (authors)« less
Economic analysis of crystal growth in space
NASA Technical Reports Server (NTRS)
Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.
1972-01-01
Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.
Rediscovering ancient glass technologies through the examination of opacifier crystals
NASA Astrophysics Data System (ADS)
Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.
2008-07-01
The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.
Active porous transition towards spatiotemporal control of molecular flow in a crystal membrane
NASA Astrophysics Data System (ADS)
Takasaki, Yuichi; Takamizawa, Satoshi
2015-11-01
Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues. In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control. The concept of crystal engineering is alternative to processing technology in microstructure construction, as the ultimate microfluidic devices must provide molecular level control. Consequently, microporous crystals can instantly be converted to microfluidic devices if introduced in an active transformability of porous structure and geometry. Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.
Complex Investigations of Sapphire Crystals Production
NASA Astrophysics Data System (ADS)
Malyukov, S. P.; Klunnikova, Yu V.
The problem of optimum conditions choice for processing sapphire substrates was solved with optimization methods and with combination of analytical simulation methods, experiment and expert system technology. The experimental results and software give rather full information on features of real structure of the sapphire crystal substrates and can be effectively used for optimization of technology of the substrate preparation for electronic devices.
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-01-01
Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.
Ultrasound‐assisted emerging technologies for chemical processes
Geertman, Rob; Wierschem, Matthias; Skiborowski, Mirko; Gielen, Bjorn; Jordens, Jeroen; John, Jinu J; Van Gerven, Tom
2018-01-01
Abstract The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound‐assisted extraction/crystallization/reaction) are on their way to becoming the next‐generation technologies. This article focuses on the advances of ultrasound (US)‐assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US‐assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state‐of‐the‐art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US‐assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29780194
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).
NASA Technical Reports Server (NTRS)
1998-01-01
Crystal River Engineering was originally featured in Spinoff 1992 with the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. The Convolvotron was developed for Ames' research on virtual acoustic displays. Crystal River is a now a subsidiary of Aureal Semiconductor, Inc. and they together develop and market the technology, which is a 3-D (three dimensional) audio technology known commercially today as Aureal 3D (A-3D). The technology has been incorporated into video games, surround sound systems, and sound cards.
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-03-01
This report describes work to advance the manufacturing line capabilities in crystal growth and laser cutting of Mobil Solar's unique edge-defined film-fed growth (EFG) octagon technology and to reduce the manufacturing costs of 10 cm x 10 cm polycrystalline silicon EFG wafers. The report summarizes the significant technical improvements in EFG technology achieved in the first 6 months of the PVMaT Phase 2 and the success in meeting program milestones. Technical results are reported for each of the three main pregrain areas: Task 5 -- Thin octagon growth (crystal growth) to reduce the thickness of the octagon to 200 microns; Task 6 -- Laser cutting-to improve the laser cutting process so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and Task 7 -- Process control and product specification to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.
Solar energy concentrator system for crystal growth and zone refining in space
NASA Technical Reports Server (NTRS)
Mcdermit, J. H.
1975-01-01
The technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies of space-deployed solar concentrators were reviewed for their applicability to materials processing and a new state-of-the-art concentrator-receiver radiation analysis was developed. The radiation analysis is in the form of a general purpose computer program. It was concluded from this effort that the technology for fabricating, orbiting and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conductive to the processes of interest. The analysis indicate that solar concentrators can satisfactorily provide both of these factors.
Crystal growth in a low gravity environment
NASA Technical Reports Server (NTRS)
Carruthers, J. R.
1977-01-01
Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.
Space processing of crystals for opto-electronic devices: The case for solution growth
NASA Technical Reports Server (NTRS)
Hayden, S. C.; Cross, L. E.
1975-01-01
The results obtained during a six month program aimed at determining the viability of space processing in the 1980's of dielectric-elastic-magnetic single crystals were described. The results of this program included: identification of some important emerging technologies dependent on dielectric-elastic-magnetic crystals, identification of the impact of intrinsic properties and defects in the single crystals on system performance, determination of a sensible common basis for the many crystals of this class, and identification of the benefits of micro-gravity and some initial experimental evidence that these benefits can be realized in space. It is concluded that advanced computers and optical communications are at a development stage for high demand of dielectric-elastic-magnetic single crystals in the mid-1980's. Their high unit cost and promise for significantly increased perfection by growth in space justified pursuit of space processing.
Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium
NASA Astrophysics Data System (ADS)
Kalaivani, M. S.; Asaithambi, T.
2016-10-01
Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.
NASA Astrophysics Data System (ADS)
Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo
2018-07-01
Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman
2005-06-01
Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.
Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien
2017-09-28
Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution
NASA Astrophysics Data System (ADS)
Zhou, Cun; Sun, Fei; Liu, Xuzhao
2017-01-01
The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
Advances and new directions in crystallization control.
Nagy, Zoltan K; Braatz, Richard D
2012-01-01
The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.
1980-07-17
31 Clay/hydrochloric acid, gas - induced crystallization 32 Clay/nitric acid evaporative crystallization 32 Clay/hydrochloric acid, evapora- tive...ALUMINA AND ALUMINUM TECHNOLOGIES 53 Evaluation of nonbauxitic alumina production processes 54 Clay/carbo-chlorination 54 Clay/hydrochloric acid, gas ...reports that the miniplant program is centered on a single process-- clay/hydrochloric acid- gas precipitation. The Bureau of Mines has not retreated
Chan, Leo L.; Pineda, Maria; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2009-01-01
Protein–DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis. As such, small molecule disruptors of these interactions could be powerful tools for investigation of these biological processes, and such compounds would have great potential as therapeutics. Unfortunately, there are few methods available for the rapid identification of compounds that disrupt protein–DNA interactions. Here we show that photonic crystal (PC) technology can be utilized to detect protein–DNA interactions, and can be used in a high-throughput screening mode to identify compounds that prevent protein–DNA binding. The PC technology is used to detect binding between protein–DNA interactions that are DNA-sequence-dependent (the bacterial toxin–antitoxin system MazEF) and those that are DNA-sequence-independent (the human apoptosis inducing factor (AIF)). The PC technology was further utilized in a screen for inhibitors of the AIF–DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. The generality and simplicity of the photonic crystal method should enable this technology to find broad utility for identification of compounds that inhibit protein–DNA binding. PMID:18582039
NASA Astrophysics Data System (ADS)
Kutluay, Sinan; Şahin, Ömer; Ceyhan, A. Abdullah; İzgi, M. Sait
2017-06-01
In crystallization studies, newly developed technologies, such as Focused Beam Reflectance Measurement (FBRM) and Particle Vision and Measurement (PVM) are applied for determining on-line monitoring of a representation of the Chord Length Distribution (CLD) and observe the photographs of crystals respectively; moreover recently they are widely used. Properly installed, the FBRM ensures on-line determination of the CLD, which is statistically associated to the Crystal Size Distribution (CSD). In industrial crystallization, CSD and mean crystal size as well as external habit and internal structure are important characteristics for further use of the crystals. In this paper, the effect of residence time, stirring speed, feeding rate, supersaturation level and the polyelectrolytes such as anionic polyacrylamide (APAM) and non-ionic polyacrylamide (NPAM) on the CLD as well as the shape of boric acid crystals were investigated by using the FBRM G600 and the PVM V819 probes respectively in an MSMPR (Mixed Suspension Mixed Product Removal) crystallizer. The CSD and kinetic data were determined experimentally using continuous MSMPR crystallizer running at steady state. The population density of nuclei, the nucleation rate and the growth rate were determined from the experimental population balance distribution when the steady state was reached.
Vapor crystal growth technology development: Application to cadmium telluride
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.
1991-01-01
Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.
Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"
NASA Astrophysics Data System (ADS)
Jiang, Minhong; Han, Shengnan; Zhang, Jingwei; Song, Jiageng; Hao, Chongyan; Deng, Manjiao; Ge, Lingjing; Gu, Zhengfei; Liu, Xinyu
2018-02-01
Abnormal grain growth (AGG) has been a common phenomenon during the ceramic or metallurgy processing since prehistoric times. However, usually it had been very difficult to grow big single crystal (centimeter scale over) by using the AGG method due to its so-called occasionality. Based on the AGG, a solid-state crystal growth (SSCG) method was developed. The greatest advantages of the SSCG technology are the simplicity and cost-effectiveness of the technique. But the traditional SSCG technology is still uncontrollable. This article first summarizes the history and current status of AGG, and then reports recent technical developments from AGG to SSCG, and further introduces a new seed-free, solid-state crystal growth (SFSSCG) technology. This SFSSCG method allows us to repeatedly and controllably fabricate large-scale single crystals with appreciable high quality and relatively stable chemical composition at a relatively low temperature, at least in (K0.5Na0.5)NbO3(KNN) and Cu-Al-Mn systems. In this sense, the exaggerated grain growth is no longer 'Abnormal' but 'Normal' since it is able to be artificially controllable and repeated now. This article also provides a crystal growth model to qualitatively explain the mechanism of SFSSCG for KNN system. Compared with the traditional melt and high temperature solution growth methods, the SFSSCG method has the advantages of low energy consumption, low investment, simple technique, composition homogeneity overcoming the issues with incongruent melting and high volatility. This SFSSCG could be helpful for improving the mechanical and physical properties of single crystals, which should be promising for industrial applications.
NASA Technical Reports Server (NTRS)
1981-01-01
The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.
Force-controlled inorganic crystallization lithography.
Cheng, Chao-Min; LeDuc, Philip R
2006-09-20
Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.
2006-07-01
TBC benefit Substrale limit 1 1 0 0 ---------- .- -.. . . . . . . --- I single crystal S1000 conventlonally cest allos . .- alloy. E directionally...usually heat treated or processed) forms. Developments in casting technologies made it possible to produce directionally-solidified and single - crystal ...advanced single - crystal superalloys with improved strength meant reductions in chromium and silicon contents. The scale growth and spallation rates can be
Transistor and memory devices based on novel organic and biomaterials
NASA Astrophysics Data System (ADS)
Tseng, Jia-Hung
Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.
High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids.
Wagh, Ashwini; Birkin, Peter; Martini, Silvana
2016-01-01
High-intensity ultrasound (HIU) has been used in recent years to change the crystallization behavior of edible lipids. This technique can be used in combination with other processing technologies to tailor lipids' functional properties and broaden their application for various food products. In general, sonication induces crystallization, increases crystallization rate, and generates a harder and more elastic crystalline network characterized by smaller crystals with a sharper melting profile. An important application of HIU is to improve the hardness and elasticity of shortenings that have a low content of saturated fatty acids and are free of trans-fats. This review summarizes recent research that used HIU to change the physical and functional properties of edible lipids and focuses on the importance of controlling processing variables such as sonication power level and duration and crystallization temperature.
Ma, En; Xu, Zhenming
2013-12-15
In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.
JPRS Report, Science & Technology, USSR: Materials Science
1988-03-11
crystallization of the amorphous phase, and subsequent growth of ß-boron grains. References 5: all Russian. 2415/9835 UDC 621.033.67 Erosion of Materials in...Weightlessness and Effect of Magnetic Field on Liquation Processes in InSb Crystals (V. S. Zemskov, M. R. Raukhman; FIZIKA I KHIMIYA OBRABOTKI MATERIALOV, No...No 7, Jul 87) 13 Production of CdP2^CdAs2 Solid-Solution Single Crystals and Measurement of Their Cathodoluminescence Spectra (V, B, Lazarev, S
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng
2015-10-28
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Which strategy for a protein crystallization project?
NASA Technical Reports Server (NTRS)
Kundrot, C. E.
2004-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Which Strategy for a Protein Crystallization Project?
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.
2003-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Study of ceramic products and processing techniques in space. [using computerized simulation
NASA Technical Reports Server (NTRS)
Markworth, A. J.; Oldfield, W.
1974-01-01
An analysis of the solidification kinetics of beta alumina in a zero-gravity environment was carried out, using computer-simulation techniques, in order to assess the feasibility of producing high-quality single crystals of this material in space. The two coupled transport processes included were movement of the solid-liquid interface and diffusion of sodium atoms in the melt. Results of the simulation indicate that appreciable crystal-growth rates can be attained in space. Considerations were also made of the advantages offered by high-quality single crystals of beta alumina for use as a solid electrolyte; these clearly indicate that space-grown materials are superior in many respects to analogous terrestrially-grown crystals. Likewise, economic considerations, based on the rapidly expanding technological applications for beta alumina and related fast ionic conductors, reveal that the many superior qualities of space-grown material justify the added expense and experimental detail associated with space processing.
Theoretical bases for conducting certain technological processes in space
NASA Technical Reports Server (NTRS)
Okhotin, A. S.
1979-01-01
Dimensionless conservation equations are presented and the theoretical bases of fluid behavior aboard orbiting satellites with application to the processes of manufacturing crystals in weightlessness. The small amount of gravitational acceleration is shown to increase the separation of bands of varying concentration. Natural convection is shown to have no practical effect on crystallization from a liquid melt. Barodiffusion is also negligibly small in realistic conditions of weightlessness. The effects of surface tension become increasingly large, and suggestions are made for further research.
Optical memory system technology. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Zollars, G. F.
1980-01-01
Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.
Non-isothermal Crystallization Kinetics of Mold Fluxes for Casting High-Aluminum Steels
NASA Astrophysics Data System (ADS)
Zhou, Lejun; Li, Huan; Wang, Wanlin; Wu, Zhaoyang; Yu, Jie; Xie, Senlin
2017-12-01
This paper investigates the crystallization behavior of CaO-SiO2- and CaO-Al2O3-based mold fluxes for casting high-aluminum steels using single hot thermocouple technology, developed kinetic models, and scanning electron microscope. The results showed that the crystallization ability of the typical CaO-SiO2-based Flux A (CaO/SiO2 0.62, Al2O3 2 mass pct) is weaker than that of CaO-Al2O3-based Flux B (CaO/SiO2 4.11, Al2O3 31.9 mass pct) because of its higher initial crystallization temperature. The crystallization kinetics of Flux A was "surface nucleation and growth, interface reaction control" in the overall non-isothermal crystallization process, whereas that of Flux B was "constant nucleation rate, 1-dimensional growth, diffusion control, in the primary crystallization stage, and then transformed into constant nucleation rate, 3-dimensional growth, interface reaction control in the secondary crystallization stage." The energy dispersive spectroscopy results for Flux B suggested that the variations in the crystallization kinetics for Flux B are due to different crystals precipitating in the primary (BaCa2Al8O15) and secondary (CaAl2O4) crystallization periods during the non-isothermal crystallization process.
NASA Technical Reports Server (NTRS)
Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.
1981-01-01
The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.
The growth of materials processing in space - A history of government support for new technology
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
Nucleation and Convection Effects in Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Vekilow, Peter G.
1998-01-01
Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.
The PASS Theory of Cognitive Processing
ERIC Educational Resources Information Center
Rijumol, K. C.; Thangarajathi, S.; Ananthasayanam, R.
2010-01-01
Traditional IQ technology, crystallized by the seminal work of Binet and Wechsler as well as others, has played a critical and profound role in psychology, making intelligence testing among the most important contributions psychology has made to society (Anastasi & Urbina, 1997). But this technology has limits; it has not had the advantage of…
On Redefining "Science" and "Technology" in Educational Objectives.
ERIC Educational Resources Information Center
Revak, Robert Stephan
A new philosophy for science and technology is initiated in this paper for educational purposes. Cattell's theory of fluid and crystallized intelligence is analyzed. Science is described as a loose process of rejecting conjectures with temporarily accepted emerging ones used as alternative ways of explaining phenomena. The emerging conjectures…
Protein Crystal Growth With the Aid of Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark
2003-01-01
Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.
Ultra-precision process of CaF2 single crystal
NASA Astrophysics Data System (ADS)
Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin
2014-08-01
This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.
NASA Astrophysics Data System (ADS)
Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.
2014-10-01
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.
Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul
2013-11-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.
Solar breeder: Energy payback time for silicon photovoltaic systems
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1977-01-01
The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.
Monitoring of antisolvent crystallization of sodium scutellarein by combined FBRM-PVM-NIR.
Liu, Xuesong; Sun, Di; Wang, Feng; Wu, Yongjiang; Chen, Yong; Wang, Longhu
2011-06-01
Antisolvent crystallization can be used as an alternative to cooling or evaporation for the separation and purification of solid product in the pharmaceutical industry. To improve the process understanding of antisolvent crystallization, the use of in-line tools is vital. In this study, the process analytical technology (PAT) tools including focused beam reflectance measurement (FBRM), particle video microscope (PVM), and near-infrared spectroscopy (NIRS) were utilized to monitor antisolvent crystallization of sodium scutellarein. FBRM was used to monitor chord count and chord length distribution of sodium scutellarein particles in the crystallizer, and PVM, as an in-line video camera, provided pictures imaging particle shape and dimension. In addition, a quantitative model of PLS was established by in-line NIRS to detect the concentration of sodium scutellarein in the solvent and good calibration statistics were obtained (r(2) = 0.976) with the residual predictive deviation value of 11.3. The discussion over sensitivities, strengths, and weaknesses of the PAT tools may be helpful in selection of suitable PAT techniques. These in-line techniques eliminate the need for sample preparation and offer a time-saving approach to understand and monitor antisolvent crystallization process. Copyright © 2011 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
Materials processing in space program tasks-supplement
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1983-01-01
An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.
Treatment of Produced Water from Carbon Sequestration Sites for Water Reuse and Mineral Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renew, Jay; Jenkins, Kristen; Bhagavatula, Abhijit
Southern Research along with Advanced Resources International, Inc. (ARI), Heartland Technology Partners, LLC (Heartland), New Logic Research, Inc. (New Logic), and Mr. Michael N. DiFilippo, Consultant developed a concept for an on-site strategy and design for management of produced water from CO 2 sequestration sites for maximum water reuse. When CO 2 is injected into deep saline aquifers, it may be necessary to produce water from the reservoir to reduce reservoir pressure. The New Logic Research, vibratory shear enhanced process (VSEP) membrane technology, and Heartland Technology Partners, low momentum-high turbulence (LM-HT) evaporation technology was selected for evaluation for treating thismore » produced water from a 530 MW natural gas combined cycle (NGCC) power plant by utilizing waste heat from the plant to drive the evaporation process. The technology was also evaluated for application to a coal-fired power plant in lieu of the NGCC power plant. The results from the project show that the application of the proposed technology to the 530 MW NGCC power plant scenario could be feasible. The results indicate that formation water TDS has a very large impact on the technical and economic feasibility of the process. One advantage of formations with low TDS water is that the VSEP membrane can be utilized to pre-concentrate the produced water upstream of the LM-HT. The results indicate that a significant portion of the exhaust gas from the NGCC power plant will have to be utilized to provide waste heat for the LM-HT evaporator; however, less will be required with low-TDS formation water. The CAPEX costs for LM-HT for all three formations (97.8USD to 122.7USD MM/year) and VSEP plus LM-HT (106.6USD MM/year) for the Keg River formation is high in cost but lower than all technology compared including crystallization, VSEP plus crystallization, FO plus LM-HT, VCE plus LM-HT, and VCE plus crystallization. The OPEX for the LM-HT for all three formations (6.33USD to 7.97USD MM/year) and VSEP plus LM-HT (13.29USD MM/year) for the Keg River formation is lower than crystallization, VSEP plus crystallization, FO plus LM-HT, and FO plus crystallization. Only VCE plus LM-HT and VCE plus crystallization have a comparable OPEX costs to LM-HT for all three formation and VSEP plus LM-HT for the Keg River formation. The coal-fired power plant comparison showed that it is not feasible to apply the technology to that type of fossil fuel plant. Even utilizing 20% of the flue gas, produced water could only be treated from sequestration of approximately 6% to 9% of the CO 2 produced by the coal-fired power plant. This technology operates better when applied to a NGCC power plant due to the higher temperature of the exhaust gas, approximately 1,149 oF/621 oC versus 650 oF/343 oC for flue gas at a coal fired-power plant. The high heat content of the gas turbine significantly improves system performance compared to cooler coal-fired flue gas. The results indicate that a successful S/S process could potentially be achieved with only the minimal addition of binder (4%-10% of CaO or PC). The addition of a SO 4 2- to the S/S process can enhance Ba 2+ immobilization. However, it is noted that metal or other contaminant stabilization could be more difficult based on the particular contaminant content of the produced water. Stabilization additives may be required on a case by case basis. The capital costs and operational costs for a S/S are difficult to estimate due to few large-scale installations of this process. However, the capital costs appears to be fairly small while the operational costs can be significant due to the cost of pozzolanic agents. A review of available literature on the concentrations of valuable metals in produced water from the upstream oil and gas industry indicates that Li + may be present at concentrations that would make recovery attractive. However, more research is needed on Li + concentrations in produced water from CO 2 sequestrations sites.« less
Vapor Growth of Binary and Ternary Chalcogenides in Preparation for Microgravity Experiments
NASA Technical Reports Server (NTRS)
Su, C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
In the bulk crystal growth of some technologically important semiconducting chalcopyrites, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials. The realization of routine production of high-quality single crystals of these semiconductors requires a fundamental, systematic and in-depth study on the PVT growth process and crystal growth by vapor transport in low gravity offers a set of unique conditions for this study. Previously, two reasons have been put forward to account for this. The first is weight-related reductions in crystal strain and defects. These are thought to be caused by the weight of the crystals during processing at elevated temperatures and retained on cooling, particularly for materials with a low yield strength. The second, and more general, reason is related to the reduction in density-gradient driven convection. The PVT crystal growth process consists of essentially three processes: sublimation of the source material, transport of the vapor species and condensation of the vapor species to form the crystal. The latter two processes can be affected by the convection caused by gravitational accelerations on Earth. Reductions in such convection in low gravity is expected to yield a nearly diffusion-limited growth condition which results in more uniform growth rates (on the microscopic scale) and hence greater crystalline perfection and compositional homogeneity. The reduction of convective contamination by performing flight experiments in a reduced gravity environment will help to understand the relation between fluid phase processes (growth parameters) and defect and impurity incorporation in grown crystals.
New Directions in Biotechnology
NASA Technical Reports Server (NTRS)
2003-01-01
The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, P.; Kamath, H.
Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.
Elastic Domain Wall Waves in Ferroelectric Ceramics and Single Crystals
1988-07-01
properties of piezoelectric and electrostrictive types of ferroelectric ceramics and single crystals. This was for the purpose of shedding light on the...effectiveness and general characteristics of fabrication techniques, as well as exploring basic physical mechanisms playing a role in the technology of...routing and processing devices on small ferroelectric wafers, fabricated by simple inexpensive poling and biasing techniques. Such devices ma) be
Recovery of valuable materials from waste liquid crystal display panel.
Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili
2009-07-01
Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.
The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.A.; Cohen, A.E.
2009-05-26
The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less
High quality factor single-crystal diamond mechanical resonators
NASA Astrophysics Data System (ADS)
Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.
2012-10-01
Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.
Pore configuration landscape of granular crystallization.
Saadatfar, M; Takeuchi, H; Robins, V; Francois, N; Hiraoka, Y
2017-05-12
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
Pore configuration landscape of granular crystallization
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-01-01
Uncovering grain-scale mechanisms that underlie the disorder–order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics. PMID:28497794
Pore configuration landscape of granular crystallization
NASA Astrophysics Data System (ADS)
Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.
2017-05-01
Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.
NASA Astrophysics Data System (ADS)
Scheel, Hans J.; Fukuda, Tsuguo
2004-06-01
This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics:
NASA Astrophysics Data System (ADS)
Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu
2017-06-01
p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.
Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong
2018-06-01
The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.
Space processing: A projection
NASA Technical Reports Server (NTRS)
Mccreight, L. R.; Griffin, R. N.
1972-01-01
Estimates concerning space manufacturing, which might well become the largest and most specific application of space technology by the end of the century are given. Two classes of materials are considered - electronic crystals and biologicals.
2017-01-01
Crystal size and shape can be manipulated to enhance the qualities of the final product. In this work the steady-state shape and size of succinic acid crystals, with and without a polymeric additive (Pluronic P123) at 350 mL, scale is reported. The effect of the amplitude of cycles as well as the heating/cooling rates is described, and convergent cycling (direct nucleation control) is compared to static cycling. The results show that the shape of succinic acid crystals changes from plate- to diamond-like after multiple cycling steps, and that the time required for this morphology change to occur is strongly related to the type of cycling. Addition of the polymer is shown to affect both the final shape of the crystals and the time needed to reach size and shape steady-state conditions. It is shown how this phenomenon can be used to improve the design of the crystallization step in order to achieve more efficient downstream operations and, in general, to help optimize the whole manufacturing process. PMID:28867966
Research on temperature field of KDP crystal under ion beam cleaning.
Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin
2016-06-20
KH2PO4 (KDP) crystal is a kind of excellent nonlinear optical component used as a laser frequency conversion unit in a high-power laser system. However, KDP crystal has raised a huge challenge in regards to its fabrication for high precision: KDP crystal has special physical and chemical characteristics. Abrasive-free water-dissolution magnetorheological finishing is used in KDP figuring in our lab. But the iron powders of MRF fluid are easily embedded into the soft surface of KDP crystal, which will greatly decrease the laser-induced damage resistance. This paper proposes to utilize ion beam figuring (IBF) technology to figure and clean the surface of a KDP component. Although IBF has many good performances, the thermal effect control is a headachy problem for the KDP process. To solve this problem, we have established its thermal effect models, which are used to calculate a component's surface temperature and thermal gradient in the whole process. By this way, we can understand how to control a temperature map and its gradient in the IBF process. Many experiments have been done to validate and optimize this method. Finally, a KDP component with the size of 200×200×12 mm is successfully processed by this method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherezov, Vadim; Abola, Enrique; Stevens, Raymond C.
2015-11-30
G protein-coupled receptors (GPCRs) constitute a highly diverse and ubiquitous family of integral membrane proteins, transmitting signals inside the cells in response to an assortment of disparate extra-cellular stimuli. Their strategic location on the cell surface and their involvement in crucial cellular and physiological processes turn these receptors into highly important pharmaceutical targets. Recent technological developments aimed at stabilization and crystallization of these receptors have led to significant breakthroughs in GPCR structure determination efforts. One of the successful approaches involved receptor stabilization with the help of a fusion partner combined with crystallization in lipidic cubic phase (LCP). The success ofmore » using an LCP matrix for crystallization is generally attributed to the creation of a more native, membrane-like stabilizing environment for GPCRs just prior to nucleation and to the formation of type I crystal lattices, thus generating highly ordered and strongly diffracting crystals. Here they describe protocols for reconstituting purified GPCRs in LCP, performing pre-crystallization assays, setting up crystallization trials in manual mode, detecting crystallization hits, optimizing crystallization conditions, harvesting, and collecting crystallographic data. The protocols provide a sensible framework for approaching crystallization of stabilized GPCRs in LCP, however, as in any crystallization experiment, extensive screening and optimization of crystallization conditions as well as optimization of protein construct and purification steps are required. The process remains risky and these protocols do not necessarily guarantee success.« less
Desmidt, E; Ghyselbrecht, K; Monballiu, A; Verstraete, W; Meesschaert, B D
2012-01-01
The removal of phosphate as magnesium ammonium phosphate (MAP, struvite) has gained a lot of attention. A novel approach using ureolytic MAP crystallization (pH increase by means of bacterial ureases) has been tested on the anaerobic effluent of a potato processing company in a pilot plant and compared with NuReSys(®) technology (pH increase by means of NaOH). The pilot plant showed a high phosphate removal efficiency of 83 ± 7%, resulting in a final effluent concentration of 13 ± 7 mg · L(-1) PO(4)-P. Calculating the evolution of the saturation index (SI) as a function of the remaining concentrations of Mg(2+), PO(4)-P and NH(4)(+) during precipitation in a batch reactor, resulted in a good estimation of the effluent PO(4)-P concentration of the pilot plant, operating under continuous mode. X-ray diffraction (XRD) analyses confirmed the presence of struvite in the small single crystals observed during experiments. The operational cost for the ureolytic MAP crystallization treating high phosphate concentrations (e.g. 100 mg · L(-1) PO(4)-P) was calculated as 3.9 € kg(-1) P(removed). This work shows that the ureolytic MAP crystallization, in combination with an autotrophic nitrogen removal process, is competitive with the NuReSys(®) technology in terms of operational cost and removal efficiency but further research is necessary to obtain larger crystals.
Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics
NASA Technical Reports Server (NTRS)
Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.
1994-01-01
Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2001-03-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection TV segment. Rear LCD (liquid crystal display), MEMS/DLP (or Digital Light Processing TM) and LCOS (Liquid-crystal-on-silicon) TVs are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are also facing challenges from LCD and DLP technology for the home theater market while the business market is completely dominated by front LCD and DLP technology. Three-chip DLP projectors have replaced liquid crystal light valves in large venue applications where projectors have higher light output requirements. In recent years front LCD and LCOS projectors have been increasingly competing with 3-chip DLP projectors especially at the low end of the large venue application market. Within the next five years the projection market will experience very fast growth. Sales and presentation applications, which are the fastest growing applications in the business market, will continue to be the major driving force for the growth for front projectors, and the shift in the consumer market to digital and HDTV products will drive the rear projection market.
NASA Technical Reports Server (NTRS)
Snell, Edward; vanderWoerd, Mark
2003-01-01
Thermally imaging the cryocooling processes of crystals has been demonstrated showing the progression of a cold wave through a crystal from the face closest to the origin of the coldstream ending at the point furthest away. During these studies large volume crystals were clearly distinguished from the loop holding them. Large volume crystals, used for neutron studies, were chosen deliberately to enhance the imaging. The different infrared transmission and reflectance properties of the crystal in comparison to the cryo-protectant are thought to be the parameter that produces the contrast making the crystal visible. As an application of the technology to locating crystals, more small crystals of lysozyme and a bFGF/dna complex were cryo-protected and imaged in large loops. The crystals were clearly distinguished from the vitrified solution. In the case of the bFGF/dna complex the illumination had to be carefully manipulated to enable the crystal to be seen in the visible spectrum. These preliminary results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode.
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Maglione, Maria Grazia; Minarini, Carla
2013-08-09
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode
NASA Astrophysics Data System (ADS)
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Grazia Maglione, Maria; Minarini, Carla
2013-08-01
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Crystallization of Silicon Ribbons
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1984-01-01
Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
SKYLAB (SL)-4 - POST-FLIGHT (WASHINGTON, D.C.)
1974-10-01
S74-34046 (October 1974) --- Dr. James C. Fletcher, left, NASA Administrator, explains the formation of the indium-antimonide crystal, manufactured in space, to President Gerald R. Ford at the White House. Standing at right is Harold Johnson, Chairman of the Massachusetts Institute of Technology. The segment of indium-antimonide is cut from a cylindrical single crystal that was partially melted and resolidified aboard the Skylab space station on Jan. 6, 1974, during the third and final manned flight. This segment is approximately one by one centimeters and about three millimeters thick. The sequence of heating and cooling was started and supervised by the members of the third Skylab crew, astronauts Gerald P. Carr, Edward G. Gibson and William R. Pogue. The crystal forming was accomplished in a special multipurpose furnace, known as the Materials Processing Facility (Skylab Technology Experiment M512). Photo credit: NASA
Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi
2017-03-04
Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.
Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang
2012-06-01
Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Application of X-ray topography to USSR and Russian space materials science
Shul’pina, I. L.; Prokhorov, I. A.; Serebryakov, Yu. A.; Bezbakh, I. Zh.
2016-01-01
The authors’ experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo–Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals. PMID:27158506
Application of X-ray topography to USSR and Russian space materials science.
Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh
2016-05-01
The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, James; Kim, Dong -Sang; Maio, Vincent
A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore » glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (also with high Al 2O 3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.« less
A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolas, George
Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation ofmore » the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate compositions for the first time.« less
NASA Astrophysics Data System (ADS)
Miyao, Masanobu; Sadoh, Taizoh
2017-05-01
Recent progress in the crystal growth of group-IV-based semiconductor-on-insulators is reviewed from physical and technological viewpoints. Liquid-phase growth based on SiGe-mixing-triggered rapid-melting growth enables formation of hybrid (100) (110) (111)-orientation Ge-on-insulator (GOI) structures, which show defect-free GOI with very high carrier mobility (˜1040 cm2 V-1 s-1). Additionally, SiGe mixed-crystals with laterally uniform composition were obtained by eliminating segregation phenomena during the melt-back process. Low-temperature solid-phase growth has been explored by combining this process with ion-beam irradiation, additional doping of group-IV elements, metal induced lateral crystallization with/without electric field, and metal-induced layer exchange crystallization. These efforts have enabled crystal growth on insulators below 400 °C, achieving high carrier mobility (160-320 cm2 V-1 s-1). Moreover, orientation-controlled SiGe and Ge films on insulators have been obtained below the softening temperatures of conventional plastic films (˜300 °C). Detailed characterization provides an understanding of physical phenomena behind these crystal growth techniques. Applying these methods when fabricating next-generation electronics is also discussed.
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Fujimoto, Yutaka; Yamaji, Akihiro; Kurosawa, Shunsuke; Pejchal, Jan; Sugiyama, Makoto; Wakahara, Shingo; Futami, Yoshisuke; Yokota, Yuui; Kamada, Kei; Yubuta, Kunio; Shishido, Toetsu; Nikl, Martin
2013-09-01
Multicomponent garnet Ce:Gd3(Ga,Al)5O12 (Ce:GAGG) single crystals show very high light yield with reasonably fast scintillation response. Therefore, they can be promising scintillators for gamma-ray detection. However, in the decay curve a very slow component does exist. Therefore, it is necessary to optimize further the crystal growth technology of Ce:GAGG. In this study, Ce:GAGG single crystals were grown by the floating zone (FZ) method under atmospheres of various compositions such as Ar 100%, Ar 80% + O2 20%, Ar 60% + O2 40% and O2 100%. Radioluminescence spectra are dominated by the band at about 540 nm due to Ce3+ 5d1-4f transition. The Ce:GAGG single crystal grown under Ar atmosphere shows an intense slower decay component. It can be related to the processes of the delayed radiative recombination and thermally induced ionization of 5d1 level of Ce3+ center possibly further affected by oxygen vacancies. This slower decay process is significantly suppressed in the samples grown under the O2 containing atmosphere.
Cholesteric Liquid Crystal Based Reflex Color Reflective Displays
NASA Astrophysics Data System (ADS)
Khan, Asad
2012-02-01
Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer products and related markets. This is a development that spans a wide space of highly technical development and fundamental science to products and commercialization to enable the entry of the technology into consumer markets.
Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing
2012-08-14
Majumdar, A. Faraon, M . Toishi, N. Stolz, P. Petroff, J. Vuckovic. Resonant Excitation of a Quantum Dot Strongly Coupled to a Photonic Crystal...11 J. O’Brien, A. Furusawa , J. Vuckovic. Photonic Quantum Technologies, Nature Photonics, (12 2009): . doi: 2010/08/30 15:11:17 10 D. Englund, A...devices via micron-scale electrical heaters, Applied Physics Letters, ( 2009): . doi: 2009/08/19 13:18:36 7 M . Toishi, D. Englund, A. Faraon, J
NASA Technical Reports Server (NTRS)
Ma, Nancy
2003-01-01
Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1983-01-01
GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.
NASA Astrophysics Data System (ADS)
Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen
2018-06-01
With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.
Twinning, Epitaxy and Domain Switching in Ferroelastic Inclusion Compounds
NASA Technical Reports Server (NTRS)
Hollingsworth, Mark D.; Peterson, Matthew L.
2003-01-01
Our research is in the area of solid-state organic chemistry, which lies at the interface between physical organic chemistry and materials science. We use crystalline solids as models to probe fundamental issues about physical processes, molecular interactions and chemical reactions that are important for fabrication, stabilization and application of technological materials. Much of our most recent work has focused on the phenomena of ferroelastic and ferroelectric domain switching, in which application of an external force or electric field to a crystal causes the molecules inside the crystal to reorient, in tandem, to a new orientational state. To better understand and control the domain switching process, we have designed and synthesized over twenty closely related, ferroelastic organic crystals. Our approach has been to use crystalline inclusion compounds, in which one molecule (the guest) is trapped within the crystalline framework of a second molecule (the host). By keeping the host constant and varying the proportions and kinds of guests, it has been possible to tailor these materials so that domain switching is rapid and reversible (which is desirable for high technology applications). Inclusion compounds therefore serve as powerful systems for understanding the specific molecular mechanisms that control domain switching.
Jiang, Yanbo; Shi, Kai; Wang, Shuo; Li, Xuefeng; Cui, Fude
2010-12-01
This study presents a preliminary exploration on extending the half-life of therapeutic proteins by crystallization strategy without new molecular entities generation. Recombinant human interferon (rhIFN) α-2b, a model protein drug in this case, was crystallized using a hanging-drop vapor diffusion method. A novel chelating technique with metal ions was employed to promote crystals formation. The effects of key factors such as seeding protein concentration, pH of the hanging drop, ionic strength of the equilibration solution, and precipitants were investigated. Size-exclusion liquid chromatography, antiviral activity determination, and enzyme-linked immunosorbent assay indicated that both the molecular integrity and biological potency of rhIFN were not significantly affected by crystallization process. In addition, the in vitro release behavior of rhIFN from crystal lattice was characterized by an initial fast release, followed by a sustained release up to 48 hour. The work described here suggested an exciting possibility of therapeutic protein crystals as a long-acting formulation.
Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.
Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen
2016-06-23
Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.
2000-01-01
second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve
Study of Polymer Crystallization by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jeong, Hyuncheol
When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.
Assessment of Japanese Technology in Advanced Glass and Ceramic Fibers
1992-06-01
powders and crystals by hydrothermal tech- niques, and they have had their process for the preparation of zirconia powder commercial- ized by the...Masahiro Yoshimura. Whisker-Glass Composites, Hydrothermal Zirconia Powders , Hydrothermal Machining, Super-Conducting Thin Films. Professor Eiichi
NASA Astrophysics Data System (ADS)
Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.
2017-06-01
Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.
Semiconductor neutron detectors
NASA Astrophysics Data System (ADS)
Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai
2016-09-01
Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.
NASA Astrophysics Data System (ADS)
Khan, Asad
Reflective Cholesteric Liquid Crystals have been the subject of much research, development, and commercialization - in display technology as well as other embodiments, such as sensors, privacy films, etc. The liquid Crystal Institute (LCI) at Kent State University (KSU) served as a hot bed of much of the research and development in this field in the early 1990's. From here, the reflective technology was licensed to Kent Displays (KDI) to further develop and commercialize. The 90's saw some development in flexible technologies, drive scheme, display design, as well as materials. The early part of the century took a turn with a strong effort in encapsulation based flexible display development. In 2006, KDI engineers and technologists started firming up ambitious plans for the world's first roll-to-roll manufacturing line for bistable cholesteric displays. In 2009, this became a reality! In early 2010, the first eWriter product was launched into the consumer market under the brand Boogie Board®. Within months, this became a success forcing the rapid development of the manufacturing process for the flexible displays. Today, the company has two manufacturing lines, 24 hour roll-to-roll production of flexible displays, millions of Boogie Board products in the global market place, and a growing OEM business in the Boogie Board technology. KDI continues to do basic research, development, and exploration in the bistable display field. It also has had to become an expert in the supply chain management of the unique raw materials needed for flexible display manufacturing, while still managing global operations with sales offices in several continents and a growing and diversified group of individuals. In this presentation, we will present the story, research, development, technology, and latest trends in bistable cholesteric liquid crystal materials with a particular emphasis on the eWriter technology and market.
Materials processing in space bibliography, 1983, revised
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1983-01-01
Flight experiments utilizing a low gravity environment to elucidate and control various processes, or ground based activities that provide supporting research are compiled. Six major categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; glasses and ceramics; ultrahigh vacuum and containerless processing technologies; and combustion are included. A list of patents and appendices providing a compilation of anonymously authored collections and reports and a cross reference index are included.
Practical applications of nondestructive materials characterization
NASA Astrophysics Data System (ADS)
Green, Robert E., Jr.
1992-10-01
Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.
NASA Astrophysics Data System (ADS)
Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran
2018-04-01
The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.
The microstructural changes of Ge2Sb2Te5 thin film during crystallization process
NASA Astrophysics Data System (ADS)
Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun
2018-05-01
Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.
Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping
2015-01-01
Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
Astronaut Scott Parazynski works with PCG experiment on middeck
1994-11-14
STS066-13-029 (3-14 Nov 1994) --- On the Space Shuttle Atlantis' mid-deck, astronaut Scott E. Parazynski, mission specialist, works at one of two areas onboard the Shuttle which support the Protein Crystal Growth (PCG) experiment. This particular section is called the Vapor Diffusion Apparatus (VDA), housed in a Single Locker Thermal Enclosure (STES). Together with the Crystal Observation System, housed in the Thermal Enclosure System (COS/TES) the VDA represents the continuing research into the structures of proteins and other macromolecules such as viruses. In addition to using the microgravity of space to grow high-quality protein crystals for structural analyses, the experiments are expected to help develop technologies and methods to improve the protein crystallization process on Earth as well as in space.
Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.
Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong
2016-05-02
The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
NASA Astrophysics Data System (ADS)
Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin
2015-12-01
Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Measuring Te inclusion uniformity over large areas for CdTe/CZT imaging and spectrometry sensors
NASA Astrophysics Data System (ADS)
Bolke, Joe; O'Brien, Kathryn; Wall, Peter; Spicer, Mike; Gélinas, Guillaume; Beaudry, Jean-Nicolas; Alexander, W. Brock
2017-09-01
CdTe and CZT materials are technologies for gamma and x-ray imaging for applications in industry, homeland security, defense, space, medical, and astrophysics. There remain challenges in uniformity over large detector areas (50 75 mm) due to a combination of material purity, handling, growth process, grown in defects, doping/compensation, and metal contacts/surface states. The influence of these various factors has yet to be explored at the large substrate level required for devices with higher resolution both spatially and spectroscopically. In this study, we looked at how the crystal growth processes affect the size and density distributions of microscopic Te inclusion defects. We were able to grow single crystals as large as 75 mm in diameter and spatially characterize three-dimensional defects and map the uniformity using IR microscopy. We report on the pattern of observed defects within wafers and its relation to instabilities at the crystal growth interface.
NASA Technical Reports Server (NTRS)
Dumas, K. A. (Editor)
1985-01-01
A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.
NASA Astrophysics Data System (ADS)
Wang, Bo; Ji, Jing; Li, Kang
2016-09-01
Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.
Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.
Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials
NASA Technical Reports Server (NTRS)
Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John
1987-01-01
Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.
Synthesis of Struvite using a Vertical Canted Reactor with Continuous Laminar Flow Process
NASA Astrophysics Data System (ADS)
Sutiyono, S.; Edahwati, L.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.
2018-01-01
Struvite is a white crystalline that is chemically known as magnesium ammonium phosphorus hexahydrate (MgNH4PO4·6H2O). It can easily dissolve in acidic conditions and slightly soluble in neutral and alkaline conditions. In industry, struvite forms as a scale deposit on a pipe with hot flow fluid. However, struvite can be used as fertilizer because of its phosphate content. A vertical canted reactor is a promising technology for recovering phosphate levels in wastewater through struvite crystallization. The study was carried out with the vertical canted reactor by mixing an equimolar stock solution of MgCl2, NH4OH, and H3PO4 in 1: 1: 1 ratio. The crystallization process worked with the flow rate of three stock solution entering the reactor in the range of 16-38 ml/min, the temperature in the reactor is worked on 20°, 30°, and 40°C, while the incoming air rate is kept constant at 0.25 liters/min. Moreover, pH was maintained at a constant value of 9. The struvite crystallization process run until the steady state was reached. Then, the result of crystal precipitates was filtered and dried at standard temperature room for 48 hours. After that, struvite crystals were stored for the subsequent analysis by Scanning Electron Microscope (SEM) and XRD (X-Ray Diffraction) method. The use of canted reactor provided the high pure struvite with a prismatic crystal morphology.
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
Energy requirement for the production of silicon solar arrays
NASA Technical Reports Server (NTRS)
Lindmayer, J.; Wihl, M.; Scheinne, A.; Morrison, A. D.
1977-01-01
Photovoltaics is subject of an extensive technology assessment in terms of its net energy potential as an alternate energy source. Reduction of quartzite pebbles, refinement, crystal growth, cell processing and panel building are evaluated for energy expenditure compared to direct, indirect, and overhead energies.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization
NASA Astrophysics Data System (ADS)
Zhou, Lejun; Wang, Wanlin; Ma, Fanjun; Li, Jin; Wei, Juan; Matsuura, Hiroyuki; Tsukihashi, Fumitaka
2012-04-01
The effect of basicity on the mold fluxes crystallization was investigated in this article. The time-temperature-transformation (TTT) diagrams and continuous-cooling-transformation (CCT) diagrams of mold fluxes with different basicity were constructed by using single, hot thermocouple technology (SHTT). The results showed that with the increase of basicity, the incubation time of isothermal crystallization became shorter, the crystallization temperature was getting higher, and the critical cooling rate of continuous cooling crystallization became faster. The X-ray diffraction analysis suggested that calcium silicate (CaO·SiO2) was precipitated at the upper part of the TTT diagram and cuspidine (Ca4Si2O7F2) was formed at the lower part, when the basicity of mold fluxes was within 1.0 to 1.2. However, when basicity was 0.8, only the cuspidine phase was formed. A kinetic study of isothermal crystallization process indicated that the increase of the basicity tended to enhance the mold flux crystallization, and the crystallization activation energy became smaller. The crystallization mechanism of cupsidine was changing from one-dimensional growth to three-dimensional growth with a constant number of nuclei, when the basicity of mold fluxes varied from 0.8 to 1.2.
History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te
NASA Astrophysics Data System (ADS)
Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.
2013-11-01
This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm-3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm-2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.
Nanomedicine photoluminescence crystal-inspired brain sensing approach
NASA Astrophysics Data System (ADS)
Fang, Yan; Wang, Fangzhen; Wu, Rong
2018-02-01
Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.
Silicon carbide, a semiconductor for space power electronics
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Matus, Lawrence G.
1991-01-01
After many years of promise as a high temperature semiconductor, silicon carbide (SiC) is finally emerging as a useful electronic material. Recent significant progress that has led to this emergence has been in the areas of crystal growth and device fabrication technology. High quality single-crystal SiC wafers, up to 25 mm in diameter, can now be produced routinely from boules grown by a high temperature (2700 K) sublimation process. Device fabrication processes, including chemical vapor deposition (CVD), in situ doping during CVD, reactive ion etching, oxidation, metallization, etc. have been used to fabricate p-n junction diodes and MOSFETs. The diode was operated to 870 K and the MOSFET to 770 K.
Development of SiC Large Tapered Crystal Growth
NASA Technical Reports Server (NTRS)
Neudeck, Phil
2011-01-01
Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.
Wang, Qiming; Shalaev, Evgenyi
2018-04-01
In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.
Linear and passive silicon diodes, isolators, and logic gates
NASA Astrophysics Data System (ADS)
Li, Zhi-Yuan
2013-12-01
Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.
Flow-Directed Crystallization for Printed Electronics.
Qu, Ge; Kwok, Justin J; Diao, Ying
2016-12-20
The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.
Survey of the US materials processing and manufacturing in space program
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1981-01-01
To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Latanision, R. M.
1986-01-01
An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.
Industrial Applications of High Power Ultrasonics
NASA Astrophysics Data System (ADS)
Patist, Alex; Bates, Darren
Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.
Significant volume reduction of tank waste by selective crystallization: 1994 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herting, D.L.; Lunsford, T.R.
1994-09-27
The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less
NASA Astrophysics Data System (ADS)
Hao, Tian; Xu, Yuanze; Hao, Ting
2018-04-01
The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.
NASA Astrophysics Data System (ADS)
Jakovics, A.
2007-06-01
The International Scientific Colloquium "Modelling for Material Processing" took place last year on June 8-9. It was the fourth time the colloquium was organized. The first colloquium took place in 1999. All colloquia were organized by the University of Latvia together with Leibniz University of Hannover (Germany) that signifies a long-term tradition (since 1988) of scientific cooperation between researchers of these two universities in the field of electrothermal process modelling. During the last colloquium scientific reports in the field of mathematical modelling in industrial electromagnetic applications for different materials (liquid metals, semiconductor technology, porous materials, melting of oxides and inductive heating) were presented. 70 researchers from 10 countries attended the colloquium. The contributions included about 30 oral presentations and 12 posters. The most illustrative presentations (oral and poster) in the field of MHD were selected for publication in a special issue of the international journal "Magnetohydrodynamics". Traditionally, many reports of the colloquium discuss the problems of MHD methods and devices applied to the metallurgical technologies and processes of semiconductor crystal growth. The new results illustrate the influence of combined electromagnetic fields on the hydrodynamics and heat/mass transfer in melts. The presented reports demonstrate that the models for simulation of turbulent liquid metal flows in melting furnaces, crystallization of alloys and single crystal growth in electromagnetic fields have become much more complex. The adequate description of occurring physical phenomena and the use of high performance computer and clusters allow to reduce the number of experiments in industrial facilities. The use of software and computers for modelling technological and environmental processes has a very long history at the University of Latvia. The first modelling activities in the field of industrial MHD applications had led to the establishment of the chair of Electrodynamics and Continuum Mechanics in 1970, the first head of which was professor Juris Mikelsons. In the early 90's, when all research institutions in our country underwent dramatic changes, not all research directions and institutions managed to adapt successfully to the new conditions. Fortunately, the people who were involved in computer modelling of physical processes were among the most successful. First, the existing and newly established contacts in Western Europe were used actively to reorient the applied researches in the directions actively studied at the universities and companies, which were the partners of the University of Latvia. As a result, research groups involved in these activities successfully joined the international effort related to the application of computer models to industrial processes, and the scientific laboratory for Mathematical Modelling of Environmental and Technological Processes was founded in 1994. The second direction of modelling development was related to the application of computer-based models for the environmental and technological processes (e.g., sediment transport in harbours, heat transfer in building constructions) that were important for the companies and state institutions in Latvia. Currently, the field of engineering physics, the core of which is the computer modelling of technological and environmental processes, is one of the largest and most successfully developing parts of researches and educational programs at the Department of Physics of the University of Latvia with very good perspectives in the future for the development of new technologies and knowledge transfer.
NASA Technical Reports Server (NTRS)
1991-01-01
The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.
Immunosensors using a quartz crystal microbalance
NASA Astrophysics Data System (ADS)
Kurosawa, Shigeru; Aizawa, Hidenobu; Tozuka, Mitsuhiro; Nakamura, Miki; Park, Jong-Won
2003-11-01
Better analytical technology has been demanded for accurate and rapid determination of trace amounts of chemical compounds, such as marker proteins for disease or endocrine disrupters like dioxin, which might be contained in blood, food and the environment. The study of immunosensors using a quartz crystal microbalance (QCM) has recently focused on conventional detection methods for the determination of chemical compounds together with the development of reagents and processes. This paper introduces the principle of the detection method of QCM immunosensors developed at AIST and its application to the detection of trace amounts of chemical compounds.
Assessment of changes in crystallization properties of pressurized milk fat.
Staniewski, Bogusław; Smoczyński, Michał; Staniewska, Katarzyna; Baranowska, Maria; Kiełczewska, Katarzyna; Zulewska, Justyna
2015-04-01
The aim of the study was to demonstrate the use of fractal image analysis as a possible tool to monitor the effect of pressurization on the crystallization pattern of anhydrous milk fat. This approach can be useful when developing new products based on milk fat. The samples were subjected to different hydrostatic pressure (100, 200, 300, and 400 MPa) and temperature (10 and 40 °C) treatments. The crystallization microphotographs were taken with a scanning electron microscope. The image analysis of scanning electron microscope photographs was done to determine a fractal dimension. Milk-fat pressurization under the applied parameters resulted in slight, but statistically significant, changes in the course of crystallization curves, related to the triacylglycerol fraction crystallizing in the lowest temperature (I exothermic effect). These changes were dependent on the value of pressure but not dependent on the temperatures applied during the process of pressurization (at either 10 or 40 °C). In turn, significant differences were observed in crystallization images of milk-fat samples subjected to this process compared with the control sample. The results of additional fractal analysis additionally demonstrated the highest degree of irregularity of the surface of the crystalline form for the nonpressurized sample and the samples pressurized at 200 and 300 MPa at 10 °C. The lowest value of fractal dimension-indicative of the least irregularity-was achieved for the fat samples pressurized at 400 MPa, 10 °C and at 100 MPa, 40 °C. The possibilities of wider application of the fractal analysis for the evaluation of effects of parameters of various technological processes on crystallization properties of milk fat require further extensive investigations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Single Crystal DMs for Space-Based Observatories
NASA Astrophysics Data System (ADS)
Bierden, Paul
We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.
Space processing applications payload equipment study. Volume 2A: Experiment requirements
NASA Technical Reports Server (NTRS)
Smith, A. G.; Anderson, W. T., Jr.
1974-01-01
An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.
NASA Astrophysics Data System (ADS)
Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu
2018-01-01
The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.
High definition surface micromachining of LiNbO 3 by ion implantation
NASA Astrophysics Data System (ADS)
Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.
2010-10-01
High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).
Marra, James C.; Kim, Dong -Sang
2014-12-18
A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less
Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals
Mohite, Aditya; Nie, Wanyi
2018-05-11
State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.
NASA Technical Reports Server (NTRS)
1981-01-01
The process development continued, with a total of nine crystal growth runs. One of these was a 150 kg run of 5 crystals of approximately 30 kg each. Several machine and process problems were corrected and the 150 kg run was as successful as previous long runs on CG2000 RC's. The accelerated recharge and growth will be attempted when the development program resumes at full capacity in FY '82. The automation controls (Automatic Grower Light Computer System) were integrated to the seed dip temperature, shoulder, and diameter sensors on the CG2000 RC development grower. Test growths included four crystals, which were grown by the computer/sensor system from seed dip through tail off. This system will be integrated on the Mod CG2000 grower during the next quarter. The analytical task included the completion and preliminary testing of the gas chromatograph portion of the Furnace Atmosphere Analysis System. The system can detect CO concentrations and will be expanded to oxygen and water analysis in FY '82.
Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs
2011-10-16
Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizingmore » available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander
Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s -1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away frommore » the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
NASA Astrophysics Data System (ADS)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.
2018-03-01
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.
High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants
Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek
2008-01-01
Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here. PMID:18703844
NASA Astrophysics Data System (ADS)
Liu, Hung-Wei
Organic electronic materials and processing techniques have attracted considerable attention for developing organic thin-film transistors (OTFTs), since they may be patterned on flexible substrates which may be bent into a variety of shapes for applications such as displays, smart cards, solar devices and sensors Various fabrication methods for building pentacene-based OTFTs have been demonstrated. Traditional vacuum deposition and vapor deposition methods have been studied for deposition on plastic and paper, but these are unlikely to scale well to large area printing. Researchers have developed methods for processing OTFTs from solution because of the potential for low-cost and large area device manufacturing, such as through inkjet or offset printing. Most methods require the use of precursors which are used to make pentacene soluble, and these methods have typically produced much lower carrier mobility than the best vacuum deposited devices. We have investigated devices built from solution-processed pentacene that is locally crystallized at room temperature on the polymer substrates. Pentacene crystals grown in this manner are highly localized at pre-determined sites, have good crystallinity and show good carrier mobility, making this an attractive method for large area manufacturing of semiconductor devices.
Numerical Study of the Features of Ti-Nb Alloy Crystallization during Selective Laser Sintering
NASA Astrophysics Data System (ADS)
Dmitriev, A. I.; Nikonov, A. Y.
2016-07-01
The demand for implants with individual shape requires the development of new methods and approaches to their production. The obvious advantages of additive technologies and selective laser sintering are the capabilities to form both the external shape of the product and its internal structure. Recently appeared and attractive from the perspective of biomechanical compatibility are beta alloys of titanium-niobium that have similar mechanical properties to those of cortical bone. This paper studies the processes occurring at different stages of laser sintering using computer simulation on atomic scale. The effect of cooling rate on the resulting crystal structure of Ti-Nb alloy was analysed. Also, the dependence of tensile strength of sintered particles on heating time and cooling rate was studied. It was shown that the main parameter, which determines the adhesive properties of sintered particles, is the contact area obtained during sintering process. The simulation results can both help defining the technological parameters of the process to provide the desired mechanical properties of the resulting products and serve as a necessary basis for calculations on large scale levels in order to study the behaviour of actually used implants.
Lab-on-a-Chip Based Protein Crystallization
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.
Autonomous magnetic float zone microgravity crystal growth application to TiC and GaAs
NASA Astrophysics Data System (ADS)
Chan, Tony Y.-T.; Choi, Sang-Keun
1992-10-01
The floating zone process is ideal for high temperature (greater than 3000 K) growth of titanium carbide because it is containerless. However, float zoning requires small melt volumes in order to maintain a stable melt configuration. The short melt columns make it difficult to achieve a controlled thermal profile, a necessity for producing crystals of high quality. Thus, an automated control strategy based upon continuous monitoring of the growth process with processing parameters adjusted to values based upon the physical transport processes of the growth process is very desirable for maintaining stability and reproducibility of the process. The present work developed a Float-zone Acquisition and Control Technology (FACT) system which uses relations derived by combining empirical relations with a knowledge data base deduced from detailed numerical analysis of fluid mechanics and thermal transport of the growth process. The FACT system was assembled, tested and employed to grow two TiC ingots. One of the ingots was characterized by x-ray diffraction at different axial locations. The x-ray rocking curves showed consistent characteristics of a manually grown ingot. It was also found that with the FACT system, the process conditions can be operated closer to the stability limits, due to fast response time and repetitive amounts of adjustment from the FACT system. The FACT system shows a major potential in growing quality TiC crystals in a cost-effective manner.
Space processing applications rocket project SPAR 4, engineering report
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler)
1980-01-01
The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.
Wavelength-tunable light shaping with cholesteric liquid crystal microlenses.
Bayon, Chloé; Agez, Gonzague; Mitov, Michel
2014-06-21
The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.
NASA Astrophysics Data System (ADS)
Yu, Geliang; Yang, Cao; Khestanova, Ekaterina; Mishchenko, Artem; Kretinin, Andy; Gorbachev, Roman; Novoselov, Konstantin; Andre, Geim; Manchester Group Team
Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest reacts and decomposes in air, which has severely hindered their investigation and possible uses. Here we introduce a remedial approach based on cleavage, transfer, alignment and encapsulation of airsensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
NASA Technical Reports Server (NTRS)
1980-01-01
The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.
NASA Astrophysics Data System (ADS)
Amado, Antonio; Schmid, Manfred; Wegener, Konrad
2015-05-01
Polymer processing using Additive Manufacturing Technologies (AM) has experienced a remarkable growth during the last years. The application range has been expanding rapidly, particularly driven by the so-called consumer 3D printing sector. However, for applications demanding higher requirements in terms of thermo-mechanical properties and dimensional accuracy the long established AM technologies such as Selective Laser Sintering (SLS) do not depict a comparable development. The higher process complexity hinders the number of materials that can be currently processed and the interactions between the different physics involved have not been fully investigated. In case of thermoplastic materials the crystallization kinetics coupled to the shrinkage strain development strongly influences the stability of the process. Thus, the current investigation presents a transient Finite Element simulation of the warpage effect during the SLS process of a new developed polyolefin (co-polypropylene) coupling the thermal, mechanical and phase change equations that control the process. A thermal characterization of the material was performed by means of DSC, integrating the Nakamura model with the classical Hoffmann-Lauritzen theory. The viscoelastic behavior was measured using a plate-plate rheometer at different degrees of undercooling and a phase change-temperature superposition principle was implemented. Additionally, for validation porpoises the warpage development of the first sintered layers was captured employing an optical device. The simulation results depict a good agreement with experimental measurements of deformation, describing the high sensitivity of the geometrical accuracy of the sintered parts related to the processing conditions.
About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)
2002-01-01
We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.
Optical properties of Mg2+, Yb3+, and Ho3+ tri-doped LiNbO3 crystals
NASA Astrophysics Data System (ADS)
Dai, Li; Liu, Chun-Rui; Tan, Chao; Yan, Zhe-Hua; Xu, Yu-Heng
2017-04-01
A series of LiNbO3 crystals tri-doped with Mg{}2+, Yb{}3+, and Ho{}3+ are grown by the conventional Czochraski technique. The concentrations of Mg{}2+, Yb{}3+, and Ho{}3+ ions in Mg:Yb:Ho:LiNbO3 crystals are measured by using an inductively coupled plasma atomic emission spectrometry. The x-ray diffraction is proposed to determine the lattice constant and analyze the internal structure of the crystal. The light-induced scattering of Mg:Yb:Ho:LiNbO3 crystal is quantitatively described via the threshold effect of incident exposure energy flux. The exposure energy ({E}{{r}}) is calculated to discuss the optical damage resistance ability. The exposure energy of Mg(7 mol):Yb:Ho:LiNbO3 crystal is 709.17 J/cm2, approximately 425 times higher than that of the Mg(1 mol):Yb:Ho:LiNbO3 crystal in magnitude. The blue, red, and very intense green bands of Mg:Yb:Ho:LiNbO3 crystal are observed under the 980-nm laser excitation to evaluate the up-conversion emission properties. The dependence of the emission intensity on pumping power indicates that the up-conversion emission is a two-photon process. The up-conversion emission mechanism is discussed in detail. This study indicates that Mg:Yb:Ho:LiNbO3 crystal can be applied to the fabrication of new multifunctional photoluminescence devices. Project supported by the National Natural Science Foundation of China (Grant No. 51301055), the Youth Science Fund of Heilongjiang Province, China (Grant No. QC2015061), the Special Funds of Harbin Innovation Talents in Science and Technology Research, China (Grant No. 2015RQQXJ045 ), and the Science Funds for the Young Innovative Talents of Harbin University of Science and Technology, China (Grant No. 201501).
NASA Astrophysics Data System (ADS)
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.
2015-01-01
Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s−1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening. PMID:25615864
Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; ...
2014-06-01
Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s -1) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away frommore » the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.« less
Materials processing in space bibliography
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1982-01-01
Literature dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes or with ground based activities that provide supporting research is listed. Included are Government reports, contractor reports, conference proceedings, and journal articles. Subdivisions of the bibliography include the five categories: crystal growth; metals, alloys, and composites, fluids and transport; glasses and ceramics; and Ultrahigh Vacuum and Containerless Processing Technologies, in addition to a list of patents and a compilation of anonymously authored collections and reports and a cross reference index.
Investigation of thin film solar cells based on Cu2S and ternary compounds such as CuInS2
NASA Technical Reports Server (NTRS)
Loferski, J. J.
1975-01-01
Production and characterization in thin film form of Cu2S and related Cu compounds such as CuInS2 for photovoltaic cells are examined. The low cost process technology being reported, namely the sulfurization method, is capable of producing films on various substrates. Cathodoluminescence is being used as a diagnostic tool to identify Cu(x)S and CuInS2 compounds. Also, single crystals of CuInS2 are being prepared and it is contemplated that p-n junctions will be made in such crystals.
E-beam-pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.
1995-04-01
The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.
NASA Technical Reports Server (NTRS)
1979-01-01
The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-02-24
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.
2003-05-07
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
1992-06-25
This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
Recent developments in novel freezing and thawing technologies applied to foods.
Wu, Xiao-Fei; Zhang, Min; Adhikari, Benu; Sun, Jincai
2017-11-22
This article reviews the recent developments in novel freezing and thawing technologies applied to foods. These novel technologies improve the quality of frozen and thawed foods and are energy efficient. The novel technologies applied to freezing include pulsed electric field pre-treatment, ultra-low temperature, ultra-rapid freezing, ultra-high pressure and ultrasound. The novel technologies applied to thawing include ultra-high pressure, ultrasound, high voltage electrostatic field (HVEF), and radio frequency. Ultra-low temperature and ultra-rapid freezing promote the formation and uniform distribution of small ice crystals throughout frozen foods. Ultra-high pressure and ultrasound assisted freezing are non-thermal methods and shorten the freezing time and improve product quality. Ultra-high pressure and HVEF thawing generate high heat transfer rates and accelerate the thawing process. Ultrasound and radio frequency thawing can facilitate thawing process by volumetrically generating heat within frozen foods. It is anticipated that these novel technologies will be increasingly used in food industries in the future.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
Kawakami, Kohsaku
2017-06-01
Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.
NASA Astrophysics Data System (ADS)
Liu, Zhaoyang; Qi, Huan
2014-04-01
A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/ V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio S, which enables remelting of all the misoriented grains and guarantees a continuous growth of the substrate directional-solidified crystalline orientation during the multilayer deposition of single-crystal alloys.
The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdts, Cory J.; Elliott, Mark; Lovell, Scott
2012-02-08
The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, {approx}10-20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition.more » The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive 'hybrid' crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants.« less
Macromolecular Crystal Growth by Means of Microfluidics
NASA Technical Reports Server (NTRS)
vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)
2002-01-01
We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.
NASA Technical Reports Server (NTRS)
1983-01-01
The history of NASA's materials processing in space activities is reviewed. Market projections, support requirements, orbital operations issues, cost estimates and candidate systems (orbiter sortie flight, orbiter serviced free flyer, space station, space station serviced free flyer) for the space production of semiconductor crystals are examined. Mission requirements are identified for materials processing, communications missions, bioprocessing, and for transferring aviation maintenance training technology to spacecraft.
[Subtype classification of ceftriaxone sodium and its influence on the quality of product].
Xue, Jing; Jia, Yan-Hua; Li, Jin; Yin, Li-Hui; Hu, Chang-Qin
2014-07-01
Powder X-ray diffraction (PXRD) technology combined with cluster analysis method was used to classify 75 batches of crystalline ceftriaxone sodium into subtypes, the crystalline characteristics of each subtype were measured with scanning electron microscope (SEM). By comparing some parameters of these subtypes correlated to crystallization process of ceftriaxone sodium, such as salification rate, water content in different subtypes, as well as by studying different lattice stabilities, different compatibilities with rubber closures during accelerated stability tests, the key point to improve the quality of domestic ceftriaxone sodium was disclosed. The results of this paper indicated that the fine structure of the products could be controlled well by improving the salification and crystallization process. As a result, the subtype II of ceftriaxone sodium with high stability can be produced.
Crystal Growth and Other Materials Physical Researches in Space Environment
NASA Astrophysics Data System (ADS)
Pan, Mingxiang
Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.
NASA Astrophysics Data System (ADS)
Bengtson, K. B.
The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.
Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai
2015-11-01
Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate
NASA Technical Reports Server (NTRS)
Choi, Sang; King, Glen; Park, Yeonjoon
2009-01-01
SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than plus or minus 10 deg.) sapphire (0001) substrate can be used to improve epitaxial relationships better by providing attractive atomic steps in the epitaxial process.
2007-05-01
but relatively low acoustic figure of merit (the ability to couple acoustic wave to the crystal). In the infrared region TeO2 crystal (0.35 – 5.0 µm...filter. More in particular, it is based on a Lyot filter, which is a sandwich of birefringent liquid crystal, glass , quartz placed between two...variable retardance element in the sandwich composed of quartz, glass , polarizers and liquid crystal itself. To achieve the desired wavelength
Laser writing of coherent colour centres in diamond
NASA Astrophysics Data System (ADS)
Chen, Yu-Chen; Salter, Patrick S.; Knauer, Sebastian; Weng, Laiyi; Frangeskou, Angelo C.; Stephen, Colin J.; Ishmael, Shazeaa N.; Dolan, Philip R.; Johnson, Sam; Green, Ben L.; Morley, Gavin W.; Newton, Mark E.; Rarity, John G.; Booth, Martin J.; Smith, Jason M.
2017-02-01
Optically active point defects in crystals have gained widespread attention as photonic systems that could be applied in quantum information technologies. However, challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single negatively charged nitrogen-vacancy (NV-) centres in diamond using laser writing. Aberration correction in the writing optics allows precise positioning of the vacancies within the diamond crystal, and subsequent annealing produces single NV- centres with a probability of success of up to 45 ± 15%, located within about 200 nm of the desired position in the transverse plane. Selected NV- centres display stable, coherent optical transitions at cryogenic temperatures, a prerequisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies, and extend laser processing to the single-defect domain.
Space station needs, attributes and architectural options study. Volume 2: Mission analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.
Modeling of PCG fluid dynamics: Salient results
NASA Technical Reports Server (NTRS)
Ramachandran, N.
1993-01-01
Materials processing in space-based laboratories has already yielded higher quality crystals during previous space flights, and opportunities for several fluids experiments are anticipated during the extended duration missions planned for the future. Crystal growth in space benefits not only from its reduced gravity environment but also from the absence of the hydrostatic pressure which assists certain crystal growth and refinement methods. Gravity-driven phenomena are thus reduced in strength, and a purely diffusive fluid's behavior can be attained. In addition, past materials science experiments have shown that microgravity can also help produce larger crystals. While gravity-related effects are definitely curtailed in space, they are nevertheless present to some degree due to the acceleration environment onboard the spacecraft. This residual acceleration level is comprised of quasi-steady, oscillatory, and transient components, and is caused by a variety of mechanisms. For example, gravity gradient forces produce low frequency disturbances, and the operation of machinery, control thrusters, solar panels, human activity, etc. contribute to higher frequency accelerations. These disturbances are collectively referred to as g-jitter, and they can be deleterious to certain experiments where the minimization of the acceleration level is important. Advanced vibration isolation techniques can be utilized to actively filter out some of the detrimental frequencies and help in obtaining optimum results. However, the successful application of this technology requires the detailed analysis of candidate fluids experiments to gauge their response to g-jitter and to determine their acceleration sensitivities. Several crystal growth experiments in the Protein Crystal Growth (PCG) area, besides others, are expected to be carried out on future shuttle flights and on Space Station Freedom. The need for vibration isolation systems or components for microgravity science experiments can be expected to grow as experiments and available hardware becomes more complex. This technology will also find increased application as the science community develops an awareness of their specific needs relative to the environment available in manned space missions. Vibration isolation research strives to develop a microgravity environment requirement that defines tolerance limits on the allowable g-level, and provides the required technology to achieve it. This effort will assist in establishing the tolerable acceleration levels for specific fluids experiments. The primary effort is directed towards modeling PCG and the approach undertaken for this investigation is outlined. The objectives of this research are: (1) to computationally determine vibration sensitivity of protein crystal growth experiments; (2) determine if these experiments can benefit from vibration isolation techniques; and (3) provide realistic requirements for vibration isolation technology.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; ...
2018-03-12
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
Recent advancements in transparent ceramics and crystal fibers for high power lasers
NASA Astrophysics Data System (ADS)
Kim, W.; Baker, C.; Villalobos, G.; Florea, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; Bayya, S.; Sadowski, B.; Hunt, M.; Askins, C.; Peele, J.; Aggarwal, I. D.; Sanghera, J. S.
2013-05-01
In this paper, we present our recent progress in the development of rare-earth (Yb3+ or Ho3+) doped Lu2O3 and Y2O3 sesquioxides for high power solid state lasers. We have fabricated high quality transparent ceramics using nano-powders synthesized by a co-precipitation method. This was accomplished by developments in high purity powder synthesis and low temperature scalable sintering technology developed at NRL. The optical, spectral and morphological properties as well as the lasing performance from our highly transparent ceramics are presented. In the second part of the paper, we discuss our recent research effort in developing cladded-single crystal fibers for high power single frequency fiber lasers has the potential to significantly exceed the capabilities of existing silica fiber based lasers. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by the Laser Heated Pedestal Growth (LHPG) process. Our recent results on the development of suitable claddings on the crystal fiber core are discussed.
Evolutionary selection growth of two-dimensional materials on polycrystalline substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj
There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafimovich, P. G.; Stepikhova, M. V., E-mail: mst@ipm.sci-nnov.ru; Kazanskiy, N. L.
2016-08-15
The production technology of a photonic-crystal cavity formed as a group of holes in a silicon strip waveguide by ion-beam etching is described. The parasitic effect associated with hole conicity which develops upon hole formation by the given technology is studied. Numerical simulation shows that the hole-conicity induced decrease in the cavity quality factor can be compensated with consideration for the hole volume. The influence of the waveguide thickness on the resonance wavelength and quality factor of the photonic-crystal cavity is analyzed.
Wang, Jun; Lv, Yanhui; Zhang, Zhaohong; Deng, Yingqiao; Zhang, Liquan; Liu, Bin; Xu, Rui; Zhang, Xiangdong
2009-10-15
In order to degrade some pollutants effectively under ultrasonic irradiation, the Co-doped and Cr-doped mixed crystal TiO(2) powders, with high sonocatalytic activity, were prepared as sonocatalyst. The Co-doped and Cr-doped mixed crystal TiO(2) powders as sonocatalyst were prepared through sol-gel and heat-treated methods from tetrabutylorthotitanate, and then were characterized by XRD and TG-DTA technologies. In order to compare and evaluate the sonocatalytic activity of the Co-doped and Cr-doped mixed crystal TiO(2) powders, the low power ultrasound was as an irradiation source and the azo fuchsine was chosen as a model compound to be degraded. The degradation process was investigated by UV-vis, TOC, ion chromatogram and HPLC techniques. The results indicated that the sonocatalytic activity of Cr-doped mixed crystal TiO(2) powder was higher than that of Co-doped and undoped mixed crystal TiO(2) powder during the sonocatalytic degradation of the azo fuchsine in aqueous solution. These results may be of great significance for driving sonocatalytic method to treat non- or low-transparent industrial wastewaters.
Introduction to protein crystallization
McPherson, Alexander; Gavira, Jose A.
2014-01-01
Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610
Introduction to protein crystallization.
McPherson, Alexander; Gavira, Jose A
2014-01-01
Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.
Way to nanogrinding technology
NASA Astrophysics Data System (ADS)
Miyashita, Masakazu
1990-11-01
Precision finishing process of hard and brittle material components such as single crystal silicon wafer and magnetic head consists of lapping and polishing which depend too much on skilled labor. This process is based on the traditional optical production technology and entirely different from the automated mass production technique in automobile production. Instead of traditional lapping and polishing, the nanogrinding is proposed as a new stock removal machining to generate optical surface on brittle materials. By this new technology, the damage free surface which is the same one produced by lapping and polishing can be obtained on brittle materials, and the free carvature can also be generated on brittle materials. This technology is based on the motion copying principle which is the same as in case of metal parts machining. The new nanogrinding technology is anticipated to be adapted as the machining technique suitable for automated mass production, because the stable machining on the level of optical production technique is expected to be obtained by the traditional lapping and polishing.
Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane
NASA Astrophysics Data System (ADS)
Redjeki, S.; Hapsari, N.; Iriani
2018-01-01
Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.
Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J
2015-03-01
This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chen, Xueye; Liu, Bo; Wu, Qiang; Zhu, Zhichao; Zhu, Jingtao; Gu, Mu; Chen, Hong; Liu, Jinliang; Chen, Liang; Ouyang, Xiaoping
2018-04-30
Plastic scintillators are widely used in various radiation measurement systems. However, detection efficiency and signal-to-noise are limited due to the total internal reflection, especially for weak signal detection situations. In the present investigation, large-area photonic crystals consisting of an array of periodic truncated cone holes were prepared based on hot embossing technology aiming at coupling with the surface of plastic scintillator to improve the light extraction efficiency and directionality control. The experimental results show that a maximum enhancement of 64% at 25° emergence angle along Γ-M orientation and a maximum enhancement of 58% at 20° emergence angle along Γ-K orientation were obtained. The proposed fabrication method of photonic crystal scintillator can avoid complicated pattern transfer processes used in most traditional methods, leading to a simple, economical method for large-area preparation. The photonic crystal scintillator demonstrated in this work is of great value for practical applications of nuclear radiation detection.
Proteomic Analysis of Bacillus thuringiensis Strain 4.0718 at Different Growth Phases
Li, Xiaohui; Ding, Xuezhi; Xia, Liqiu; Sun, Yunjun; Yuan, Can; Yin, Jia
2012-01-01
The growth process of Bacillus thuringiensis Bt4.0718 strain was studied using proteomic technologies. The proteins of Bt whole cells at three phases—middle vegetative, early sporulation, and late sporulation—were extracted with lysis buffer, followed with separation by 2-DE and identified by MALDI-TOF/TOF MS. Bioactive factors such as insecticidal crystal proteins (ICPs) including Cry1Ac(3), Cry2Aa, and BTRX28, immune inhibitor (InhA), and InhA precursor were identified. InhA started to express at the middle vegetative phase, suggesting its contribution to the survival of Bt in the host body. At the early sporulation phase, ICPs started their expression. CotJC, OppA, ORF1, and SpoIVA related to the formation of crystals and spores were identified, the expression characteristics of which ensured the stable formation of crystals and spores. This study provides an important foundation for further exploration of the stable expression of ICPs, the smooth formation of crystals, and the construction of recombinant strains. PMID:22649324
Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution
NASA Astrophysics Data System (ADS)
Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn
2014-07-01
We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.
Active learning in optics and photonics: Liquid Crystal Display in the do-it-yourself
NASA Astrophysics Data System (ADS)
Vauderwange, Oliver; Haiss, Ulrich; Wozniak, Peter; Israel, Kai; Curticapean, Dan
2015-10-01
Monitors are in the center of media productions and hold an important function as the main visual interface. Tablets and smartphones are becoming more and more important work tools in the media industry. As an extension to our lecture contents an intensive discussion of different display technologies and its applications is taking place now. The established LCD (Liquid Crystal Display) technology and the promising OLED (Organic Light Emitting Diode) technology are in the focus. The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves. The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop "Liquid Crystal Display in the do-it-yourself".
Crystallization Process of Superlattice-Like Sb/SiO2 Thin Films for Phase Change Memory Application
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Qin; Zhang, Rui; Hu, Yi-Feng; Lai, Tian-Shu; Zhang, Jian-Hao; Zou, Hua; Song, Zhi-Tang
2018-05-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 11774438, the Natural Science Foundation of Jiangsu Province under Grant No BK20151172, the Changzhou Science and Technology Bureau under Grant No CJ20160028, the Qing Lan Project, the Opening Project of State Key Laboratory of Silicon Materials under Grant No SKL2017-04, and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences.
Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A.A.
1995-07-01
This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.
NASA Astrophysics Data System (ADS)
Schwirtlich, I. A.
Since the beginning of solar cell development based on crystalline silicon, there have been efforts to produce wafers directly from the melt instead of through crystallization of ingots. Ingots require slicing into the blocs and wafers which form the basis of solar cells. In the last 30 years, several dozen processes have been published that describe a variety of concepts. Only few of these processes could be developed to an acceptable degree of technical maturity. Among those successful technologies are the Dendritic Web process, the Edge Supported Pulling (ESP) process and the Edge-Defined-Film-Fed-Growth (EFG) process. The EFG Process was originally developed by Mobil Solar and, since the mid-1990s, belongs to SCHOTT Solar GmbH and its predecessors, respectively. The Ribbon Growth on Substrate (RGS) process was originally developed by Bayer AG and is now in a pilot project at the ECN, Petten. Considering the past 20 to 30 years, the EFG process has reached the most advanced state in terms of industrialization.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement
Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali
2013-01-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535
Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali
2015-09-01
Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.
NASA Technical Reports Server (NTRS)
Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.
1984-01-01
Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.
Novel protein crystal growth technology: Proof of concept
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Rosenberger, Franz
1989-01-01
A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.
Wang, Ruixue; Chen, Ya; Xu, Zhenming
2015-05-19
Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".
Hydrothermal Growth of Polyscale Crystals
NASA Astrophysics Data System (ADS)
Byrappa, Kullaiah
In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
A Protein Coated Piezoelectric Crystal Detector
1990-05-01
and acetylcholine, which continues the cyclic process. Organophosphate agents and other acetyicholinesterase inhibitors form a covalent intermediate...and/or decontamination purposes. With the current state of development and technology in the area of biotechnology, the use of chemical warfare agents ...by an enemy in battle is no longer just a probability, but a very likely possibility. Organophosphorus agents and other cholinesterase inhibitors are
Spacelab Module for USML-1 Mission in Orbiter Cargo Bay
NASA Technical Reports Server (NTRS)
1992-01-01
This is a photograph of the Spacelab module for the first United States Microgravity Laboratory (USML-1) mission, showing logos of the Spacelab mission on the left and the USML-1 mission on the right. The USML-1 was one part of a science and technology program that opened NASA's next great era of discovery and established the United States' leadership in space. From investigations designed to gather fundamental knowledge in a variety of areas to demonstrations of new equipment, USML-1 forged the way for future USML missions and helped prepare for advanced microgravity research and processing aboard the Space Station. Thirty-one investigations comprised the payload of the first USML-1 mission. The experiments aboard USML-1 covered five basic areas: fluid dynamics, the study of how liquids and gases respond to the application or absence of differing forces; crystal growth, the production of inorganic and organic crystals; combustion science, the study of the processes and phenomena of burning; biological science, the study of plant and animal life; and technology demonstrations. The USML-1 was managed by the Marshall Space Flight Center and launched aboard the Space Shuttle Orbiter Columbia (STS-50) on June 25, 1992.
Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors
Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan
2017-01-01
Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588
Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent
NASA Astrophysics Data System (ADS)
Sato, Yoichi; Akiyama, Jun; Taira, Takunori
2012-01-01
Principles that enable to synthesize anisotropic laser ceramics have been established. Anisotropic laser ceramics contain micro domains made of anisotropic crystals, and we have invented the novel alignment technology of micro domain structure in laser ceramics assisted by rare-earth trivalent. Our novel process is essentially superior to the traditional electromagnetic processing from the viewpoint of mass production. We discussed the significance of anisotropic laser ceramics, and we also show the result of evaluations to our orientation controlled RE:FAP ceramics.
Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng
2016-11-15
Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keres, L.J.
1990-11-01
The purpose of this project was to develop quartz crystal resonator designs, production processes, and test capabilities for 5-MHz, 6.2-MHz, and 10-MHz resonators for Tactical Miniature Crystal Oscillator (TMXO) applications. GE Neutron Devices (GEND) established and demonstrated the capability to produce and test quartz crystal resonators for use in the TMXO developed by the US Army ERADCOM (now LABCOM). The goals in this project were based on the ERADCOM statement of work. The scope of work indicated that the resonator production facilities for this project would not be completely independent, but that they would be supported in part by equipmentmore » and processes in place at GEND used in US Department of Energy (DOE) work. In addition, provisions for production test equipment or or eventual technology transfer costs to a commercial supplier were clearly excluded from the scope of work. The demonstrated technical capability of the deep-etched blank design is feasible and practical. It can be manufactured in quantity with reasonable yield, and its performance is readily predictable. The ceramic flatpack is a very strong package with excellent hermeticity. The four-point mount supports the crystal to reasonable shock levels and does not perturb the resonator's natural frequency-temperature behavior. The package can be sealed with excellent yields. The high-temperature, high-vacuum processing developed for the TMXO resonator, including bonding the piezoid to its mount with conductive polyimide adhesive, is consistent with precision resonator fabrication. 1 fig., 6 tabs.« less
Process development for single-crystal silicon solar cells
NASA Astrophysics Data System (ADS)
Bohra, Mihir H.
Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals
NASA Astrophysics Data System (ADS)
Kwak, Junha John
Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.
A review on recent technologies for the manufacture of pulmonary drugs.
Hadiwinoto, Gabriela Daisy; Lip Kwok, Philip Chi; Lakerveld, Richard
2018-01-01
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Connectivity of glass structure. Oxygen number
NASA Astrophysics Data System (ADS)
Medvedev, E. F.; Min'ko, N. I.
2018-03-01
With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.
Kubicek, Jan; Schlesinger, Ramona; Baeken, Christian; Büldt, Georg; Schäfer, Frank; Labahn, Jörg
2012-01-01
We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time. PMID:22536388
In situ observation of shear-driven amorphization in silicon crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Zhong, Li; Fan, Feifei
Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less
Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.
2010-01-01
Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.
Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.
A review of recent measurements of optical and thermal properties of alpha-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (alpha-HgI2) is a material which was found important applications as room temperature x ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of alpha-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth, and device fabrication.
Electrically-pumped, broad-area, single-mode photonic crystal lasers.
Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel
2007-05-14
Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.
Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp
Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.
2012-01-01
Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197
Adhesion of liposomes: a quartz crystal microbalance study
NASA Astrophysics Data System (ADS)
Lüthgens, Eike; Herrig, Alexander; Kastl, Katja; Steinem, Claudia; Reiss, Björn; Wegener, Joachim; Pignataro, Bruno; Janshoff, Andreas
2003-11-01
Three different systems are presented, exploring the adhesion of liposomes mediated by electrostatic and lipid-protein interactions as well as molecular recognition of ligand receptor pairs. Liposomes are frequently used to gain insight into the complicated processes involving adhesion and subsequent events such as fusion and fission mainly triggered by specific proteins. We combined liposome technology with the quartz crystal microbalance (QCM) technique as a powerful tool to study the hidden interface between the membrane and functionalized surface. Electrostatic attraction and molecular recognition were employed to bind liposomes to the functionalized quartz crystal. The QCM was used to distinguish between adsorption of vesicles and rupture due to strong adhesive forces. Intact vesicles display viscoelastic behaviour, while planar lipid bilayers as a result of vesicle rupture can be modelled by a thin rigid film. Furthermore, the adhesion of cells was modelled successfully by receptor bearing liposomes. Scanning force microscopy was used to confirm the results obtained by QCM measurements.
Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.
Wei, D; Bortolozzo, U; Huignard, J P; Residori, S
2013-08-26
Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.
Method to fabricate a tilted logpile photonic crystal
Williams, John D.; Sweatt, William C.
2010-10-26
A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.
Microgravity Science and Applications Program tasks, 1986 revision
NASA Technical Reports Server (NTRS)
1987-01-01
The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.
Preparation for microgravity - The role of the Microgravity Material Science Laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.
Superconductivity in Russia: Update and prospects
NASA Technical Reports Server (NTRS)
Ozhogin, V.
1995-01-01
The research projects and new technological developments that have occured in Russia are highlighted in this document. Some of the research discussed includes: x-ray structure analysis of YBCO superconducting single crystals and accompanying phase transformations; the role of electron-electron interaction in High Temperature Superconductors (HTSC); the formation of Cooper pairs in crystals; the synthesis and research on a new family of superconductors based on complex copper and mercury oxides (HgBa2CuO4 + alpha and HgBa2CaCu2O6 + alpha); methods for the extraction of higher (up to C200) fullerenes and metalfullerenides has been developed; and process of production of Josephson junctions and development of SQUID's.
NASA Astrophysics Data System (ADS)
Rathod, Kiran T.; Patel, I. B.
2017-05-01
In recent years, organometalic non linear optical (NLO) materials have attained immense appeal form researchers due to its range of technological applications in photonic field and optoelectronic technology. In present research work, novel semi organic NLO L-Valine Zinc Glycine Thiourea Sulfate crystals (VZGTS) with different morphologies were grown by gel method at ambient temperature. Presence and identification of functional groups were confirmed by FITR analysis. Spectroscopic studies were carried out for it. The UV-Vis spectroscopy is recorded for crystal. PL study stats that the crystal has insulating nature. Spectroscopic study shows that this crystal has good transparency in the case of fundamental wavelength of Nd : YAG laser. Second Harmonic Generation (SHG) efficiency was confirmed by Kurtz - Perry powder method. Results are discussed in the paper.
Liquid crystal foil for the detection of breast cancer
NASA Astrophysics Data System (ADS)
Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk
2016-09-01
Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.
Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity
NASA Technical Reports Server (NTRS)
Day, Delbert E.; Ray, Chandra S.
1999-01-01
The following list summarizes the most important results that have been consistently reported for glass forming melts in microgravity: (1) Glass formation is enhanced for melts prepared in space; (2) Glasses prepared in microgravity are more chemically homogeneous and contain fewer and smaller chemically heterogeneous regions than identical glasses prepared on earth; (3) Heterogeneities that are deliberately introduced such as Pt particles are more uniformly distributed in a glass melted in space than in a glass melted on earth; (4) Glasses prepared in microgravity are more resistant to crystallization and have a higher mechanical strength and threshold energy for radiation damage; and (5) Glasses crystallized in space have a different microstructure, finer grains more uniformly distributed, than equivalent samples crystallized on earth. The preceding results are not only scientifically interesting, but they have considerable practical implications. These results suggest that the microgravity environment is advantageous for developing new and improved glasses and glass-ceramics that are difficult to prepare on earth. However, there is no suitable explanation at this time for why a glass melted in microgravity will be more chemically homogeneous and more resistant to crystallization than a glass melted on earth. A fundamental investigation of melt homogenization, nucleation, and crystal growth processes in glass forming melts in microgravity is important to understanding these consistently observed, but yet unexplained results. This is the objective of the present research. A lithium disilicate (Li2O.2SiO2) glass will be used for this investigation, since it is a well studied system, and the relevant thermodynamic and kinetic parameters for nucleation and crystal growth at 1-g are available. The results from this research are expected to improve our present understanding of the fundamental mechanism of nucleation and crystal growth in melts and liquids, and to lead improvements in glass processing technology on earth, with the potential for creating new high performance glasses and glass-ceramics.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping
2011-08-01
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.
1994-01-01
Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.
The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl
NASA Technical Reports Server (NTRS)
Jha, S. C.; Ray, R.
1990-01-01
An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.
The longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX)
Spitzer, Denis
2017-01-01
Research efforts for realizing safer and higher performance energetic materials are continuing unabated all over the globe. While the thermites – pyrotechnic compositions of an oxide and a metal – have been finely tailored thanks to progress in other sectors, organic high explosives are still stagnating. The most symptomatic example is the longstanding challenge of the nanocrystallization of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX). Recent advances in crystallization processes and milling technology mark the beginning of a new area which will hopefully lead the pyroelectric industry to finally embrace nanotechnology. This work reviews the previous and current techniques used to crystallize RDX at a submicrometer scale or smaller. Several key points are highlighted then discussed, such as the smallest particle size and its morphology, and the scale-up capacity and the versatility of the process. PMID:28326236
Du, Shichao; Wang, Yan; Wu, Songgu; Yu, Bo; Shi, Peng; Bian, Lin; Zhang, Dejiang; Hou, Jie; Wang, Jingkang; Gong, Junbo
2017-12-15
Crystal engineering strategy was applied to develop new solid forms of lamotrigine. Two novel cocrystals of lamotrigine forming with 4,4'-bipyridine (2:1) and 2,2'-bipyridine cocrystal (1:1.5) were successfully obtained by neat grinding and liquid assisted grinding. The novel cocrystals were fully characterized and confirmed by X-ray diffraction, thermal and spectroscopic analysis. DXRxi Raman microscope was also used to identify the cocrystals. The factors such as solvent and the structure of coformers which influenced the cocrystal formation were discussed. Furthermore, the novel cocrystals were both obtained by slurry crystallization. Process analytical technologies including focused beam reflectance measurement and attenuated total reflectance Fourier Transform Infrared were applied to investigate the cocrystallization process and the mechanism. HPLC analysis showed that the dissolution rate and the solubility of the two novel cocrystals were both improved. Copyright © 2017 Elsevier B.V. All rights reserved.
Autonomous onboard optical processor for driving aid
NASA Astrophysics Data System (ADS)
Attia, Mondher; Servel, Alain; Guibert, Laurent
1995-01-01
We take advantage of recent technological advances in the field of ferroelectric liquid crystal silicon back plane optoelectronic devices. These are well suited to perform massively parallel processing tasks. That choice enables the design of low cost vision systems and allows the implementation of an on-board system. We focus on transport applications such as road sign recognition. Preliminary in-car experimental results are presented.
Reconfigurable Cellular Photonic Crystal Arrays (RCPA)
2013-03-01
signal processing based on reconfigurable integrated optics devices. This technology has the potential to revolutionize the design circle of optical...Accomplishments III.A. Design and fabrication of an accumulation-mode modulator Figure 1(a) shows the schematic of a compact resonator on the double-Si... integration of silicon nitride on silicon-on-insulator platform to enhance the arsenal of photonic circuit designers . The coherent integration of
Crystal growth and materials research in photovoltaics: progress and challenges
NASA Astrophysics Data System (ADS)
Surek, Thomas
2005-02-01
Photovoltaics (PV) is solar electric power—a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs.
Optimisation of powders for pulmonary delivery using supercritical fluid technology.
Rehman, Mahboob; Shekunov, Boris Y; York, Peter; Lechuga-Ballesteros, David; Miller, Danforth P; Tan, Trixie; Colthorpe, Paul
2004-05-01
Supercritical fluid technology exploited in this work afforded single-step production of respirable particles of terbutaline sulphate (TBS). Different crystal forms of TBS were produced consistently, including two polymorphs, a stoichiometric monohydrate and amorphous material as well as particles with different degrees of crystallinity, size, and morphology. Different solid-state and surface characterisation techniques were applied in conjunction with measurements of powder flow properties using AeroFlow device and aerosol performance by Andersen Cascade Impactor tests. Improved fine particle fraction (FPF) was demonstrated for some powders produced by the SCF process when compared to the micronised material. Such enhanced flow properties and dispersion correlated well with the reduced surface energy parameters demonstrated by these powders. It is shown that semi-crystalline particles exhibited lower specific surface energy leading to a better performance in the powder flow and aerosol tests than crystalline materials. This difference of the surface and bulk crystal structure for selected powder batches is explained by the mechanism of precipitation in SCF which can lead to surface conditioning of particles produced.
Melt structure and self-nucleation of ethylene copolymers
NASA Astrophysics Data System (ADS)
Alamo, Rufina G.
A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of technological relevance for melt processing of LLDPE and other random olefin copolymers. References: B. O. Reid, et al., Macromolecules 46, 6485-6497, 2013 H. Gao, et al., Macromolecules 46, 6498-6506, 2013 A. Mamun et al., Macromolecules 47, 7958-7970, 2014 X. Chen et al., Macromol. Chem. Phys. 216, 1220 -1226, 2015 M. Ren et al., Macromol. Symp. 356, 131-141, 2015 Work supported by the NSF (DMR1105129).
Micromachined needles and lancets with design adjustable bevel angles
NASA Astrophysics Data System (ADS)
Sparks, Douglas; Hubbard, Timothy
2004-08-01
A new method of micromachining hollow needles and two-dimensional needle arrays from single crystal silicon is described. The process involves a combination of fusion bonding, photolithography and anisotropic plasma etching. The cannula produced with this process can have design adjustable bevel angles, wall thickness and channel dimensions. A subset of processing steps can be employed to produce silicon blades and lancets with design adjustable bevel angles and shaft dimensions. Applications for this technology include painless drug infusion, blood diagnosis, glucose monitoring, cellular injection and the manufacture of microkeratomes for ocular, vascular and neural microsurgery.
Progress and challenges for cost effective kerfless Silicon crystal growth for PV application
NASA Astrophysics Data System (ADS)
Serra, J. M.; Alves, J. Maia; Vallera, A. M.
2017-06-01
The major barrier for PV penetration is cost. And the single most important cost factor in silicon technology is the wafer (≈35% of the module cost). Although tremendous progress on cell processing has been reported in recent years, a much smaller evolution is seen on what should be the key point to address - the wafer. The ingot-slicing process is reaching its limits as the wafer thickness is reduced in an effort to lower material costs. Kerf losses of ≈50% and an increase in breakage of a high value added material are putting a lower bound to this approach. New ideas are therefore needed for producing wafers in a way to overcome these limitations. In this paper we present three new concepts being developed in our laboratory that have one thing in common: they all are zero kerf loss processes, aiming at significant reductions in material loss. One explores the concept of exfoliation, the other two aim at the growth of silicon directly into ribbons. These were conceived as continuous processes, based on a floating molten zone concept, to avoid impurity contamination during crystallization.
Challenges in Materials Transformation Modeling for Polyolefins Industry
NASA Astrophysics Data System (ADS)
Lai, Shih-Yaw; Swogger, Kurt W.
2004-06-01
Unlike most published polymer processing and/or forming research, the transformation of polyolefins to fabricated articles often involves non-confined flow or so-called free surface flow (e.g. fiber spinning, blown films, and cast films) in which elongational flow takes place during a fabrication process. Obviously, the characterization and validation of extensional rheological parameters and their use to develop rheological constitutive models are the focus of polyolefins materials transformation research. Unfortunately, there are challenges that remain with limited validation for non-linear, non-isothermal constitutive models for polyolefins. Further complexity arises in the transformation of polyolefins in the elongational flow system as it involves stress-induced crystallization process. The complicated nature of elongational, non-linear rheology and non-isothermal crystallization kinetics make the development of numerical methods very challenging for the polyolefins materials forming modeling. From the product based company standpoint, the challenges of materials transformation research go beyond elongational rheology, crystallization kinetics and its numerical modeling. In order to make models useful for the polyolefin industry, it is critical to develop links between molecular parameters to both equipment and materials forming parameters. The recent advances in the constrained geometry catalysis and materials sciences understanding (INSITE technology and molecular design capability) has made industrial polyolefinic materials forming modeling more viable due to the fact that the molecular structure of the polymer can be well predicted and controlled during the polymerization. In this paper, we will discuss inter-relationship (models) among molecular parameters such as polymer molecular weight (Mw), molecular weight distribution (MWD), long chain branching (LCB), short chain branching (SCB or comonomer types and distribution) and their affects on shear and elongational rheologies, on tie-molecules probabilities, on non-isothermal stress-induced crystallization, on crystalline/amorphous orientation vs. mechanical property relationship, etc. All of the above mentioned inter-relationships (models) are critical to the successful development of a knowledge based industrial model. Dow Polyolefins and Elastomers business is one of the world largest polyolefins resin producers with the most advanced INSITE technology and a "6-Day model" molecular design capability. Dow also offers one of the broadest polyolefinic product ranges and applications to the market.
The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.
Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C
2015-12-02
A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid Crystals: The Phase of the Future.
ERIC Educational Resources Information Center
Ondris-Crawford, Renate; And Others
1992-01-01
Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…
Nonlinear Optics and Solitons in Photonic Crystal Fibres
NASA Astrophysics Data System (ADS)
Skryabin, Dmitry V.; Wadsworth, William J.
The fibre optics revolution in communication technologies followed the 1950's demonstration of the glass fibres with dielectric cladding [1]. Transmission applications of fibre optics have become a dominant modern day technology not least because nonlinearities present in - or introduced into - glass and enhanced by the tight focusing of the fibre modes allow for numerous light processing techniques, such as amplification, frequency conversion, pulse shaping, and many others. For these reasons, and because of the rich fundamental physics behind it, nonlinear fibre optics has become a blossoming discipline in its own right [1]. The 1990's witnessed another important development in fibre optics. Once again it came from a new approach to the fibre cladding, comprising a periodic pattern of air holes separated by glass membranes forming a photonic crystal structure [2, 3]. This prompted the name Photonic Crystal Fibres (PCFs). The fascinating story behind the invention of PCF and research into various fibre designs can be found, e.g., in [4]. Our aim here is to review the role played by PCFs in nonlinear and quantum optics, which is becoming the mainstream of the PCF related research and applications. Our focus will be on the areas where PCFs have brought to life effects and applications which were previously difficult, impossible to observe or simply not thought about.
Identifying, studying and making good use of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.
2014-07-25
As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources moremore » intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.« less
De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G
2007-11-01
The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
Du, Xuemin; Wang, Juan; Cui, Huanqing; Zhao, Qilong; Chen, Hongxu; He, Le; Wang, Yunlong
2017-11-01
Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.
Liquid crystals for organic thin-film transistors
Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi
2015-01-01
Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V−1 s−1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics. PMID:25857435
Liquid crystals for organic thin-film transistors.
Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi
2015-04-10
Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm(2) V(-1) s(-1)) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.
Liquid crystals for organic thin-film transistors
NASA Astrophysics Data System (ADS)
Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi
2015-04-01
Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.
Macromolecular Crystallization with Microfluidic Free-Interface Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segelke, B
2005-02-24
Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having anmore » increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.« less
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
NASA Astrophysics Data System (ADS)
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-01
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.
Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold
2014-11-17
The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less
Amorphous or Crystalline? A Comparison of Particle Engineering Methods and Selection.
Thakkar, Sachin G; Fathe, Kristin; Smyth, Hugh D C
2015-01-01
This review is intended to provide a critical account of the current goals and technologies of particle engineering regarding the production of crystalline and amorphous particles. The technologies discussed here cover traditional crystallization technologies, supercritical fluid technologies, spray drying, controlled solvent crystallization, and sonocrystallization. Also recent advancements in particle engineering including spray freezing into liquid, thin-film freeze-drying, PRINT technology are presented. The paper also examines the merits and limitations of these technologies with respect to their methods of characterization. Additionally a section discussing the utility of creating amorphous and crystalline formulation approaches in regards to bioavailability and utility in formulation is presented.
NASA Technical Reports Server (NTRS)
1981-01-01
The modified CG2000 crystal grower construction, installation, and machine check out was completed. The process development check out proceeded with several dry runs and one growth run. Several machine calibrations and functional problems were discovered and corrected. Exhaust gas analysis system alternatives were evaluated and an integrated system approved and ordered. Several growth runs on a development CG2000 RC grower show that complete neck, crown, and body automated growth can be achieved with only one operator input.
New ultraportable display technology and applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Lewis, Nancy D.
1998-08-01
MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.
NASA Astrophysics Data System (ADS)
Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.
2017-02-01
On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.
Adaptation of in-situ microscopy for crystallization processes
NASA Astrophysics Data System (ADS)
Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.
2009-08-01
In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.
Proceedings of the Workshop on an Electromagnetic Positioning System in Space
NASA Technical Reports Server (NTRS)
Oran, W. A. (Editor)
1978-01-01
A workshop was convened to help determine if sufficient justification existed to proceed with the design of an electromagnetic (EM) positioning device for use in space. Those in attendance included experts in crystal growth, nucleation phenomena, containerless processing techniques, properties of materials, metallurgical techniques, and glass technology. Specific areas mentioned included the study of metallic glasses and investigations of the properties of high temperature materials.
Program Solicitation Number 86.1, Small Business Innovation Research Program.
1986-01-31
Temperature Heat Pipe Technology DESCRIPTION: Heat pipes have been shown to provide superior growth conditions for the growth of bulk semiconductor crystals... Heat pipes allow for the establishment of isothermal conditions over large areas. This thermal property controls the distribution of impurities, and...reliable high temperature heat pipes to operate at 1325 degrees C with inert overpressures of 60 atmospheres is required for the processing of III-V
Evaluation of advanced light scattering technology for microgravity experiments
NASA Technical Reports Server (NTRS)
Fredericks, W. J.; Rosenblum, W. M.
1990-01-01
The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.
Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors.
McCulloch, Iain; Bailey, Clare; Genevicius, Kristijonas; Heeney, Martin; Shkunov, Maxim; Sparrowe, David; Tierney, Steven; Zhang, Weimin; Baldwin, Rodney; Kreouzis, Theo; Andreasen, Jens W; Breiby, Dag W; Nielsen, Martin M
2006-10-15
Organic electronics technology, in which at least the semiconducting component of the integrated circuit is an organic material, offers the potential for fabrication of electronic products by low-cost printing technologies, such as ink jet, gravure offset lithography and flexography. The products will typically be of lower performance than those using the present state of the art single crystal or polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal (LC) displays, flexible organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the development of reactive mesogen semiconductors, which form large crosslinked LC domains on polymerization within mesophases. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. The organization and alignment of the mesogens, both before and after crosslinking, were probed by grazing incidence wide-angle X-ray scattering of thin films. Both time-of-flight and field effect transistor devices were prepared and their electrical characterization reported.
Technology demonstration of space intravehicular automation and robotics
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Barker, L. Keith
1994-01-01
Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.
Anchoring protein crystals to mounting loops with hydrogel using inkjet technology.
Shinoda, Akira; Tanaka, Yoshikazu; Yao, Min; Tanaka, Isao
2014-11-01
X-ray crystallography is an important technique for structure-based drug discovery, mainly because it is the only technique that can reveal whether a ligand binds to the target protein as well as where and how it binds. However, ligand screening by X-ray crystallography involves a crystal-soaking experiment, which is usually performed manually. Thus, the throughput is not satisfactory for screening large numbers of candidate ligands. In this study, a technique to anchor protein crystals to mounting loops by using gel and inkjet technology has been developed; the method allows soaking of the mounted crystals in ligand-containing solution. This new technique may assist in the design of a fully automated drug-screening pipeline.
Containerless protein crystal growth technology: Electrostatic multidrop positioner
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu
1990-01-01
A brief discussion of containerless protein crystal growth in space and a diagram of the electrostatic multidrop positioner are presented. A picture of lysome crystals growing in a drop and a graph of levitation voltage versus time (minutes) are also presented.
Novel silicon crystals and method for their preparation
NASA Technical Reports Server (NTRS)
Authier, B.
1977-01-01
Plate shaped silicon crystals and their preparation by pouring a silicon melt into a suitable mold and then allowing it to solidify in a temperature gradient were investigated. The production of energy by direct conversion of solar energy into electrical energy by means of solar cells takes on increasing importance. While this type of energy production is already the prevailing form today in the realm of satellite technology, its terrestrial application has thus far encountered strict limitations owing to the high price of such solar cells. Of the greatest interest in this connection are silicon cells. A substantial reduction in the semiconductor material costs and the costs involved in the further processing to make solar cells are prerequisites for a rational market growth for solar energy.
Entropy-driven crystal formation on highly strained substrates
Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai
2013-01-01
In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan
2012-01-01
Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.
Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S. Q.; Li, M. Z., E-mail: maozhili@ruc.edu.cn; Wu, Z. W.
2016-04-21
The crystallization mechanism in deeply undercooled ZrCu metallic glass-forming liquids was investigated via molecular dynamics simulations. It was found that the crystallization process is mainly controlled by the growth of crystal nuclei formed by the BCC-like atomic clusters, consistent with experimental speculations. The crystallization rate is found to relate to the number of growing crystal nuclei in the crystallization process. The crystallization rate in systems with more crystal nuclei is significantly hindered by the larger surface fractions of crystal nuclei and their different crystalline orientations. It is further revealed that in the crystallization in deeply undercooled regions, the BCC-like crystalmore » nuclei are formed from the inside of the precursors formed by the FCC-like atomic clusters, and growing at the expense of the precursors. Meanwhile, the precursors are expanding at the expense of the outside atomic clusters. This process is consistent with the so-called Ostwald step rule. The atomic structures of metallic glasses are found to have significant impact on the subsequent crystallization process. In the Zr{sub 85}Cu{sub 15} system, the stronger spatial correlation of Cu atoms could hinder the crystallization processes in deeply undercooled regions.« less
NASA Astrophysics Data System (ADS)
Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji
2018-06-01
The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.
NASA Astrophysics Data System (ADS)
Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin
2013-08-01
An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie
Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. Themore » Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.« less
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1982-01-01
Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.
GaAs/Ge crystals grown on Si substrates patterned down to the micron scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.
Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces.more » The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.« less
Water softening by induced crystallization in fluidized bed.
Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel
2016-12-01
Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.
Atomically Flat Surfaces Developed for Improved Semiconductor Devices
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
2001-01-01
New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.
Polymorphic phase transitions: Macroscopic theory and molecular simulation.
Anwar, Jamshed; Zahn, Dirk
2017-08-01
Transformations in the solid state are of considerable interest, both for fundamental reasons and because they underpin important technological applications. The interest spans a wide spectrum of disciplines and application domains. For pharmaceuticals, a common issue is unexpected polymorphic transformation of the drug or excipient during processing or on storage, which can result in product failure. A more ambitious goal is that of exploiting the advantages of metastable polymorphs (e.g. higher solubility and dissolution rate) while ensuring their stability with respect to solid state transformation. To address these issues and to advance technology, there is an urgent need for significant insights that can only come from a detailed molecular level understanding of the involved processes. Whilst experimental approaches at best yield time- and space-averaged structural information, molecular simulation offers unprecedented, time-resolved molecular-level resolution of the processes taking place. This review aims to provide a comprehensive and critical account of state-of-the-art methods for modelling polymorph stability and transitions between solid phases. This is flanked by revisiting the associated macroscopic theoretical framework for phase transitions, including their classification, proposed molecular mechanisms, and kinetics. The simulation methods are presented in tutorial form, focusing on their application to phase transition phenomena. We describe molecular simulation studies for crystal structure prediction and polymorph screening, phase coexistence and phase diagrams, simulations of crystal-crystal transitions of various types (displacive/martensitic, reconstructive and diffusive), effects of defects, and phase stability and transitions at the nanoscale. Our selection of literature is intended to illustrate significant insights, concepts and understanding, as well as the current scope of using molecular simulations for understanding polymorphic transitions in an accessible way, rather than claiming completeness. With exciting prospects in both simulation methods development and enhancements in computer hardware, we are on the verge of accessing an unprecedented capability for designing and developing dosage forms and drug delivery systems in silico, including tackling challenges in polymorph control on a rational basis. Copyright © 2017 Elsevier B.V. All rights reserved.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryo-crystallography
NASA Technical Reports Server (NTRS)
Snell, E. H.; vanderWoerd, M. J.; Deacon, A.
2003-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, Eddie H.
2003-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished from the loop holding them. These large crystals, originally grown for neutron diffraction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo- loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryo-cooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied .
NASA Astrophysics Data System (ADS)
Efron, Uzi
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
NASA Technical Reports Server (NTRS)
Efron, Uzi (Editor)
1990-01-01
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials
Dierking, Ingo
2017-01-01
Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025
Control of Thermal Convection in Layered Fluids Using Magnetic fields
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2003-01-01
Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.
Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Filipović-Grcić, J
2001-07-03
The purpose of this study was to apply the attractive technique of the supercritical fluid to the preparation of solvent-free solid dispersions. In particular, the gas antisolvent crystallisation technique (GAS), using supercritical carbon dioxide as processing medium, has been considered to prepare an enhanced release dosage form for of the poorly soluble carbamazepine, employing PEG 4000 as a hydrophilic carrier. The physical characterisation of the systems using laser granulometer, powder X-ray diffraction, thermal analyses, and scanning electron microscopy was carried out in order to understand the influence of this technological process on the physical status of the drug. The results of the physical characterisation attested a substantial correspondence of the solid state of the drug before and after treatment with GAS technique, whereas a pronounced change in size and morphology of the drug crystals was noticed. The dramatic reduction of the dimensions and the better crystal shape, together with the presence of the hydrophilic polymer determined a remarkable enhancement of the in vitro drug dissolution rate.
Inorganic Crystal Structure Database (ICSD)
National Institute of Standards and Technology Data Gateway
SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase) The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.
Rare earth separations by selective borate crystallization
Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao
2017-01-01
Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; ...
2016-01-27
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V’s on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V’s of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. Themore » patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO 2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. In conclusion, the work presents an important advance towards universal integration of III–V’s on application-specific substrates by direct growth.« less
Direct growth of single-crystalline III–V semiconductors on amorphous substrates
Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali
2016-01-01
The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki
2016-06-01
Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.
Manufacturing Technology Study on Radio Frequency Power Modules Packaging Techniques.
1981-01-01
compromised; in most cases, it was found to be higher than our original process. An accelerated high 125 I temperature aging test was performed to attain...sealing glasses without some oxynen. Alternatively, there are many high temperature amorphous type glasses which satisfactorily fire in nitrogen but...achieve some degree of crystalization when fired at high temperature . In using the high temperatures (900°C range) the effect on the previously printed
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
Theoretical and material studies on thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.; Brennan, K. F.
1986-01-01
Electroluminescent materials and device technology were assessed. The evaluation strongly suggests the need for a comprehensive theoretical and experimental study of both materials and device structures, particularly in the following areas: carrier generation and multiplication; radiative and nonradiative processes of luminescent centers; device modeling; new device concepts; and single crystal materials growth and characterization. Modeling of transport properties of hot electrons in ZnSe and the generation of device concepts were initiated.
Mechanisms for the Crystallization of ZBLAN
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil
2003-01-01
The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of BVR Technologies Ltd. (n/k/a Technoprises Ltd.), Crystal Graphite Corp., Devine Entertainment Corp., GEE TEN Ventures, Inc., National... concerning the securities of GEE TEN Ventures, Inc. because it has not filed any periodic reports since the...
Optical sensors based on photonic crystal: a new route
NASA Astrophysics Data System (ADS)
Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.
2017-05-01
The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Smalyukh, Ivan I.
2018-03-01
Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.
NASA Astrophysics Data System (ADS)
Pfitzenmaier, Lukas; Unal, Christine M. H.; Dufournet, Yann; Russchenberg, Herman W. J.
2018-06-01
The growth of ice crystals in presence of supercooled liquid droplets represents the most important process for precipitation formation in the mid-latitudes. However, such mixed-phase interaction processes remain relatively unknown, as capturing the complexity in cloud dynamics and microphysical variabilities turns to be a real observational challenge. Ground-based radar systems equipped with fully polarimetric and Doppler capabilities in high temporal and spatial resolutions such as the S-band transportable atmospheric radar (TARA) are best suited to observe mixed-phase growth processes. In this paper, measurements are taken with the TARA radar during the ACCEPT campaign (analysis of the composition of clouds with extended polarization techniques). Besides the common radar observables, the 3-D wind field is also retrieved due to TARA unique three beam configuration. The novelty of this paper is to combine all these observations with a particle evolution detection algorithm based on a new fall streak retrieval technique in order to study ice particle growth within complex precipitating mixed-phased cloud systems. In the presented cases, three different growth processes of ice crystals, plate-like crystals, and needles are detected and related to the presence of supercooled liquid water. Moreover, TARA observed signatures are assessed with co-located measurements obtained from a cloud radar and radiosondes. This paper shows that it is possible to observe ice particle growth processes within complex systems taking advantage of adequate technology and state of the art retrieval algorithms. A significant improvement is made towards a conclusive interpretation of ice particle growth processes and their contribution to rain production using fall streak rearranged radar data.
A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis-based technology.
Wang, Meng; Xing, Hong-Bo; Jia, Yu-Xiang; Ren, Qing-Chun
2015-12-30
The sharp increase of demand for vanadium makes the treatment of the wastewater generated from its extraction process become an urgent problem. In this study, a hybrid process coupling the electrodialysis with the cooling crystallization is put forward for upgrading the conventional vanadium extraction process to zero discharge. Accordingly, the objective of this work lies in evaluating the feasibility of the proposed scheme on the basis of a systematic study on the influences of membrane types and operating parameters on the electrodialysis performance. The results indicate that the relative importance of osmosis and electro-osmosis to overall water transport is closely related to the applied current density. The increase in the applied current density and the decrease in the mole ratio of water and salt flux will contribute to the concentration degree. Moreover, it is worth noting that a relatively large concentration ratio can result in the remarkable decrease of current efficiency and increase of energy consumption. In general, the reclamation scheme can easily achieve the recovered water with relatively low salt content and the highly concentrated Na2SO4 solution (e.g., 300 g/L) for producing high-purity sodium sulphate crystals. Copyright © 2015. Published by Elsevier B.V.
Hot Stuff? Thermal Imaging Applied to Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, E. H.
2004-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
NASA Astrophysics Data System (ADS)
Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis
2017-09-01
Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.
Synthesis and Characterization of Self-Assembled Liquid Crystals: "p"-Alkoxybenzoic Acids
ERIC Educational Resources Information Center
Jensen, Jana; Grundy, Stephan C.; Bretz, Stacey Lowery; Hartley, C. Scott
2011-01-01
Thermotropic liquid crystal phases are ordered fluids found, for some molecules, at intermediate temperatures between the crystal and liquid states. Although technologically important, these materials typically receive little attention in the undergraduate curriculum. Here, we describe a laboratory activity for introductory organic chemistry…
NASA Astrophysics Data System (ADS)
Wang, Haopeng
With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free volume hole size in propylene/ethylene copolymers over a range in comonomer content. Above the glass transition temperature (Tg), the reduced free volume hole size and the densification of the amorphous phase were attributed to constraint imposed on rubbery amorphous chain segments by attached chain segments in crystals. However constant free volume fraction was found at Tg, across the crystallinity range of the copolymers, in agreement with the iso-free volume concept of glass transition.
Electrical Properties of Reactive Liquid Crystal Semiconductors
NASA Astrophysics Data System (ADS)
McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin
2008-01-01
Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.
Photonic crystal fibre for industrial laser delivery
NASA Astrophysics Data System (ADS)
O'Driscoll, E. J.; McDonald, J.; Morgan, S.; Simpson, G.; Sidhu, J.; Baggett, J. C.; Hayes, J. R.; Petrovich, M. N.; Finazzi, V.; Polletti, F.; Richardson, D. J.; Horley, R.; Harker, A.; Grunewald, P.; Allott, R.; Judd, E.
2006-12-01
Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system benefits relative to free space solutions. In recent years, photonic crystal fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties that make them ideally suited to power delivery with unparalleled control over the beam properties. The DTI funded project: Photonic Fibers for Industrial beam DELivery (PFIDEL), aims to develop novel fiber geometries for use as a delivery system for high power industrial lasers and to assess their potential in a range of "real" industrial applications. In this paper we review, from an industrial laser user perspective, the advantages of each of the fibers studied under PFIDEL. We present results of application demonstrations and discuss how these fibers can positively impact the field of industrial laser systems and processes, in particular for direct write and micromachining applications.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.
2005-01-01
Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.
Lactic acid bacterial extract as a biogenic mineral growth modifier
NASA Astrophysics Data System (ADS)
Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal
2009-04-01
The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.
Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials
Kappaun, Stefan; Slugovc, Christian; List, Emil J. W.
2008-01-01
Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III) complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers. PMID:19325819
Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.
Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie
2018-05-22
Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon Dioxide Sensor Technology.
1983-04-01
Piezoelectric Crystals .................... .50 Previous Efforts ....... .................... 50 Estimated Sensor Characteristics...with Respect to the Detection of Carbon Dioxide Table 7. Piezoelectric Crystal Coatings and Performance Data. .. ...53-55 Table 8. Summnary of...3,999,122) Figure 8. Enlarged View of an Individual Quartz Resonator .. .. ... 51 Figure 9. Glass Gas-Tight Piezoelectric Crystal , Side View......57 *Figure
Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor)
2018-01-01
An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
NASA Astrophysics Data System (ADS)
Zheng, Cheng
The solar photovoltaic (PV) technology was an expensive niche energy source only for satellite applications, hallmarked by the Bell Lab's launch of the Telstar satellite with PV cells in 1962. Over the past decades, the accumulation of vast amount of effort across various disciplines in science, engineering, and policy has enabled the phenomenal growth of the solar PV industry into a global enterprise with about 140 gigawatt (GW) of cumulative installations by the end of 2013. Further cost reduction through innovation holds the promise in deploying terawatt (TW)-scale solar PV systems globally in both developed and developing countries, meeting growing energy demand and mitigating climate change. Chapter 1 presents a big picture view of the unsustainable path, heavily relying on fossil fuels, in the current global energy landscape. The main body of the dissertation examines the solar PV technology from a holistic and interdisciplinary perspective: from the basic research, to innovations in manufacturing and installing PV modules, to the driving energy policies. Chapter 2 offers a fundamental understanding of the PV technology and a review on recent scientific advances in improving PV efficiency (W/m 2). Chapter 3 reviews the state-of-the-art process flow in manufacturing commercial PV modules. In the context of pursuing further reduction in manufacturing cost (/m2), the thin Si film concept and its recent research effort are reviewed. Aiming to explore novel ways to produce high-quality seed crystals for thin Si film deposition, the key findings of the laser crystallization experiment is presented in Chapter 4. The fundamental thermophysics of nucleation and crystal growth is first reviewed, which highlights the importance of temperature evolution and heat transport in modelling the ultrafast laser crystallization process. Laser crystallization of a range of Si nanostructures are then carried out to study the nucleation and crystal growth behavior under some novel conditions, such as suspended narrow Si membranes and Si nanoparticles confined on top of oxide nanostructures. The cost of a PV module (/W) is determined by both its rated efficiency (W/m2) and its manufacturing cost (/m2). However, the same PV module with the same cost can lead to significantly different levelized cost of electricity (LCOE) in /kWh, depending on the location and configuration of the installed PV system. Chapter 5 starts with an overview of the geographic distribution of solar resources and retail electricity rates, which yield a range of grid parity points across the world. Then, energy yield simulations for different PV panel tilt configurations are carried out using the angle-and-wavelength-resolved solar irradiance data, to examine the effect of angular and spectral variations in the solar spectrum on system performance. Energy policies have been the driving forces for the phenomenal progress of the PV technology: the continuing reduction in cost and the rapid growth in deployment. Chapter 6 first reviews major policy instruments for PV, and then discusses about a few important policy lessons from the rapid development of the global PV industry during 2000-2013. Concerned with the mounting fiscal pressure from deployment incentives and focused on further cost reductions, an innovation-focused policy framework is proposed to revive the PV manufacturing sector and to pursue an innovation-driven global PV industry moving forward.
Maxwell-Wagner effect in hexagonal BaTiO3 single crystals grown by containerless processing
NASA Astrophysics Data System (ADS)
Yu, Jianding; Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi
2004-10-01
Oxygen-deficient hexagonal BaTiO3 single crystals, with dielectric constant ε '˜105 and loss component tan δ ˜0.13 at room temperature and a linear temperature dependence of ε' in the range 70-100K, was analyzed by impedance spectroscopy analysis. Two capacitors, bulk and interfacial boundary layer, were observed, and the colossal dielectric constant was mainly dominated by the interfacial boundary layers due to Maxwell-Wagner effect. After annealing the oxygen-deficient hexagonal BaTiO3 at 663K, the ε ' and tanδ became, respectively, 2×104 and 0.07 at room temperature. This work showed an important technological implication as annealing at lower temperatures would help to obtain materials with tailored dielectric properties.
NASA Astrophysics Data System (ADS)
Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki
2012-08-01
A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, Eddie
2003-01-01
We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Effective removal of hazardous trace metals from recovery boiler fly ashes.
Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti
2018-02-15
The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.
Summary of Research Report Cooperative Agreement
NASA Technical Reports Server (NTRS)
1997-01-01
Several areas of work related to commercialization of technology developed at NASA Ames Research Center (ARC) are discussed in this report. The areas are: (1) perform a feasibility study to develop a software commercialization center is at ARC; (2) perform preliminary work for formation of joint development of sensor technology for telemedicine applications; (3) development of a discovery interview process and staff training to assist the commercialization of technology developed at Ames, specifically aimed at working with researchers; (4) develop partners to further develop and commercialize image compression technology developed at AMES; (5) assist efforts to commercialize a software technology which imparts the ability to establish relevance-based retrieval in the handling of large repositories of information; (6) explore the development of cryocooler technology using pulse tube refrigeration; (7) assess interest in commercialization of a new method of measuring skin friction drag on wind tunnel models using liquid crystal material; (8) attempt to incorporate emerging technologies in the infrastructure of natural hazards mitigation; and (9) forming a nonprofit organization, "The Bootstrap Alliance", whose mission is to promote the use of digital technologies for collaborative problem solving. The results of these initiatives are discussed.
Liu, Chengyu; Liu, Zhengsheng; Chen, Yuejie; Chen, Zhen; Chen, Huijun; Pui, Yipshu; Qian, Feng
2018-03-01
The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation. Copyright © 2018 Elsevier B.V. All rights reserved.
Inkjet printing of single-crystal films.
Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo
2011-07-13
The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.
Smejkal, Benjamin; Agrawal, Neeraj J; Helk, Bernhard; Schulz, Henk; Giffard, Marion; Mechelke, Matthias; Ortner, Franziska; Heckmeier, Philipp; Trout, Bernhardt L; Hekmat, Dariusch
2013-09-01
The potential of process crystallization for purification of a therapeutic monoclonal IgG1 antibody was studied. The purified antibody was crystallized in non-agitated micro-batch experiments for the first time. A direct crystallization from clarified CHO cell culture harvest was inhibited by high salt concentrations. The salt concentration of the harvest was reduced by a simple pretreatment step. The crystallization process from pretreated harvest was successfully transferred to stirred tanks and scaled-up from the mL-scale to the 1 L-scale for the first time. The crystallization yield after 24 h was 88-90%. A high purity of 98.5% was reached after a single recrystallization step. A 17-fold host cell protein reduction was achieved and DNA content was reduced below the detection limit. High biological activity of the therapeutic antibody was maintained during the crystallization, dissolving, and recrystallization steps. Crystallization was also performed with impure solutions from intermediate steps of a standard monoclonal antibody purification process. It was shown that process crystallization has a strong potential to replace Protein A chromatography. Fast dissolution of the crystals was possible. Furthermore, it was shown that crystallization can be used as a concentrating step and can replace several ultra-/diafiltration steps. Molecular modeling suggested that a negative electrostatic region with interspersed exposed hydrophobic residues on the Fv domain of this antibody is responsible for the high crystallization propensity. As a result, process crystallization, following the identification of highly crystallizable antibodies using molecular modeling tools, can be recognized as an efficient, scalable, fast, and inexpensive alternative to key steps of a standard purification process for therapeutic antibodies. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.
2015-07-01
The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.
Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun
2015-12-01
Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.
Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.
Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S
2016-05-01
Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
X-ray light valve (XLV): a novel detectors' technology for digital mammography
NASA Astrophysics Data System (ADS)
Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter
2014-03-01
A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.
De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G
2009-09-01
The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also provided mutual confirmation of specific conclusions.
Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.
Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva
2014-12-30
Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Schaefer, Cédric; Clicq, David; Lecomte, Clémence; Merschaert, Alain; Norrant, Edith; Fotiadu, Frédéric
2014-03-01
Pharmaceutical companies are progressively adopting and introducing Process Analytical Technology (PAT) and Quality-by-Design (QbD) concepts promoted by the regulatory agencies, aiming the building of the quality directly into the product by combining thorough scientific understanding and quality risk management. An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) manufacturing crystallization step during which the API and residual solvent contents need to be precisely determined to reach the predefined seeding point. An original methodology based on the QbD principles was designed to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use. On this basis, Partial least squares (PLS) models were developed and optimized using chemometrics methods. The method was fully validated according to the ICH Q2(R1) guideline and using the accuracy profile approach. The dosing ranges were evaluated to 9.0-12.0% w/w for the API and 0.18-1.50% w/w for the residual methanol. As by nature the variability of the sampling method and the reference method are included in the variability obtained for the NIR method during the validation phase, a real-time process monitoring exercise was performed to prove its fit for purpose. The implementation of this in-process control (IPC) method on the industrial plant from the launch of the new API synthesis process will enable automatic control of the final crystallization step in order to ensure a predefined quality level of the API. In addition, several valuable benefits are expected including reduction of the process time, suppression of a rather difficult sampling and tedious off-line analyses. © 2013 Published by Elsevier B.V.
Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction
Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; Nelson, Garrett; James, Daniel; Calero, Guillermo; Wachter, Rebekka M.; Spence, John C. H.; Weierstall, Uwe; Fromme, Petra; Ros, Alexandra
2015-01-01
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size. PMID:26798818
Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction
Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; ...
2015-08-19
We report that the advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles canmore » be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ~4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. Ultimately, this method will also permit an analysis of the dependence of crystal quality on crystal size.« less
Materials processing in space programs tasks. [NASA research tasks
NASA Technical Reports Server (NTRS)
Pentecost, E.
1981-01-01
Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.
High Performance Arcjet Engines
NASA Technical Reports Server (NTRS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-01-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
Liquid Crystal Spatial Light Modulators for Simulating Zonal Multifocal Lenses.
Li, Yiyu; Bradley, Arthur; Xu, Renfeng; Kollbaum, Pete S
2017-09-01
To maximize efficiency of the normally lengthy and costly multizone lens design and testing process, it is advantageous to evaluate the potential efficacy of a design as thoroughly as possible prior to lens fabrication and on-eye testing. The current work describes an ex vivo approach of optical design testing. The aim of this study was to describe a system capable of examining the optical characteristics of multizone bifocal and multifocal optics by subaperture stitching using liquid crystal technologies. A liquid crystal spatial light modulator (SLM) was incorporated in each of two channels to generate complementary subapertures by amplitude modulation. Additional trial lenses and phase plates were placed in pupil conjugate planes of either channel to integrate the desired bifocal and multifocal optics once the two optical paths were recombined. A high-resolution Shack-Hartmann aberrometer was integrated to measure the optics of the dual-channel system. Power and wavefront error maps as well as point spread functions were measured and computed for each of three multizone multifocal designs. High transmission modulation was achieved by introducing half-wavelength optical path differences to create two- and five-zone bifocal apertures. Dual-channel stitching revealed classic annular rings in the point spread functions generated from two-zone designs when the outer annular optic was defocused. However, low efficiency of the SLM prevented us from simultaneously measuring the eye + simulator aberrations, and the higher-order diffraction patterns generated by the cellular structure of the liquid crystal arrays limited the visual field to ±0.45 degrees. The system successfully simulated bifocal and multifocal simultaneous lenses allowing for future evaluation of both objective and subjective evaluation of complex optical designs. However, low efficiency and diffraction phenomena of the SLM limit the utility of this technology for simulating multizone and multifocal optics.
High performance arcjet engines
NASA Astrophysics Data System (ADS)
Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich
1994-10-01
This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.
Electromigration process for the purification of molten silicon during crystal growth
Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.
1982-01-01
A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.
We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less
NASA Astrophysics Data System (ADS)
van Zalinge, M. E.; Cashman, K. V.; Sparks, R. S. J.
2018-03-01
Broken crystals have been documented in many large-volume caldera-forming ignimbrites and can help to understand the role of crystal fragmentation in both eruption and compaction processes, the latter generally overlooked in the literature. This study investigates the origin of fragmented crystals in the > 1260 km3, crystal-rich Cardones ignimbrites located in the Central Andes. Observations of fragmented crystals in non-welded pumice clasts indicate that primary fragmentation includes extensive crystal breakage and an associated ca. 5 vol% expansion of individual crystals while preserving their original shapes. These observations are consistent with the hypothesis that crystals fragment in a brittle response to rapid decompression associated with the eruption. Additionally, we observe that the extent of crystal fragmentation increases with increasing stratigraphic depth in the ignimbrite, recording secondary crystal fragmentation during welding and compaction. Secondary crystal fragmentation aids welding and compaction in two ways. First, enhanced crystal fragmentation at crystal-crystal contacts accommodates compaction along the principal axis of stress. Second, rotation and displacement of individual crystal fragments enhances lateral flow in the direction(s) of least principal stress. This process increases crystal aspect ratios and forms textures that resemble mantled porphyroclasts in shear zones, indicating lateral flow adds to processes of compaction and welding alongside bubble collapse. In the Cardones ignimbrite, secondary fragmentation commences at depths of 175-250 m (lithostatic pressures 4-6 MPa), and is modulated by both the overlying crystal load and the time spent above the glass transition temperature. Under these conditions, the existence of force-chains can produce stresses at crystal-crystal contacts of a few times the lithostatic pressure. We suggest that documenting crystal textures, in addition to conventional welding parameters, can provide useful information about welding processes in thick crystal-rich ignimbrites.
NASA Astrophysics Data System (ADS)
Kalra, Arjun
Combinatorial chemistry and high-throughput screening approaches utilized during drug discovery have resulted in many potent pharmacologically active molecules with low aqueous solubility and consequently poor bioavailability. Enabling technologies, such as amorphous solid dispersions (ASD's), can obviate these challenges and provide an efficient route to formulate the drug as an oral solid dosage form. However, high-energy amorphous materials have an inherent tendency to crystallize and in doing so can negate the apparent solubility advantage achieved by using such formulations. Crystallization can occur during (1) cooling the drug molecule from the melt state (such as during hot melt extrusion); (2) during storage of an amorphous formulation; (3) during pharmaceutical processing unit operations such as compression, granulation etc. Current knowledge with regards to the relationship between crystallization propensity of an active pharmaceutical ingredient (API) from the amorphous state (supercooled liquid and glass) and its thermodynamic, kinetic and molecular properties is limited. Furthermore, examining the mechanistic steps involved in crystallization of organic molecules under conditions of supercooling provides an opportunity to examine supramolecular aggregation events occurring during early stages of crystallization. Studying crystallization mechanism from amorphous state is important for pharmaceutical formulation development because a molecular-level understanding of the crystallization process would provide clues regarding the intermolecular interactions at the early stages of nucleation and help in rational selection of polymeric excipients to hinder such events. The primary goal of this research is to develop an understanding of phase transition from amorphous pharmaceuticals, specifically focusing on the role of thermodynamic, kinetic and molecular properties of a series of structurally similar compounds. It is hypothesized that the there exists a link between thermodynamics quantities, kinetic properties, molecular interactions and glass forming ability. Furthermore, it is hypothesized that the molecular heterogeneity in supercooled liquids and glassy state, manifested through intermolecular interactions and conformational flexibility impacts the observed crystallization behavior. Understanding the phase transition kinetics and mechanism of crystallization from amorphous pharmaceuticals is critical for development of stable formulations for drug delivery. The specific goals of this research include: (1) Investigating the link between thermodynamic and kinetic factors affecting the crystallization propensity of organic compounds from supercooled liquid state. (2) Evaluating the role of intermolecular interactions and conformational distribution on glass forming ability and stability. (3) Examining the relationship between supramolecular aggregates present in glassy state and polymorphic outcome. It is believed that successful completion of this research will provide a fundamental understanding of amorphous solid-state chemistry as well as provide useful tools for the implementation of ASD's as solid oral dosage forms.
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-15
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge 2 Sb 2 Te 5 ). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc 0.2 Sb 2 Te 3 ) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Method for reducing energy losses in laser crystals
Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.
1992-03-24
A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.
Method for reducing energy losses in laser crystals
Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.
1992-01-01
A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.
NASA Astrophysics Data System (ADS)
Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.
2012-02-01
Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.
NASA Astrophysics Data System (ADS)
Mareeswaran, S.; Asaithambi, T.
2016-10-01
Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.
A three step supercritical process to improve the dissolution rate of eflucimibe.
Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques
2005-10-01
The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.
Thin-Film Solar Cells on Metal Foil Substrates for Space Power
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.
2004-01-01
Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Once the technology has gained spaceflight certification it should find rapid acceptance in specific satellite markets.
Slade, Louise; Levine, Harry
2018-04-13
This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.
Rodriguez-Garcia, G; Frison, N; Vázquez-Padín, J R; Hospido, A; Garrido, J M; Fatone, F; Bolzonella, D; Moreira, M T; Feijoo, G
2014-08-15
The supernatant resulting from the anaerobic digestion of sludge generated by wastewater treatment plants (WWTP) is an attractive flow for technologies such as partial nitritation-anammox (CANON), nitrite shortcut (NSC) and struvite crystallization processes (SCP). The high concentration of N and P and its low flow rate facilitate the removal of nutrients under more favorable conditions than in the main water line. Despite their operational and economic benefits, the environmental burdens of these technologies also need to be assessed to prove their feasibility under a more holistic perspective. The potential environmental implications of these technologies were assessed using life cycle assessment, first at pilot plant scale, later integrating them in a modeled full WWTP. Pilot plant results reported a much lower environmental impact for N removal technologies than SCP. Full-scale modeling, however, highlighted that the differences between technologies were not relevant once they are integrated in a WWTP. The impacts associated with the WWTP are slightly reduced in all categories except for eutrophication, where a substantial reduction was achieved using NSC, SCP, and especially when CANON and SCP were combined. This study emphasizes the need for assessing wastewater treatment technologies as part of a WWTP rather than as individual processes and the utility of modeling tools for doing so. Copyright © 2014 Elsevier B.V. All rights reserved.
Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; ...
2017-05-02
The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX 3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. Themore » magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. In conclusion, this contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.« less
Reducing the Cost of Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanlon, B.
2012-04-01
Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lostmore » as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament decomposes the gas, allowing silicon layers to deposit directly onto the substrate. Armed with this new technique, Branz and Teplin searched for ways to grow the silicon on cheaper materials and still use it for solar cells. They found the ideal synergy when visiting venture capitalists from Battelle Ventures asked them whether they could do anything useful with a breakthrough from Oak Ridge's superconducting wire development group. The new development, called the rolling assisted biaxially textured substrate (RABiTS), was just the opportunity the two scientists had been seeking. If metal foil is to work as a substrate, it must be able to act as a seed crystal so the silicon can grow on it with the correct structure. The RABiTS process forms crystals in the foil that are correctly oriented to receive the silicon atoms and lock them into just the right positions.« less
Performance improvement for solution-processed high-mobility ZnO thin-film transistors
NASA Astrophysics Data System (ADS)
Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.
2008-06-01
The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.
NASA Astrophysics Data System (ADS)
Skamnitskaya, Lubov; Rakov, Leonid; Bubnova, Tatyana; Shchiptsov, Vladimir
2017-12-01
Despite the significant reserves of quartz raw materials, there is a deficit of high purity quartz. It is due to the strict technical requirements imposed by standards for this type of raw materials and technological properties of quartz, which are determined by the features of the crystal structure. The crystalline structure is of particular importance for the technological properties of quartz, since such important characteristics as the limit of raw material enrichment, dissolution rate in acid, melting point of quartz, etc., are determined. The formation of the crystal structure of quartz under natural conditions is associated with the successive dynamic recrystallization of the mineral. The degree of dynamic recrystallization of quartz reflects the distribution of dispersed impurities. If it is weakly manifested, the dispersed impurities are not displaced from one zone to another, and all quartz microblocks contain approximately the same concentration. In this case, more or less uniform dissolution of various regions of quartz is observed, and the pattern of distribution of submicroscopic inhomogeneities is monotonic. If intensive dynamic recrystallization of quartz takes place, then it causes a significant redistribution of the scattered impurities. Then the treatment in HF leads to the appearance of a contrast pattern of the distribution of submicroscopic inhomogeneities. The details of the crystal structure of quartz in this work were investigated by the electron paramagnetic resonance (EPR) method using the ER-420 “Bruker” spectrometer. In the selected samples of quartz, the concentrations of isomorphic impurities Al and Ti were measured, and the degree of crystallinity D of the mineral was estimated from the EPR spectra of each of them. Thus, the technological properties of quartz are determined by various geological processes. The results of the studies show that when evaluating the prospects of quartz raw materials, it is necessary to take into account the staged dynamic dynamical recrystallization of quartz in natural conditions. This factor can play both a positive and a negative role at various stages of mineral formation. Its influence is reflected in the state of the crystal structure of quartz, which should be taken into account when developing effective technologies for its enrichment. The intermediate stage of dynamic recrystallization corresponding to the end of the second stage-the beginning of the third stage of quartz recrystallization-is optimal for the formation of high-purity quartz. When choosing a site for the first-stage quartz mining at large deposits in the Karelian-Kola region, one should be guided by the stage of dynamic recrystallization.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
NASA Astrophysics Data System (ADS)
Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.
2015-07-01
Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.
Advances in the stability of high precision crystal resonators
NASA Technical Reports Server (NTRS)
Ballato, A.; Vig, J. R.
1979-01-01
Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.
Macromolecular Crystallization in Microfluidics for the International Space Station
NASA Technical Reports Server (NTRS)
Monaco, Lisa A.; Spearing, Scott
2003-01-01
At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.
Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology
NASA Technical Reports Server (NTRS)
Fiegl, G. F.; Bonora, A. C.
1980-01-01
The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.
NASA Astrophysics Data System (ADS)
Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.
2008-04-01
BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.
In Situ High Temperature High Pressure MAS NMR Study on the Crystallization of AlPO 4 -5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhenchao; Xu, Suochang; Hu, Mary Y.
2016-01-28
A damped oscillating crystallization process of AlPO4-5 at the presence of small amount of water is demonstrated by in situ high temperature high pressure multinuclear MAS NMR. Crystalline AlPO4-5 is formed from an intermediate semicrystalline phase via continuous rearrangement of the local structure of amorphous precursor gel. Activated water catalyzes the rearrangement via repeatedly hydrolysis and condensation reaction. Strong interactions between organic template and inorganic species facilitate the ordered rearrangement. During the crystallization process, excess water, phosphate, and aluminums are expelled from the precursor. The oscillating crystallization reflects mass transportation between the solid and liquid phase during the crystallization process.more » This crystallization process is also applicable to AlPO4-5 crystallized in the presence of a relatively large amount of water.« less
Evidence from mixed hydrate nucleation for a funnel model of crystallization.
Hall, Kyle Wm; Carpendale, Sheelagh; Kusalik, Peter G
2016-10-25
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes.
Evidence from mixed hydrate nucleation for a funnel model of crystallization
Hall, Kyle Wm.; Carpendale, Sheelagh; Kusalik, Peter G.
2016-01-01
The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes. PMID:27790987
NASA Astrophysics Data System (ADS)
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine
2007-02-01
Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.
Photonic Materials and Devices for Optical Information Processing and Computing Applications
1991-09-14
Odulov. and X. Soskin. "Diffraction or coupled - aves and ’.-termination of phase mismatch between ho- lographic ;rating and fringe pauter.’ Opt. Acta. vol...linear approximation is most accurate occur for strong levels of av - erage incoherent light illumination I. Two Grating Transcription. When an...Crystal Technology. Inc.. 1060 E. Meadow Circle. Palo Alto. CA 94303 Op-ed. Pnwenrnw and C e.N a0 Coynr C 19" by Acaro : PaSN . Inc. All non of hplrinua amy
NASA Technical Reports Server (NTRS)
1973-01-01
An investigation of the technology and programmatics involved in the development of four of the products selected as capable of benefitting from space manufacturing was conducted. The four activities selected are as follows: (1) levitation heating and melting of tungsten, (2) free suspension processing of oxides to form amorphous oxide materials, (3) crystals for surface wave acoustic substrates, and (4) space manufacturing of surface acoustic wave devices.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
Advancements in silicon web technology
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Easoz, J.; Mchugh, J. P.; Piotrowski, P.; Hundal, R.
1987-01-01
Low defect density silicon web crystals up to 7 cm wide are produced from systems whose thermal environments are designed for low stress conditions using computer techniques. During growth, the average silicon melt temperature, the lateral melt temperature distribution, and the melt level are each controlled by digital closed loop systems to maintain thermal steady state and to minimize the labor content of the process. Web solar cell efficiencies of 17.2 pct AM1 have been obtained in the laboratory while 15 pct efficiencies are common in pilot production.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Geng, Yu; Hou, Changlun; Yang, Guoguang; Bai, Jian
2008-11-01
Grating Light Valve (GLV) is a kind of optics device based on Micro-Opto-Electro-Mechanical System (MOEMS) technology, utilizing diffraction principle to switch, attenuate and modulate light. In this paper, traditional GLV device's structure and its working principle are illuminated, and a kind of modified GLV structure is presented, with details introduction of the fabrication technology. The GLV structure includes single crystal silicon substrate, silicon dioxide isolating layer, aluminum layer of fixed ribbons and silicon nitride of movable ribbons. In the fabrication, lots of techniques are adopted, such as low-pressure chemical vapor deposition (LPCVD), photolithography, etching and evaporation. During the fabrication processes, Photolithography is a fundamental and fatal technology, which determines etching result and GLV quality. Some methods are proposed through repeated experiments, to improve etching result greatly and guide the practical application. This kind of GLV device can be made both small and inexpensively, and has been tested to show proper range of actuation under DC bias, with good performance. The GLV device also has merits such as low cost, simple technology, high fill ratio and low driving voltage. It can properly be well used and match the demands of high light power needed in laser phototypesetting system, as a high-speed, high-resolution light modulator.
Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.
Kattner, W.T.
1959-08-11
A process is described for recovering tin from bronze comprising melting the bronze; slowly cooling the melted metal to from 280 to 240 deg C whereby eta- phase bronze crystallizes; separating the eta-bronze crystals from the liquid metal by mechanical means; melting the separated crystals; slowly cooling the melted eta-crystals to a temperature from 520 to 420 deg C whereby crystals of epsilonbronze precipitate; removing said epsilon-crystals from the remaining molten metal; and reintroducing the remaining molten metal into the process for eta-crystallization.
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiriolo, Raffaele; Rangnekar, Neel; Zhang, Han
A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservationmore » of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.« less
NASA Technical Reports Server (NTRS)
Lane, R. L.
1981-01-01
Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Relaxation Dynamics of Spatiotemporal Chaos in the Nematic Liquid Crystal
NASA Astrophysics Data System (ADS)
Nugroho, Fahrudin; Ueki, Tatsuhiro; Hidaka, Yoshiki; Kai, Shoichi
2011-11-01
We are working on the electroconvection of nematic liquid crystals, in which a kind of spatiotemporal chaos called as a soft-mode turbulence (SMT) is observed. The SMT is caused by the nonlinear interaction between the convective modes and the Nambu--Goldstone (NG) modes. By applying an external magnetic field H, the NG mode is suppressed and an ordered pattern can be observed. By removing the suppression effect the ordered state relax to its original SMT pattern. We revealed two types of instability govern the relaxation process: the zigzag instability and the free rotation of wavevector q(r). This work is partially supported by Grant-in-Aid for Scientific Research (Nos. 20111003, 21340110, and 21540391) from the Ministry of Education, Culture, Sport, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JSPS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes-Vera, Erick, E-mail: erickreyes@itm.edu.co; Gómez-Cardona, Nelson D.; Facultad de Ingeniería, Instituto Tecnológico Metropolitano, A.A. 54954 Medellín
2014-11-17
We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive indexmore » within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.« less
Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal
NASA Astrophysics Data System (ADS)
Jiu-Sheng, Li; Han, Liu; Le, Zhang
2015-09-01
Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.
Non-isothermal crystallization kinetics of eucalyptus lignosulfonate/polyvinyl alcohol composite.
Ye, De-Zhan; Zhang, Xi; Gu, Shaojin; Zhou, Yingshan; Xu, Weilin
2017-04-01
The nonisothermal crystallinization kinetic was performed on Polyvinyl alcohol (PVA) mixed with eucalyptus lignosulfonate calcuim (HLS) as the biobased thermal stabilizer, which was systematically analyzed based on Jeziorny model, Ozawa equation and the Mo method. The results indicated that the entire crystallization process took place through two main stages involving the primary and secondary crystallization processes. The Mo method described nonisothermal crystallization behavior well. Based on the results of the half time for completing crystallization, k c value in Jeziorny model, F(T) value in Mo method and crystallization activation energy, it was concluded that low loading of HLS accelerated PVA crystallization process, however, the growth rate of PVA crystallization was impeded at high content of HLS. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Amend, P.; Pscherer, C.; Rechtenwald, T.; Frick, T.; Schmidt, M.
This paper presents experimental results of manufacturing MID-prototypes by means of SLS, laser structuring and metallization. Therefore common SLS powder (PA12) doped with laser structuring additives is used. First of all the influence of the additives on the characteristic temperatures of melting and crystallization is analyzed by means of DSC. Afterwards the sintering process is carried out and optimized by experiments. Finally the generated components are qualified regarding their density, mechanical properties and surface roughness. Especially the surface quality is important for the metallization process. Therefore surface finishing techniques are investigated.
Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W
2016-07-01
Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.
NASA Astrophysics Data System (ADS)
Pendurti, Srinivas
InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.
Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
Shete, Ganesh; Bansal, Arvind Kumar
2016-08-01
Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.
Defects and device performance
NASA Technical Reports Server (NTRS)
Storti, G.; Armstrong, R.; Johnson, S.; Lin, H. C.; Regnault, W.; Yoo, K. C.
1985-01-01
The necessity for a low-cost crystalline silicon sheet material for photovoltaics has generated a number of alternative crystal growth techniques that would replace Czochralski (Cz) and float-zone (FZ) technologies. Efficiencies of devices fabricated from low resistivity FZ silicon are approaching 20%, and it is highly likely that this value will be superseded in the near future. However, FZ silicon is expensive, and is unlikely ever to be used for photovoltaics. Cz silicon has many of the desirable qualities of FZ except that minority-carrier lifetimes at lower resistivities are significantly less than those of FZ silicon. Even with Cz silicon, it is unlikely that cost goals can be met because of the poor-material yield that results from sawing and other aspects of the crystal rowth. Although other silicon sheet technologies have been investigated, almost all have characteristics that limit efficiency to approx. 16%. In summary, 20% efficient solar cells can likely be fabricated from both FZ and Cz silicon, but costs are likely to be ultimately unacceptable. Alternate silicon technologies are not likely to achieve this goal, but cost per watt figures may be eventually better than either of the single crystal technologies and may rival any thin-film technology.
Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M; Polizzo, Gina M; Ericson, Daniel L; Roessler, Christian G; Campos, Olven; Ma, Millie Y; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S
2014-05-01
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.
Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M.; Polizzo, Gina M.; Ericson, Daniel L.; Roessler, Christian G.; Campos, Olven; Ma, Millie Y.; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component. PMID:24816088
NASA Astrophysics Data System (ADS)
Walter, Nathan; Zhang, Yang
Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex
Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries
NASA Astrophysics Data System (ADS)
Budaszewski, D.; Domański, A. W.; Woliński, T. R.
2013-05-01
In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.
2009-04-19
Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation ofmore » the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.« less
Simulation of orientational coherent effects via Geant4
NASA Astrophysics Data System (ADS)
Bagli, E.; Asai, M.; Brandt, D.; Dotti, A.; Guidi, V.; Verderi, M.; Wright, D.
2017-10-01
Simulation of orientational coherent effects via Geant4 beam manipulation of high-and very-high-energy particle beams is a hot topic in accelerator physics. Coherent effects of ultra-relativistic particles in bent crystals allow the steering of particle trajectories thanks to the strong electrical field generated between atomic planes. Recently, a collimation experiment with bent crystals was carried out at the CERN-LHC, paving the way to the usage of such technology in current and future accelerators. Geant4 is a widely used object-oriented tool-kit for the Monte Carlo simulation of the interaction of particles with matter in high-energy physics. Moreover, its areas of application include also nuclear and accelerator physics, as well as studies in medical and space science. We present the first Geant4 extension for the simulation of orientational effects in straight and bent crystals for high energy charged particles. The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code and the model have been validated by comparison with published experimental data regarding the deflection efficiency via channeling and the variation of the rate of inelastic nuclear interactions.
Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn
The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less
Zang, Yuguo; Kammerer, Bernd; Eisenkolb, Maike; Lohr, Katrin; Kiefer, Hans
2011-01-01
Crystallization conditions of an intact monoclonal IgG4 (immunoglobulin G, subclass 4) antibody were established in vapor diffusion mode by sparse matrix screening and subsequent optimization. The procedure was transferred to microbatch conditions and a phase diagram was built showing surprisingly low solubility of the antibody at equilibrium. With up-scaling to process scale in mind, purification efficiency of the crystallization step was investigated. Added model protein contaminants were excluded from the crystals to more than 95%. No measurable loss of Fc-binding activity was observed in the crystallized and redissolved antibody. Conditions could be adapted to crystallize the antibody directly from concentrated and diafiltrated cell culture supernatant, showing purification efficiency similar to that of Protein A chromatography. We conclude that crystallization has the potential to be included in downstream processing as a low-cost purification or formulation step. PMID:21966480
NASA Technical Reports Server (NTRS)
2006-01-01
Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.
Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI
NASA Astrophysics Data System (ADS)
Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.
2018-04-01
The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.
Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas
2017-03-01
We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.
Multigigahertz range-Doppler correlative processing in crystals
NASA Astrophysics Data System (ADS)
Harris, Todd L.; Babbitt, Wm. R.; Merkel, Kristian D.; Mohan, R. Krishna; Cole, Zachary; Olson, Andy
2004-06-01
Spectral-spatial holographic crystals have the unique ability to resolve fine spectral features (down to kilohertz) in an optical waveform over a broad bandwidth (over 10 gigahertz). This ability allows these crystals to record the spectral interference between spread spectrum waveforms that are temporally separated by up to several microseconds. Such crystals can be used for performing radar range-Doppler processing with fine temporal resolution. An added feature of these crystals is the long upper state lifetime of the absorbing rare earth ions, which allows the coherent integration of multiple recorded spectra, yielding integration gain and significant processing gain enhancement for selected code sets, as well as high resolution Doppler processing. Parallel processing of over 10,000 beams could be achieved with a crystal the size of a sugar cube. Spectral-spatial holographic processing and coherent integration of up to 2.5 Gigabit per second coded waveforms and of lengths up to 2047 bits has previously been reported. In this paper, we present the first demonstration of Doppler processing with these crystals. Doppler resolution down to a few hundred Hz for broadband radar signals can be achieved. The processing can be performed directly on signals modulated onto IF carriers (up to several gigahertz) without having to mix the signals down to baseband and without having to employ broadband analog to digital conversion.
Ueda, Keisuke; Higashi, Kenjirou; Kataoka, Makoto; Yamashita, Shinji; Yamamoto, Keiji; Moribe, Kunikazu
2014-10-01
The effects of drug-crystallization inhibitor in bile acid/lipid micelles solution on drug permeation was evaluated during the drug crystallization process. Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was used as a drug-crystallization inhibitor, which efficiently suppressed dexamethasone (DEX) crystallization in a gastrointestinal fluid model containing sodium taurocholate (NaTC) and egg-phosphatidylcholine (egg-PC). Changes of molecular state of supersaturated DEX during the DEX crystallization process was monitored in real time using proton nuclear magnetic resonance (1H NMR). It revealed that DEX distribution to bulk water and micellar phases formed by NaTC and egg-PC was not changed during the DEX crystallization process even in the presence of HPMC-AS. DEX permeation during DEX crystallization was evaluated using dissolution/permeability system. The combination of crystallization inhibition by HPMC-AS and micellar encapsulation by NaTC and egg-PC led to considerably higher DEX concentrations and improvement of DEX permeation at the beginning of the DEX crystallization process. Crystallization inhibition by HPMC-AS can efficiently work even in the micellar solution, where NaTC/egg-PC micelles encapsulates some DEX. It was concluded that a crystallization inhibitor contributed to improvement of permeation of a poorly water-soluble drug in gastrointestinal fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Crystallization modifiers in lipid systems.
Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter
2015-07-01
Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.
Effects of Gravity on Processing Heavy Metal Fluoride Fibers
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1997-01-01
The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.
NASA Technical Reports Server (NTRS)
Larson, David J.; Casagrande, Luis G.; DiMarzio, Don; Alexander, J. Iwan D.; Carlson, Fred; Lee, Taipo; Dudley, Michael; Raghathamachar, Balaji
1998-01-01
The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better understand and control the variables within the crystal growth production process. The empirical effort entailed the development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (mu-g) results. This effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments was analyzed with respect to the residual microgravity (mu-g) environment, both steady state and g-jitter. CdZnTe crystals were grown in one-g and in mu-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two mu-g crystals were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com
2014-04-24
We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.
Guo, Shaolong; Zhang, Feihu; Zhang, Yong; Luan, Dianrong
2014-01-01
Through the polishing experiments of potassium dihydrogen phosphate (KDP) crystals based on deliquescent action, the effect of several major factors, including crystal's initial surface state, polishing time, and revolution of polishing plate, on material removal was researched. Under certain experimental conditions, the rules of material removal were reached, and experimental results are discussed, which lays the foundation for popularization and application of polishing technology for KDP crystals based on deliquescent action.
Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence
NASA Astrophysics Data System (ADS)
González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen
2010-05-01
Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L
2014-10-01
For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.
2016-10-01
The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
SuperCDMS Underground Detector Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M.; Mahapatra, R.; Bunker, Raymond A.
The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.
Deposition and characterization of silicon thin-films by aluminum-induced crystallization
NASA Astrophysics Data System (ADS)
Ebil, Ozgenc
Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined to be 0.9 eV and depended on the nature of the interfacial oxide layer. Poly-Si layers prepared by AIC technique can be used as seed layers for epitaxial growth of bulk Si layer or as back contacts in c-Si based solar cells.
Aqueous Nucleation and Growth of Titanium Oxides Using Time-Resolved Synchrotron X- ray Diffraction
NASA Astrophysics Data System (ADS)
Hummer, D. R.; Heaney, P. J.; Post, J. E.
2006-05-01
The inorganic precipitation of oxide minerals in soil environments has profound effects on a variety of geochemical processes. These include the removal of metals from the aqueous phase, the production of coatings that reduce the reactive surface area of pre-existing mineral grains, and the generation of feedstocks for microbial metabolic reactions. Recent observations of transient, metastable phases during the growth of oxide crystallites has raised questions about their role in crystallization mechanisms, and created a need for more detailed structural measurements. To better understand the process of nucleation and growth, we investigated the crystallization of Ti oxides from aqueous 0.5 M TiCl4 solutions using synchrotron X-ray diffraction at temperatures of 100 and 150 °C. Solutions were heated in a 1.0 mm internal diameter quartz glass capillary sealed with epoxy. Powder diffraction patterns of the growing crystallites were collected using image plate technology with a time step of ~ 4 minutes, providing high resolution in situ measurements of structural changes during the crystallization process. The data indicate a co-precipitation of the two crystalline phases anatase and rutile within the first 30 minutes of heating, followed by a gradual phase transition from anatase to rutile during particle coarsening throughout the 10 hour duration of an experiment. The co-existence of anatase and rutile at the onset of crystallization lends additional support to the assertion of nearly identical free energies for anatase and rutile at the nanoscale, believed to be due to the prominence of surface energy effects (Ranade et al., 2001). Whole pattern analyses using the Rietveld refinement method also documented previously unobserved changes in lattice parameters of both phases during growth, on the order of 0.2-0.3 % expansion for each axis. The trends in lattice parameters are observed to be temperature dependent, generally having lower values at higher crystallization temperature. In addition to increased surface energy, these small but measurable structural changes may be partially responsible for the observed reversals in thermodynamic stability between crystalline Ti oxide phases at very small particle sizes.
The Nucleation and Growth of Protein Crystals
NASA Technical Reports Server (NTRS)
Pusey, Marc
2004-01-01
Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.
NASA Astrophysics Data System (ADS)
Zhu, X. A.; Tsai, C. T.
2000-09-01
Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Chang-Yun; Yang, Hongta, E-mail: hyang@dragon.nchu.edu.tw; Lin, Kun-Yi Andrew
This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200 nm of pores exhibit diffraction ofmore » ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.« less
Structures and Mechanical Properties of Natural and Synthetic Diamonds
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1998-01-01
A revolution in the diamond technology is in progress, as the low-pressure process becomes an industrial reality. It will soon be possible to take advantage of the demanding properties of diamond to develop a myriad of new applications, particularly for self-lubricating, wear-resistant, and superhard coatings. The production of large diamond films or sheets at low cost, a distinct possibility in the not-too-distant future, may drastically change tribology technology, particularly regarding solid lubricants and lubricating materials and systems. This paper reviews the structures and properties of natural and synthetic diamonds to gain a better understanding of the tribological properties of diamond and related materials. Atomic and crystal structure, impurities, mechanical properties, and indentation hardness of diamond are described.
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
Molecular dynamics study on splitting of hydrogen-implanted silicon in Smart-Cut® technology
NASA Astrophysics Data System (ADS)
Bing, Wang; Bin, Gu; Rongying, Pan; Sijia, Zhang; Jianhua, Shen
2015-03-01
Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut® technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most defects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed. Project supported by the National Natural Science Foundation of China (No. 11372261), the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province (No. 2013JQ0030), the Supporting Project of Department of Education of Sichuan Province (No. 2014zd3132), the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, Southwest University of Science and Technology-Ministry of Education (No. 12zxzk02), the Fund of Doctoral Research of Southwest University of Science and Technology (No. 12zx7106), and the Postgraduate Innovation Fund Project of Southwest University of Science and Technology (No. 14ycxjj0121).
Precision Laser Development for Gravitational Wave Space Mission
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.
High definition TV projection via single crystal faceplate technology
NASA Astrophysics Data System (ADS)
Kindl, H. J.; St. John, Thomas
1993-03-01
Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.
Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.
2015-06-24
The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.
Experimental analysis and modeling of melt growth processes
NASA Astrophysics Data System (ADS)
Müller, Georg
2002-04-01
Melt growth processes provide the basic crystalline materials for many applications. The research and development of crystal growth processes is therefore driven by the demands which arise from these specific applications; however, common goals include an increased uniformity of the relevant crystal properties at the micro- and macro-scale, a decrease of deleterious crystal defects, and an increase of crystal dimensions. As melt growth equipment and experimentation becomes more and more expensive, little room remains for improvements by trial and error procedures. A more successful strategy is to optimize the crystal growth process by a combined use of experimental process analysis and computer modeling. This will be demonstrated in this paper by several examples from the bulk growth of silicon, gallium arsenide, indium phosphide, and calcium fluoride. These examples also involve the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods). The power and success of the above optimization strategy, however, is not limited only to the given examples but can be generalized and applied to many types of bulk crystal growth.
Gherras, Nesrine; Serris, Eric; Fevotte, Gilles
2012-12-15
Acoustic emission (AE) which has been successfully applied for monitoring a rather wide variety of solids elaboration processes was almost never evaluated in the field of industrial pharmaceutical crystallization. Few papers reported that solution crystallization processes give rise to acoustic emission signals that could be related to the development of the basic crystallization phenomena. This study is intended to demonstrate new perspectives opened up by the possible use of acoustic emission (AE) as a non-intrusive and non destructive sensor for monitoring solution crystallization with a particular focus being put on the presence of impurities in real industrial processes. The wealth of acquired AE information is highlighted and it is suggested that such information could allow the design of innovative multipurpose sensing strategies. It is shown notably that AE provides a very early detection of nucleation events, much before the onset of the so-called "nucleation burst". It is also shown that AE brings new insight into the effect of impurities on both the development of the crystallization process and the quality of the crystallized product. Copyright © 2012 Elsevier B.V. All rights reserved.
Model-Based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, Elizabeth M.; Moore, David Roger; Li, Li
Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site andmore » a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to FF-MVR. High pressure reverse osmosis was found to a be a promising alternative desalination technology. A deep-dive technoeconomic analysis of HPRO was performed, including Capex and Opex estimates, for seawater RO (SWRO). Additionally, two additional cases were explored: 1) a comparison of a SWRO plus HPRO system to the option of doubling the size of a standard seawater RO system to achieve the same total pure water recovery rate; and 2) a flue gas desulfurization wastewater treatment zero-liquid discharge (ZLD) application, where preconcentration with RO (SWRO or SWRO + HPRO) before evaporation and crystallization was compared to FF-MVR and crystallization technologies without RO preconcentration. Pre-pilot process validation Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Smaller quantities were processed through microclarification. In addition, analytical methods (purge-and-trap gas chromatography and Hach TOC analytical methods) were validated. Lab-scale HPRO elements were constructed and tested at high pressures, to identify and mitigate technical risks of the technology. Lastly, improvements in RO membrane materials were identified as the necessary next step to achieve further improvement in element performance at high pressure. Scope of Field Pilot A field pilot for extracted water pretreatment was designed.« less
Kr/Xe Separation over a Chabazite Zeolite Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.
2016-08-10
Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less
A Review of In Situ Observations of Crystallization and Growth in High Temperature Oxide Melts
NASA Astrophysics Data System (ADS)
Wang, Zhanjun; Sohn, Il
2018-05-01
This review summarizes the significant results of high-temperature confocal laser scanning microscopy (CLSM) and single hot thermocouple technology (SHTT) and its application in observing the crystallization and growth in high-temperature oxide melts from iron- and steel-making slags to continuous casting mold fluxes. Using in situ observations of CLSM and SHTT images of high-temperature molten oxides with time, temperature, and composition, the crystallization behavior, including crystal morphology, crystallization temperature, initial nucleation and growth rate, could be obtained. The broad range of applications using in situ observations during crystallization have provided a wealth of opportunities in pyrometallurgy and is provided in this review.
Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.
Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen
2016-05-04
Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.
Double-Diffusive Convection During Growth of Halides and Selenides
NASA Technical Reports Server (NTRS)
Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.
2015-01-01
Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of several materials such as mercurous chloride, mercurous bromide, mercurous iodide, lead chloride lead bromide, lead iodide, thallium arsenic selenide, gallium selenide, zince sulfide zinc selenide and several crystals into devices. We have used both Bridgman and physical vapor transport (PVT) crystal growth methods. In the past have examined PVT growth numerically for conditions where the boundary of the enclosure is subjected to a nonlinear thermal profile. Since past few months we have been working on binary and ternary materials such as selenoiodides, doped zinc sulfides and mercurous chloro bromide and mercurous bromoiodides. In the doped and ternary materials thermal and solutal convection play extremely important role during the growth. Very commonly striations and banding is observed. Our experiments have indicated that even in highly purified source materials, homogeneity in 1-g environment is very difficult. Some of our previous numerical studies have indicated that gravity level less than 10-4 (?-g) helps in controlling the thermosolutal convection. We will discuss the ground based growth results of HgClxBr(1-x) and ZnSe growth results for the mm thick to large cm size crystals. These results will be compared with our microgravity experiments performed with this class of materials. For both HgCl-HgBr and ZnS-ZnSe the lattice parameters of the mixtures obey Vagard's law in the studied composition range. The study demonstrates that properties are very anisotropic with crystal orientation, and performance achievement requires extremely careful fabrication to utilize highest figure of merit. In addition, some parameters such as crystal growth fabrication, processing time, resolution, field of view and efficiency will be described based on novel solid solution materials. It was predicted that very similar to the pure compounds solid solutions also have very large anisotropy, and very precise oriented and homogeneous bulk and thin film crystals is required to achieve maximum performance of laser or imagers. Some of the parameters controlling the homogeneity such as thermos-solutal convection driven forces can be controlled in microgravity environments to utilize the benefits of these unique materials.
NASA Astrophysics Data System (ADS)
Fronczyk, Adam
2007-04-01
In this study, we report on a crystallization behavior of the Fe 95Si 5 metallic glasses using a differential scanning cabrimetry (DSC), and X-ray diffraction. The paper presents the results of experimental investigation of Fe 95Si 5 amorphous alloy, subjected to the crystallizing process by the isothermal annealing. The objective of the experiment was to determine changes in the structural parameters during crystallization process of the examined alloy. Crystalline diameter and the lattice constant of the crystallizing phase were used as parameters to evaluate structural changes in material.
Crystal growth within a phase change memory cell.
Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel
2014-07-07
In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.
Large-scale crystallization of proteins for purification and formulation.
Hekmat, Dariusch
2015-07-01
Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.
High-power Broadband Organic THz Generator
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-01-01
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234
Microgravity protein crystallization
McPherson, Alexander; DeLucas, Lawrence James
2015-01-01
Over the past 20 years a variety of technological advances in X-ray crystallography have shortened the time required to determine the structures of large macromolecules (i.e., proteins and nucleic acids) from several years to several weeks or days. However, one of the remaining challenges is the ability to produce diffraction-quality crystals suitable for a detailed structural analysis. Although the development of automated crystallization systems combined with protein engineering (site-directed mutagenesis to enhance protein solubility and crystallization) have improved crystallization success rates, there remain hundreds of proteins that either cannot be crystallized or yield crystals of insufficient quality to support X-ray structure determination. In an attempt to address this bottleneck, an international group of scientists has explored use of a microgravity environment to crystallize macromolecules. This paper summarizes the history of this international initiative along with a description of some of the flight hardware systems and crystallization results. PMID:28725714
Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.
High-power broadband organic THz generator.
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-11-13
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.
NASA Astrophysics Data System (ADS)
Zhou, H. P.; Xu, M.; Xu, S.; Feng, Y. Y.; Xu, L. X.; Wei, D. Y.; Xiao, S. Q.
2018-03-01
Deep insight into the crystallization mechanism of amorphous silicon is of theoretical and technological significance for the preparation of high-quality microcrystalline/polycrystalline silicon. In this work, we intensively compare the present two plasma-involved routes, i.e., the direct deposition and recrystallization of precursor amorphous silicon (a-Si) films, to fabricate microcrystalline silicon. Both the directly deposited and recrystallized samples show multi-layered structures as revealed by electronic microscopy. High-density hydrogen plasma involved recrystallization process, which is mediated by the hydrogen diffusion into the deep region of the precursor a-Si film, displays significantly different nucleation configuration, interface properties, and crystallite shape. The underlying mechanisms are analyzed in combination with the interplay of high-density plasma and growing or treated surface.
Development of exothermically cast single-crystal Mar-M 247 and derivative alloys
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Hoppin, G. S., III; Phipps, C. M.; Harris, K.; Schwer, R. E.
1980-01-01
A low-cost, exothermic directional-solidification (DS) process was developed to produce single-crystal (SC) Mar-M 247 high-pressure turbine blades. Stress-rupture data indicated that SC Mar-M 247 provides only marginal improvements in longitudinal strength relative to the columnar grained DS material. Removal of grain boundary strengthening elements (B, C, Zr, Hf) from the Mar-M 247 composition (which are also melting point depressants) permitted the alloy to be solutioned at significantly higher temperatures. An order of magnitude improvement in rupture life relative to SC Mar-M 247 was observed for several derivative alloys at 103.5 MPa (15 KSI) and 1093 C. Rupture lives of the modified SC alloys were significantly affected by both alloy purity and heat treatment. Critical aspects of vacuum induction refining, exothermic casting technology, alloy development and heat treatment, which contributed to this new class of turbine blades, are reviewed
THz-wave parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Naomi; Ito, H.; Han, S.
We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm{sup 3} of resolution by using some scintillating blocks with a volume of 1 mm{sup 3}, which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PETmore » detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using {sup 22}Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd{sub 3}(Al,Ga){sub 5}O{sub 12} (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)« less
NASA Astrophysics Data System (ADS)
Ma, N.; Walker, J. S.
2000-01-01
This paper presents a model for the unsteady transport of a dopant during the vertical Bridgman crystal growth process with a planar crystal-melt interface and with an axial magnetic field, and investigates the effects of varying different process variables on the crystal composition. The convective mass transport due to the buoyant convection in the melt produces nonuniformities in the concentration in both the melt and the crystal. The convective mass transport plays an important role for all magnetic field strengths considered. Diffusive mass transport begins to dominate for a magnetic flux density of 4 T and a fast growth rate, producing crystals which have an axial variation of the radially averaged crystal composition approaching that of the diffusion-controlled limit. Dopant distributions for several different combinations of process parameters are presented.
Maghsoodi, Maryam
2015-01-01
Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214
Pandalaneni, K; Amamcharla, J K
2016-07-01
Lactose accounts for about 75 and 85% of the solids in whey and deproteinized whey, respectively. Production of lactose is usually carried out by a process called crystallization. Several factors including rate of cooling, presence of impurities, and mixing speed influence the crystal size characteristics. To optimize the lactose crystallization process parameters to maximize the lactose yield, it is important to monitor the crystallization process. However, efficient in situ tools to implement at concentrations relevant to the dairy industry are lacking. The objective of the present work was to use a focused beam reflectance measurement (FBRM) system for in situ monitoring of lactose crystallization at supersaturated concentrations (wt/wt) 50, 55, and 60% at 20 and 30°C. The FBRM data were compared with Brix readings collected using a refractometer during isothermal crystallization. Chord length distributions obtained from FBRM in the ranges of <50 µm (fine crystals) and 50 to 300 µm (coarse crystals) were recorded and evaluated in relation to the extent of crystallization and rate constants deduced from the refractometer measurements. Extent of crystallization and rate constants increased with increasing supersaturation concentration and temperature. The measured fine crystal counts from FBRM increased at higher supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. Square weighted chord length distribution obtained from FBRM showed that as concentration increased, a decrease in chord lengths occurred at 20°C and similar observations were made from microscopic images. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully assessed in the study. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus
NASA Astrophysics Data System (ADS)
Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi
2003-10-01
We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.
NASA Astrophysics Data System (ADS)
Gafarov, Ozarfar; Martyshkin, Dmitriy; Fedorov, Vladimir; Mirov, Sergey
2018-02-01
Middle-infrared (mid-IR) lasers enabling a wide range of scientific, medical, technological, and defense related applications continue to enjoy a strong demand. Transition metal (TM) doped II-VI chalcogenides are appealing mid-IR gain medial providing direct access to 1.8-6 μm spectral range. . II-VI chalcogenides are available in single crystal and in polycrystalline forms. With respect to single crystals, polycrystalline gain elements fabricated by postgrowth thermal diffusion of TM impurities in II-VI hosts feature better optical quality and enable superior laser characteristics. Despite significant progress in post-growth thermal diffusion technology, there are still some difficulties associated with the diffusion of certain TM ions in certain II-VI hosts. Specifically, the diffusion length Fe in ZnS during 1 month annealing at 950°C is of the order of 0.1 mm. In this work, enhancement of diffusion coefficient under Hot Isostatic Pressing, at temperature and pressure of 1350°C and 2000 atm, and effect of these extreme conditions on the overall optical quality of the crystal were studied. The high temperature was applied to increase the diffusion rate, and the high pressure was needed to suppress strong sublimation and sphalerite - wurtzite phase transition at elevated temperatures. Under these conditions, the diffusion coefficient Fe in ZnS was enhanced by 5500 times as compared to standard diffusion processes carried out at 950°C. It was also demonstrated that the grain size had grown from 30μm to 5.5mm, which is believed to be another reason for efficient diffusion besides the elevation of temperature. The XRD patterns were measured such that the X-ray beam falls on a single grain. The XRD patterns showed only peaks characteristic to single crystals with zinc blende structure. Lasing characterization was performed to investigate the optical quality of the crystal. Slope efficiencies of 23.2% and 15.4% were obtained for TM11 and TM00 modes of operation, respectively. The emission of the laser was demonstrated to be in the 3840-3920 nm.
Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals
2004-07-01
NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion
NASA Astrophysics Data System (ADS)
Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.
2018-07-01
Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.
A review of materials engineering in silicon-based optical fibres
NASA Astrophysics Data System (ADS)
Healy, Noel; Gibson, Ursula; Peacock, Anna C.
2018-02-01
Semiconductor optical fibre technologies have grown rapidly in the last decade and there are now a range of production and post-processing techniques that allow for a vast degree of control over the core material's optoelectronic properties. These methodologies and the unique optical fibre geometry provide an exciting platform for materials engineering and fibres can now be produced with single crystal cores, low optical losses, tunable strain, and inscribable phase composition. This review discusses the state-of-the-art regarding the production of silicon optical fibres in amorphous and crystalline form and then looks at the post-processing techniques and the improved material quality and new functionality that they afford.
NASA Astrophysics Data System (ADS)
Robbins, Woodrow E.
1988-01-01
The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.
NASA Astrophysics Data System (ADS)
Hauschild, Dirk
2017-02-01
Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.
NASA Astrophysics Data System (ADS)
Steen, S. E.; McNab, S. J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D. M.; Topol, A. W.; Brancaccio, J. R.; Yu, R.; Hergenrother, J. M.; Doyle, J. P.; Nunes, R.; Viswanathan, R. G.; Purushothaman, S.; Rothwell, M. B.
2005-05-01
Semiconductor process development teams are faced with increasing process and integration complexity while the time between lithographic capability and volume production has remained more or less constant over the last decade. Lithography tools have often gated the volume checkpoint of a new device node on the ITRS roadmap. The processes have to be redeveloped after the tooling capability for the new groundrule is obtained since straight scaling is no longer sufficient. In certain cases the time window that the process development teams have is actually decreasing. In the extreme, some forecasts are showing that by the time the 45nm technology node is scheduled for volume production, the tooling vendors will just begin shipping the tools required for this technology node. To address this time pressure, IBM has implemented a hybrid-lithography strategy that marries the advantages of optical lithography (high throughput) with electron beam direct write lithography (high resolution and alignment capability). This hybrid-lithography scheme allows for the timely development of semiconductor processes for the 32nm node, and beyond. In this paper we will describe how hybrid lithography has enabled early process integration and device learning and how IBM applied e-beam & optical hybrid lithography to create the world's smallest working SRAM cell.
2004-04-15
The Commercial Vapor Diffusion Apparatus will be used to perform 128 individual crystal growth investigations for commercial and science research. These experiments will grow crystals of several different proteins, including HIV-1 Protease Inhibitor, Glycogen Phosphorylase A, and NAD Synthetase. The Commercial Vapor Diffusion Apparatus supports multiple commercial investigations within a controlled environment. The goal of the Commercial Protein Crystal Growth payload on STS-95 is to grow large, high-quality crystals of several different proteins of interest to industry, and to continue to refine the technology and procedures used in microgravity for this important commercial research.
Properties of tetrahedral clusters and medium range order in GaN during rapid solidification
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan
2017-12-01
The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.
NASA Astrophysics Data System (ADS)
Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.
2017-04-01
The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.
Preparative crystallization of a single chain antibody using an aqueous two-phase system.
Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois
2014-11-01
A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.
2004-04-15
Marshall Space Flight Center's researchers have conducted suborbital experiments with ZBLAN, an optical material capable of transmitting 100 times more signal and information than silica fibers. The next step is to process ZBLAN in a microgravity environment to stop the formation of crystallites, small crystals caused by a chemical imbalances. Scientists want to find a way to make ZBLAN an amorphous (without an internal shape) material. Producing a material such as this will have far-reaching implications on advanced communications, medical and manufacturing technologies using lasers, and a host of other products well into the 21st century.
Physics-Based Stimulation for Night Vision Goggle Simulation
2006-11-01
a CRT display system can produce darker black level than displays based on digital light processing (DLP) or liquid crystal technologies. It should...The general form of the bucket equation for any gun (color) is as follows: (3) n n n n r MnRp f MxR MnR ⎛ ⎞− = ⎜ ⎟−⎝ ⎠ Equation 3 General...simulate rendering approach, we began by testing the bucket rendering approach already utilized by SensorHost: (10) n n n n r MnRp f MxR MnR
Photovoltaic energy technologies: Health and environmental effects document
NASA Astrophysics Data System (ADS)
Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.
1980-09-01
The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.
A Low-Cost System Based on Image Analysis for Monitoring the Crystal Growth Process.
Venâncio, Fabrício; Rosário, Francisca F do; Cajaiba, João
2017-05-31
Many techniques are used to monitor one or more of the phenomena involved in the crystallization process. One of the challenges in crystal growth monitoring is finding techniques that allow direct interpretation of the data. The present study used a low-cost system, composed of a commercial webcam and a simple white LED (Light Emitting Diode) illuminator, to follow the calcium carbonate crystal growth process. The experiments were followed with focused beam reflectance measurement (FBRM), a common technique for obtaining information about the formation and growth of crystals. The images obtained in real time were treated with the red, blue, and green (RGB) system. The results showed a qualitative response of the system to crystal formation and growth processes, as there was an observed decrease in the signal as the growth process occurred. Control of the crystal growth was managed by increasing the viscosity of the test solution with the addition of monoethylene glycol (MEG) at 30% and 70% in a mass to mass relationship, providing different profiles of the RGB average curves. The decrease in the average RGB value became slower as the concentration of MEG was increased; this reflected a lag in the growth process that was proven by the FBRM.
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.
2014-01-01
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...
2014-11-18
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.
2003-01-01
The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
Effects of Gravity on ZBLAN Glass Crystallization
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary
2004-01-01
The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping
NASA Astrophysics Data System (ADS)
Canova, F.; Chambaret, J.-P.
2006-06-01
One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.
Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Naomi; Ito, Hiroshi; Kawai, Hideyuki
We have been developing sub mm resolution andmore » $$ 1 million DOI-PET detector using wavelength shifting fibers (WLSF), scintillation crystals of plate shape and SiPM (MPPC: HAMAMATSU K. K.). Conventional design of DOI-PET detector is obtained about mm{sup 3} of resolution by using some blocks detecting gamma-ray in mm 3 voxel. It requires the production cost of $$ a few ten million or more for high technique of processing crystal and a lot of number of photo-devices, and this technology is reaching the limit of the resolution. Both higher resolution and lower cost of DOI-PET detector production is challenging for PET diagnosis population. We propose two type of detector. One is a whole body PET system, and the other for brain or small animal. Both PET system consist 6 blocks. the former consist of 6 layers 300 mm x 300 mm x 4 mm crystal plate. The latter consist 16 crystal layers, 4 x 4 crystal array. The size of crystal plate is 40 mm x 40 mm x 1 mm.The WLSF sheets connect to upper and lower plane. The whole PET systems connect 8 SiPMs are bonded on each side. For the brain PET, 9 WLSF fibers are bond on the each side. The expected position resolution maybe less than 1 mm at the former. We have estimation experimental performance the system using {sup 22}Na radioactive source. The collection efficiency of WLSF (R-3) sheet was achieved 10% with GAGG at 511 keV. The relation between reconstruction position and incident position is obtained linearity and achieved the resolution of 0.7 mm FWHM for x-axis of DOI by readout WLSF. (authors)« less
NASA Astrophysics Data System (ADS)
Nanev, Christo N.; Petrov, Kostadin P.
2017-12-01
The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlakova, Veronika; Kaspar, Ludvik; Tykal, Tomas
2013-07-01
A big affection of the rock environment and groundwaters occurred during the chemical mining of uranium in the years 1966 to 1996 in the neighbourhood of the town Straz pod Ralskem in the Czech Republic. It is necessary to clean the residual technological solutions (RTS) from the underground. The pH of the solutions in some places is still less than 2 and the concentration of sulphates reaches up to 65 g/l. The remedial activities consist of pumping of the RTS from the ground and reprocessing of the RTS in the surface technologies. The implementation of the new neutralization technologies NDSmore » ML and NDS 10 help us with increasing of the efficiency of the remedial process. The NDS ML technology ('Mother liquor reprocessing station') started its operation in 2009 and it processes the concentrated technological solution from the evaporation station after the alum crystallization (mother liquor) with the concentration of total dissolved solids up to 250 g/l. The principle is the neutralization of the acid solutions with the aid of the lime milk. The suspension is then filtrated in the filter press, the filter cake is deposited in the tailings pond and the filtrate is injected back into the underground rock environment. The NDS 10 technology ('Neutralization and Decontamination Station NDS 10') started its operation in 2012 and it works on the same technological principle as the NDS ML station. The difference is that the NDS 10 station can process higher volume (4.4 m{sup 3}/min) of the RTS with lower concentration of total dissolved solids 20 - 25 g/l. This poster describes the experiences of the state enterprise DIAMO with putting of these two neutralization technologies into operation and with using of the lime milk neutralization in such a large scale. (authors)« less
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Manufacturing Processes for Long-Life Gas Turbines
NASA Astrophysics Data System (ADS)
Hoppin, G. S.; Danesi, W. P.
1986-07-01
Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.
La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F
2016-12-12
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics
La Spina, G.; Burton, M.; de' Michieli Vitturi, M.; Arzilli, F.
2016-01-01
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1–2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism. PMID:27941750
Neurosurgery contact handheld probe based on sapphire shaped crystal
NASA Astrophysics Data System (ADS)
Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.
2017-01-01
A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.
Application of quartz crystal microbalance technology in tribological investigation
USDA-ARS?s Scientific Manuscript database
The last fifteen years have seen considerable growth in the application of quartz crystal microbalance (QCM) to explore the tribological characteristics of materials. This article reviews some of the advances made in characterizing frictional properties of materials using the QCM, especially with di...