Sample records for crystal size shape

  1. Evaluation of Morphological Change and Aggregation Process of Ice Crystals in Frozen Food by Using Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru

    Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.

  2. Control of interface shape during high melting sesquioxide crystal growth by HEM technique

    NASA Astrophysics Data System (ADS)

    Hu, Kaiwei; Zheng, Lili; Zhang, Hui

    2018-02-01

    During crystal growth in heat exchanger method (HEM) system, the shape of the growth interface changes with the proceeding of the growth process, which limits the crystal size and reduces the quality of the crystal. In this paper, a modified HEM system is proposed to control the interface shape for growth of sesquioxide crystals. Numerical simulation is performed to predict heat transfer, melt flow and interface shape during growth of high melting sesquioxide crystals by the heat exchanger method. The results show that a flat or slightly convex interface shape is beneficial to reduce the solute pileup in front of the melt/crystal interface and decrease the radial temperature gradient inside the crystal during growth of sesquioxide crystals. The interface shape can be controlled by adjusting the gap size d and lower resistance heater power during growth. The growth rate and the melt/crystal interface position can be obtained by two measured temperatures.

  3. Investigation of the Evolution of Crystal Size and Shape during Temperature Cycling and in the Presence of a Polymeric Additive Using Combined Process Analytical Technologies

    PubMed Central

    2017-01-01

    Crystal size and shape can be manipulated to enhance the qualities of the final product. In this work the steady-state shape and size of succinic acid crystals, with and without a polymeric additive (Pluronic P123) at 350 mL, scale is reported. The effect of the amplitude of cycles as well as the heating/cooling rates is described, and convergent cycling (direct nucleation control) is compared to static cycling. The results show that the shape of succinic acid crystals changes from plate- to diamond-like after multiple cycling steps, and that the time required for this morphology change to occur is strongly related to the type of cycling. Addition of the polymer is shown to affect both the final shape of the crystals and the time needed to reach size and shape steady-state conditions. It is shown how this phenomenon can be used to improve the design of the crystallization step in order to achieve more efficient downstream operations and, in general, to help optimize the whole manufacturing process. PMID:28867966

  4. Influences of powder granularity on crystallizing characteristics in mica-contained glass ceramic

    NASA Astrophysics Data System (ADS)

    Xu, L. N.; Kong, D. Y.; Tian, Q. B.; Lv, Z. J.

    2017-09-01

    A machinable mica-contained glass ceramic in the SiO2-Al2O3-MgO-F glassy system was prepared by ball milling and hot pressed sintering. Three kinds of powder sizes of base glass were chosen and the effects of the glass powder sizes on the crystallization were explored by x-ray diffraction and scanning electron microscopy techniques. The results indicate that mica crystal as a major phase and KFeSi2O6 and mullite as minor phases are crystallized. Applying pressure at 670°C has little influences on the types of crystal precipitated and the preferential growth of crystal. The powder sizes, however, have obvious effects on the morphology of precipitated mica crystals. In the glass sample with a powder size of d50=16.4 µm, the plate-shaped mica phase is precipitated. As the powder size decrease to 9.9 µm and 3.3 µm, however, the particle-shaped mica is formed instead of the plate-shaped crystals.

  5. On geological interpretations of crystal size distributions: Constant vs. proportionate growth

    USGS Publications Warehouse

    Eberl, D.D.; Kile, D.E.; Drits, V.A.

    2002-01-01

    Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.

  6. Global statistics of microphysical properties of cloud-top ice crystals

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.

    2017-12-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  7. Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome

    2017-01-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  8. Equilibrium shape of 4He crystal under zero gravity below 200 mK

    PubMed Central

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-01-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  9. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    PubMed

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  10. Deducing growth mechanisms for minerals from the shapes of crystal size distributions

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Srodon, J.

    1998-01-01

    Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for a series of related samples.

  11. Carbon dioxide crystals: An examination of their size, shape, and scattering properties at 37 GHz and comparisons with water ice (snow) measurements

    NASA Astrophysics Data System (ADS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.; Wergin, W. P.; Erbe, E. F.; Barton, J.

    1998-11-01

    On Earth, the temperature regime is such that water is generally fairly close to its freezing point, and thus relatively small differences in climate affect how much snow and ice are present and whether or not the snow covering will be seasonal or last from one year to the next. On Mars, as on Earth, the presence of ice also plays a role in large-scale climate processes and it is important in controlling the abundance of atmospheric carbon dioxide (CO2) and water vapor. Passive microwave radiometry has been used to derive snow extent and snow depth on Earth, where scattering by snow (H2O) crystals is the dominant effect on the microwave radiation emanating from the ground and emerging from the snowpack. Microwave remote sensing may also prove to be useful for assessing the coverage and thickness of the frozen H2O and CO2 on Mars, but more exact information is needed on how both H2O crystals and frozen CO2 crystals scatter and absorb passive microwave radiation. In this study, CO2 crystals have been produced in a laboratory cold chamber with temperature conditions similar to those found on the polar caps of Mars, and detailed three-dimensional images of their size and shape have been made with a low-temperature scanning electron microscope. Unlike the much larger H2O snow crystals found on Earth, which typically range in size between 0.1 mm and 1.0 mm (radius), CO2 crystals are differently shaped and considerably smaller. Bipyramid crystals (base to base four-sided pyramids) are commonly observed, some as small as 1.0 μm. A discrete dipole model was employed to calculate the passive microwave radiation scattered and absorbed by crystals of various sizes and shapes. Modeling results indicate that the shape of the crystal, whether for frozen CO2 or H2O, is of little consequence in affecting extinction efficiency. However, owing to their smaller size, frozen CO2 crystals are more emissive than the H2O crystals in the 37 GHz region of the microwave spectrum. For the larger sizes of the modeled crystals, scattering dominates over absorption since the particles approach the size of the wavelength. The scattering values are 2 orders of magnitude larger than absorption for the 900 μm size snow particles. For CO2 crystals of 3.0 μm in size, absorption is 7 orders of magnitude greater than scattering.

  12. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

  13. Ultrasound assisted crystallization of mefenamic acid: Effect of operating parameters and comparison with conventional approach.

    PubMed

    Iyer, Sneha R; Gogate, Parag R

    2017-01-01

    The current work investigates the application of low intensity ultrasonic irradiation for improving the cooling crystallization of Mefenamic Acid for the first time. The crystal shape and size has been analyzed with the help of optical microscope and image analysis software respectively. The effect of ultrasonic irradiation on crystal size, particle size distribution (PSD) and yield has been investigated, also establishing the comparison with conventional approach. It has been observed that application of ultrasound not only enhances the yield but also reduces the induction time for crystallization as compared to conventional cooling crystallization technique. In the presence of ultrasound, the maximum yield was obtained at optimum conditions of power dissipation of 30W and ultrasonic irradiation time of 10min. The yield was further improved by application of ultrasound in cycles where the formed crystals are allowed to grow in the absence of ultrasonic irradiation. It was also observed that the desired crystal morphology was obtained for the ultrasound assisted crystallization. The conventionally obtained needle shaped crystals transformed into plate shaped crystals for the ultrasound assisted crystallization. The particle size distribution was analyzed using statistical means on the basis of skewness and kurtosis values. It was observed that the skewness and excess kurtosis value for ultrasound assisted crystallization was significantly lower as compared to the conventional approach. XRD analysis also revealed better crystal properties for the processed mefenamic acid using ultrasound assisted approach. The overall process intensification benefits of mefenamic acid crystallization using the ultrasound assisted approach were reduced particle size, increase in the yield and uniform PSD coupled with desired morphology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  15. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    NASA Astrophysics Data System (ADS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-08-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  16. Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, Nancy; Carrillo-Romo, Felipe; Jaramillo-Vigueras, David

    2004-10-01

    This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol-1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.

  17. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    PubMed

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  18. Crystallization of micrometer-sized particles with molecular contours.

    PubMed

    Song, Pengcheng; Olmsted, Brian K; Chaikin, Paul; Ward, Michael D

    2013-11-12

    The crystallization of micrometer-sized particles with shapes mimicking those of tetrabenzoheptacene (TBH) and 1,2:5,6-dibenzanthracene (DBT), both flat polyacenes, in an electric field results in the formation of ordered 2D packings that mimic the plane group symmetries in their respective molecular crystal equivalents. Whereas the particles packed in low-density disordered arrangements under a gravitational gradient, dielectrophoresis (under an ac electric field) produced ordered high-density packings with readily identifiable plane group symmetry. The ordered colloidal assemblies were stable for hours, with the packing density decreasing slowly but with recognizable symmetry for up to 12 h for the TBH-shaped particles and up to 4 h for the DBT-shaped particles. This unexpected stability is attributed to jamming behavior associated with interlocking of the dogbone-shaped (TBH) and Z-block (DBT) particles, contrasting with the more rapid reduction of packing density and loss of hexagonal symmetry for disk-shaped particles upon removal of the electric field. The TBH-shaped and DBT-shaped particles assemble into the p2 plane group, which corresponds to the densest particle packing among the possible close-packed plane groups for these particle symmetries. The p2 symmetry observed for the TBH-shaped and DBT-shaped colloid crystal emulates the p2 symmetry of the (010) layers in their respective molecular crystals, which crystallize in monoclinic lattices. Notably, DBT-shaped particles also form ordered domains with pgg symmetry, replicating the plane group symmetry of the (100) layer in the orthorhombic polymorph of DBT. These observations illustrate that the 2D ordering of colloid particles can mimic the packing of molecules with similar shapes, demonstrating that packing can transcend length scales from the molecular to the colloidal.

  19. User's Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms - and Associated Programs

    USGS Publications Warehouse

    Eberl, Dennis D.; Drits, V.A.; Srodon, J.

    2000-01-01

    GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).

  20. Structure and Growth of Rod-Shaped Mn Ultrafine Particle

    NASA Astrophysics Data System (ADS)

    Kido, Osamu; Suzuki, Hitoshi; Saito, Yoshio; Kaito, Chihiro

    2003-09-01

    The structure of rod-shaped Mn ultrafine particles was elucidated by electron microscopy. Mn ultrafine particles have characteristic tristetrahedron (α-Mn), rhombic dodecahedron (β-Mn) and rod-shape crystal habits. It was found that the rod-shaped particle resulted from the parallel coalescence of β-Mn particles with the size of 50 nm. Detailed analysis of the defects seen in large rod-shaped particles with the width of 100 nm indicated a mixture of α- and β-phases. A size effect on the phase transition from β to α was observed throughout the rod-shaped crystal structure. The structure and growth of Mn particles were discussed based on the outline of the smoke and the temperature distribution in the smoke.

  1. Q-space analysis of light scattering by ice crystals

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  2. Three-dimensional reconstruction of the size and shape of protein microcrystals using Bragg coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.

    2016-03-14

    Three-dimensional imaging of protein crystals during X-ray diffraction experiments opens up a range of possibilities for optimising crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate lengthscales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for charactering the size and shape of protein crystals at nanometre lengthscales is Bragg Coherent Diffractive Imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiplemore » points on a rocking curve a Reciprocal Space Map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional BCDI of protein crystals was reported by Boutet at al., recently this work was extended to the study of radiation damage of micron-sized crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and TEM data and have implications for both radiation damage studies and for developing new approaches to structure retrieval from micron-sized protein crystals.« less

  3. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8.14x8.14xl in shape with geometrical factors of x:y:z=1:1:10, Fabian et al. 2001; Harker et al. 2007). Alternatively, models for forsterite employ statistical methods like the Distribution of Hollow Spheres (Min et al. 2008; Oliveira et al. 2011) or Gaussian Random Spheres (GRS) or RGF (Gielen et al. 200S). Pancakes, hollow spheres, or GRS shapes similar to wheat sheaf crystal habit (e.g., Volten et al. 2001; Veihelmann et al. 2006), however, do not have the sharp edges, flat faces, and vertices seen in images of cometary crystals in interplanetary dust particles (IDPs) or in Stardust samples. Cometary forsterite crystals often have equant or tabular crystal habit (J. Bradley). To simulate cometary crystals, we have computed absorption efficiencies of forsterite using the Discrete Dipole Approximation (DDA) DDSCAT code on NAS supercomputers. We compute thermal models that employ a size distribution of discrete irregularly shaped forsterite crystals (nonspherical shapes with faces and vertices) to explore how crystal shape affects the shape and wavelength positions of the forsterite spectral features and to explore whether cometary crystal shapes support either condensation or annealing scenarios (Lindsay et al. 2012a, b). We find forsterite crystal shapes that best-fit comet Hale-Bopp are tetrahedron, bricks or brick platelets, essentially equant or tabular (Lindsay et al. 2012a,b), commensurate with high temperature condensation experiments (Kobatake et al. 2008). We also have computed porous aggregates with crystal monomers and find that the crystal resonances are amplified. i.e., the crystalline fraction is lower in the aggregate than is derived by fitting a linear mix of spectral features from discrete subcomponents, and the crystal resonances 'appear' to be from larger crystals (Wooden et al. 2012). These results may indicate that the crystalline mass fraction in comets with comae dominated by aggregates may be lower than deduced by popular methods that only emoy ensembles of discrete crystals.

  4. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  5. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  6. Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.

    2013-12-01

    Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.

  7. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    PubMed

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  8. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting

    PubMed Central

    Ye, Jongpil

    2015-01-01

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816

  9. An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas

    NASA Astrophysics Data System (ADS)

    Klein, Johannes; Mueller, Sebastian P.; Helo, Christoph; Schweitzer, Silja; Gurioli, Lucia; Castro, Jonathan M.

    2018-05-01

    This study examines the combined effect of crystal-size distributions (CSD) and crystal shape on the rheology of vesicle free magmatic suspensions and provides the first practical application of an empirical model to estimate the relative effect of crystal content and CSD's on the viscosity of magma directly from textural image analysis of natural rock samples in the form of a user-friendly texture-rheology spreadsheet calculator. We extend and apply established relationships between the maximum packing fraction ϕm of a crystal bearing suspension and both its rheological properties and the polydispersity γ of a CSD. By using analogue rotational rheometric experiments with glass fibres and glass flakes in silicone oil acting as magma equivalent, this study also provides new insights in the relationship between ϕm and the aspect ratio rp of suspended particles.

  10. Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Chun; Tai, Yu-Chuen

    2013-06-01

    The effects of solvents on the anatase crystallite size prepared by sol-gel microwave-assisted solvothermal method were investigated in this study. Eight different alcohol solvents classified into two groups, i.e. primary and secondary/ternary alcohols, were used as reaction media and the effects of solvent properties, such as dielectric constant, boiling point, and internal pressure during the solvothermal process, on the crystallite size and shape were analyzed. According to the experimental results, selecting the solvent type allowed not only the alteration of the crystallite size but also the crystallite shape without the need of any additives. The boiling point of solvent was determined as the major factor influencing the crystallite size. Among the solvents with similar boiling points, the solvent with a higher carbon number produced the smaller crystallite size because of steric hindrance effect. In addition, the carboxyl groups dissociated from the alcohol solvent can play a role as a structural capping agent to retard the anatase crystal growth along the [001] direction and led to a rectangular crystallite shape with preferred development in {001} facets. On the other hand, the alcoholysis reaction was found easily occurred between the primary alcohol and isopropoxide that effectively limited the hydrolysis and condensation processes but also suppressed the structural capping effect. Therefore, the anatase crystals prepared in the primary alcohols became exceptionally small and showed spherical shape. Finally, the anatase crystals prepared using isopropanol demonstrated the highest photocatalytic activity due to its evident preferred crystallization in the {001} facets.

  11. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  12. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Arena, J.; Song, M. J.; McEwen, B. F.

    1996-01-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal bone collagen. The results suggest that platelet-shaped crystals are arranged in channels or grooves which are formed by collagen hole zones in register and that crystal sizes may exceed the dimensions of hole zones. Such data agree with those from mineral-matrix interaction in normally calcifying avian tendon obtained by similar high voltage tomographic means, but in addition they indicate a possible gradual and continuous deposition of crystals in collagen of bone unlike tendon and imply that individual collagen fibrils in local regions of osteoid are organized such that they all may be aligned in a coherent manner.

  13. Primary and secondary fragmentation of crystal-bearing intermediate magma

    NASA Astrophysics Data System (ADS)

    Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn

    2016-11-01

    Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.

  14. Power laws for the backscattering matrices in the case of lidar sensing of cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kustova, Natalia V.; Konoshonkin, Alexander V.; Borovoi, Anatoli; Okamoto, Hajime; Sato, Kaori; Katagiri, Shuichiro

    2017-11-01

    The data bank for the backscattering matrixes of cirrus clouds that was calculated earlier by the authors and was available in the internet for free access has been replaced in the case of randomly oriented crystals by simple analytic equations. Four microphysical ratios conventionally measured by lidars have been calculated for different shapes and the effective size of the crystals. These values could be used for retrieving shapes of the crystals in cirrus clouds.

  15. Advances and new directions in crystallization control.

    PubMed

    Nagy, Zoltan K; Braatz, Richard D

    2012-01-01

    The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.

  16. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology.

  17. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  18. Study on the temperature field of large-sized sapphire single crystal furnace

    NASA Astrophysics Data System (ADS)

    Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.

    2018-01-01

    In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.

  19. In-situ nano-crystal-to-crystal transformation synthesis of energetic materials based on three 5,5′-azotetrazolate Cr(III) salts

    PubMed Central

    Miao, Yu; Qiu, Yanxuan; Cai, Jiawei; Wang, Zizhou; Yu, Xinwei; Dong, Wen

    2016-01-01

    The in-situ nano-crystal-to-crystal transformation (SCCT) synthesis provides a powerful approach for tailoring controllable feature shapes and sizes of nano crystals. In this work, three nitrogen-rich energetic nano-crystals based on 5,5′-azotetrazolate(AZT2−) Cr(III) salts were synthesized by means of SCCT methodology. SEM and TEM analyses show that the energetic nano-crystals feature a composition- and structure-dependent together with size-dependent thermal stability. Moreover, nano-scale decomposition products can be obtained above 500 °C, providing a new method for preparing metallic oxide nano materials. PMID:27869221

  20. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    PubMed

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  1. Crystal Shapes and Two-Toned Veins on Martian Ridge

    NASA Image and Video Library

    2018-02-08

    This exposure of finely laminated bedrock on Mars includes tiny crystal-shaped bumps, plus mineral veins with both bright and dark material. This rock target, called "Jura," was imaged by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover on Jan. 4, 2018, during the 1,925th Martian day, or sol, of the rover's work on Mars. The view combines three MAHLI frames covering a postcard-size patch of the rock. Fig. 1 includes a scale bar of 2 centimeters (about 0.8 inch) and a blow-up of a "swallowtail" crystal shape. The combination of simpler "lenticular" crystal shapes with swallowtails and more complex "lark's foot" and star shapes is characteristic of crystals of gypsum, a type of calcium sulfate. To the right of a prominent swallowtail near the top of the image is one bright mineral vein and another with both bright and dark portions. This rock is near the southern, uphill edge of "Vera Rubin Ridge" on lower Mount Sharp. An annotated image (Fig. 1) is available at https://photojournal.jpl.nasa.gov/catalog/PIA22211

  2. Towards true 3D textural analysis; using your crystal mush wisely.

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.; Pankhurst, M. J.

    2014-12-01

    The crystal cargo that is found in volcanic and plutonic rocks contains a wealth of information about magmatic mush processes, crystallisation history, crystal entrainment and recycling. Phenocryst populations predominantly record episodes of growth/nucleation and bulk geochemical changes within an evolving crystal-melt body. Ante- and xeno-crysts provide useful clues to the nature of mush interaction with wall rock and with principal magma(s). Furthermore, crystal evolutions (core to rim) record pathways through pressure, temperature and compositional space. These can often illustrate complex recycling within systems, describing the plumbing architecture. Understanding this architecture underpins our knowledge of how igneous systems can interact with the crust, grow, freeze, re-mobilise and prime for eruption. Initially, 2D studies produced corrected 3D crystal size distributions to help provide information about nucleation and residence times. It immediately became clear that crystal shape is an important factor in determining the confidence placed upon 3D reconstructions of 2D data. Additionally studies utilised serial sections of medium- to coarse-grain-size populations which allowed 3D reconstruction using modelling software to be improved, since size and shape etc. can be directly constrained. Finally the advent of textural studies using X-ray tomography has revolutionised the way in which we can inspect the crystal cargo in mushy systems, allowing us to image in great detail crystal packing arrangements, 3D CSDs, shapes and orientations etc. The latest most innovative studies use X-ray micro-computed tomography to rapidly characterise chemical populations within the crystal cargo, adding a further dimension to this approach, and implies the ability to untangle magmatic chemical components to better understand their individual and combined evolution. In this contribution key examples of the different types of textural analysis techniques in 2D and 3D, including texture movie animations, are used from both plutonic and volcanic systems to highlight the roll of this approach towards a goal of true 3D textural analysis.

  3. The effect of crystal shape, size and bimodality on the maximum packing and the rheology of crystal bearing magma

    NASA Astrophysics Data System (ADS)

    Moitra, Pranabendu; Gonnermann, Helge

    2014-05-01

    Magma often contains crystals of various shapes and sizes. We present experimental results on the effect of the shape- and size-distribution of solid particles on the rheological properties of solid-liquid suspensions, which are hydrodynamically analogous to crystal-bearing magmas. The suspensions were comprised of either a single particle shape and size (unimodal) or a mixture of two different particle shapes and sizes (bimodal). For each type of suspension we characterized the dry maximum packing fraction of the particle mixture using the tap density method. We then systematically varied the total volume fraction of particles in the suspension, as well as the relative proportion of the two different particle types in the bimodal suspensions. For each of the resultant mixtures (suspensions) we performed controlled shear stress experiments using a rotational rheometer in parallel-plate geometry spanning 4 orders of magnitude in shear stress. The resultant data curves of shear stress as a function of shear rate were fitted using a Herschel-Bulkley rheological model. We find that the dry maximum packing decreases with increasing particle aspect ratio (ar) and decreasing particle size ratio (Λ). The highest dry maximum packing was obtained at 60-75% volume of larger particles for bimodal spherical particle mixture. Normalized consistency, Kr, defined as the ratio of the consistency of the suspension and the viscosity of the suspending liquid, was fitted using a Krieger-Dougherty model as a function of the total solid volume fraction (φ). The maximum packing fractions (φm) obtained from the shear experimental data fitting of the unimodal suspensions were similar in magnitude with the dry maximum packing fractions of the unimodal particles. Subsequently, we used the dry maximum packing fractions of the bimodal particle mixtures to fit Kr as a function of φ for the bimodal suspensions. We find that Kr increases rapidly for suspensions with larger ar and smaller Λ. We also find that both the apparent yield stress and the shear thinning behavior of the suspensions increase with increasing ar and become significant at φ/φm ≥ 0.4.

  4. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals

    PubMed Central

    Bouillard, J.-S.; Segovia, P.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.

    2014-01-01

    Plasmonic crystals provide many passive and active optical functionalities, including enhanced sensing, optical nonlinearities, light extraction from LEDs and coupling to and from subwavelength waveguides. Here we study, both experimentally and numerically, the coherent control of SPP beam excitation in finite size plasmonic crystals under focussed illumination. The correct combination of the illuminating spot size, its position relative to the plasmonic crystal, wavelength and polarisation enables the efficient shaping and directionality of SPP beam launching. We show that under strongly focussed illumination, the illuminated part of the crystal acts as an antenna, launching surface plasmon waves which are subsequently filtered by the surrounding periodic lattice. Changing the illumination conditions provides rich opportunities to engineer the SPP emission pattern. This offers an alternative technique to actively modulate and control plasmonic signals, either via micro- and nano-electromechanical switches or with electro- and all-optical beam steering which have direct implications for the development of new integrated nanophotonic devices, such as plasmonic couplers and switches and on-chip signal demultiplexing. This approach can be generalised to all kinds of surface waves, either for the coupling and discrimination of light in planar dielectric waveguides or the generation and control of non-diffractive SPP beams. PMID:25429786

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  6. Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.

    1999-01-01

    For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.

  7. Anti-solvent crystallization of L-threonine in Taylor crystallizers and MSMPR crystallizer: Effect of fluid dynamic motions on crystal size, shape, and recovery

    NASA Astrophysics Data System (ADS)

    Lee, Sooyun; Lee, Choul-Ho; Kim, Woo-Sik

    2017-07-01

    The influence of the fluid dynamic motions of a periodic Taylor vortex and random turbulent eddy on the anti-solvent crystallization of L-threonine was investigated. The Taylor vortex flow and random turbulent eddy flow were generated by the inner cylinder rotation in a Couette-Taylor (CT) crystallizer and the impeller agitation in a mixed-suspension mixed product removal (MSMPR) crystallizer, respectively. Furthermore, the circumferentially sinusoidal fluctuation of a Taylor vortex was induced in an elliptical Couette-Taylor (ECT) crystallizer . The periodic Taylor vortex flows in the CT and ECT crystallizers resulted in a smaller crystal size and higher crystal recovery ratio of L-threonine than the random turbulent flow in the MSMPR crystallizer due to induction of a higher supersaturation, resulting in a higher nucleation in the CT and ECT crystallizers than in the MSMPR crystallizer. Thus, the crystal size was reduced and the crystal recovery ratio enhanced when increasing the rotation/agitation speed and feed flow rate in the CT, ECT, and MSMPR crystallizers. When increasing the temperature, the crystal size and crystal recovery ratio were both increased due an enhanced mass transfer for crystal growth. The crystal morphology changes according to the fluid dynamic motion with various crystallization conditions were well correlated in terms of the supersaturation.

  8. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.

    2018-03-01

    The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.

  9. Discrete dipole approximation models of chrystalline forsterite: Applications to cometary crystalline silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean Stephen

    The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline forsterite. Using the DDSCAT computed absorption efficiencies for a large variety of forsterite crystal shapes, which are computed for 66 grain sizes between 0.1 -- 5.0 mum, the flux contribution of irregularly shaped forsterite is computed. The forsterite flux contribution is then summed with the amorphous and crystalline enstatite contributions to generate the total synthetic SED. The DDSCAT forsterite grain shape synthetic SEDs reveal that the crystalline silicates in the coma of Hale-Bopp are irregular in shape with two distinct shape characteristics related to specific formation mechanisms: 1) equant grains with sharp ( ≲ 90°) angles between the faces, edges, and vertices that formed as high temperature condensates in the inner 1 -- 3 AU radial region of the Solar System's protoplanetary disk; and 2) c-shortened platelet shapes that likely formed from collisional processing of the crystals. The 8 -- 40 mum silicate spectral features of Hale-Bopp's coma are compared to the silicate spectral features of the comae of 17P/Holmes during 2007 outburst and 9P/Tempel 1 during the Deep Impact experiment to show that the silicate features with crystalline resonances are remarkably similar. The similarity in silicate spectral features suggests that the grain populations in the comae of these comets are similar in shape, size, and compositon. However, Hale-Bopp is a nearly isotropic comet (NIC) that dynamically came from the Oort cloud, and 17P and 9P are ecliptic comets (ECs) that dynamically came from the Scattered Disk. The different dynamical source regions yet similar silicate (amorphous and crystalline) grain populations suggest that ECs and NICs innately have similar grains and that the typically weaker silicate features of ECs are an effect of the surface grains becoming compacted with numerous perihelion passages. Hence, the differences in silicate between ECs and NICs are the result of grain structure and not grain composition. (Abstract shortened by UMI.)

  10. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating

    PubMed Central

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-01-01

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO3 crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO3 crystal size, which is dependent on CaCl2/Na2CO3 concentration. The microalgal cells could be embedded in CaCO3 crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe3O4 magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications. PMID:29438340

  11. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks.

    PubMed

    Furukawa, Yuki; Ishiwata, Takumi; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2012-10-15

    Sweet cube o' mine: Bottom-up control of gel particles has been regarded as a great challenge. By employing internal cross-linking of cyclodextrin metal-organic frameworks, cubic sugar gels were formed with sharp edges that reflect the shape of the crystals. This enabled the fabrication of shape- and size-controlled polymer gels from porous crystals (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  13. Bingham fluid behavior of plagioclase-bearing basaltic magma: Approach from laboratory viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ishibashi, H.; Sato, H.

    2010-12-01

    Datasets of one atmosphere high temperature rotational viscometry of the Fuji 1707 basalt (Ishibashi, 2009) were analyzed based on the Bingham fluid model, and both yield stress and Bingham viscosity were determined. Reproducibility of the dataset by the Bingham fluid model was slightly better than that by the power law fluid modes adopted in our previous study although both the fluid models well represent the dataset in practical perspective. The relation between Bingham viscosity and crystallinity was compared with the Krieger-Dougherty equation, and both the maximum packing fraction of crystals and intrinsic viscosity for Bingham viscosity were determined ca. 0.45 and ca. 5.25, respectively, revealing that the maximum packing fraction decreased and intrinsic viscosity increased concomitantly with the increase in shape-anisotropy of crystals. However, the obtained value of the product of the maximum packing fraction and intrinsic viscosity (= ca. 2.36) was similar to that of uniform, isotropic-shaped particles (= 2.5), indicating that the effect of crystal shape-anisotropy on Bingham viscosity might be predicted only by change of the maximum packing fraction. Finite yield stress was detected for crystallinity larger than 0.133; it increased with crystallinity which suggests that critical crystallinity for onset of yield stress is at least lower than 0.133. The upper limit value of the critical crystallinity resembles the value calculated numerically for randomly oriented uniform particles by Saar et al. (2001) (0.10-0.15 for width/length ratio of 0.1-0.2, which is similar to the ratios in the basalt) whereas crystals in the basalt were moderately parallel arranged and their sizes vary significantly. That fact might be explained as follows; effects of parallel arrangement and size variation of crystals on the critical crystallinity are offset by the effect of variation in crystal shape-anisotropy, which suggests that shape-anisotropy distribution of crystals must be a critical factor for the onset of yield stress. Keywords: magma, viscosity, Bingham fluid, yield stress, plagioclase

  14. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  15. Preparation and characterization of superfine ammonium perchlorate (AP) crystals through ceramic membrane anti-solvent crystallization

    NASA Astrophysics Data System (ADS)

    Ma, Zhenye; Li, Cheng; Wu, Rujun; Chen, Rizhi; Gu, Zhenggui

    2009-10-01

    In this paper, a novel ceramic membrane anti-solvent crystallization (CMASC) method was proposed for the safe and rapid preparation ammonium perchlorate (AP) crystals, in which the acetone and ethyl acetate were chosen as solvent and anti-solvent, respectively. Comparing with the conventional liquid anti-solvent crystallization (LASC), CMASC which successfully introduces ceramic membrane with regular pore structure to the LASC as feeding medium, is favorable to control the rate of feeding rate and, therefore, to obtain size and morphology controllable AP. Several kinds of micro-sized AP particles with different morphology were obtained including polyhedral-like, quadrate-like to rod-like. The effect of processing parameters on the crystal size and shape of AP crystals such as volume ratio of anti-solvent to solvent, feeding pressure and crystallization temperature were investigated. It is found that higher volume ratio of anti-solvent to solvent, higher feeding pressure and higher temperature result in smaller particle size. Scaning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the resulting AP crystals. The nucleation and growth kinetic of the resulting AP crystals were also discussed.

  16. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    NASA Technical Reports Server (NTRS)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  17. Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Jerram, D. A.; Morgan, D. J.

    2010-12-01

    In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.

  18. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  19. Advances in food crystallization.

    PubMed

    Hartel, Richard W

    2013-01-01

    Crystals often play an important role in food product quality and shelf life. Controlling crystallization to obtain the desired crystal content, size distribution, shape, and polymorph is key to manufacturing products with desired functionality and shelf life. Technical developments in the field have improved the tools with which we study and characterize crystals in foods. These developments also help our understanding of the physico-chemical phenomena that govern crystallization and improve our ability to control it during processing and storage. In this review, some of the more important recent developments in measuring and controlling crystallization are discussed.

  20. Crystal Engineering; How molecules build solids

    NASA Astrophysics Data System (ADS)

    Williams, Jeffrey H.

    2017-09-01

    There are more than 20 million chemicals in the literature, with new materials being synthesized each week. Most of these molecules are stable, and the 3-dimensional arrangement of the atoms in the molecules, in the various solids may be determined by routine x-ray crystallography. When this is done, it is found that this vast range of molecules, with varying sizes and shapes can be accommodated by only a handful of solid structures. This limited number of architectures for the packing of molecules of all shapes and sizes, to maximize attractive intermolecular forces and minimizing repulsive intermolecular forces, allows us to develop simple models of what holds the molecules together in the solid. In this volume we look at the origin of the molecular architecture of crystals; a topic that is becoming increasingly important and is often termed, crystal engineering. Such studies are a means of predicting crystal structures, and of designing crystals with particular properties by manipulating the structure and interaction of large molecules. That is, creating new crystal architectures with desired physical characteristics in which the molecules pack together in particular architectures; a subject of particular interest to the pharmaceutical industry.

  1. Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.

    2012-06-11

    The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less

  2. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  3. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    PubMed Central

    Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Conrad, Chelsie E.; Dörner, Katerina; Sierra, Raymond G.; Stevenson, Hilary P.; Camacho-Alanis, Fernanda; Grant, Thomas D.; Nelson, Garrett; James, Daniel; Calero, Guillermo; Wachter, Rebekka M.; Spence, John C. H.; Weierstall, Uwe; Fromme, Petra; Ros, Alexandra

    2015-01-01

    The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size. PMID:26798818

  4. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    DOE PAGES

    Abdallah, Bahige G.; Zatsepin, Nadia A.; Roy-Chowdhury, Shatabdi; ...

    2015-08-19

    We report that the advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles canmore » be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ~4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. Ultimately, this method will also permit an analysis of the dependence of crystal quality on crystal size.« less

  5. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  6. Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia

    DOE PAGES

    Zeng, Xiao Mei; Du, Zehui; Schuh, Christopher A.; ...

    2015-12-17

    Small volume zirconia ceramics with few or no grain boundaries have been demonstrated recently to exhibit the shape memory effect. To explore the shape memory properties of yttria doped zirconia (YDZ), it is desirable to develop large, microscale grains, instead of submicron grains that result from typical processing of YDZ. In this paper, we have successfully produced single crystal micro-pillars from microscale grains encouraged by the addition of titania during processing. Titania has been doped into YDZ ceramics and its effect on the grain growth, crystallization and microscale elemental distribution of the ceramics have been systematically studied. With 5 mol%more » titania doping, the grain size can be increased up to ~4 μm, while retaining a large quantity of the desired tetragonal phase of zirconia. Finally, micro-pillars machined from tetragonal grains exhibit the expected shape memory effects where pillars made from titania-free YDZ would not.« less

  7. A global view of atmospheric ice particle complexity

    NASA Astrophysics Data System (ADS)

    Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin

    2016-11-01

    Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.

  8. Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers

    DOE PAGES

    Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...

    2016-12-07

    Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less

  9. Advances in synthesis of calcium phosphate crystals with controlled size and shape.

    PubMed

    Lin, Kaili; Wu, Chengtie; Chang, Jiang

    2014-10-01

    Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Significantly different pulse shapes for γ- and α-rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Tamagawa, Yoichi; Tomita, Shougo; Yamamoto, Akihiro; Ogawa, Izumi; Usuki, Yoshiyuki

    2012-12-01

    We have found that scintillation in Gd3Al2Ga3O12 (GAGG):Ce3+ garnet single crystals has significantly different pulse shapes for 0.662 MeV γ- and 5.47 MeV α-rays. The decay and rise times for γ-rays are smaller by 50% and threefold, respectively, than those for α-rays. Because the GAGG:Ce is a dense, efficient and fast-response scintillator and because it can be grown in large-size single crystals, it should be a promising unified target and a detector material in the study of neutrinoless double beta decay of 160Gd through the use of pulse shape discrimination between the β-ray signals and the α-ray-induced backgrounds.

  11. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  12. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces.

    PubMed

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  13. Impact of interaction range and curvature on crystal growth of particles confined to spherical surfaces

    NASA Astrophysics Data System (ADS)

    Paquay, Stefan; Both, Gert-Jan; van der Schoot, Paul

    2017-07-01

    When colloidal particles form a crystal phase on a spherical template, their packing is governed by the effective interaction between them and the elastic strain of bending the growing crystal. For example, if growth commences under appropriate conditions, and the isotropic crystal that forms reaches a critical size, growth continues via the incorporation of defects to alleviate elastic strain. Recently, it was experimentally found that, if defect formation is somehow not possible, the crystal instead continues growing in ribbons that protrude from the original crystal. Here we report on computer simulations in which we observe both the formation of ribbons at short interaction ranges and packings that incorporate defects if the interaction is longer-ranged. The ribbons only form above some critical crystal size, below which the nucleus is disk-shaped. We find that the scaling of the critical crystal size differs slightly from the one proposed in the literature, and we argue that this is because the actual morphology transition is caused by the competition between line tension and elastic stress, rather than the competition between chemical potential and elastic stress.

  14. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch

    NASA Astrophysics Data System (ADS)

    Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.

    2006-04-01

    Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.

  15. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  16. Surface nucleation in complex rheological systems

    NASA Astrophysics Data System (ADS)

    Herfurth, J.; Ulrich, J.

    2017-07-01

    Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.

  17. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less

  18. Size and shape effects in β-NaGdF4: Yb3+, Er3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Noculak, Agnieszka; Podhorodecki, Artur

    2017-04-01

    Three sets of β-NaGdF4:Yb3+, Er3+ nanocrystals (NCs) with different shapes (spherical and more complex flower shapes), different sizes (6-17 nm) and Yb3+ concentrations (2%-15%) were synthesized by a co-precipitation method using oleic acid as a stabilizing agent. The uncommon, single-crystalline flower-shaped NCs were obtained by simply adjusting the fluorine-to-lanthanides molar ratio. Additionally, some of the NCs with different sizes have been covered by the un-doped shell. The crystal phase, shapes and sizes of all NCs were examined using transmission electron microscopy and x-ray diffraction methods. Simultaneously, upconversion luminescence and lifetimes, under 980 nm excitation, were measured and the changes in green to red (G/R) emission ratios as well as emission decay times were correlated with the evolution of nanocrystal sizes and surface to volume ratios. Three different mechanisms responsible for the changes in G/R ratios were presented and discussed.

  19. Reaction of sodium calcium borate glasses to form hydroxyapatite.

    PubMed

    Han, Xue; Day, Delbert E

    2007-09-01

    This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO . 2Na(2)O . 6B(2)O(3) or 2CaO . 2Na(2)O . 6B(2)O(3) glass and a 0.25 M phosphate (K(2)HPO(4)) solution at 37, 75 and 200 degrees C. Glass samples in the form of irregular particles (125-180 microm) and microspheres (45-90 and 125-180 microm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K(2)CO(3)) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO . 2Na(2)O . 6B(2)O(3)), or reacted at an elevated temperature (75 degrees C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 degrees C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape.

  20. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  1. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  2. The effect of ice crystal shape on aircraft contrails

    NASA Astrophysics Data System (ADS)

    Meza Castillo, Omar E.

    Aircraft contrails are a common phenomenon observed in the sky. They are formed mainly of water, from the ambient atmosphere and as a by-product of the combustion process, in the form of ice crystals. They have been identified as a potential contributor to global warming. Some contrails can be long-lived and create man-made cloud cover, thus possibly altering the radiative balance of the earth. There has been a great deal of research on various aspects of contrail development, but to date, little has been done on the influence of ice crystal shapes on the contrail evolution. In-situ studies have reported that young contrails are mainly quasi-spherical crystals while older contrails can have a much more diverse spectrum of possible shapes. The most common shapes found in contrails are quasi-spherical, hexagonal columns, hexagonal plates, and bullet rosettes. Numerical simulations of contrails to date typically have assumed "spherical" as the default ice shape. This work simulated contrail development with a large eddy simulation (LES) model that implemented both spherical and non-spherical shapes to examine the effects. The included shape effect parameters, such as capacitance coefficient, ventilation factor, Kelvin effect, fall velocity and ice crystal surface area, help to establish the shape difference in the results. This study also investigated initial sensitivities to an additional ice parameter, the ice deposition coefficient. The literature shows conflicting values for this coefficient over a wide range. In the course of this investigation a comparison of various ice metrics was made for simulations with different assumed crystal shapes (spheres, hexagonal columns, hexagonal plates, bullet rosettes and combination of shapes). The simulations were performed at early and late contrail time, with a range of ice crystal sizes, and with/without coupled radiation. In young and older contrails and without coupled radiation, the difference from the shape effect in ice crystal number, N(t), is not significant compared with the level of uncertainty. In young contrails, the difference between spherical and non-spherical shapes in N(t) is less than 7% for relatively large ice particles and 23% for relatively small ice particles. The ice mass, M(t), is not significantly affected by the crystal shapes, with less than 8% difference. However, the ice surface area, S(t), is the ice metric more sensitive to crystal shape, with a maximum difference of 68%. It increases at late time, though it is mainly governed by geometrical rather than dynamical effects. The small sensitivity to shape effects in the ice contrail metrics when radiation is not included suggests that the spherical shape will provide a reasonable representation for all shapes found in the in-situ studies. The radiation is included at late time, when the lasting effects of contrails are more critical. The inclusion of coupled radiation increases the level of dispersion in the results and hence increases slightly the differences due to shape effects. The small difference is also observed in the infrared heating rates of contrails.

  3. Ultimate Atomic Bling: Nanotechnology of Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  4. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  5. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    PubMed Central

    2017-01-01

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241

  6. Application Of Empirical Phase Diagrams For Multidimensional Data Visualization Of High Throughput Microbatch Crystallization Experiments.

    PubMed

    Klijn, Marieke E; Hubbuch, Jürgen

    2018-04-27

    Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.

  7. Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars.

    PubMed

    Kozlowski, G; Zaumseil, P; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-03-23

    We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

  8. Growth of arrays of oriented epitaxial platinum nanoparticles with controlled size and shape by natural colloidal lithography

    DOE PAGES

    Komanicky, Vladimir; Barbour, Andi; Lackova, Miroslava; ...

    2014-07-05

    Here, we developed a method for production of arrays of platinum nanocrystals of controlled size and shape using templates from ordered silica bead monolayers. Silica beads with nominal sizes of 150 and 450 nm were self-assembl into monolayers over strontium titanate single crystal substrates. The monolayers were used as shadow masks for platinum metal deposition on the substrate using the three-step evaporation technique. Produced arrays of epitaxial platinum islands were transformed into nanocrystals by annealing in a quartz tube in nitrogen flow. The shape of particles is determined by the substrate crystallography, while the size of the particles and theirmore » spacing are controlled by the size of the silica beads in the mono- layer mask. As a proof of concept, arrays of platinum nanocrystals of cubooctahedral shape were prepared on (100) strontium titanate substrates. We also characterized the nanocrystal arrays by atomic force microscopy, scanning electron microscopy, and synchrotron X-ray diffraction techniques.« less

  9. Crystallization of bovine insulin on a flow-free droplet-based platform

    NASA Astrophysics Data System (ADS)

    Chen, Fengjuan; Du, Guanru; Yin, Di; Yin, Ruixue; Zhang, Hongbo; Zhang, Wenjun; Yang, Shih-Mo

    2017-03-01

    Crystallization is an important process in the pharmaceutical manufacturing industry. In this work, we report a study to create the zinc-free crystals of bovine insulin on a flow-free droplet-based platform we previously developed. The benefit of this platform is its promise to create a single type of crystals under a simpler and more stable environment and with a high throughput. The experimental result shows that the bovine insulin forms a rhombic dodecahedra shape and the coefficient variation (CV) in the size of crystals is less than 5%. These results are very promising for the insulin production.

  10. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar; Rajasthan Technical University, Kota, Rajasthan

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 andmore » 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  11. Epidote from the Zard Mountains, Kharan, Balochistan, Pakistan

    USGS Publications Warehouse

    Brownfield, Michael E.; Lowers, Heather; Betterton, William K.

    2013-01-01

    The authors received two unusual crystals of epidote from Rock Currier, Jewel Tunnel Imports, in 2012. The mineral specimens were collected at Zard Mountain (Zard Koh), in the central part of the Ruskoh Mountains (Rusk Koh), west of Kharan, Balochistan, Pakistan (written communication, Rock Currier, 2013). The epidote locality was most likely discovered in 2010. These epidote crystals were unusual in both form and composition. The large crystals were flat tabular and pseudohexagonal in shape which is an uncommon crystal form for a monoclinic mineral (fig. 1). Other specimens from the same locality have been described as pseudo-octahedral in shape. The two crystals range in size from 5.5 to 6.5 centimeters (2.2 to 2.6 inches) and are slightly magnetic. The epidote crystals have a core matrix that resembles a weathered igneous rock. Some micro brown- to reddish-titanite crystals were observed under a binocular microscope on the surface and core areas of the crystals (figs. 2 and 3). Other minerals observed in the core areas include feldspar, biotite, and quartz. The crystals display evidence of cluster-growth with points of attachment to other crystals. The epidotes were most likely collected in pockets of a weathered igneous-skarn deposit.

  12. Parameterization of Photon Tunneling with Application to Ice Cloud Optical Properties at Terrestrial Wavelengths

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2006-12-01

    Sometimes deep physical insights can be gained through the comparison of two theories of light scattering. Comparing van de Hulst's anomalous diffraction approximation (ADA) with Mie theory yielded insights on the behavior of the photon tunneling process that resulted in the modified anomalous diffraction approximation (MADA). (Tunneling is the process by which radiation just beyond a particle's physical cross-section may undergo large angle diffraction or absorption, contributing up to 40% of the absorption when wavelength and particle size are comparable.) Although this provided a means of parameterizing the tunneling process in terms of the real index of refraction and size parameter, it did not predict the efficiency of the tunneling process, where an efficiency of 100% is predicted for spheres by Mie theory. This tunneling efficiency, Tf, depends on particle shape and ranges from 0 to 1.0, with 1.0 corresponding to spheres. Similarly, by comparing absorption efficiencies predicted by the Finite Difference Time Domain Method (FDTD) with efficiencies predicted by MADA, Tf was determined for nine different ice particle shapes, including aggregates. This comparison confirmed that Tf is a strong function of ice crystal shape, including the aspect ratio when applicable. Tf was lowest (< 0.36) for aggregates and plates, and largest (> 0.9) for quasi- spherical shapes. A parameterization of Tf was developed in terms of (1) ice particle shape and (2) mean particle size regarding the large mode (D > 70 mm) of the ice particle size distribution. For the small mode, Tf is only a function of ice particle shape. When this Tf parameterization is used in MADA, absorption and extinction efficiency differences between MADA and FDTD are within 14% over the terrestrial wavelength range 3-100 mm for all size distributions and most crystal shapes likely to be found in cirrus clouds. Using hyperspectral radiances, it is demonstrated that Tf can be retrieved from ice clouds. Since Tf is a function of ice particle shape, this may provide a means of retrieving qualitative information on ice particle shape.

  13. Combinatorial Production and Processing of Oxide Nanopowders for Transparent, Ceramic Lasers

    DTIC Science & Technology

    2007-06-01

    lasers have only recently been 10-16shown to offer power outputs superior to single crystal lasers. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...7 Although known for 30 years, 8 9 transparent ceramic lasers have only recently been shown to offer power outputs superior to single crystal lasers...offer: (1) higher energy production than single crystal lasers; (2) access to very large sizes and arbitrarily shaped gain media; (3) access to new

  14. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  15. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  16. Ordering of Glass Rods in Nematic and Cholesteric Liquid Crystals

    DTIC Science & Technology

    2011-12-01

    3), 483–508 (2007). 2. M. D. Lynch and D. L. Patrick, “Controlling the orientation of micron-sized rod-shaped SiC particles with nematic liquid...Elastic torque and the levitation of metal wires by a nematic liquid crystal,” Science 303(5658), 652–655 (2004). 17. R. Eelkema, M. M. Pollard, J...Building Blocks for Iterative Methods, 2nd ed. (SIAM, 1994). 1. Introduction Incorporating rod-like particles into liquid crystal (LC) media can lead

  17. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    PubMed

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH < 4, 0.445 mass % of PO4(3-), inorganic impurities presence), dissolved substrates (magnesium and ammonium chlorides) and solution alkalising the environment of struvite MgNH4PO4·6H2O reaction crystallization process. Research ran in constant temperature 298 K assuming stoichiometric proportions of substrates or 20% excess of magnesium ions. Influence of pH (8.5-10) and mean residence time (900-3600 s) on product size distribution, its chemical composition, crystals shape, size-homogeneity and process kinetics was identified. Crystals of mean size ca. 25-37 μm and homogeneity CV 70-83% were produced. The largest crystals, of acceptable homogeneity, were produced using 20% excess of magnesium ions, pH 9 and mean residence time 3600 s. Under these conditions nucleation rate did not exceed 9 × 10(7) 1/(s m(3)) according to SIG (Size Independent Growth) MSMPR kinetic model. Linear crystal growth rate was 4.27 × 10(-9) m/s. Excess of magnesium ions influenced struvite reaction crystallization process yield advantageously. Concentration of phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Near-Global Survey of Cirrus Particle Size Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Cirrus is the most frequently occurring and widely distributed cloud type. The average annual frequency of occurrence for cirrus is 34% and its global coverage is about 20-30% (Warren et al. 1985). It strongly influences weather and climate processes through its effects on the radiation budget of the earth and the atmosphere (Liou 1986). Microphysics of cirrus is a critical component in understanding cloud-climate radiative interactions. For example, ice water content feedback is positive from a 1-D model study. But the feedback is substantially reduced upon the inclusion of small ice crystals (Sinha and Shine 1994). Due to the complexity caused by the non-spherical shape of ice crystals in cirrus, retrievals of cirrus properties are difficult. In recent years, advances have been made both in models and in case studies (e.g., Takano and Liou 1989, Young et al. 1994), but no global scale survey has been conducted. Similar to our previous near-global survey of droplet sizes of liquid water clouds (Han et al. 1994), a survey of cirrus ice crystal sizes is conducted over both continental and oceanic areas. We describe a method for retrieving cirrus particle size information on a near-global scale 50 deg S to 50 deg N using currently available satellite data from ISCCP. To retrieve cirrus particle size, we use a radiative transfer model that includes all major absorbing gases and cloud scattering/absorption to compute synthetic radiances as a function of satellite viewing geometry. Ice crystal shapes are assumed to be hexagonal columns and plates. The model results have been validated against clear sky observations and are consistent with the observed radiance range under cloudy conditions.

  19. Applying the X-ray diffraction analysis for estimating the height and width of nanorods in low symmetry crystal multiphase materials

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Soleimanian, Vishtasb; Dehkordi, Hamed Aleebrahim; Dastafkan, Kamran

    2017-11-01

    In this work the potential of Rietveld refinement procedure is used to study the shape and size of non-spherical nanocrystallites. The main advantages of this approach are that not only it can successfully extend to all nanomaterials with different crystal symmetries but also it can evaluate the various phases of multiple materials comparing to electron microscopy methods. Therefore, between seven crystal systems, the formulation of monoclinic and hexagonal crystals is developed. This procedure is applied for the mixture of sodium carbonate and zinc oxide nanocrystallites at different fractions of doped gadolinium oxide. It is found that the crystallites of sodium carbonate and zinc oxide have the rod and ellipsoidal shapes, respectively. The microstructure results are compared with the results of scanning electron microscopy imaging. Good agreement is achieved between the results of scanning electron microscopy and Rietveld methods.

  20. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  1. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.

  2. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  3. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  4. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  5. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  6. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.

    PubMed

    Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine

    2007-02-01

    Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.

  7. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  8. Templated Solid-State Dewetting of Thin Silicon Films.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds,more » (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.« less

  10. Sparsity-based image monitoring of crystal size distribution during crystallization

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Huo, Yan; Ma, Cai Y.; Wang, Xue Z.

    2017-07-01

    To facilitate monitoring crystal size distribution (CSD) during a crystallization process by using an in-situ imaging system, a sparsity-based image analysis method is proposed for real-time implementation. To cope with image degradation arising from in-situ measurement subject to particle motion, solution turbulence, and uneven illumination background in the crystallizer, sparse representation of a real-time captured crystal image is developed based on using an in-situ image dictionary established in advance, such that the noise components in the captured image can be efficiently removed. Subsequently, the edges of a crystal shape in a captured image are determined in terms of the salience information defined from the denoised crystal images. These edges are used to derive a blur kernel for reconstruction of a denoised image. A non-blind deconvolution algorithm is given for the real-time reconstruction. Consequently, image segmentation can be easily performed for evaluation of CSD. The crystal image dictionary and blur kernels are timely updated in terms of the imaging conditions to improve the restoration efficiency. An experimental study on the cooling crystallization of α-type L-glutamic acid (LGA) is shown to demonstrate the effectiveness and merit of the proposed method.

  11. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  12. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  13. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  14. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  15. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.

    PubMed

    Wang, Chunhui; Chen, Xiong; Wang, Bin; Huang, Ming; Wang, Bo; Jiang, Yi; Ruoff, Rodney S

    2018-05-14

    We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H 2 O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.

  16. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    PubMed

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  17. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.

    PubMed

    Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S

    2014-01-01

    The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

  18. Design and optimization of production parameters for boric acid crystals with the crystallization process in an MSMPR crystallizer using FBRM® and PVM® technologies

    NASA Astrophysics Data System (ADS)

    Kutluay, Sinan; Şahin, Ömer; Ceyhan, A. Abdullah; İzgi, M. Sait

    2017-06-01

    In crystallization studies, newly developed technologies, such as Focused Beam Reflectance Measurement (FBRM) and Particle Vision and Measurement (PVM) are applied for determining on-line monitoring of a representation of the Chord Length Distribution (CLD) and observe the photographs of crystals respectively; moreover recently they are widely used. Properly installed, the FBRM ensures on-line determination of the CLD, which is statistically associated to the Crystal Size Distribution (CSD). In industrial crystallization, CSD and mean crystal size as well as external habit and internal structure are important characteristics for further use of the crystals. In this paper, the effect of residence time, stirring speed, feeding rate, supersaturation level and the polyelectrolytes such as anionic polyacrylamide (APAM) and non-ionic polyacrylamide (NPAM) on the CLD as well as the shape of boric acid crystals were investigated by using the FBRM G600 and the PVM V819 probes respectively in an MSMPR (Mixed Suspension Mixed Product Removal) crystallizer. The CSD and kinetic data were determined experimentally using continuous MSMPR crystallizer running at steady state. The population density of nuclei, the nucleation rate and the growth rate were determined from the experimental population balance distribution when the steady state was reached.

  19. Mathematical modeling of the growth and coarsening of ice particles in the context of high pressure shift freezing processes.

    PubMed

    Smith, N A S; Burlakov, V M; Ramos, Á M

    2013-07-25

    High pressure shift freezing (HPSF) has been proven more beneficial for ice crystal size and shape than traditional (at atmospheric pressure) freezing.1-3 A model for growth and coarsening of ice crystals inside a frozen food sample (either at atmospheric or high pressure) is developed, and some numerical experiments are given, with which the model is validated by using experimental data. To the best of our knowledge, this is the first model suited for freezing crystallization in the context of high pressure.

  20. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    PubMed

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  1. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    PubMed

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  2. Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping

    2018-06-01

    The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.

  3. Evaporation kinetics in the hanging drop method of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented; these results are applied to 18 different drop and well arrangements commonly encountered in the laboratory, taking into account the chemical nature of the salt, the drop size and shape, the drop concentration, the well size, the well concentration, and the temperature. It is found that the rate of evaporation increases with temperature, drop size, and with the salt concentration difference between the drop and the well. The evaporation possesses no unique half-life. Once the salt in the drop achieves about 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  4. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  5. Preparation and Characterization of Cyclotrimethylenetrinitramine (RDX) with Reduced Sensitivity

    PubMed Central

    Wang, Yuqiao; Li, Xin; Chen, Shusen; Ma, Xiao; Yu, Ziyang; Jin, Shaohua; Li, Lijie; Chen, Yu

    2017-01-01

    The internal defects and shape of cyclotrimethylenetrinitramine (RDX) crystal are critical parameters for the preparation of reduced sensitivity RDX (RS-RDX). In the current study, RDX was re-crystallized and spheroidized to form the high-quality RDX that was further characterized by purity, apparent density, size distribution, specific surface area, impact sensitivity, and shock sensitivity. The effects of re-crystallization solvent on the growth morphology of RDX crystal were investigated by both theoretical simulation and experiment test, and consistent results were obtained. The high-quality RDX exhibited a high purity (≥99.90%), high apparent density (≥1.811 g/cm3), spherical shape, and relatively low impact sensitivity (6%). Its specific surface area was reduced more than 30%. Compared with conventional RDXs, the high-quality RDX reduced the shock sensitivities of PBXN-109 and PBXW-115 by more than 30%, indicating that it was a RS-RDX. The reduced sensitivity and good processability of the high-quality RDX would be significant in improving the performances of RDX-based PBXs. PMID:28825661

  6. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  7. MUDMASTER: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Środoń, Jan; Nüesch, R.

    1996-01-01

    Particle size may strongly influence the physical and chemical properties of a substance (e.g. its rheology, surface area, cation exchange capacity, solubility, etc.), and its measurement in rocks may yield geological information about ancient environments (sediment provenance, degree of metamorphism, degree of weathering, current directions, distance to shore, etc.). Therefore mineralogists, geologists, chemists, soil scientists, and others who deal with clay-size material would like to have a convenient method for measuring particle size distributions. Nano-size crystals generally are too fine to be measured by light microscopy. Laser scattering methods give only average particle sizes; therefore particle size can not be measured in a particular crystallographic direction. Also, the particles measured by laser techniques may be composed of several different minerals, and may be agglomerations of individual crystals. Measurement by electron and atomic force microscopy is tedious, expensive, and time consuming. It is difficult to measure more than a few hundred particles per sample by these methods. This many measurements, often taking several days of intensive effort, may yield an accurate mean size for a sample, but may be too few to determine an accurate distribution of sizes. Measurement of size distributions by X-ray diffraction (XRD) solves these shortcomings. An X-ray scan of a sample occurs automatically, taking a few minutes to a few hours. The resulting XRD peaks average diffraction effects from billions of individual nano-size crystals. The size that is measured by XRD may be related to the size of the individual crystals of the mineral in the sample, rather than to the size of particles formed from the agglomeration of these crystals. Therefore one can determine the size of a particular mineral in a mixture of minerals, and the sizes in a particular crystallographic direction of that mineral.

  8. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  9. A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids

    NASA Astrophysics Data System (ADS)

    Abdul-Hafidh, Esam H.; Aïssa, Brahim

    2016-08-01

    We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.

  10. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies.

    PubMed

    Gurlo, Aleksander

    2011-01-01

    Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

  11. Reconstruction of the 3-D Shape and Crystal Preferred Orientation of Olivine: A Combined X-ray µ-CT and EBSD-SEM approach

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel

    2017-04-01

    The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three-Dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metallurgical and Materials Transactions A 39, 374-389. 2. Burnett, T.L., Kelley, R., Winiarski, B., Contreras, L., Daly, M., Gholinia, A., Burke, M.G., Withers, P.J., 2016. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161, 119-129.

  12. Engineering the architectural diversity of heterogeneous metallic nanocrystals.

    PubMed

    Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang

    2013-01-01

    Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.

  13. Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3

    PubMed Central

    2017-01-01

    A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.

  14. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  15. Energy minimization in nematic liquid crystal systems driven by geometric confinement and temperature gradients with applications in colloidal systems

    NASA Astrophysics Data System (ADS)

    Kolacz, Jakub

    We first explore the topology of liquid crystals and look at the fundamental limitations of liquid crystals in confined geometries. The properties of liquid crystal droplets are studied both theoretically and through simulations. We then demonstrate a method of chemically patterning surfaces that allows us to generate periodic arrays of micron-sized liquid crystal droplets and compare them to our simulation results. The parallelizable method of self-localizing liquid crystals using 2D chemical patterning developed here has applications in liquid crystal biosensors and lens arrays. We also present the first work looking at colloidal liquid crystals under the guise of thermophoresis. We observe that strong negative thermophoresis occurs in these systems and develop a theory based on elastic energy minimization. We also calculate a Soret coefficient two orders of magnitude larger than those present in the literature. This large Soret coefficient has considerable potential for improving thermophoretic sorting mechanisms such as Thermal-Field Flow Fractionation and MicroScale Thermophoresis. The final piece of this work demonstrates a method of using projection lithography to polymerize liquid crystal colloids with a defined internal director. While still a work in progress, there is potential for generating systems of active colloids that can change shape upon external stimulus and in the generation of self-folding shapes by selective polymerization and director predetermination in the vain of micro-kirigami.

  16. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    PubMed Central

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  17. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.

    PubMed

    Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M

    2017-08-01

    Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

  18. A Multi-Moment Bulkwater Ice Microphysics Scheme with Consideration of the Adaptive Growth Habit and Apparent Density for Pristine Ice in the WRF Model

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Chen, J. P.; Dearden, C.

    2014-12-01

    The wide variety of ice crystal shapes and growth habits makes it a complicated issue in cloud models. This study developed the bulk ice adaptive habit parameterization based on the theoretical approach of Chen and Lamb (1994) and introduced a 6-class hydrometeors double-moment (mass and number) bulk microphysics scheme with gamma-type size distribution function. Both the proposed schemes have been implemented into the Weather Research and Forecasting model (WRF) model forming a new multi-moment bulk microphysics scheme. Two new moments of ice crystal shape and volume are included for tracking pristine ice's adaptive habit and apparent density. A closure technique is developed to solve the time evolution of the bulk moments. For the verification of the bulk ice habit parameterization, some parcel-type (zero-dimension) calculations were conducted and compared with binned numerical calculations. The results showed that: a flexible size spectrum is important in numerical accuracy, the ice shape can significantly enhance the diffusional growth, and it is important to consider the memory of growth habit (adaptive growth) under varying environmental conditions. Also, the derived results with the 3-moment method were much closer to the binned calculations. A field campaign of DIAMET was selected to simulate in the WRF model for real-case studies. The simulations were performed with the traditional spherical ice and the new adaptive shape schemes to evaluate the effect of crystal habits. Some main features of narrow rain band, as well as the embedded precipitation cells, in the cold front case were well captured by the model. Furthermore, the simulations produced a good agreement in the microphysics against the aircraft observations in ice particle number concentration, ice crystal aspect ratio, and deposition heating rate especially within the temperature region of ice secondary multiplication production.

  19. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Paradkar, Anant R; York, Peter

    2009-02-23

    The aim of present work was to produce fine elongated crystals of salbutamol sulphate (SS) by sonocrystallization for pulmonary delivery and compare with micronized and spray dried SS (SDSS) for in vitro aerosolization behavior. Application of ultrasound during anti-solvent crystallization resulted in fine elongated crystals (sonocrystallized SS; SCSS) compared to aggregates of large irregular crystals obtained without sonication. Higher sonication amplitude, time, concentration and lower processing temperatures favored formation of smaller crystals with narrow particle size distribution (PSD). SCSS was separated from dispersion by spray drying in the form of loose aggregates (SD-SCSS). The fine particle fraction (FPF) of formulations with coarse lactose carrier in cascade impactor increased from 16.66% for micronized SS to 31.12% for SDSS (obtained by spray drying aqueous SS solution) and 44.21% for SD-SCSS, due to reduced cohesive/adhesive forces and aerodynamic size by virtue of elongated shape of crystals. SD-SCSS was stable without any change in crystallinity and aerodynamic behavior for 3 months at 40 degrees C/75% RH, but amorphous SDSS showed recrystallization with poor aerosolization performance on storage. Sonocrystallization, a rapid and simple technique is reported for production of SS crystals suitable for inhalation delivery.

  20. Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan Caixia, E-mail: cxkan@nuaa.edu.c; Wang Changshun; Zhu Jiejun

    2010-04-15

    Study on reduction of Au(III) and Ag(I) and the formation of Au and Ag nanostructures was performed on the gels of metal precursor and PVP polymer mixture. Some comparing samples were prepared for better understanding the role of reactants on the reduction of metal ions and further growth of nanocrystals. The results suggest that, in addition to its function of generating stable colloids, PVP not only has a reducing effect on metal ions, but also acts as a crystal growth modifier. At low temperatures, the reducing effect of PVP is strong on Ag(I) ions in AgNO{sub 3}, while the reductionmore » of complex Au(III) ions in HAuCl{sub 4} is slow, involving two steps of Au(III)->Au(I)->Au. In the study of temperature disturbance on crystal growth, Au nanoplates of new and well-defined star shape were observed. The differences in the size and shape of nanoparticles are discussed from the colloid chemistry. - Graphical abstract: If a temperature difference was introduced to the gel of Au{sup 3+}(H{sub 2}O)-PVP, large sized Au nanoplates with new and well-defined star shape were observed.« less

  1. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  2. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Shidong; Murakami, Setsuaki; Kamitakahara, Masanobu

    The titania/hydroxyapatite composite granular photo-catalyst with novel microstructure was fabricated by the process based on the liquid immiscibility effect and followed by precalcination and hydrothermal treatment from commercially available powders of {alpha}-Tri-calcium phosphate and TiO{sub 2}. XRD, SEM, BET, optical microscopy and UV-vis spectrophotometer were applied to characterize the prepared photo-catalyst. Microstructure analysis indicated that the granule was weaved by rod-shaped hydroxyapatite crystals whose surface was covered by nano-sized TiO{sub 2}. In the composite granules, the active surface of anatase was retained effectively. With the hybridization of TiO{sub 2} and HAp, a 16-nm blue-shift of absorption edge could be observedmore » and the crystallinity of anatase could be enhanced by precalcination. The granules with the rod-shaped hydroxyapatite crystals performing as scaffold work as three-dimensional high porous, size-controllable small reactor. The phase and microstructure transformation of the granule before and after hydrothermal treatment was investigated and its decomposition ability was evaluated by using Methylene blue as a target pollutant compound.« less

  4. Spray printing of organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  5. Manipulating crystallization with molecular additives.

    PubMed

    Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D

    2014-01-01

    Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications.

  6. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  7. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  8. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  9. The 3D distribution of cordierite and biotite in hornfels from the Bugaboo contact aureole (British Columbia, Canada)

    NASA Astrophysics Data System (ADS)

    Gaidies, Fred; Petley-Ragan, Arianne; Pattison, David

    2016-04-01

    The size, abundance, shape and spatial distribution of metamorphic minerals bears important information on the rates and mechanisms of fundamental processes that take place during metamorphic crystallization. X-ray computed tomography (XR-CT) has become the method of choice to study the three-dimensional (3D) disposition of minerals in rocks as it allows investigation of relatively large sample volumes at sufficiently high resolution required for statistically meaningful analyses, and as its non-destructive fashion permits further studies such as mineral chemical, isotopic or crystallographic analyses of select grains identified through XR-CT. We present results obtained through the quantification of the 3D disposition of cordierite and biotite crystals in a hornfels from the contact aureole of the Bugaboo Batholith (British Columbia, Canada) using XR-CT and global as well as scale-dependent pattern statistics (Petley-Ragan et al., 2016). The results demonstrate a random distribution of cordierite and biotite crystal sizes for all scales across the entire rock volume studied indicative of interface-controlled prograde metamorphic reaction kinetics. We show that the common approach to approximate the shape of crystals as spherical underestimates the influence of the Strauss hard-core process on rock texture which may be misinterpreted to reflect ordering of crystal sizes by inhibition of nucleation and growth commonly associated with diffusion-controlled reaction kinetics. According to our findings, Strauss hard-core ordering develops at length scales equal to and less than the average major axis of the crystal population. This is significantly larger than what is obtained if a spherical crystal geometry would be assumed, and increases with deviation from sphericity. For the cordierite and biotite populations investigated in this research, Strauss hard-core ordering developed at length scales of up to ˜2.2 and 1.25 mm, respectively, which is almost 1 mm longer than the scales that would be obtained if a spherical geometry would have been assumed. Our results highlight the importance of a critical assessment of the geometrical model assumptions commonly applied in the 3D analysis of crystal size distributions, and underline the need for a quantitative understanding of interface processes in order to appreciate their role in the kinetics of contact metamorphic reactions and rock texture formation. References: Petley-Ragan A, Gaidies F, Pattison DRM (2016) A statistical analysis of the distribution of cordierite and biotite in hornfels from the Bugaboo contact aureole: implications for the kinetics of porphyroblast crystallization. Journal of Metamorphic Geology 34:85-101

  10. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).

  11. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  12. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature.

    PubMed

    Bustamante, Eugenia L; Fernández, José L; Zamaro, Juan M

    2014-06-15

    The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Modeling TiO2's refractive index function from bulk to nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalava, Juho-Pertti; Taavitsainen, Veli-Matti; Lamminmäki, Ralf-Johan; Lindholm, Minna; Auvinen, Sami; Alatalo, Matti; Vartiainen, Erik; Haario, Heikki

    2015-12-01

    In recent decades, the use of nanomaterials has become very common. Different nanomaterials are being used in over 1600 consumer products. Nanomaterials have been defined as having at least one dimension in the range of 1-100 nm. Such materials often have unique properties. Despite some warnings of applying bulk optical constants for nano size materials, stated already in 1980s, bulk constants are still commonly used in the light scattering measurements of nano size particles. Titanium dioxide is one of the materials that is manufactured and used as an engineered nanomaterial in increasing quantities. Due to the aforementioned facts, it is quite crucial for successful research and production of nanoparticles to find out the dependence of the refractive index function (RIF) of the material on its crystal size. We have earlier performed several ab initio computations for obtaining the dependence of the RIF of TiO2 on the crystal or on the cluster size, for particles of size up to ca. 2 nm. Extending the calculations to greater sizes has turned out to be infeasible due to the unbearable increase in computational time. However, in this study we show how the crystal-size-dependent-RIF (CS-RIF), for both rutile and anatase can be modeled from measured extinction or turbidity spectra of samples with varying crystal and particle sizes. For computing the turbidity spectrum, we constructed a model including primary crystals whose distributions were parameterized by mean and standard deviation, and also including aggregates consisting of mean sized primary particles, parameterized just by mean aggregate size. Mainly because of the long computing times Mie calculation was used in the computation of extinction spectra. However, in practical process applications, the obtained RIF will be used together with the T-matrix method. We constructed the RIFs used in the model using generalized oscillator model (GOM) as expanded to crystal size dependence. The unknown parameters of the model were solved using nonlinear least squares estimation. When the crystal size becomes smaller than the bulk size the shape of the estimated CS-RIFs reveal two distinct regions for both rutile and anatase. In the first region, starting apparently already from ca. 200 nm, the height of both the real part and the imaginary part of CS-RIF decreases on crystal diameter. However, the band gap remains constant. In the second region, starting when the crystal diameter is decreased to ca. 3 nm, a blue shift starts to increase the band gap. The band gap dependence on crystal size is quite consistent with the existing experimental values. Consequently, it is of great importance to use CS-RIF in light scattering measurements for nanoparticle size determination. Neglecting this, the smaller particles in the size distribution will have too small values, already for sub-micrometer particles, naturally distorting also the mean value. To our knowledge, this is the first time ever that a CS-RIF from bulk to 1 nm size is determined for any material.

  14. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives

    NASA Astrophysics Data System (ADS)

    Nokhodchi, A.; Bolourtchian, N.; Dinarvand, R.

    2005-02-01

    Carbamazepine (CBZ) crystals were grown from pure ethanol solutions containing various additives (PEG 4000, PVP K30 or Tween 80). Physical characteristics of the crystals were studied for the morphology of crystals using scanning electron microscope, for the identification of polymorphism by X-ray powder diffraction (XRPD) and FT-IR, and for thermodynamic properties using differential scanning calorimetery (DSC). The dissolution behaviour of various carbamazepine crystals was also studied by dissolution apparatus II at pH 7.4 containing 1% sodium lauryl sulphate (SLS). The scanning electron micrograph (SEM) studies showed that the presence of the additives in the solutions growth medium affected the morphology and size of carbamazepine crystals. SEMs of untreated and treated carbamazepine crystals obtained from alcohol containing PEG 4000, PVP K30 or Tween 80 showed that the crystal shape of untreated carbamazepine is flaky or thin plate-like, whereas the crystals obtained from alcohol containing no additive, PEG 4000, PVP K30 or Tween 80 are polyhedral prismatic, block-shaped, polyhedral or hexagonal, respectively. XRPD, FT-IR and DSC results showed that the untreated CBZ was form III and recrystallization of CBZ in the absence or presence of the additives did not cause any polymorphic changes. The results showed that the higher dissolution rate and compact strength were observed for the crystals obtained in the presence of PVP K30. The presence of the additives in crystallization medium alters crystal morphology of carbamazepine, but only the samples crystallized in the presence of PVP K30 showed an improvement in dissolution rate and tensile strength.

  15. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.

  16. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  17. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    NASA Technical Reports Server (NTRS)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  18. Trapping virtual pores by crystal retro-engineering

    NASA Astrophysics Data System (ADS)

    Little, Marc A.; Briggs, Michael E.; Jones, James T. A.; Schmidtmann, Marc; Hasell, Tom; Chong, Samantha Y.; Jelfs, Kim E.; Chen, Linjiang; Cooper, Andrew I.

    2015-02-01

    Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating.

  19. Phase Adaptation and Correction by Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Tiziani, Hans J.

    2010-04-01

    Adaptive optical elements and systems for imaging or laser beam propagation are used for some time in particular in astronomy, where the image quality is degraded by atmospheric turbulence. In astronomical telescopes a deformable mirror is frequently used to compensate wavefront-errors due to deformations of the large mirror, vibrations as well as turbulence and hence to increase the image quality. In the last few years interesting elements like Spatial Light Modulators, SLM's, such as photorefractive crystals, liquid crystals and micro mirrors and membrane mirrors were introduced. The development of liquid crystals and micro mirrors was driven by data projectors as consumer products. They contain typically a matrix of individually addressable pixels of liquid crystals and flip mirrors respectively or more recently piston mirrors for special applications. Pixel sizes are in the order of a few microns and therefore also appropriate as active diffractive elements in digital holography or miniature masks. Although liquid crystals are mainly optimized for intensity modulation; they can be used for phase modulation. Adaptive optics is a technology for beam shaping and wavefront adaptation. The application of spatial light modulators for wavefront adaptation and correction and defect analysis as well as sensing will be discussed. Dynamic digital holograms are generated with liquid crystal devices (LCD) and used for wavefront correction as well as for beam shaping and phase manipulation, for instance. Furthermore, adaptive optics is very useful to extend the measuring range of wavefront sensors and for the wavefront adaptation in order to measure and compare the shape of high precision aspherical surfaces.

  20. Effect of Phosphate Inhibitors on the Formation of Lead Phosphate/Carbonate Nanorods, Microrods and Dendritic Structures

    EPA Science Inventory

    There are several factors which influence the corrosion rate of lead, which in turn morphs into different crystal shapes and sizes. Some of the important factors are: alkalinity, pH, calcium, orthophosphate and silica. Low to moderate alkalinity decreases corrosion rates, while ...

  1. Fabrication of Polyhedral Particles from Spherical Colloids and Their Self-Assembly into Rotator Phases**

    PubMed Central

    Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons

    2014-01-01

    Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869

  2. Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal

    NASA Astrophysics Data System (ADS)

    Vicario, C.; Monoszlai, B.; Arisholm, G.; Hauri, C. P.

    2015-09-01

    Infrared pulses with large spectral width extending from 1.2 to 3.4 μm are generated in the organic crystal DAST (4-N, N-dimethylamino-4‧-N‧-methylstilbazolium tosylate). The input pulse has a central wavelength of 1.5 μm and 65 fs duration. With 2.8 mJ input energy we obtained up to 700 μJ in the broadened spectrum. The output can be easily scaled up in energy by increasing the crystal size together with the energy and the beam size of the pump. The ultra-broad spectrum is ascribed to cascaded second order processes mediated by the exceptionally large effective χ 2 nonlinearity of DAST, but the shape of the spectrum indicates that a delayed χ 3 process may also be involved. Numerical simulations reproduce the experimental results qualitatively and provide an insight in the mechanisms underlying the asymmetric spectral broadening.

  3. Bread board float zone experiment system for high purity silicon

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1982-01-01

    A breadboard float zone experimental system has been established at Westech Systems for use by NASA in the float zone experimental area. A used zoner of suitable size and flexibility was acquired and installed with the necessary utilities. Repairs, alignments and modifications were made to provide for dislocation free zoning of silicon. The zoner is capable of studying process parameters used in growing silicon in gravity and is flexible to allow trying of new features that will test concepts of zoning in microgravity. Characterizing the state of the art molten zones of a growing silicon crystal will establish the data base against which improvements of zoning in gravity or growing in microgravity can be compared. 25 mm diameter was chosen as the reference size, since growth in microgravity will be at that diameter or smaller for about the next 6 years. Dislocation free crystals were growtn in the 100 and 111 orientations, using a wide set of growth conditions. The zone shape at one set of conditions was measured, by simultaneously aluminum doping and freezing the zone, lengthwise slabbing and delineating by etching. The whole set of crystals, grown under various conditions, were slabbed, polished and striation etched, revealing the growth interface shape and the periodic and aperiodic natures of the striations.

  4. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.

    PubMed

    Neira, Inés S; Kolen'ko, Yury V; Kommareddy, Krishna P; Manjubala, Inderchand; Yoshimura, Masahiro; Guitián, Francisco

    2010-11-01

    A series of biocomposite materials was successfully prepared by reinforcing advanced calcium phosphate cement with hydroxyapatite fibrous and elongated plate-like particles. Powder X-ray diffraction showed that ball-milled biocomposite precursors (dicalcium and tetracalcium phosphates) entirely transform to a single phase hydroxyapatite end product within 7 h at 37 °C. Electron microscopy showed that the resultant biocomposites are constituted of nanoscaled cement particles intimately associated with the reinforcement crystals. The influence of shape, size, and concentration of the hydroxyapatite filler on the compression strength of reinforced cements is discussed. The best compression strength of 37 ± 3 MPa (enhancement of ∼50% compared to pure cement) was achieved using submicrometer-sized hydroxyapatite crystals with complementary shapes. Nanoindentation revealed that averaged elastic modulus and hardness values of the cements are consistent with those reported for trabecular and cortical human bones, indicating a good match of the micromechanical properties for their potential use for bone repair. The stiffness of the biocomposites was confirmed to gradate-compliant cement matrix, cement-filler interface, and stiff filler-as a result of the structuring at the nanometer-micrometer level. This architecture is critical in conditioning the final mechanical properties of the functional composite biomaterial. In vitro cell culture experiments showed that the developed biomaterial system is noncytotoxic.

  5. Synthesis of rhenium nitride crystals with MoS2 structure

    NASA Astrophysics Data System (ADS)

    Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi

    2012-06-01

    Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.

  6. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  7. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morvan, B.; Tinel, A.; Sainidou, R.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  8. Remote Sensing of Crystal Shapes in Ice Clouds

    NASA Technical Reports Server (NTRS)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.

  9. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  10. Measurements and properties of ice particles and carbon dioxide bubbles in aqueous mixture utilizing optical techniques

    NASA Astrophysics Data System (ADS)

    Diallo, Amadou O.

    Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the solution where the pH level contribute to the surface charges, afterward use Stoke's diameter to compute the settling velocity of the bubbles, or alternatively record it under the microscope. With those parameters in hand the surface charge of the bubble (zeta potential) is approximated.

  11. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  12. A source to deliver mesoscopic particles for laser plasma studies

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Kumar, R.; Anand, M.; Kulkarni, A.; Singh, D. P.; Krishnan, S. R.; Sharma, V.; Krishnamurthy, M.

    2017-02-01

    Intense ultrashort laser produced plasmas are a source for high brightness, short burst of X-rays, electrons, and high energy ions. Laser energy absorption and its disbursement strongly depend on the laser parameters and also on the initial size and shape of the target. The ability to change the shape, size, and material composition of the matter that absorbs light is of paramount importance not only from a fundamental physics point of view but also for potentially developing laser plasma sources tailored for specific applications. The idea of preparing mesoscopic particles of desired size/shape and suspending them in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum for laser plasma studies. We characterise the device in terms of particle density, particle size distribution, and duration of operation under conditions suitable for laser plasma studies. We also present the first results of x-ray emission from micro crystals of boric acid that extends to 100 keV even under relatively mild intensities of 1016 W/cm2.

  13. Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent

    NASA Astrophysics Data System (ADS)

    Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha

    2017-05-01

    Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).

  14. Anatase TiO2 single crystals with dominant {0 0 1} facets: Synthesis, shape-control mechanism and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin

    2018-06-01

    Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.

  15. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    NASA Astrophysics Data System (ADS)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  16. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    PubMed

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  17. Tuning the structure and habit of iron oxide mesocrystals

    DOE PAGES

    Wetterskog, Erik; Klapper, Alice; Disch, Sabrina; ...

    2016-07-11

    A precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications. In this work, we produced evaporation-induced self-assembled mesocrystals with different mesostructures and crystal habits based on iron oxide nanocubes by varying the nanocube size and shape and by applying magnetic fields. A full 3D characterization of the mesocrystals was performed using image analysis, high-resolution scanning electron microscopy and Grazing Incidence Small Angle X-ray Scattering (GISAXS). This enabled the structural determination of e.g. multi-domain mesocrystals with complex crystal habits and themore » quantification of interparticle distances with sub-nm precision. Mesocrystals of small nanocubes (l = 8.6 12.6 nm) are isostructural with a body centred tetragonal (bct ) lattice whereas assemblies of the largest nanocubes in this study (l = 13.6 nm) additionally form a simple cubic (sc) lattice. The mesocrystal habit can be tuned from a square, hexagonal to star-like and pillar shapes depending on the particle size and shape and the strength of the applied magnetic field. Finally, we outline a qualitative phase diagram of the evaporation-induced self-assembled superparamagnetic iron oxide nanocube mesocrystals based on nanocube edge length and magnetic field strength.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zare, Bijan; Faramarzi, Mohammad Ali; Sepehrizadeh, Zargham

    Highlights: ► Biosynthesis of rod shape tellurium nanoparticles with a hexagonal crystal structure. ► Extraction procedure for isolation of tellurium nanoparticles from Bacillus sp. BZ. ► Extracted tellurium nanoparticles have good bactericidal activity against some bacteria. -- Abstract: In this study, a tellurium-transforming Bacillus sp. BZ was isolated from the Caspian Sea in northern Iran. The isolate was identified by various tests and 16S rDNA analysis, and then used to prepare elemental tellurium nanoparticles. The isolate was subsequently used for the intracellular biosynthesis of elemental tellurium nanoparticles. The biogenic nanoparticles were released by liquid nitrogen and purified by an n-octylmore » alcohol water extraction system. The shape, size, and composition of the extracted nanoparticles were characterized. The transmission electron micrograph showed rod-shaped nanoparticles with dimensions of about 20 nm × 180 nm. The energy dispersive X-ray and X-ray diffraction spectra respectively demonstrated that the extracted nanoparticles consisted of only tellurium and have a hexagonal crystal structure. This is the first study to demonstrate a biological method for synthesizing rod-shaped elemental tellurium by a Bacillus sp., its extraction and its antibacterial activity against different clinical isolates.« less

  19. A local quasicontinuum method for 3D multilattice crystalline materials: Application to shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Elliott, R. S.; Tadmor, E. B.

    2014-07-01

    The quasicontinuum (QC) method, in its local (continuum) limit, is applied to materials with a multilattice crystal structure. Cauchy-Born (CB) kinematics, which accounts for the shifts of the crystal motif, is used to relate atomic motions to continuum deformation gradients. To avoid failures of CB kinematics, QC is augmented with a phonon stability analysis that detects lattice period extensions and identifies the minimum required periodic cell size. This approach is referred to as Cascading Cauchy-Born kinematics (CCB). In this paper, the method is described and developed. It is then used, along with an effective interaction potential (EIP) model for shape-memory alloys, to simulate the shape-memory effect and pseudoelasticity in a finite specimen. The results of these simulations show that (i) the CCB methodology is an essential tool that is required in order for QC-type simulations to correctly capture the first-order phase transitions responsible for these material behaviors, and (ii) that the EIP model adopted in this work coupled with the QC/CCB methodology is capable of predicting the characteristic behavior found in shape-memory alloys.

  20. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  1. Micropore Geometry Manipulation by Macroscopic Deformation Based on Shape Memory Effect in Porous PLLA Membrane and its Enhanced Separation Performance.

    PubMed

    Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin

    2017-12-20

    An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.

  2. Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

    DOE PAGES

    Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles; ...

    2017-06-20

    The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less

  3. Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

    PubMed Central

    2017-01-01

    The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal–organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groups into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure–energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy–structure–function maps. PMID:28776015

  4. Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles

    The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less

  5. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai

    2013-09-01

    In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.

  6. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  7. Liquid/vapor-induced reversible dynamic structural transformation of a three-dimensional Cu-based MOF to a one-dimensional MOF showing gate adsorption.

    PubMed

    Kondo, Atsushi; Suzuki, Takayuki; Kotani, Ryosuke; Maeda, Kazuyuki

    2017-05-23

    A new 3D metal-organic framework (MOF), in which 2D layers are interlaced to form a 3D architecture, was synthesized by a reaction of Cu(BF 4 ) 2 and 1,3-bis(4-pyridyl)propane (bpp) in a water/1-hexanol solvent system, and the crystal structure of the MOF was successfully solved. The MOF is reversibly transformed to a 1D chain MOF, which shows gate adsorption properties. The dynamic transformation gives crystal size reduction resulting in a slight change in CO 2 adsorption isotherms. The 1D MOF shows selective adsorption/separation properties on benzene and its analogues with similar sizes and shapes (benzene, toluene, and cyclohexane).

  8. Supercritical crystallization: The RESs-process and the GAS-process

    NASA Astrophysics Data System (ADS)

    Berends, Edwin M.

    1994-09-01

    This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.

  9. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  10. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  11. Applications of ultrasound to chiral crystallization, resolution and deracemization.

    PubMed

    Xiouras, Christos; Fytopoulos, Antonios; Jordens, Jeroen; Boudouvis, Andreas G; Van Gerven, Tom; Stefanidis, Georgios D

    2018-05-01

    Industrial synthesis of enantiopure compounds is nowadays heavily based on the separation of racemates through crystallization processes. Although the application of ultrasound in solution crystallization processes (sonocrystallization) has become a promising emerging technology, offering several benefits (e.g. reduction of the induction time and narrowing of the metastable zone width, control over the product size, shape and polymorphic modification), little attention has been paid so far to the effects of ultrasound on chiral crystallization processes. Several recent studies have reported on the application of acoustic energy to crystallization processes that separate enantiomers, ranging from classical (diastereomeric) resolution and preferential crystallization to new and emerging processes such as attrition-enhanced deracemization (Viedma ripening). A variety of interesting effects have been observed, which include among others, enhanced crystallization yield with higher enantiomeric purity crystals, spontaneous mirror symmetry breaking crystallization, formation of metastable conglomerate crystals and enhanced deracemization rates. The objective of this review is to provide an overview of the effects of ultrasound on chiral crystallization and outline several aspects of interest in this emerging field. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).

  13. Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation

    NASA Astrophysics Data System (ADS)

    Bagmut, Aleksandr

    2018-06-01

    An electron microscopic investigation was performed on the structure and kinetics of the crystallization of amorphous Cr2O3 films, deposited by pulsed laser sputtering of chromium target in an oxygen atmosphere. The crystallization was initiated by the action of an electron beam on an amorphous film in the column of a transmission electron microscope. The kinetic curves were plotted on the basis of a frame-by-frame analysis of the video recorded during the crystallization of the film. It was found that the amorphous phase - crystal phase transition in Cr2O3 films occurs as a layer polymorphic crystallization and is characterized by the values of the dimensionless relative length unit δ0 ≈ 2000-3100. The action of the electron beam initiates the formation of crystals of two basic morphological forms: disk-shaped and sickle-shaped. Growth of a disk-shaped crystals is characterized by a constant rate v and the quadratic dependence of the fraction of the crystalline phase x on the time t. Sickle-shaped crystal at an initial stage, as it grows, becomes as ring-shaped and disk-shaped crystal. The growth of a sickle-shaped crystal is characterized by normal and tangential velocity components, which depend on the time as ∼√t and as ∼1/√t respectively The end point of the arc at the interface between the amorphous and crystalline phases as the crystal grows describes a curve, which is similar to the Fermat helix. For sickle-shaped, as well as for disk-shaped crystals, the degree of crystallinity x ∼ t2.

  14. Cocaine.

    ERIC Educational Resources Information Center

    Piazza, Nick J.; Yeager, Rebecca D.

    Cocaine was first used by Europeans in the nineteenth century when extract from the coca leaf was combined with various beverages. Cocaine comes as a white crystalline powder. However, a product called crack cocaine may come as an opaque crystal similar in size and shape to rock salt. A third form of cocaine is known as coca paste, which is an…

  15. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.

    PubMed

    Macke, A; Mishchenko, M I

    1996-07-20

    We ascertain the usefulness of simple ice particle geometries for modeling the intensity distribution of light scattering by atmospheric ice particles. To this end, similarities and differences in light scattering by axis-equivalent, regular and distorted hexagonal cylindric, ellipsoidal, and circular cylindric ice particles are reported. All the results pertain to particles with sizes much larger than a wavelength and are based on a geometrical optics approximation. At a nonabsorbing wavelength of 0.55 µm, ellipsoids (circular cylinders) have a much (slightly) larger asymmetry parameter g than regular hexagonal cylinders. However, our computations show that only random distortion of the crystal shape leads to a closer agreement with g values as small as 0.7 as derived from some remote-sensing data analysis. This may suggest that scattering by regular particle shapes is not necessarily representative of real atmospheric ice crystals at nonabsorbing wavelengths. On the other hand, if real ice particles happen to be hexagonal, they may be approximated by circular cylinders at absorbing wavelengths.

  16. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    PubMed

    Strecker, Claas; Meyer, Bernd

    2018-05-29

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  17. Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Izumiya, Takanori; Tsuboi, Yohko

    2016-07-01

    The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD. Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.

  18. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  19. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystalmore » geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.« less

  20. Solid-state characterization of nevirapine.

    PubMed

    Sarkar, Mahua; Perumal, O P; Panchagnula, R

    2008-09-01

    The purpose of this investigation is to characterize nevirapine from commercial samples and samples crystallized from different solvents under various conditions. The solid-state behavior of nevirapine samples was investigated using a variety of complementary techniques such as microscopy (optical, polarized, hot stage microscopy), differential scanning calorimeter, thermogravimetric analysis, Fourier transform infrared spectroscopy and powder X-ray diffractometry. The commercial samples of nevirapine had the same polymorphic crystalline form with an anhedral crystal habit. Intrinsic dissolution of nevirapine was similar for both the commercial batches. Powder dissolution showed pH dependency, with maximum dissolution in acidic pH and there was no significant effect of particle size. The samples recrystallized from different solvent systems with varying polarity yielded different crystal habits. Stirring and degrees of supersaturation influenced the size and shape of the crystals. The recrystallized samples did not produce any new polymorphic form, but weak solvates with varying crystal habit were produced. Recrystallized samples showed differences in the x-ray diffractograms. However, all the samples had the same internal crystal lattice as revealed from their similar melting points and heat of fusion. The intrinsic dissolution rate of recrystallized samples was lower than the commercial sample. It was found that the compression pressure resulted in desolvation and partial conversion of the crystal form. After compression, the recrystallized samples showed similar x-ray diffractograms to the commercial sample. Amorphous form showed slightly higher aqueous solubility than the commercial crystalline form.

  1. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix

    NASA Technical Reports Server (NTRS)

    Landis, W. J.

    1995-01-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  2. Insights Into the Solution Crystallization of Oriented Alq3 and Znq2 Microprisms and Nanorods.

    PubMed

    Boulet, Joel; Mohammadpour, Arash; Shankar, Karthik

    2015-09-01

    Optimized solution-based methods to grow high quality micro- and nanocrystals of organic semi-conductors with defined size, shape and orientation are important to a variety of optoelectronic applications. In this context, we report the growth of single crystal micro- and nanostructures of the organic semiconductors Tris(8-hydroxyquinoline)aluminum (Alq3) and bis(8-hydroxyquinoline)zinc (Znq2) terminating in flat crystal planes using a combination of evaporative and antisolvent crystallization. By controlling substrate-specific nucleation and optimizing the conditions of growth, we generate vertically-oriented hexagonal prism arrays of Alq3, and vertical half-disks and sharp-edged rectangular prisms of Znq2. The effect of process variables such as ambient vapour pressure, choice of anti-solvent and temperature on the morphology and crystal habit of the nanostructures were studied and the results of varying them catalogued to gain a better understanding of the mechanism of growth.

  3. Nematic Liquid-Crystal Colloids

    PubMed Central

    Muševič, Igor

    2017-01-01

    This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574

  4. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix.

    PubMed

    Landis, W J

    1995-05-01

    High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.

  5. CrystalMoM: a tool for modeling the evolution of Crystals Size Distributions in magmas with the Method of Moments

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Landi, Patrizia

    2016-04-01

    It is well known that nucleation and growth of crystals play a fundamental role in controlling magma ascent dynamics and eruptive behavior. Size- and shape-distribution of crystal populations can affect mixture viscosity, causing, potentially, transitions between effusive and explosive eruptions. Furthermore, volcanic samples are usually characterized in terms of Crystal Size Distribution (CSD), which provide a valuable insight into the physical processes that led to the observed distributions. For example, a large average size can be representative of a slow magma ascent, and a bimodal CSD may indicate two events of nucleation, determined by two degassing events within the conduit. The Method of Moments (MoM), well established in the field of chemical engineering, represents a mesoscopic modeling approach that rigorously tracks the polydispersity by considering the evolution in time and space of integral parameters characterizing the distribution, the moments, by solving their transport differential-integral equations. One important advantage of this approach is that the moments of the distribution correspond to quantities that have meaningful physical interpretations and are directly measurable in natural eruptive products, as well as in experimental samples. For example, when the CSD is defined by the number of particles of size D per unit volume of the magmatic mixture, the zeroth moment gives the total number of crystals, the third moment gives the crystal volume fraction in the magmatic mixture and ratios between successive moments provide different ways to evaluate average crystal length. Tracking these quantities, instead of volume fraction only, will allow using, for example, more accurate viscosity models in numerical code for magma ascent. Here we adopted, for the first time, a quadrature based method of moments to track the temporal evolution of CSD in a magmatic mixture and we verified and calibrated the model again experimental data. We also show how the equations and the tool developed can be integrated in a magma ascent numerical model, with application to eruptive events occurred at Stromboli volcano (Italy).

  6. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  7. Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines

    USGS Publications Warehouse

    Hammer, J.E.; Cashman, K.V.; Hoblitt, R.P.; Newman, S.

    1999-01-01

    Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity, ranging in clast density from 700 to 2580 kg m-3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0-22%). We infer that syn-eruptive volatile exsolution from magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28-262 min) suggests that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved volatiles during the previous explosive event. If plug thickness grew proportionally to the square root of time, and if magma pressurization increased during the eruptive sequence, the frequency of eruptive pulses may have been modulated by degassing of magma within the conduit. Dense clasts in surge deposits probably represent plug material entrained by each subsequent explosive event.

  8. Analytical studies on the crystal melt interface shape in the Czochralski process for oxide single crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Ja Hoon; Kang, In Seok

    2000-09-01

    Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.

  9. Morphology-selective synthesis of polyhedral gold nanoparticles: what factors control the size and morphology of gold nanoparticles in a wet-chemical process.

    PubMed

    Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi

    2007-12-15

    Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.

  10. Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener.

    PubMed

    Loiola, A R; Andrade, J C R A; Sasaki, J M; da Silva, L R D

    2012-02-01

    Zeolite 4A (LTA) has been successfully synthesized by a hydrothermal method, where kaolin was used as silica and alumina source. The synthesized zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser granulometry, and FTIR spectroscopy. XRD data from the Rietveld refinement method confirmed only one crystallographic phase. Zeolite A morphology was observed by SEM analysis, and it showed well-defined crystals with slightly different sizes but with the same cubic shape. Particle size distribution of the crystals was confirmed by laser granulometry, whereas FTIR spectroscopy revealed significant structural differences between the starting material and the final zeolite product used as water softener. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  12. In situ analysis of the organic framework in the prismatic layer of mollusc shell.

    PubMed

    Tong, Hua; Hu, Jiming; Ma, Wentao; Zhong, Guirong; Yao, Songnian; Cao, Nianxing

    2002-06-01

    A novel in situ analytic approach was constructed by means of ion sputtering, decalcification and deprotein techniques combining with scanning electron microscopy (SEM) and transmission electron microscope (TEM) ultrastructural analysis. The method was employed to determine the spatial distribution of the organic framework outside and the inner crystal and organic/inorganic interface spatial geometrical relationship in the prismatic layer of cristaris plicate (leach). The results show that there is a substructure of organic matrix in the intracrystalline region. The prismatic layer forms according to strict hierarchical configuration of regular pattern. Each unit of organic template of prismatic layer can uniquely determine the column crystal growth direction, spatial orientation and size. Cavity templates are responsible for supporting. limiting size and shape and determining the crystal growth spatial orientation, while the intracrystal organic matrix is responsible for providing nucleation point and inducing the nucleation process of calcite. The stereo hierarchical fabrication of prismatic layer was elucidated for the first time.

  13. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  14. Preparation and Characterization of Nano-CL-20 Explosive

    NASA Astrophysics Data System (ADS)

    Bayat, Yadollah; Zeynali, Vida

    2011-10-01

    Nano-CL-20 was prepared via precipitative crystallization by spraying a solution of CL-20 in a solvent (ethyl acetate) into a nonsolvent (isooctane). Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) were used to characterize the appearance and the size of the particles. The results revealed that nano-CL-20 particles have the shape of spheres or ellipsoids with an average size of 95 nm. Due to their small diameter and high surface energy, the particles tended to agglomerate. Impact sensitivity of nanosize CL-20 was decreased in comparison to micrometer-size CL-20.

  15. Modeling the effect of crystal and crucible rotation on the interface shape in Czochralski growth of piezoelectric langatate crystals

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Nehari, A.; Lasloudji, I.; Lebbou, K.; Dumortier, M.; Cabane, H.; Duffar, T.

    2017-10-01

    Single La3Ga5.5Ta0.5O14 (LGT) crystals have been grown by using the Czochralski technique with inductive heating. Some ingots exhibit imperfections such as cracks, dislocations and striations. Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the crystallization of ingots having 3 cm in diameter. It was found that the conical shape of the interface depends essentially on the internal radiative exchanges in the semi-transparent LGT crystal. Numerical results are compared to experimental visualization of the growth interface, showing a good agreement. The effect of the forced convection produced by the crystal and crucible rotation is numerically investigated at various rotation rates. Increasing the crystal rotation rate up to 50 rpm has a significant flattening effect on the interface shape. Applying only crucible rotation enhances the downward flow underneath the crystal, leading to an increased interface curvature. Counter rotation between the crystal and the crucible results in a distorted shape of the interface.

  16. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  17. Preparation and characterization of Ba0.2Sr0.2La0.6MnO3 nanoparticles and investigation of size & shape effect on microwave absorption

    NASA Astrophysics Data System (ADS)

    Peymanfar, Reza; Javanshir, Shahrzad

    2017-06-01

    In this paper, the design and characterization of a radar absorbing material (RAM) was investigated at microwave frequency. Ba0.2Sr0.2La0.6MnO3 magnetic nanoparticles was synthesized thru a facile hydrothermal method in the presence of polymethyl methacrylate (PMMA) and the possibility of shape and size-controlled synthesis of nanoparticles (NPs) over the range 15-50 Nm was also explored. Afterward, the effect of shape and size of the synthesized Ba0.2Sr0.2La0.6MnO3 NPs on microwave absorption properties was investigated in KU-band. The crystal structures and morphology of as-synthesized nanoparticles were characterized and confirmed by FESEM, XRD, VSM, FTIR analysis. The RAM samples were prepared by dispersion of magnetic NPs in silicone rubber in an ultrasonic bath. The maximum reflection loss (RL) values NPs were 12.04 dB at 14.82 GHz and a broad absorption band (over 1.22 GHz) with RL values <-10 dB are obtained and the maximum reflection loss (RL) values of decrease and shaped NPs were 22.36 dB at 14.78 GHz and a broad absorption band (over 2.67 GHz) with RL values <-10 dB are obtained. The results indicated that the particle size and shape play a major role on the absorption properties of the composites in the 12.4-18 GHz frequency range. It is observed that microwave absorption properties increased with the decrease in average particle size of NPs.

  18. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Yang, Xiaoyuan; Kopacz, Adrian M

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical propertiesmore » of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .« less

  19. Laboratory duplication of comb layering in the Rhum pluton. [igneous rocks with comb layered texture

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.

    1977-01-01

    A description is provided of the texture of harrisite comb layers, taking into account the results of crystallization experiments at controlled cooling rates, which have reproduced the textural change from 'cumulate' to comb-layered harrisite. Melted samples of harrisite were used in the dynamic crystallization experiments considered. The differentiation of a cooling rate run with respect to olivine grain size and shape is shown and three possible origins of hopper olivine in differentiated crystallization runs are considered. It is found that olivine nucleation occurred throughout cooling, except for the incubation period during early cooling. The elongate combed olivines in harrisite apparently grew as the magma locally supercooled to at least 30 C. It is suggested that the branching crystals in most comb layers, including comb-layered harrisite, probably grew along thermal gradients.

  20. Rock sample brought to earth from the Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Close-up view of Apollo 12 sample 12,062 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory. This sample, collected during the second Apollo 12 extravehicular activity (EVA-2) of Astronauts Charles Conrad Jr., and Alan L. Bean, is a medium-grained rock with lath-shaped crystals of feldspar and pyroxene It contains vugs-holes-with crystals growing in them (note right side of exposed portion). An idea of the size of the rock can be gained by reference to the gauge on the bottom portion of the number meter.

  1. The dual role of sulfur-containing amino acids in the synthesis of IV-VI semiconductor nanocrystals: a mechanochemical approach.

    PubMed

    Baláž, Peter; Baláž, Matej; Caplovičová, Mária; Zorkovská, Anna; Caplovič, Lubomír; Psotka, Miroslav

    2014-01-01

    PbS@cystine nanocrystals were synthesized mechanochemically, with lead acetate and L-cystine being used as the lead and sulfur precursors, respectively. The resulting nanocrystals are 22-34 nm in size, well-faceted and octahedral in shape. Characterization by XRD, FT-IR, NMR, FE-SEM, EDS, TEM (HRTEM) and surface area measurement methods showed that the particles are single, defect-free crystals with a high crystallinity. Furthermore, the crystals were prepared using a solvent-free procedure that was performed under ambient temperature and atmospheric pressure.

  2. GIXAFS study of Fe3+ sorption and precipitation on natural quartz surfaces

    USGS Publications Warehouse

    Waychunas, G.; Davis, J.; Reitmeyer, R.

    1999-01-01

    Grazing-incidence EXAFS has been used to characterize the structure of Fe3+ sorbed onto natural single crystal quartz surfaces. Fe3+ sorption at ca. 5% monolayer coverage on a natural crystal allowed to equilibrate in air resulted in formation of hematite nuclei with strong texturing on r-and m-planes. EXAFS calculations suggests that both O and Fe backscattering is necessary to yield acceptable structural models, that about 50% of the sorbed iron resides in nuclei, and that the approximate dimensions of the nuclei can be estimated via Feff 7.0 calculations of various nuclei sizes and shapes.

  3. Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas

    NASA Astrophysics Data System (ADS)

    Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Monier, Marie; Szczap, Frédéric; Schwarzenboeck, Alfons; Gayet, Jean-François

    2017-10-01

    This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm-3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m-3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L-1 and 0.025 g m-3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener-Bergeron-Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) - extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature.

  4. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe2O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Shofiah, Siti; Muflihatun, Suharyadi, Edi

    2016-04-01

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe2O4) nanoparticles comparable sizes have been studied in detail. NiFe2O4 were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe2O4 was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe2O4 as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe2O4 became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe2O3 phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe2O4 nanoparticles.

  5. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the projected area is concentrated at larger sizes. Simulations across the parameter space are also compared with MODIS collection 6 retrievals and forward simulations of cloud radar reflectivity and mean Doppler velocity. Results motivate further in situ and laboratory measurements to narrow parameter uncertainties in models.

  6. Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α'-Thermoelastic Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.

    2013-12-01

    Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.

  7. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.

    PubMed

    Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L

    2013-05-13

    Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  9. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.

    PubMed

    Thivilliers, Florence; Laurichesse, Eric; Saadaoui, Hassan; Leal-Calderon, Fernando; Schmitt, Véronique

    2008-12-02

    We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.

  10. Retrieving the properties of ice-phase precipitation with multi-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Mace, G. G.; Gergely, M.; Mascio, J.

    2017-12-01

    The objective of most retrieval algorithms applied to remote sensing measurements is the microphysical properties that a model might predict such as condensed water content, particle number, or effective size. However, because ice crystals grow and aggregate into complex non spherical shapes, the microphysical properties of interest are very much dependent on the physical characteristics of the precipitation such as how mass and crystal area are distributed as a function of particle size. Such physical properties also have a strong influence on how microwave electromagnetic energy scatters from ice crystals causing significant ambiguity in retrieval algorithms. In fact, passive and active microwave remote sensing measurements are typically nearly as sensitive to the ice crystal physical properties as they are to the microphysical characteristics that are typically the aim of the retrieval algorithm. There has, however, been active development of multi frequency algorithms recently that attempt to ameliorate and even exploit this sensitivity. In this paper, we will review these approaches and present practical applications of retrieving ice crystal properties such as mass- and area dimensional relationships from single and dual frequency radar measurements of precipitating ice using data collected aboard ship in the Southern Ocean and from remote sensors in the Rocky Mountains of the Western U.S.

  11. Dissolution enhancement of gliclazide using pH change approach in presence of twelve stabilizers with various physico-chemical properties.

    PubMed

    Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali

    2009-01-01

    The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.

  12. Radiative heat transport during the vertical Bridgman growth of oxide single crystals: slabs versus cylinders

    NASA Astrophysics Data System (ADS)

    Virozub, Alexander; Brandon, Simon

    1998-10-01

    Internal radiative heat transport in oxide crystals during their growth via the vertical Bridgman technique is known to promote severely deflected melt/crystal interface shapes. These highly curved interfaces are likely to encourage unwanted phenomena such as inhomogeneous distribution of impurities in the solidified crystalline material. Past computational analyses of oxide growth systems have mostly been confined to cylindrical geometries. In this letter a two-dimensional finite-element model, describing the growth of slab-shaped oxide crystals via the vertical Bridgman technique, is presented; internal radiative heat transport through the transparent crystalline phase is accounted for in the formulation. Comparison with calculations of cylindrical-shaped crystal growth systems shows a strong dependence of thermal fields and of melt/crystal interface shapes on the crystal geometry. Specifically, the interface position is strongly shifted toward the hot zone and its curvature dramatically increases in slab-shaped systems compared to what is observed in cylindrical geometries. This significant qualitative difference in interface shapes is shown to be linked to large quantitative differences in values of the viewing angle between the hot melt/crystal interface and the cold part of the crucible.

  13. Improvement of physicomechanical properties of carbamazepine by recrystallization at different pH values.

    PubMed

    Javadzadeh, Yousef; Mohammadi, Ameneh; Khoei, Nazaninossadat Seyed; Nokhodchi, Ali

    2009-06-01

    The morphology of crystals has an appreciable impact role on the physicochemical properties of drugs. Drug properties such as flowability, dissolution, hardness and bioavailability may be affected by crystallinity behaviours of drugs. The objective of this study was to achieve an improved physicomechanical property of carbamazepine powder through recrystallization from aqueous solutions at different pH values. For this purpose, carbamazapine was recrystallized from aqueous solutions at different pH values (1, 7, 11). The morphology of crystals was investigated using scanning electron microscopy; X-ray powder diffraction (XRPD) was used to identify polymorphism; thermodynamic properties were analyzed using differential scanning calorimetery (DSC). Dissolution rate was determined using USP dissolution apparatus. Mechanical behavior of recrystallized carbamazepine powders was investigated by making tablets under different compaction pressure and measuring their hardness. SEM studies showed that the carbamazepine crystallization in different media affected the morphology and size of carbamazepine crystals. The shape of carbamazepine crystals changed from flaky or thin plate-like to needle shape. XRPD and DSC results ruled out any crystallinity changes occurring due to the temperature during recrystallization procedure or pH of crystallization media. The crushing strength of tablets indicated that all of the recrystallized carbamazepine samples had better compactiblity than the original carbamazepine powder. In vitro dissolution studies of carbamazepine samples showed a higher dissolution rate for carbamazepine crystals obtained from media with pH 11 and 1. Carbamazepine particles recrystallized from aqueous solutions of different pH values (all media) appeared to have superior mechanical properties to those of the original carbamazepine sample.

  14. Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Kage, Yuta; Hagino, Harutoshi; Yanagisawa, Ryoto; Maire, Jeremie; Miyazaki, Koji; Nomura, Masahiro

    2016-08-01

    Thermal phonon transport in single-crystalline Si thin films with dog-leg shaped nanostructures was investigated. Thermal conductivities for the forward and backward directions were measured and compared at 5 and 295 K by micro thermoreflectance. The Si thin film with dog-leg shaped nanostructures showed lower thermal conductivities than those of nanowires and two-dimensional phononic crystals with circular holes at the same surface-to-volume ratio. However, asymmetric thermal conductivity was not observed at small temperature gradient condition in spite of the highly asymmetric shape though the size of the pattern is within thermal phonon mean free path range. We conclude that strong temperature dependent thermal conductivity is required to observe the asymmetric thermal phonon conduction in monolithic materials with asymmetric nanostructures.

  15. Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I

    PubMed Central

    Nishiyama, Yoshiharu; Wada, Masahisa; Hanson, B. Leif

    2012-01-01

    Structural changes during the treatment of films of highly crystalline microfibers of Cladophora cellulose with ethylenediamine (EDA) have been studied by time-resolved X-ray microprobe diffraction methods. As EDA penetrates the sample and converts cellulose I to EDA-cellulose I, the measured profile widths of reflections reveal changes in the shapes and average dimensions of cellulose I and EDA-cellulose I crystals. The (200) direction of cellulose I is most resistant to EDA penetration, with EDA penetrating most effectively at the hydrophilic edges of the hydrogen bonded sheets of cellulose chains. Most of the cellulose chains in the initial crystals of cellulose I are incorporated into crystals of EDA-cellulose I. The size of the emerging EDA-cellulose I crystals is limited to about half of their size in cellulose I, most likely due to strains introduced by the penetration of EDA molecules. There is no evidence of any gradual structural transition from cellulose I to EDA-cellulose I involving a continuously changing intermediate phase. Rather, the results point to a rapid transition to EDA-cellulose I in regions of the microfibrils that have been penetrated by EDA. PMID:22693365

  16. Early stages of zeolite growth

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    Zeolites are crystalline nonporous aluminosilicates with important applications in separation, purification, and adsorption of liquid and gaseous molecules. However, an ability to tailor the zeolite microstructure, such as particle size/shape and pore-size, to make it benign for specific application requires control over nucleation and particle growth processes. But, the nucleation and crystallization mechanisms of zeolites are not fully understood. In this context, the synthesis of an all-silica zeolite with MFI-type framework has been studied extensively as a model system. Throughout chapters 2, 4 and 5, MFI growth process has been investigated by small-angle x-ray scattering (SAXS) and transmission electron microscopy (TEM). Of fundamental importance is the role of nanoparticles (~5 nm), which are present in the precursor sol, in MFI nucleation and crystallization. Formation of amorphous aggregates and their internal restructuring are concluded as essential steps in MFI nucleation. Early stage zeolite particles have disordered and less crystalline regions within, which indicates the role of structurally distributed population of nanoparticles in growth. Faceting occurs after the depletion of nanoparticles. The chapter 6 presents growth studies in silica sols prepared by using a dimer of tertaprpylammonium (TPA) and reports that MFI nucleation and crystallization are delayed with a more pronounced delay in crystal growth.

  17. Evaluation of the local homogeneity fluctuation of sinter of the small chip size MLCCs by means of mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka

    2008-05-01

    Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.

  18. Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets.

    PubMed

    Wakahara, Takatsugu; Sathish, Marappan; Miyazawa, Kun'ichi; Hu, Chunping; Tateyama, Yoshitaka; Nemoto, Yoshihiro; Sasaki, Toshio; Ito, Osamu

    2009-07-29

    The supramolecular nanoarchitectures, C(60)/ferrocene nanosheets, were prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of SEM, STEM, HRTEM, XRD, Raman and UV-vis-NIR spectra. The highly crystallized C(60)/ferrocene hexagonal nanosheets had a size of ca. 9 microm and the formulation C(60)(ferrocene)(2). A strong charge-transfer (CT) band between ferrocene and C(60) was observed at 782 nm, indicating the presence of donor-acceptor interaction in the nanosheets. Upon heating the nanosheets to 150 degrees C, the CT band disappeared due to the sublimation of ferrocene from the C(60)/ferrocene hybrid, and C(60) nanosheets with an fcc crystal structure and the same shape and size as the C(60)/ferrocene nanosheets were obtained.

  19. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  20. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-platelets, c-platelets, b-columns - excluding a- and c-columns) derived from our modeling [17] of comet Hale- Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature condensates. By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal shape(s) and link to their formation temperature(s) and environment(s).

  1. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  2. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  3. Analysis of Crystallographic Structure of a Japanese Sword by the Pulsed Neutron Transmission Method

    NASA Astrophysics Data System (ADS)

    Kino, K.; Ayukawa, N.; Kiyanagi, Y.; Uchida, T.; Uno, S.; Grazzi, F.; Scherillo, A.

    We measured two-dimensional transmission spectra of pulsed neutron beams for a Japanese sword sample. Atom density, crystalline size, and preferred orientation of crystals were obtained using the RITS code. The position dependence of the atomic density is consistent with the shape of the sample. The crystalline size is very small and shows position dependence, which is understood by the unique structure of Japanese swords. The preferred orientation has strong position dependence. Our study shows the usefulness of the pulsed neutron transmission method for cultural metal artifacts.

  4. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7% for 2 Feb, whereas the fraction of aggregates of plates was 46.2% for 2 Feb. and only 7.2% and 1% for 27 and 29 Jan., respectively. The difference in ice crystal habits sampled on the different days is likely associated with the difference between fresh anvil cirrus on 2 Feb. and aged cirrus bands on the 27 and 29 of Jan. Because of variations in microphysical properties (i.e., number concentration, median mass dimension, and fit variables of gamma distributions) it is also shown that variables in addition to ice water content and temperature are required to represent the characteristics of cirrus with different origins in large-scale models. Aggregates of bullet rosettes and aggregates of plates are shown to scatter more light in the lateral and backward scattering region and less light in the forward scattering region compared to their component crystals, leading to a decrease in g for aggregates. To represent the three-dimensional shape of aggregates of plates, three parameters, the aggregation index ( AI), the area ratio (AR), and the normalized projected area (An), are introduced and the single-scattering properties of aggregates of plates are shown to depend heavily on AI. A new model (budding Bucky ball, 3B) for the shape of small ice crystals is developed based on the shapes of ice analogues grown in laboratory experiments. The 3B scatters more light in the lateral, and backward direction and less in the forward direction compared with other existing models currently used to describe small crystal shape (i.e., Gaussian random sphere and droxtal). The combination of the reduction in the forward scattering and enhancement in the lateral and backward scattering causes 11.13% and 8.74% decreases in g for the 3B compared with that for Gaussian random sphere and droxtal, respectively. The impacts of variations in small ice crystal shapes and concentrations on bulk scattering properties of tropical cirrus are quantified. The calculated mean asymmetry parameter ḡ for the fresh anvil (i.e., 2 Feb) is larger than that for cirrus bands of varying ages (i.e., 27 and 29 Jan.) for -60 < T < -45°C and -45 < T < -30°C where the fractional contributions of small ice crystals to total cross sectional area are small. The impact using different models for small ice crystals on ḡ is largest at lower temperatures (T < -60°C). The impact of enhanced number concentrations of small ice crystals on the bulk scattering properties depends on the assumed shapes of small ice crystals, which is largest (smallest) in the temperature ranges of -45 < T < -30 T (T < -60°C) where the CAS/CDP ratio of N of small ice crystals is maximum (minimum).

  5. Possible pseudogout in two dogs.

    PubMed

    Forsyth, S F; Thompson, K G; Donald, J J

    2007-03-01

    Pseudogout, the acute form of calcium pyrophosphate deposition disease, is a common condition in elderly human beings and is characterised by the sudden onset of intense joint pain and synovitis. It is rarely identified in animals but was diagnosed in two dogs that presented with acute lameness and pyrexia. Cytology of the synovial fluid showed a mildly elevated cell count with both non-degenerate neutrophils and mononuclear cells present. Many of the mononuclear cells and occasional neutrophils contained square or rhomboid-shaped crystals that were variable in shape and size and weakly birefringent on examination under polarised light. Clinical signs resolved following treatment with prednisolone.

  6. On The Importance of Connecting Laboratory Measurements of Ice Crystal Growth with Model Parameterizations: Predicting Ice Particle Properties

    NASA Astrophysics Data System (ADS)

    Harrington, J. Y.

    2017-12-01

    Parameterizing the growth of ice particles in numerical models is at an interesting cross-roads. Most parameterizations developed in the past, including some that I have developed, parse model ice into numerous categories based primarily on the growth mode of the particle. Models routinely possess smaller ice, snow crystals, aggregates, graupel, and hail. The snow and ice categories in some models are further split into subcategories to account for the various shapes of ice. There has been a relatively recent shift towards a new class of microphysical models that predict the properties of ice particles instead of using multiple categories and subcategories. Particle property models predict the physical characteristics of ice, such as aspect ratio, maximum dimension, effective density, rime density, effective area, and so forth. These models are attractive in the sense that particle characteristics evolve naturally in time and space without the need for numerous (and somewhat artificial) transitions among pre-defined classes. However, particle property models often require fundamental parameters that are typically derived from laboratory measurements. For instance, the evolution of particle shape during vapor depositional growth requires knowledge of the growth efficiencies for the various axis of the crystals, which in turn depends on surface parameters that can only be determined in the laboratory. The evolution of particle shapes and density during riming, aggregation, and melting require data on the redistribution of mass across a crystals axis as that crystal collects water drops, ice crystals, or melts. Predicting the evolution of particle properties based on laboratory-determined parameters has a substantial influence on the evolution of some cloud systems. Radiatively-driven cirrus clouds show a broader range of competition between heterogeneous nucleation and homogeneous freezing when ice crystal properties are predicted. Even strongly convective squall lines show a substantial influence to predicted particle properties: The more natural evolution of ice crystals during riming produces graupel-like particles with size and fall-speeds required for the formation of a classic transition zone and extended stratiform precipitation region.

  7. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  8. Studies of Islands on Freely Suspended Bubbles of Smectic Liquid Crystal

    NASA Technical Reports Server (NTRS)

    Pattanaporkratana, A.; Mavel, B.; Park, C. S.; Maclennan, J. E.; Clark, N. A.

    2002-01-01

    We have constructed an optical system for observing the internal structure of freely suspended smectic liquid crystal bubbles using a reflected light microscope. Liquid crystal bubbles can have thicker circular regions (islands) which can easily be generated by shrinking the bubble diameter. The diameter of these islands is approximately 10 microns and they are typically up to five times thicker than the surrounding liquid crystal film (500 angstroms). In the Laboratory, the location of the islands is strongly influenced by gravity, which causes the majority of islands to migrate to the bottom half of the bubble. We will describe the size and thickness distributions of islands and their time evolution, and also discuss two-dimensional hydrodynamics and turbulence of smectic bubbles, the shapes of islands and holes affected by bubble vibrations, and the interactions between islands, which we have probed using optical tweezers.

  9. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  10. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT

    NASA Astrophysics Data System (ADS)

    Ito, Mikiko; Lee, Jae Sung; Park, Min-Jae; Sim, Kwang-Souk; Jong Hong, Seong

    2010-07-01

    PET detectors with depth-of-interaction (DOI) encoding capability allow high spatial resolution and high sensitivity to be achieved simultaneously. To obtain DOI information from a mono-layer array of scintillation crystals using a single-ended readout, the authors devised a method based on light spreading within a crystal array and performed Monte Carlo simulations with individual scintillation photon tracking to prove the concept. A scintillation crystal array model was constructed using a grid method. Conventional grids are constructed using comb-shaped reflector strips with rectangular teeth to isolate scintillation crystals optically. However, the authors propose the use of triangularly shaped teeth, such that scintillation photons spread only in the x-direction in the upper halves of crystals and in the y-direction in lower halves. DOI positions can be estimated by considering the extent of two-dimensional light dispersion, which can be determined from the multiple anode outputs of a position-sensitive PMT placed under the crystal array. In the main simulation, a crystal block consisting of a 29 × 29 array of 1.5 mm × 1.5 mm × 20 mm crystals and a multi-anode PMT with 16 × 16 pixels were used. The effects of crystal size and non-uniform PMT output gain were also explored by simulation. The DOI resolution estimated for 1.5 × 1.5 × 20 mm3 crystals was 2.16 mm on average. Although the flood map was depth dependent, each crystal was well identified at all depths when a corner of the crystal array was irradiated with 511 keV gamma rays (peak-to-valley ratio ~9:1). DOI resolution was better than 3 mm up to a crystal length of 28 mm with a 1.5 × 1.5 mm2 or 2.0 × 2.0 mm2 crystal surface area. The devised light-sharing method allowed excellent DOI resolutions to be obtained without the use of dual-ended readout or multiple crystal arrays.

  11. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.

    2011-09-01

    Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.

  12. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  13. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    The rheology of magmas controls not only eruption dynamics but also the rate of transport of magmas through the crust and to a large extent the rate of magma differentiation and degassing. Magma bodies stalled in the upper crust are known to spend most of their lifespan above the solidus at a high crystal content (Cooper and Kent, 2014; Huber et al., 2009), where the probability of melt extraction (crystal fractionation) is the greatest (Dufek and Bachmann, 2010). In this study, we explore a new theoretical framework to study the viscosity of crystal bearing magmas. Since the seminal work of A. Einstein and W. Sutherland in the early 20th century, it has been shown theoretically and tested experimentally that a simple self-similar behavior exist between the relative viscosity of dilute (low crystal content) suspensions and the particle volume fraction. The self-similar nature of that relationship is quickly lost as we consider crystal fractions beyond a few volume percent. We propose that the relative viscosity of crystal-bearing magmas can be fully described by two state variables, the intrinsic viscosity and the crowding factor (a measure of the packing threshold in the suspension). These two state variables can be measured experimentally under different conditions, which allows us to develop closure relationships in terms of the applied shear stress and the crystal shape and size distributions. We build these closure equations from the extensive literature on the rheology of synthetic suspensions, where the nature of the particle shape and size distributions is better constrained and apply the newly developed model to published experiments on crystal-bearing magmas. We find that we recover a self-similar behavior (unique rheology curve) up to the packing threshold and show that the commonly reported break in slope between the relative viscosity and crystal volume fraction around the expected packing threshold is most likely caused by a sudden change in the state of dispersion of the magma (change in the state variables caused by either shear localization or crystal breakage). We argue that the model we propose is a first step to go beyond fitting experimental data and towards building a predictive rheology model for crystal-bearing magmas. Cooper, K.M., and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489), 480-483. Dufek, J., and Bachmann, O. (2010) Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8), 687-690. Huber, C., Bachmann, O., and Manga, M. (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283(1-4), 38-47.

  14. Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin

    PubMed Central

    Friedmann, E. Imre; Wierzchos, Jacek; Ascaso, Carmen; Winklhofer, Michael

    2001-01-01

    The presence of magnetite crystal chains, considered missing evidence for the biological origin of magnetite in ALH84001 [Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., & Romanek, C. S. (2000) Geochim. Cosmochim. Acta 64, 4049–4081], is demonstrated by high-power stereo backscattered scanning electron microscopy. Five characteristics of such chains (uniform crystal size and shape within chains, gaps between crystals, orientation of elongated crystals along the chain axis, flexibility of chains, and a halo that is a possible remnant of a membrane around chains), observed or inferred to be present in magnetotactic bacteria but incompatible with a nonbiological origin, are shown to be present. Although it is unlikely that magnetotactic bacteria were ever alive in ALH84001, decomposed remains of such organisms could have been deposited in cracks in the rock while it was still on the surface on Mars. PMID:11226212

  15. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    PubMed

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  16. Crystal growth and magnetic properties of spinel (Co,Mn)3O4

    NASA Astrophysics Data System (ADS)

    Kang, Sun Hee; Kim, Ill Won; Jeong, Yoon Hee; Koo, Tae Yeong

    2012-04-01

    Single crystals of cubic and tetragonal spinel Co3-xMnxO4 (x=1.0 and 1.5) were successfully grown using a solvent evaporation method with PbF2 flux. Single crystals in octahedral shape with a size of about 4 mm on edge were obtained from 100 cm3 Pt crucibles. Ferrimagnetic transitions were detected at 170 K and 160 K from the measurements of temperature dependent magnetization and specific heat of Co2MnO4 and Co1.5Mn1.5O4, respectively. Low temperature field-dependent magnetization curves give a strong indication of the non-collinear spin structure, offering an insulating Co3-xMnxO4 system as a possible candidate for examining the multiferroicity.

  17. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  18. Characterisation of a garnet population from the Sikkim Himalaya: implications for the mechanisms and rates of porphyroblast crystallisation

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2016-04-01

    Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in progressively smaller grain sizes, converse to anticipated trends based on classic kinetic crystallisation theory. The observed systematic behaviour is interpreted to reflect interface-controlled rates of crystallisation, with a decrease in the rate of crystal growth of newly nucleated grains as the crystallisation interval proceeds. Numerical simulations of garnet growth successfully reproduce observed core and rim compositions, and simulations of intracrystalline diffusion yield rapid heating/cooling rates along the P-T path, in excess of 100 °C/Ma. Radial garnet crystallisation is correspondingly rapid, with minimum growth rates of 1.5 mm/Ma in the smallest crystals. Simulations suggest progressive nucleation of new generations of garnet occurred with an exponentially decreasing frequency along the prograde path; however, measured gradients indicate that core compositions developed more slowly than predicted by the model, potentially resulting in a more evenly distributed pattern of nucleation.

  19. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers.

    PubMed

    Inam, Maria; Cambridge, Graeme; Pitto-Barry, Anaïs; Laker, Zachary P L; Wilson, Neil R; Mathers, Robert T; Dove, Andrew P; O'Reilly, Rachel K

    2017-06-01

    2D materials such as graphene, LAPONITE® clays or molybdenum disulfide nanosheets are of extremely high interest to the materials community as a result of their high surface area and controllable surface properties. While several methods to access 2D inorganic materials are known, the investigation of 2D organic nanomaterials is less well developed on account of the lack of ready synthetic accessibility. Crystallization-driven self-assembly (CDSA) has become a powerful method to access a wide range of complex but precisely-defined nanostructures. The preparation of 2D structures, however, particularly those aimed towards biomedical applications, is limited, with few offering biocompatible and biodegradable characteristics as well as control over self-assembly in two dimensions. Herein, in contrast to conventional self-assembly rules, we show that the solubility of polylactide (PLLA)-based amphiphiles in alcohols results in unprecedented shape selectivity based on unimer solubility. We use log  P oct analysis to drive solvent selection for the formation of large uniform 2D diamond-shaped platelets, up to several microns in size, using long, soluble coronal blocks. By contrast, less soluble PLLA-containing block copolymers yield cylindrical micelles and mixed morphologies. The methods developed in this work provide a simple and consistently reproducible protocol for the preparation of well-defined 2D organic nanomaterials, whose size and morphology are expected to facilitate potential applications in drug delivery, tissue engineering and in nanocomposites.

  20. Protein-free formation of bone-like apatite: New insights into the key role of carbonation

    PubMed Central

    Deymier, Alix C.; Nair, Arun K.; Depalle, Baptiste; Qin, Zhao; Arcot, Kashyap; Drouet, Christophe; Yoder, Claude H.; Buehler, Markus J.; Thomopoulos, Stavros; Genin, Guy M.; Pasteris, Jill D.

    2017-01-01

    The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials. PMID:28279923

  1. Control of DNA-Functionalized Nanoparticle Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Directed crystallization of a large variety of nanoparticles, including proteins, via DNA hybridization kinetics has led to unique materials with a broad range of crystal symmetries. The nanoparticles are functionalized with DNA chains that link neighboring functionalized units. The shape of the nanoparticle, the DNA length, the sequence of the hybridizing DNA linker and the grafting density determine the crystal symmetries and lattice spacing. By carefully selecting these parameters one can, in principle, achieve all the symmetries found for both atomic and colloidal crystals of asymmetric shapes as well as new symmetries, and drive transitions between them. A scale-accurate coarse-grained model with explicit DNA chains provides the design parameters, including degree of hybridization, to achieve specific crystal structures. The model also provides surface energy values to determine the shape of defect-free single crystals with macroscopic anisotropic properties, as well as the parameters to develop colloidal models that reproduce both the shape of single crystals and their growth kinetics.

  2. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  3. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    NASA Technical Reports Server (NTRS)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  4. New insights into ice growth and melting modifications by antifreeze proteins

    PubMed Central

    Bar-Dolev, Maya; Celik, Yeliz; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2012-01-01

    Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs. PMID:22787007

  5. Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica-encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shofiah, Siti, E-mail: esuharyadi@ugm.ac.id; Muflihatun,; Suharyadi, Edi

    2016-04-19

    Crystal structures and magnetic properties of polyethylene glycol (PEG-4000) and silica encapsulated nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles comparable sizes have been studied in detail. NiFe{sub 2}O{sub 4} were prepared by co-precipitation methods. Crystalline size is 4.8 ± 0.2 nm became 1.6 ± 0.1 nm and 10.6 ± 0.3 nm after encapsulated PEG-4000 and silica, respectively. Transmission electron microscopy (TEM) showed that encapsulated PEG-4000 and silica decreased agglomeration, controlled shape of nanoparticles more spherical and dispersed. Coercivity of NiFe{sub 2}O{sub 4} was 46.2 Oe and then increased after encapsulated PEG-4000 to 47.8 Oe can be related to the multi-domains of NiFe{sub 2}O{sub 4}more » as influence the crystalline size was decreased. Meanwhile, after encapsulated silica, coercivity of NiFe{sub 2}O{sub 4} became 93 Oe as influence the crystalline size was increased at single-domains due to its strong shape anisotropy. Magnetization value decreased from 5.7 emu/g to 5.3 emu/g and 3.6 emu/g after encapsulated PEG-4000 and silica, respectively. The remanent magnetization showed decreasing when saturation magnetization decreased, and conversely. However, it also depends on presence of α-Fe{sub 2}O{sub 3} phases and their material non magnetic of encapsulating. Based on the result, The magnetic properties exhibit a strong dependence on the crystalline size as influence PEG-4000 and silica encapsulated NiFe{sub 2}O{sub 4} nanoparticles.« less

  6. Study on the temperature gradient evolution of large size nonlinear crystal based on the fluid-solid coupling theory

    NASA Astrophysics Data System (ADS)

    Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.

    2014-09-01

    In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.

  7. Comparative analysis of thermal behavior, isothermal crystallization kinetics and polymorphism of palm oil fractions.

    PubMed

    Zhang, Xia; Li, Lin; Xie, He; Liang, Zhili; Su, Jianyu; Liu, Guoqin; Li, Bing

    2013-01-15

    Thermal behavior of palm stearin (PS) and palm olein (PO) was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC). The fatty acid composition (FAC), isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR) and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than exotherms which showed irregular peak shapes. An increasing in cooling rate, generally, was associated with an increase in peak size. Application of the Avaimi equation to isothermal crystallization of PS and PO revealed different nucleation and growth mechanisms based on the Avrami exponents. PS quickly reached the end of crystallization because of more saturated triacylglycerol (TAG). The Avrami index of PS were the same as PO under the same isothermal condition at lower temperatrue, indicating that the crystallization mechanism of the two samples based on super-cooling state were the same. According to the polarized light microscope (PLM) images, crystal morphology of PS and PO was different. With the temperature increased, the structure of crystal network of both PS and PO gradually loosened.

  8. Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms.

    PubMed

    Rümbeli, R; Schirmer, T; Bode, W; Sidler, W; Zuber, H

    1985-11-05

    The light-harvesting protein phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus Cohn has been crystallized in two different crystal forms by vapour diffusion. In 5% (w/v) polyethylene glycol at pH 8.5, hexagonal crystals of space group P63 with cell constants a = b = 158 A, c = 40.6 A were obtained, which turned out to be almost isomorphous with the hexagonal crystals of C-phycocyanin from the same organism. Consequently, the conformation of both phycobiliproteins must be very similar. From 1.5 M-ammonium sulfate (pH 8.5), orthorhombic crystals of space group P2221 with cell constants a = 60.5 A, b = 105 A, c = 188 A could be grown. Density measurements of these crystals indicate that the unit cell contains 18 (alpha beta)-units. A detailed packing scheme is proposed that is consistent with the observed pseudo-hexagonal X-ray intensity pattern and with the known size and shape of (alpha beta)3-trimers of C-phycocyanin. Accordingly, disc-like (alpha beta)3-trimers are associated face-to-face and stacked one upon another in rods with a period of 60.5 A, corresponding to the cell dimension a.

  9. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  10. The role of ligands in coinage-metal nanoparticles for electronics

    PubMed Central

    Kanelidis, Ioannis

    2017-01-01

    Coinage-metal nanoparticles are key components of many printable electronic inks. They can be combined with polymers to form conductive composites and have been used as the basis of molecular electronic devices. This review summarizes the multidimensional role of surface ligands that cover their metal cores. Ligands not only passivate crystal facets and determine growth rates and shapes; they also affect size and colloidal stability. Particle shapes can be tuned via the ligand choice while ligand length, size, ω-functionalities, and chemical nature influence shelf-life and stability of nanoparticles in dispersions. When particles are deposited, ligands affect the electrical properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed. PMID:29259877

  11. In vitro and in vivo anti-tumor efficacy of 10-hydroxycamptothecin polymorphic nanoparticle dispersions: shape- and polymorph-dependent cytotoxicity and delivery of 10-hydroxycamptothecin to cancer cells.

    PubMed

    Wang, Hongdi; Feng, Jialing; Liu, Guijin; Chen, Baoqiong; Jiang, Yanbin; Xie, Qiuling

    2016-05-01

    Nanotechnology associated with a crystal engineering approach was proposed for improving the solubility and efficacy of hydrophobic drugs in this study. 10-hydroxycamptothecin polymorphic nanoparticle dispersions (HCPT-PNDs) were prepared using the supercritical anti-solvent technique coupled with the high-pressure homogenization method. Shape- and polymorph-dependent tumor suppression was observed in both in vitro and in vivo models, where needle-shaped HCPT-PND exhibited dramatic improvement of antitumor efficacy. A benefit of controllable size and a large surface-to-volume ratio of needle-shaped nanoparticles is the improvement of dissolution properties, which facilitates enhancing pharmacokinetic and pharmaco-dynamic properties. The needle-shaped HCPT-PND, which with longer blood retention time and more effective cellular uptake, makes it possible to accumulate drug in tumor tissues and exhibit higher cytotoxicity. No severe systemic toxicity was observed due to sustained-dissolution and the low dose of drug in normal tissues. The results suggest that the needle-shaped HCPT-PND is an interesting nano-formulation of HCPT. Nanotechnology has enabled the production of novel therapeutics drugs against cancer. Here, the authors investigated the use of a crystal engineering approach for the modification of camptothecin in order to improve its water solubility. Physicochemical and biological properties were studied. The results would suggest the applicability of this approach for nano-formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Facile controlled synthesis of micro/nanostructure MCrO 4 (M = Ba, Pb) by using Gemini surfactant C 12-PEG-C 12 as a soft template

    NASA Astrophysics Data System (ADS)

    Chang, Wengui; Shen, Yuhua; Xie, Anjian; Liu, Xue

    2010-04-01

    Gemini surfactants, double sodium α-sulfonic polyethylene glycol laurate (abbreviated C 12-PEG-C 12), were prepared and applied as soft templates in the controlled synthesis of BaCrO 4 and PbCrO 4 micro/nanocrystals. The template effects were investigated by adjusting the length of the spacer, using PEG400 and PEG4000, of the Gemini surfactant. The results indicated that the size and morphology of BaCrO 4 and PbCrO 4 micro/nanocrystals varied with the change in spacer length of C 12-PEG-C 12, suggesting that the different lengths of the polyethylene glycol group spacers in the Gemini surfactants played a key role in determining the size and shape of the MCrO 4 micro/nanoparticles. The dynamic process of the formation of the novel morphology BaCrO 4 crystals showed that the morphology grew from a round-bar polyhedron, to regular polyhedron, to approximate octahedron to a uniform pistachio nut shape. The growth mechanism of the BaCrO 4 micro/nanocrystals was explained that C 12-PEG-C 12 had a greater interfacial adsorption and would effectively control the shape evolution during the crystal growth, while PbCrO 4 could be explained that the Gemini surfactants can undergo liquid-crystalline phase transitions with long channels providing a soft template effect and derived the nanorods formation. Room temperature fluorescence spectra were studied and these showed that the pistachio-shaped BaCrO 4 microcrystals and PbCrO 4 nanorods possess photoactive luminescence properties with emission peaks at 470 and 549 nm, respectively.

  13. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    NASA Astrophysics Data System (ADS)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  14. Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes . I. Solvent effects and growth morphology

    NASA Astrophysics Data System (ADS)

    Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1999-03-01

    Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.

  15. Crystallization kinetics in Si-1 at%Sn during rapid solidification in undercooled melt

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Ozawa, S.; Nagayama, K.; Inatomi, Y.

    2017-06-01

    In order to elucidate the cause of the morphological transition of crystals growing in an undercooled melt of semiconducting materials, we carried out the containerless solidification of undoped Si and Si-1 at%Sn using a CO2 laser-equipped electromagnetic levitator (EML). The crystallization of these materials was successfully achieved under controlled undercooling. The relation between the shape of growing crystals and the degree of undercooling in Si-1 at%Sn was similar to that in undoped Si; that is, plate-like needle crystals were observed at low undercooling, whereas at medium and high undercooling the shape of growing crystals changed to massive dendrites. The grain-size of as-solidified samples of Si-1 at%Sn was remarkably small compared with that of undoped Si. The surface morphologies of samples solidified by dropping the melt onto a chill plate of mirror-polished silicon consisted of typical twin-related <110> dendrites. On the other hand, samples that were dropped from the undercooled state consisted of twin-free <100> dendrites. The nucleation rate of two-dimensional nuclei calculated on the basis of two mechanisms, which are the twin-plane re-entrant edge mechanism and the twin-free mechanism, suggested that the morphological transition to twin-free <100> dendrites from twin-related <110> dendrites occurs when the degree of undercooling becomes larger than the critical value. These results indicate that the cause of the morphological transition of Si growing in the undercooled melt is not the roughening transition of the crystal-melt interface but the transition of the nucleation kinetics to the twin-free mechanism from the twin-related mechanism.

  16. Numerical Simulation of Polysilicon Solid-liquid Interface Transmogrification in Heat Transfer Process

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Ma, Wenhui; Lv, Guoqiang; Zhang, Mingyu

    2018-01-01

    The shape of solid-liquid interface during the directional solidification process, which is difficult to be observed and measured in actual processes, controls the grain orientation and grain size of polysilicon ingot. We carried out numerical calculations of the directional solidification progress of polycrystalline silicon and invested the means to deal with the latent heat of solidification in numerical simulation. The distributions of the temperature field of the melt for the crystallization progress as well as the transformation of the solid-liquid interface were obtained. The simulation results are consistent with the experimental outcomes. The results show that the curvature of solid-liquid interface is small and stability, larger grain sized columnar crystal can be grown in the laboratory-scale furnace at a solidification rate of 10 μm•s-1. It shall provide important theoretical basis for metallurgical process and polysilicon production technology.

  17. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  18. Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth.

    PubMed

    Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping

    2016-02-24

    The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Retrieving microphysics of cirrus clouds from data measured with raman lidar ramses and a tilted ceilometer

    NASA Astrophysics Data System (ADS)

    Borovoi, Anatoli; Reichardt, Jens; Görsdorf, Ulrich; Wolf, Veronika; Konoshonkin, Alexander; Shishko, Victor; Kustova, Natalia

    2018-04-01

    To develop a microphysical model of cirrus clouds, data obtained by Raman lidar RAMSES and a tilted ceilometer are studied synergistically. The measurements are interpreted by use of a data archive containing the backscattering matrixes as well as the depolarization, color and lidar ratios of ice crystals of different shapes, sizes and spatial orientations calculated within the physical-optics approximation.

  20. Deciphering the dynamics of olivine nucleation and growth during antigorite breakdown

    NASA Astrophysics Data System (ADS)

    Dilissen, Nicole; Kahl, Wolf-Achim; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Hidas, Károly

    2016-04-01

    Subduction zones are dynamic convergent plate boundaries associated with arc volcanism and earthquakes, which are believed to be controlled by fluids released during devolatilization reactions from the downgoing slab. The high-pressure breakdown of antigorite-serpentinite to prograde chlorite-harzburgite is considered to be the most significant source of water in subduction zones. The Cerro del Almirez ultramafic massif (Betic Cordillera, SE Spain) is a unique exhumed subduction terrane that preserves this dehydration reaction as a sharp front. A key to the understanding of the metamorphic conditions prevailing during serpentinite dehydration is to study the two prominent textures, granofels and spinifex-like chlorite harzburgite, which are the reaction products of antigorite breakdown. The textural study of these two types of Chl-harzburgite can provide insights into the kinetic of serpentinite dehydration reaction and the key factors controlling the overstepping of the reaction. Detailed mapping of textural variations in chlorite-harzburgite unveiled a network of granofels and spinifex-like lenses in the Almirez massif. In this work, we focus in the detailed textural variations across a well-exposed lens of spinifex-like chlorite-harzburgite, surrounded by granofels chlorite-harzburgite. This outcrop allowed us to make a very detailed oriented sampling (every 0.1-0.5 m across the 6 m thick lens) from the granofels into spinifex textures. The petrological study shows a developing transition of the olivine crystal shape, with premature mm-sized spinifex-like olivine crystals at the lens rims and well developed cm-sized spinifex-like grains in the core of the lens. The micro-CT study of oriented cores, together with EBSD study of thin sections from the same cores, allows the 3D reconstruction of olivine shapes and their lattice preferred orientation (LPO), constraining how olivine shapes and LPO differ from one texture to the other. This study provides valuable information on the kinetic of crystallization of olivine and how different textures formed in space and time, associated with the antigorite breakdown reaction.

  1. Fabrication of transparent lead-free KNN glass ceramics by incorporation method

    PubMed Central

    2012-01-01

    The incorporation method was employed to produce potassium sodium niobate [KNN] (K0.5Na0.5NbO3) glass ceramics from the KNN-SiO2 system. This incorporation method combines a simple mixed-oxide technique for producing KNN powder and a conventional melt-quenching technique to form the resulting glass. KNN was calcined at 800°C and subsequently mixed with SiO2 in the KNN:SiO2 ratio of 75:25 (mol%). The successfully produced optically transparent glass was then subjected to a heat treatment schedule at temperatures ranging from 525°C -575°C for crystallization. All glass ceramics of more than 40% transmittance crystallized into KNN nanocrystals that were rectangular in shape and dispersed well throughout the glass matrix. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. The transparency of the glass samples decreased with increasing crystal size. The maximum room temperature dielectric constant (εr) was as high as 474 at 10 kHz with an acceptable low loss (tanδ) around 0.02 at 10 kHz. PMID:22340426

  2. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  3. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  4. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  5. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.

  6. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  7. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  8. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform

    NASA Astrophysics Data System (ADS)

    Feng Zengzhao; Zhang Yongsheng; Jin Zhenkui

    1998-06-01

    Dolostones are well developed in the Ordovician Majiagou Group in the Ordos area, North China Platform. These dolostones can be divided into four types: mud-sized to silt-sized crystalline dolostones not associated with gypsum and halite beds (type I), mud-sized to silt-sized crystalline dolostones associated with gypsum and halite beds (type II), mottled silt-sized to very fine sand-sized crystalline dolostones (fine saccharoidal dolostones) (type III), and mottled coarse silt-sized to fine sand-sized crystalline dolostones (coarse saccharoidal dolostones) (type IV). Type I dolostones consist of mud-sized to silt-sized dolomite crystals. Laminar stromatolites, ripple marks, mud cracks and birdseyes are common. Such dolostones are not associated with gypsum and halite beds, but lath-shaped pseudomorphs after gypsum are common. The ordering of dolomites averages 0.59, and molar concentration of CaCO 3 averages 51.44%. δ13C averages -0.8‰ (PDB Standard), δ18O averages -2.9‰, δCe averages 0.83. The above characteristics suggest that type I dolostones result from penecontemporaneous dolomitization of lime mud on supratidal flat environments by hypersaline sea water. Type II dolostones mainly consist of mud-sized to silt-sized dolomite crystals. They are commonly well laminated but show no desiccation structures. Such dolostones are intercalated within laminated gypsum and halite beds or are intermixed with them. Such dolostones resulted from dolomitization of lime mud by hypersaline sea water in gypsum and halite precipitating lagoons. Type III dolostones consist of coarse silt-sized to very fine sand-sized dolomite crystals. They commonly underlie type I dolostones and grade downwards to dolomite-mottled limestones and pure limestones. The ordering of dolomites averages 0.63, and molar concentration of CaCO 3 averages 55.64%. δ13C averages -0.2‰, δ18O averages -3.3‰, δCe averages 1.24. Such dolostones resulted from reflux dolomitization by hypersaline sea water. Type IV dolostones consist of coarse-silt-sized to fine-sand-sized dolomite crystals. In such dolostones, stylolites are cut by dolomite crystals. Fluid inclusions are present, and the homogenization temperature commonly ranges from 104°C to 203°C. The ordering of dolomites averages 0.85, and molar concentration of CaCO 3 averages 50.65%. δ13C averages 0.6‰, δ18O averages -7.4‰, and δCe averages 1.16. Such dolostones resulted from deep burial dolomitization. In the Ordos area, type I and II dolostones modified by palaeokarstification are the major gas reservoir rocks of the Ordos Gas Field at present. Type IV dolostones show good reservoir characteristics and may also be potential reservoir rocks.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, J. R.

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existencemore » of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.« less

  10. Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao

    2013-08-01

    We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.

  11. Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.

    PubMed

    Bharti, Bhuvnesh; Velev, Orlin D

    2015-07-28

    Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.

  12. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals.

    PubMed

    Zhang, Xiaoyu; Bai, Xue; Wu, Hua; Zhang, Xiangtong; Sun, Chun; Zhang, Yu; Zhang, Wei; Zheng, Weitao; Yu, William W; Rogach, Andrey L

    2018-03-19

    Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr 3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr 3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr 3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m -2 and external quantum yield of 1.7 %. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rock magnetic properties estimated from coercivity - blocking temperature diagram: application to recent volcanic rocks

    NASA Astrophysics Data System (ADS)

    Terada, T.; Sato, M.; Mochizuki, N.; Yamamoto, Y.; Tsunakawa, H.

    2013-12-01

    Magnetic properties of ferromagnetic minerals generally depend on their chemical composition, crystal structure, size, and shape. In the usual paleomagnetic study, we use a bulk sample which is the assemblage of magnetic minerals showing broad distributions of various magnetic properties. Microscopic and Curie-point observations of the bulk sample enable us to identify the constituent magnetic minerals, while other measurements, for example, stepwise thermal and/or alternating field demagnetizations (ThD, AFD) make it possible to estimate size, shape and domain state of the constituent magnetic grains. However, estimation based on stepwise demagnetizations has a limitation that magnetic grains with the same coercivity Hc (or blocking temperature Tb) can be identified as the single population even though they could have different size and shape. Dunlop and West (1969) carried out mapping of grain size and coercivity (Hc) using pTRM. However, it is considered that their mapping method is basically applicable to natural rocks containing only SD grains, since the grain sizes are estimated on the basis of the single domain theory (Neel, 1949). In addition, it is impossible to check thermal alteration due to laboratory heating in their experiment. In the present study we propose a new experimental method which makes it possible to estimate distribution of size and shape of magnetic minerals in a bulk sample. The present method is composed of simple procedures: (1) imparting ARM to a bulk sample, (2) ThD at a certain temperature, (3) stepwise AFD on the remaining ARM, (4) repeating the steps (1) ~ (3) with ThD at elevating temperatures up to the Curie temperature of the sample. After completion of the whole procedures, ARM spectra are calculated and mapped on the HC-Tb plane (hereafter called HC-Tb diagram). We analyze the Hc-Tb diagrams as follows: (1) For uniaxial SD populations, theoretical curve for a certain grain size (or shape anisotropy) is drawn on the Hc-Tb diagram. The curves are calculated using the single domain theory, since coercivity and blocking temperature of uniaxial SD grains can be expressed as a function of size and shape. (2) Boundary between SD and MD grains are calculated and drawn on the Hc-Tb diagram according to the theory by Butler and Banerjee (1975). (3) Theoretical predictions by (1) and (2) are compared with the obtained ARM spectra to estimate quantitive distribution of size, shape and domain state of magnetic grains in the sample. This mapping method has been applied to three samples: Hawaiian basaltic lava extruded in 1995, Ueno basaltic lava formed during Matsuyama chron, and Oshima basaltic lava extruded in 1986. We will discuss physical states of magnetic grains (size, shape, domain state, etc.) and their possible origins.

  14. The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Cun; Sun, Fei; Liu, Xuzhao

    2017-01-01

    The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.

  15. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.

    PubMed

    Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas

    2004-09-01

    The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

  16. Adaptive temperature profile control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  17. Polymer-induced phase separation and crystallization in immunoglobulin G solutions.

    PubMed

    Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen

    2008-05-28

    We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.

  18. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    NASA Astrophysics Data System (ADS)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-02-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of ˜3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c-In2O3 is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH)6] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH)3 to vertices- and edge-shared octahedra in c-In2O3.

  19. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlotthauer, Sergej, E-mail: s.schlotthauer@mailbox.tu-berlin.de; Skutnik, Robert A.; Stieger, Tillmann

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system.more » If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.« less

  20. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth

    NASA Astrophysics Data System (ADS)

    Tirmizi, Shakeel H.; Gill, William N.

    1989-06-01

    The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were found to be responsible for the symmetric dendritic patterns. These are: first, hexagonal symmetry due to the hexagonal closed packed structure, leads to strong anisotropy in molecular attachment kinetics and in surface free energy; second, the competition among side branches causes smaller side branches to melt when they are trapped between larger ones which generate latent heat and prevent the small branches from gaining access to the fresh cold fluid ahead of them. These two factors lead to a channelling effect which prevents the growth of perturbations from occurring randomly and thus directs the evolving crystal structure into patterns which are regular and reproducible. Theoretical models which are local in nature fail to take into account side branch competition, and this is one of their major weaknesses.

  1. 3-D microstructure of olivine in complex geological materials reconstructed by correlative X-ray μ-CT and EBSD analyses.

    PubMed

    Kahl, W-A; Dilissen, N; Hidas, K; Garrido, C J; López-Sánchez-Vizcaíno, V; Román-Alpiste, M J

    2017-11-01

    We reconstruct the 3-D microstructure of centimetre-sized olivine crystals in rocks from the Almirez ultramafic massif (SE Spain) using combined X-ray micro computed tomography (μ-CT) and electron backscatter diffraction (EBSD). The semidestructive sample treatment involves geographically oriented drill pressing of rocks and preparation of oriented thin sections for EBSD from the μ-CT scanned cores. The μ-CT results show that the mean intercept length (MIL) analyses provide reliable information on the shape preferred orientation (SPO) of texturally different olivine groups. We show that statistical interpretation of crystal preferred orientation (CPO) and SPO of olivine becomes feasible because the highest densities of the distribution of main olivine crystal axes from EBSD are aligned with the three axes of the 3-D ellipsoid calculated from the MIL analyses from μ-CT. From EBSD data we distinguish multiple CPO groups and by locating the thin sections within the μ-CT volume, we assign SPO to the corresponding olivine crystal aggregates, which confirm the results of statistical comparison. We demonstrate that the limitations of both methods (i.e. no crystal orientation data in μ-CT and no spatial information in EBSD) can be overcome, and the 3-D orientation of the crystallographic axes of olivines from different orientation groups can be successfully correlated with the crystal shapes of representative olivine grains. Through this approach one can establish the link among geological structures, macrostructure, fabric and 3-D SPO-CPO relationship at the hand specimen scale even in complex, coarse-grained geomaterials. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Crystal dimension of ZSM-5 influences on para selective disproportionation of ethylbenzene.

    PubMed

    Hariharan, Srinivasan; Palanichamy, Muthaiahpillai

    2014-03-01

    Crystal size and crystal dimensions are vital role in shape selective feature. Para selective disproportionation of EthylBenzene (Dip-EB) was investigated over ZSM-5 synthesized in acidic medium. The catalysts were prepared by hydrothermal process with various Si/Al ratios (50, 75 and 100) using fluoride ion precursor. This fluoride ion precursor dissolves the ZSM-5 nutrients below it neutral pH between 4 and 6. The synthesized material was subjected into various physico chemical characterizations such as XRD, SEM, TGA and BET analyses. The XRD patterns showed high crystalline nature and their resulting SEM images were also indicate thin prismatic crystals of large dimension compared with alkaline medium synthesized one. The BET results earned good textural property. Catalytic activity of vapor phase Dip-EB was carried out between 523 and 673 K. As their result, diethylbenzene (DEB) isomers were obtained, but para selective Diethylbenzene (p-DEB) was observed higher than others. The high selectivity towards p-DEB was due to large crystal dimension of ZSM-5 catalysts synthesized in fluoride medium. Hence it is good commercial application for petrochemical feed stock production.

  3. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  4. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    NASA Astrophysics Data System (ADS)

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  5. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading

    PubMed Central

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-01-01

    This paper reports the synthetic route of 3-D network shape α-Fe2O3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe2O3, particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe2O3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil. PMID:27966663

  6. Synthesis of Mesoporous α-Fe2O3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading.

    PubMed

    Park, Chulwoo; Jung, Jinhwan; Lee, Chul Wee; Cho, Joungmo

    2016-12-14

    This paper reports the synthetic route of 3-D network shape α-Fe 2 O 3 from aqueous solutions of iron precursor using a non-ionic polymeric soft-template, Pluronic P123. During the synthesis of α-Fe 2 O 3 , particle sizes, crystal phases and morphologies were significantly influenced by pH, concentrations of precursor and template. The unique shape of worm-like hematite was obtained only when a starting solution was prepared by a weakly basic pH condition and a very specific composition of constituents. The synthesized nanocrystal at this condition had a narrow pore size distribution and high surface area compared to the bulk α-Fe 2 O 3 or the one synthesized from lower pH conditions. The hydrocracking performance was tested over the synthesized iron oxide catalysts with different morphologies. The worm-like shape of iron oxide showed a superior performance, including overall yield of liquid fuel product and coke formation, over the hydrocracking of heavy petroleum oil.

  7. Drug particle size influence on enteric beads produced by a droplet extrusion/precipitation method.

    PubMed

    Cerdeira, A M; Gouveia, L F; Goucha, P; Almeida, A J

    2000-01-01

    The influence of drug particle size on the production of enteric beads by a polymer precipitation technique was investigated. Drug particle dimensions are known to play an important role in most microencapsulation techniques. Bead morphology was greatly influenced by drug particle size, and spherical shaped beads could only be obtained after size reduction of nimesulide crystals. This is confirmed by the angle of repose measurements, which show a significant decrease in theta values when beads are formulated with smaller drug particles. Furthermore, results show that drug encapsulation efficiency and in vitro drug release rates are also greatly dependent on both drug particle size and drug/polymer ratio in the initial suspension. Preparations containing 10.2 microm drug particles show a two-fold increase in the release rates when compared to those prepared with 40 microm particles.

  8. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    NASA Astrophysics Data System (ADS)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  9. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands.

    PubMed

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S; Damborsky, Jiri; Smatanova, Ivana Kuta

    2011-02-01

    Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.

  10. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  11. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals

    PubMed Central

    2017-01-01

    Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures. PMID:28630678

  12. Phase-field crystal simulation facet and branch crystal growth

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin

    2018-05-01

    Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

  13. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  14. Topological defects and shapes of triatic liquid crystal vesicles

    NASA Astrophysics Data System (ADS)

    Serafin, Francesco; Manyuhina, Oksana; Bowick, Mark

    Is shape the manifestation of function, or does shape determine function? Since the time of Aristotle, the study of shape has proven to be a fruitful way to understand the behavior of physical systems, from atomic to biological systems scales. Two dimensional soft membranes are a perfect setting to understand the emergence of shape. An interesting possibility is to control and design new self-assemblable supramolecular shapes by coating the surface of soft closed vesicles with liquid crystals (LC) of various symmetries. The microscopic geometry of the liquid crystal molecules, in particular the structure of topological defects, when combined with the topology of the vesicle's surface, ultimately determines the vesicle's shape. Recent work has shown that the minimal energy shapes of smectic and nematic vesicles are faceted polyhedra. A very soft smectic vesicle develops sharp creases and forms a faceted tetrahedron. When the coating LC has the symmetries of the square, the vesicle forms a cube. In this work we extend these results to a 3-fold symmetric LC, proving that the vesicle's ground state is an octahedron. This gives a systematic way of predicting vesicle's shapes as we change the liquid crystal's symmetry. Soft Matter Program of Syracuse University.

  15. Chemical vapor transport of chalcopyrite semiconductors: CuGaS2 and AgGaS2

    NASA Astrophysics Data System (ADS)

    Lauck, R.; Cardona, M.; Kremer, R. K.; Siegle, G.; Bhosale, J. S.; Ramdas, A. K.; Alawadhi, H.; Miotkowski, I.; Romero, A. H.; Muñoz, A.; Burger, A.

    2014-09-01

    Crystals of CuGaS2 and AgGaS2 with different isotopic compositions have been grown by chemical vapor transport (CVT) using iodine as the transport agent. Before performing the CVT growth, sulfur and copper were purified by sublimation and etching, respectively. 109Ag and the etched 71Ga isotopes were purified from oxides by vacuum annealing. Transparent yellow orange crystals of CuGaS2 and greenish yellow crystals of AgGaS2 were obtained in the shape of platelets, chunks, rods and needles in sizes of up to 8 mm (CuGaS2) and 30 mm (AgGaS2). These crystals were used to study their electronic, vibrational and thermodynamic properties. Higher excitonic states (n=2,3) were observed at low temperatures with wavelength-modulated reflectivity spectroscopy, thus proving an excellent surface and crystal quality. In addition, the experimentally determined non-monotonic temperature dependence of the excitonic energies can be well fitted by using two Bose-Einstein oscillators and their statistical factors, corresponding to characteristic acoustic and optical phonon frequencies. Isotopic shift of excitonic energies has also been successfully observed in these crystals.

  16. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  17. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.

  18. Pure rhombohedral Bi1-x EuxPO4 nano-/micro-structures: fast synthesis, shape evolution and luminescence properties.

    PubMed

    Yu, Dongyan; Liang, Yujun; Zhang, Mengfei; Li, Guogang; Yan, Chunjie

    2016-02-01

    BiPO4 and Eu-doped BiPO4 crystals were synthesized via a simple precipitation route at room temperature, employing Bi(NO3)3 and (NH4)2HPO4 as the reactants, Eu2O3 as the dopant and citric acid as a template. X-ray powder diffraction analyses showed that pure rhombohedral BiPO4 form was obtained, and was the preferential orientation growth of the crystal. Field emission scanning electron microscope observations showed that the concentration of Bi(3+) obviously changed the products' morphologies from nanosphere, hollow sphere to hexagonal prism. The acidity of the solution and the contents of citric acid and Eu(3+) ion tailored the size of the final crystals. Effects of concentration of Eu(3+) ion on the luminescence emission intensity were also investigated. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp.

    PubMed

    Bouillard, J-S; Vilain, S; Dickson, W; Wurtz, G A; Zayats, A V

    2012-01-01

    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses.

  20. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  1. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  2. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  3. Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp

    PubMed Central

    Bouillard, J.-S; Vilain, S.; Dickson, W.; Wurtz, G. A.; Zayats, A. V.

    2012-01-01

    Plasmonic technology relies on the coupling of light to surface electromagnetic modes on smooth or structured metal surfaces. While some applications utilise the resonant nature of surface polaritons, others require broadband characteristics. We demonstrate unidirectional and broadband plasmonic antennas with large acceptance angles based on chirped plasmonic gratings. Near-field optical measurements have been used to visualise the excitation of surface plasmon polaritons by such aperiodic structures. These weakly aperiodic plasmonic crystals allow the formation of a trapped rainbow-type effect in a two-dimensional geometry as surface polaritons of different frequencies are coherently excited in different locations over the plasmonic structure. Both the crystal's finite size and the finite lifetime of plasmonic states are crucial for the generation of broadband surface plasmon polaritons. This approach presents new opportunities for building unidirectional, broadband and broad-angle plasmonic couplers for sensing purposes, information processing, photovoltaic applications and shaping and manipulating ultrashort optical pulses. PMID:23170197

  4. Thermal-gradient migration of brine inclusions in salt crystals

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.

    1982-09-01

    High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.

  5. Note: High-power piezoelectric transformer fabricated with ternary relaxor ferroelectric Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3 single crystal.

    PubMed

    Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou

    2016-03-01

    A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.

  6. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  7. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  8. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  9. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  10. Shaped nanocrystal particles and methods for working the same

    DOEpatents

    Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato

    2007-12-25

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  11. Shaped Nonocrystal Particles And Methods For Making The Same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2005-02-15

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  12. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  13. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF)

    NASA Technical Reports Server (NTRS)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.

    1997-01-01

    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  14. Identification and control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.

    1992-01-01

    This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  15. Size and shape of uniform particles precipitated in homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.

    The assembly of nanosize crystals into larger uniform colloids is a fundamental process that plays a critical role in the formation of a very broad range of fine-particles used in numerous applications in technology, medicine, and national security. It is widely accepted that, along with size, in most of these applications the shape of the particles represents a critical factor. In the current research, we investigate the size and shape control of uniform particles prepared by precipitation in homogeneous solutions. In the first---theoretical---part a combinational mechanism of the shape control during particle growth was proposed and analyzed numerically. The main finding of our simulation is that a proper balance of two processes, preferential attachment of transported monomers at the protruding features of the growing cluster and monomer rearrangement at the cluster surface, can yield a well-defined particle shape that persist for sizes much larger than the original seed over a large interval of time. In the experimental part, three chemically simple systems were selected MgF2, NaMgF3, and PbS for defining and evaluating the key parameters of the shape and size control of the precipitates. Thus, uniform dispersions of particles of different morphologies (spherical, cubic, platelet, and prismatic) were prepared by precipitation in aqueous solutions. The mechanisms of the formation of the resulting particles of different shapes are explained by the role of the pH, temperature, solubility, and ionic strength. Stages of particles growth were evaluated on short and long time scales, winch allowed to propose multistage mechanisms of NaMgF3 growth and estimate induction time and critical nuclei size for MgF2. In addition, for prospective numerical modeling the surface tensions of spherical and platelet particles of MgF2 were evaluated from the X-ray data by a lattice parameter change method. Also, a new method for the evaluation of the variation in the density distribution in colloidal spherical particles was proposed. This method utilizes transmission electron microscopy without high resolution mode and processes acquired images. Suggested method eliminates the dependency of the image contrast on sample crystallinity. The advantage of such approach manifested by the short time sample preparation, fast instrument tune-up, rapid image acquisition and analysis, all of which shortens the processing time.

  16. Active Control of Interface Shape During the Crystal Growth of Lead Bromide

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Batur, C.; Singh, N. B.

    2003-01-01

    A thermal model for predicting and designing the furnace temperature profile was developed and used for the crystal growth of lead bromide. The model gives the ampoule temperature as a function of the furnace temperature, thermal conductivity, heat transfer coefficients, and ampoule dimensions as variable parameters. Crystal interface curvature was derived from the model and it was compared with the predicted curvature for a particular furnace temperature and growth parameters. Large crystals of lead bromide were grown and it was observed that interface shape was in agreement with the shape predicted by this model.

  17. Crystal-growth kinetics of magnetite (Fe3O4) nanoparticles with Ostwald Ripening Model approach

    NASA Astrophysics Data System (ADS)

    Utami, S. P.; Fadli, A.; Sari, E. O.; Addabsi, A. S.

    2018-04-01

    Magnetite (Fe3O4) nanoparticles is a magnetic nanomaterial that have potential properties to be applied as drug delivery The purpose of this study was to determine the influence of time and temperature synthesis of magnetie characteristics and determine its crystal growth kinetics model with Ostwald ripening model approach. Magnetite nanoparticles synthesized from FeCl3, citrate, urea and polyethylene glycol with hydrothermal method at 180, 200 and 220 °C for 1,3,5,7,9 and 12 hours. Characterization by X-ray Diffraction (XRD) indicated that magnetite formed at temperatures of 200 and 220 °C. Magnetite crystallite diameter obtained was 10-29 nm. Characterization by Transmission Electron Mycroscope (TEM) shows that magnetite nanoparticles have uniform size and non-agglomerated. Core-shell shaped particles formed at 200 °C and 220 °C for 3 hours. Irregular shape obtained at 220 °C for 12 hour synthesis with particle diameter about 120 nm. Characterization using Vibrating Sample Magnetometer (VSM) shown that magnetite has super paramagnetism behaviour with the highest saturation magnetization (Ms) was 70.27 emu/g. magnetite crystal growth data at temperature of 220 °C can be fitted by Ostwald ripening growth model with growth controlled by the dissolution of surface reaction (n≈4) with the percent error of 2.53%.

  18. Observation of solid–solid transitions in 3D crystals of colloidal superballs

    PubMed Central

    Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.

    2017-01-01

    Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101

  19. Angular shaping of fluorescence from synthetic opal-based photonic crystal.

    PubMed

    Boiko, Vitalii; Dovbeshko, Galyna; Dolgov, Leonid; Kiisk, Valter; Sildos, Ilmo; Loot, Ardi; Gorelik, Vladimir

    2015-01-01

    Spectral, angular, and temporal distributions of fluorescence as well as specular reflection were investigated for silica-based artificial opals. Periodic arrangement of nanosized silica globules in the opal causes a specific dip in the defect-related fluorescence spectra and a peak in the reflectance spectrum. The spectral position of the dip coincides with the photonic stop band. The latter is dependent on the size of silica globules and the angle of observation. The spectral shape and intensity of defect-related fluorescence can be controlled by variation of detection angle. Fluorescence intensity increases up to two times at the edges of the spectral dip. Partial photobleaching of fluorescence was observed. Photonic origin of the observed effects is discussed.

  20. Wavelength-tunable light shaping with cholesteric liquid crystal microlenses.

    PubMed

    Bayon, Chloé; Agez, Gonzague; Mitov, Michel

    2014-06-21

    The ability to guide light on the mesoscopic scale is important both scientifically and technologically. Especially relevant is the development of wavelength-tunable light-shaping microdevices. Here we demonstrate the use of cholesteric liquid crystal polygonal textures organized as an array of microlenses for this purpose. The beam shaping is controlled by tuning the wavelength of the incident light in the visible spectrum. By taking advantage of the self-organization property of liquid crystals, the structure of the lens and its optical response are tailored by changing the annealing time of the single layer material during a completely integrated one-step process. The intrinsic helical organization of the layer is the cause of the light shaping and not the shape of the surface as for conventional lenses. A new concept of light manipulation using the structure chirality of liquid crystals is demonstrated, which concerns soft matter photonic circuits to mould the light.

  1. Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Yildizhan, Gulsum; Caliskan, Serkan; Ozturk, Ramazan

    2018-04-01

    Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.

  2. Evolution of the Shape of Detached GeSi Crystals in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    A series of GeSi crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. An objective of these experiments is to understand the mechanisms of detached Bridgman growth, a process in which a gap exists between the growing semiconductor crystal and the crucible wall. Crystals grown without wall contact have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus.

  3. Shape-dependence of the thermal and photochemical reactions of methanol on nanocrystalline anatase TiO2

    NASA Astrophysics Data System (ADS)

    Bennett, David A.; Cargnello, Matteo; Diroll, Benjamin T.; Murray, Christopher B.; Vohs, John M.

    2016-12-01

    Structure-activity relationships and the influence of particle size and shape on the partial- and photo-oxidation of methanol on nanocrystalline anatase TiO2 were investigated using temperature-programmed desorption. The study employed two distinct nanoparticle morphologies: truncated bipyramids exposing primarily {101} facets, and flatter platelets exposing primarily {001} surfaces, whose nominal sizes ranged from 10 to 25 nm. The platelets were found to be more active for thermally-driven reactions, such as coupling of methoxide groups to produce dimethyl ether, and deoxygenation to produce methane. A dependence of the reactivity of {001} facets for the coupling of methoxide groups to produce dimethyl ether on facet size was also observed. In contrast to the thermally-driven reactions, the bipyramidal nanoparticles were observed to be more active for a range of photochemical reactions, including oxidation and coupling to produce methyl formate, and photo-decomposition of surface methoxide species. This study also shows how well-defined nanocrystals can be used to help bridge the materials gap between studies of single crystal model catalysts and their high surface area industrial analogs.

  4. Size dependent nanomechanics of coil spring shaped polymer nanowires

    NASA Astrophysics Data System (ADS)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  5. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    PubMed

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  6. Parameterization of the Vertical Variability of Tropical Cirrus Cloud Microphysical and Optical Properties

    NASA Technical Reports Server (NTRS)

    Gerber, Hermann E.

    2004-01-01

    Cloud Integrating Nephelometers (CIN) were flown on the U. North Dakota Citation aircraft and the NASA WB-57 aircraft for the purpose of measuring in-situ the optical extinction coefficient and the asymmetry parameter (g) at a wavelength of 635 nm of primarily ice particles encountered during the NASA CRYSTAL-FACE study of large cumulus clouds (Cu) and their anvils found in the southern Florida region. The probes performance was largely successful and produced archived data for vertical profiles of extinction, asymmetry parameter, and effective radius (Re), the latter being obtained by combining CIN and CVI (total water; Oregon State U.) measurements. Composites of the CIN and CVI data describing the average microphysical and optical behavior of the Cu and their anvils showed the following: The extinction increases with height as a result of the size of the particles also decreasing with height as shown by the Re measurements; near the top of anvils the size of the primary ice particles is about 10-um radius; and the value of g does not vary significantly with height and has a mean value of about 0.73 consistent with the idea that ambient ice crystals are primarily of complex shape and reflect solar radiation more efficiently than particles of pristine crystal shape. Other observations include: The g measurements were found to be an indicator of the phase of the cloud permitting identification of the clouds with water droplets, rain, and ice; visual ranges as small as several tens of meters were occasionally found in "extinction cores" that coincided with strong updraft cores; and comparison of the cloud probes on the Citation showed significant disagreement.

  7. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    NASA Astrophysics Data System (ADS)

    Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd

    The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.

  8. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behaviour

    DOE PAGES

    Sharma, Rahul Kumar; Mudring, Anja -Verena; Ghosh, Pushpal

    2017-03-28

    Rare-earth (RE) doped binary and ternary fluoride nanomaterials are currently receiving the highest attention as phosphor materials due to their potential for a wide range of photonic and biophotonic applications. This review article aims providing and introduction to the field and giving a critical overview about the latest developments in this fast evolving field. First, the underlying photoluminescence mechanisms like up- and downconversion (UC and DC), charge transfer (CT) and energy transfer (ET) between optically active trivalent RE ions are explained. Then, the influence of particle size and surface, shape and lattice strain, as well as the crystal phase ofmore » the host materials on the optical properties of rare earth based nanomaterias are illustrated. In addition, the effect of surface plasmon resonance (SPR) on the rare earth luminescence is discussed. In the following, different synthesis strategies which have been developed for tuning the crystal phase, shape, size, and morphology of the host nanomaterial are presented. The role of surface modification and functionalization for improving the luminescence intensity, stability, aqueous dispersity/dispersibility and biocompatibility of the materials is discussed. Lastly, photonic applications of RE-doped nanofluorides for energy efficient lighting, improved solar cells and biophotonic applications like photodynamic therapy, and biological detection techniques including in vivo and in vitro bioimaging are presented.« less

  9. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rahul Kumar; Mudring, Anja -Verena; Ghosh, Pushpal

    Rare-earth (RE) doped binary and ternary fluoride nanomaterials are currently receiving the highest attention as phosphor materials due to their potential for a wide range of photonic and biophotonic applications. This review article aims providing and introduction to the field and giving a critical overview about the latest developments in this fast evolving field. First, the underlying photoluminescence mechanisms like up- and downconversion (UC and DC), charge transfer (CT) and energy transfer (ET) between optically active trivalent RE ions are explained. Then, the influence of particle size and surface, shape and lattice strain, as well as the crystal phase ofmore » the host materials on the optical properties of rare earth based nanomaterias are illustrated. In addition, the effect of surface plasmon resonance (SPR) on the rare earth luminescence is discussed. In the following, different synthesis strategies which have been developed for tuning the crystal phase, shape, size, and morphology of the host nanomaterial are presented. The role of surface modification and functionalization for improving the luminescence intensity, stability, aqueous dispersity/dispersibility and biocompatibility of the materials is discussed. Lastly, photonic applications of RE-doped nanofluorides for energy efficient lighting, improved solar cells and biophotonic applications like photodynamic therapy, and biological detection techniques including in vivo and in vitro bioimaging are presented.« less

  10. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  11. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE PAGES

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.; ...

    2017-11-21

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  12. Generic features of the primary relaxation in glass-forming materials (Review Article)

    NASA Astrophysics Data System (ADS)

    Kokshenev, Valery B.

    2017-08-01

    We discuss structural relaxation in molecular and polymeric supercooled liquids, metallic alloys and orientational glass crystals. The study stresses especially the relationships between observables raised from underlying constraints imposed on degrees of freedom of vitrification systems. A self-consistent parametrization of the α-timescale on macroscopic level results in the material-and-model independent universal equation, relating three fundamental temperatures, characteristic of the primary relaxation, that is numerically proven in all studied glass formers. During the primary relaxation, the corresponding small and large mesoscopic clusters modify their size and structure in a self-similar way, regardless of underlying microscopic realizations. We show that cluster-shape similarity, instead of cluster-size fictive divergence, gives rise to universal features observed in primary relaxation. In all glass formers with structural disorder, including orientational-glass materials (with the exception of plastic crystals), structural relaxation is shown to be driven by local random fields. Within the dynamic stochastic approach, the universal subdiffusive dynamics corresponds to random walks on small and large fractals.

  13. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Chernov, A. A.

    Molecular dynamics simulations of an embedded atom copper system in the NPH ensemble are used to study the e ective solid-liquid interfacial free energy of quasispherical solid crystals within a liquid. This is within the larger context of MD simulations of this system undergoing solidi cation, where single individually-prepared crystallites of di erent sizes grow until they reach a thermodynamically stable nal state. The resulting equilibrium shapes possess the full structural details expected for solids with weakly anisotropic surface free energies (in these cases, ~5 % radial attening and rounded [111] octahedral faces). The simplifying assumption of sphericity and perfectmore » isotropy leads to an e ective interfacial free energy as appearing in the Gibbs-Thomson equation, which we determine to be ~179 erg/cm 2, roughly independent of crystal size for radii in the 50 - 250 A range. This quantity may be used in atomistically-informed models of solidi cation kinetics for this system.« less

  14. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS{sub 2} domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Song; Yang, Bingchu, E-mail: bingchuyang@csu.edu.cn; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS{sub 2} domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS{sub 2} domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS{sub 2} crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS{sub 2} single crystals. The thickness of triangle and polygon shape MoS{sub 2} crystalsmore » is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS{sub 2} crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS{sub 2}-based devices.« less

  15. The past, present, and future of hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Choi, E.-Joon

    2014-02-01

    Recently, the liquid crystalline materials with a bent-core mesogen have attracted attentions because their interesting properties such as polarity and biaxiality of the mesophase. There are several types of bent-core mesogenic structures have been reported, for instance, banana-shaped, V-shaped molecules, boomerang-shaped, hockey stick-shaped, and Yshaped molecules. In this study, the liquid crystals and the reactive mesogens with the hockey-stick shaped mesogens will be described concerning with the structure-property relationship.

  16. Microstructural control and superconducting properties of YBCO melt textured single crystals

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai

    The high temperature superconductor has great potential for practical applications such as superconducting energy storage systems. Since the levitation force, required specifically for these applications, largely depends on the critical current density and loop size of the superconducting current, large-sized single crystals with high critical current density are desired. To achieve the goal in fabricating YBa2Cu3O 7-delta (Y123) samples suitable for the applications, detailed and systematic studies are required to gain further understanding of the crystal growth and flux pinning mechanisms. This research is aimed at constituting a contribution to the knowledge base for the Y123 high temperature superconductor field by extending the study of processing conditions involved in controlling the microstructure of the Y123 superconductors for the enhancement of crystal growth and superconductor properties. Relations among processing parameters, microstructure, crystal growth, and critical current density of Y123 superconductors have been established. The experimental results reveal that low heating rate and short holding time can lead to refinement of Y2BaCuO5 (Y211) particles, which is strongly favorable to enhancement of the crystal growth and electrical properties of the Y123 superconductors. It was observed that relatively large Y123 crystals (17-22 mm in size) can be obtained with fine needle-shaped Y211 particles, processed with low heating rate and short holding time at the maximum temperatures. Additionally, the research also formulated a technique to fabricate Y123 superconductors with improved electrical properties required for the practical applications. By incorporating additives such as BaCeO3, BaSnO 3, Pt and Nd2O3 into Y123 superconductors, refinement of Y211 particles occurs. In addition, secondary phase particles with sizes in sub-micrometer and nanometer range can be formed in the Y123 superconductors. The interfaces between the Y123 matrix and these Y211 or secondary phase particles are believed to act as flux pinning sites and to enhance the critical current density (Jc) in the superconductor. The results showed that formation of secondary phase inclusions in Y123 by doping with BaCeO3, BaSnO 3, Pt or Nd2O3 result in enhancement of J c due to the effective flux pinning.

  17. Microgravity

    NASA Image and Video Library

    1995-10-25

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to the crystals that form inside metal alloys. Comparing Earth-based and space-based dentrite growth velocity, tip size and shape provid a better understanding of the fundamentals of dentritic growth, including gravity's effects. These shadowgraphic images show succinonitrile (SCN) dentrites growing in a melt (liquid). The space-grown crystals also have cleaner, better defined sidebranches. IDGE was developed by Rensselaer Polytechnic Institude (RPI) and NASA/ Glenn Research Center(GRC). Advanced follow-on experiments are being developed for flight on the International Space Station. Photo gredit: NASA/Glenn Research Center

  18. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  19. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  20. Micro pulling down growth of very thin shape memory alloys single crystals

    NASA Astrophysics Data System (ADS)

    López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.

    Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.

  1. Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load

    NASA Astrophysics Data System (ADS)

    Lindquist, P. G.; Müllner, P.

    2015-03-01

    This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.

  2. Textural evolution of a dunitic matrix during formation of hybrid troctolites: insights from the Monte Maggiore peridotitic body (Corsica, France).

    NASA Astrophysics Data System (ADS)

    Basch, Valentin; Rampone, Elisabetta; Crispini, Laura; Ildefonse, Benoit; Godard, Marguerite

    2017-04-01

    Many recent studies investigate the formation of hybrid troctolites after melt-rock interactions and impregnation of a dunitic matrix (Drouin et al, 2010; Sanfilippo et al, 2015). They describe the reactive percolation of a melt in a dunite, dissolving olivine and crystallizing interstitial minerals (plagioclase ± clinopyroxene), thus leading to the dismembering of mantle olivines and variations in the olivine crystal number, size and shape (Boudier & Nicolas, 1995). However, despite the number of studies describing a hybrid origin for troctolites, this process is rarely documented in a field-controlled geological setting allowing the observation of a gradient of the amount of melt impregnation in mantle dunites. The Monte Maggiore peridotitic body (Corsica, France) preserves a multi-stage melt-rock reaction decompressional evolution (Rampone et al, 2008), marked by a first episode of olivine-saturated melt percolation at spinel facies, which dissolved mantle pyroxenes and crystallized olivine, thus leading to the formation of replacive dunites. A second diffuse melt impregnation in the spinel peridotites and dunites dissolved olivine and crystallized interstitial plagioclase, orthopyroxene and clinopyroxene at plagioclase-facies conditions. This increasing modal proportion in interstitial phases led to the replacive formation of plagioclase peridotites, plagioclase dunites and hybrid troctolites. This makes the Monte Maggiore peridotites an ideal case study to investigate the formation of hybrid troctolites and the associated textural evolution of the rock-forming minerals by detailed field and microstructural observations. In order to quantify the evolution of the olivine matrix texture (i.e. number of grains, grain size, shape factor, aspect ratio) at thin section scale with ongoing melt impregnation, we used EBSD maps of 12 samples from spinel dunites to plagioclase dunites and troctolites. In these samples, reactive melt percolation and melt entrapment led to decrease of modal olivine coupled to increase of modal interstitial phases. We observed a correlated evolution of textural parameters in olivine at increasing amount of melt impregnation, namely a progressive increase of the number of grains, decreasing grain size and a decrease in the shape factor and aspect ratio of the grains. Overall, this textural evolution is indicative of a dismembering of corroded mantle olivine grains into several small rounded grains (low shape factor and aspect ratio), caused by reactive melt percolation and crystallization. These observations confirm the possible hybrid origin of troctolites after impregnation of an olivine matrix, and quantify the evolution of the texture and dismembering of olivines after melt-related corrosion. Boudier, F., Nicolas, A. (1995) Nature of the Moho Transition Zone in the Oman Ophiolite, Journal of Petrology,36:777-796. Drouin, M., Ildefonse, B., Godard, M. (2010) A microstructural imprint of melt impregnation in slow spreading lithosphere: Olivine-rich troctolites from the Atlantis Massif, Mid-Atlantic Ridge, 30°N, IODP Hole U1309D, Geochem. Geophys. Geosyst., 11, Q06003, doi:10.1029/2009GC002995. Rampone, E., Piccardo, G.B., Hofmann, A.W. (2008) Multi-stage melt-rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence, Contributions to Mineralogy and Petrology, 156:453-475, doi: 10.1007/s00410-008-0296-y Sanfilippo, A., Morishita, T., Kumagai, H., Nakamura, K., Okino, K., Hara, K., Tamura, A., Arai, S. (2015) Hybrid troctolites from Mid-Ocean Ridges: Inherited mantle in the lower crust, Lithos, doi: 10.1016/j.lithos.2015.06.025

  3. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  4. Coffee-rings and glasses: Colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Yunker, Peter Joseph

    This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the deposition of particles during evaporation and the glass transition are explored. In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres. In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy materials. "Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional chambers at high packing fractions; this system enabled the study of the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles exhibit a mix of rotational and translational character. Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a correlated manner. During aging, we observed that the size of these collective rearrangements increases. Thus, the slowing dynamics of aging appear governed by growing correlated domains of particles required for relaxation. Using the same microgel particles, the transformation of a crystal into a glass due to added disorder was investigated by adding smaller particles into a quasi-two-dimensional colloidal crystal. The crystal-glass transition bears structural signatures similar to those of the crystal-fluid transition, but also exhibits a sharp change in dynamic heterogeneity which ``turns-on'' abruptly as a function of increasing disorder. Finally, we investigated the influence of morphology and size on the vibrational properties of disordered clusters of colloidal particles. Spectral features of cluster vibrational modes are found to depend strongly on the average number of nearest neighbors but only weakly on the number of particles in each glassy cluster. The scaling of the median phonon frequency with nearest neighbor number is reminiscent of athermal simulations of the jamming transition.

  5. Coupling of the microphysical and optical properties of an Arctic nimbostratus cloud during the ASTAR 2004 experiment: Implications for light-scattering modeling

    NASA Astrophysics Data System (ADS)

    Jourdan, Olivier; Mioche, Guillaume; Garrett, Timothy J.; SchwarzenböCk, Alfons; Vidot, JéRôMe; Xie, Yu; Shcherbakov, Valery; Yang, Ping; Gayet, Jean-FrançOis

    2010-12-01

    Airborne measurements in an Arctic mixed-phase nimbostratus cloud were conducted in Spitsbergen on 21 May 2004 during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) campaign. The in situ instrument suite aboard the Alfred Wegener Institute Polar 2 aircraft included a polar nephelometer (PN), a cloud particle imager (CPI), a Nevzorov probe, and a standard PMS 2DC probe to measure the cloud particle single-scattering properties (at a wavelength of 0.8 μm), and the particle morphology and size, as well as the in-cloud partitioning of ice/water content. The main objective of this work is to present a technique based on principal component analysis and light-scattering modeling to link the microphysical properties of cloud particles to their optical characteristics. The technique is applied to the data collected during the 21 May case study where a wide variety of ice crystal shapes and liquid water fractions were observed at temperatures ranging from -1°C to -12°C. CPI measurements highlight the presence of large supercooled water droplets with diameters close to 500 μm. Although the majority of ice particles were found to have irregular shapes, columns and needles were the prevailing regular habits between -3°C and -6°C while stellars and plates were observed at temperatures below -8°C. The implementation of the principal component analysis of the PN scattering phase function measurements revealed representative optical patterns that were consistent with the particle habit classification derived from the CPI. This indicates that the synergy between the CPI and the PN can be exploited to link the microphysical and shape properties of cloud particles to their single-scattering characteristics. Using light-scattering modeling, we have established equivalent microphysical models based on a limited set of free parameters (roughness, mixture of idealized particle habits, and aspect ratio of ice crystals) that reproduce the main optical features assessed for cloud regions with different particle geometries and liquid water fractions. However, the retrieved bulk microphysical parameters can substantially differ from the measurements (by several times for the effective size and up to 3 orders of magnitude for the number concentration). Several possible explanations for these discrepancies are discussed. The retrievals show that the optical contribution of small particles with sizes lower than 50 μm (droplets and ice crystals) is significant, always exceeding 50% of the total scattering signal, and thus needs to be more accurately quantified. The shattering of large ice crystals on the shrouded inlet of the PN could also strongly affect the retrieved microphysical parameters.

  6. Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument

    NASA Technical Reports Server (NTRS)

    Gerber, H.; DeMott, P. J.; Rogers, D. C.

    1995-01-01

    The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

  7. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE PAGES

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; ...

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni 59Zr 20Ti 16Si 2Sn 3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO 3, ZrTiO 4 and ZrSnO 4 ternary oxide phases observed on the surface of metallic glass at below glassmore » transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  8. MAPLE deposition of nanomaterials

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  9. Discrete Dipole Approximation Models of Crystalline Forsterite: Applications to Cometary Crystalline Silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.

    2012-10-01

    In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.

  10. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  11. Laser materials processing facility

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1982-01-01

    The laser materials processing facility and its capabilities are described. A CO2 laser with continuous wave, repetitive pulse, and shaped power-time cycles is employed. The laser heated crystal growth station was used to produce metal and metal oxide single crystals and for cutting and shaping experiments using Si3N4 to displace diamond shaping processes.

  12. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    PubMed

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  13. Instrumented Pressing of HE and Inert Materials to Study the Effect of Particle Size

    NASA Astrophysics Data System (ADS)

    Stull, Jamie; Woznick, Caitlin; Deluca, Racci; Patterson, Brain; Thompson, Darla Graff

    2017-06-01

    It is well known that detonation and mechanical properties of high explosives (HE) depend on density. Computationally it has been shown that specific particle-size distributions will lead to better pressed parts. Theoretically this should improve moderate compaction conditions, uniform density and strength. There are many other powder characteristics that are important such as crystal shape and strength. We are interested to explore the role of HE powder characteristics on compaction properties and pellet integrity. We have used an instrumented compaction instrument to press inert and HE powders such as TATB and HMX, which have very different crystal structures. The force and displacement measurements from the instrumented press provide information on the quality of compaction of the specimen in the form of Heckel plots, etc. We have evaluated the thermal and mechanical integrity of resultant pellets by measuring the coefficient of thermal expansion and the compressive strength and strain at failure. We have employed micro x-ray computed tomography (CT) to characterize the microstructure and to quantify the number, the size, and the location of voids. The lack of binder in these specimens greatly simplifies the microstructure analysis and makes the data more amenable to modeling and interpretation.

  14. Melt infiltration of silicon carbide compacts. II - Evaluation of solidification microstructures

    NASA Technical Reports Server (NTRS)

    Asthana, Rajiv; Rohatgi, Pradeep K.

    1993-01-01

    Microstructural aspects of alloy solidification within the interstices of porous compacts of platelet-shaped single crystals of alpha-SiC, when the latter are infiltrated with a hot metal under pressure, have been described. Microstructural evidence is presented of selective reorientation of platelets and nonhomogeneous solute distribution under shear of pressurized melt, of constrained growth of primary solid within finite width zones, and of the modulation of coring due to microsegregation as a result of variations in the pore size of compacts.

  15. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dispersion of γ-Alumina Nano-Sized Spherical Particles in a Calamitic Liquid Crystal. Study and Optimization of the Confinement Effects

    PubMed Central

    Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel

    2014-01-01

    We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528

  17. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less

  18. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  19. Preparation and guest-uptake protocol for a porous complex useful for 'crystal-free' crystallography.

    PubMed

    Inokuma, Yasuhide; Yoshioka, Shota; Ariyoshi, Junko; Arai, Tatsuhiko; Fujita, Makoto

    2014-02-01

    We recently reported a new method for single-crystal X-ray diffraction (SCD) analysis that does not require the crystallization of the target compound. In this 'crystal-free' crystallography, a tiny crystal of a porous complex is soaked in the solution of the target guest. The guest molecules are absorbed and oriented in the crystal pores and can be analyzed by X-ray diffraction. We describe here a detailed synthetic protocol for the preparation of uniform single crystals of the porous host complex and for the subsequent guest uptake. The protocol describes our most versatile porous complex, which is prepared from commercially available ZnI2 and 2,4,6-tri(4-pyridyl)-1,3,5-triazine. The host complex has large pores with a cross-section of 8 × 5 Å(2). Single crystals of the complex are grown from layered solutions of the two components. The pores of the as-synthesized complex are filled with nitrobenzene, which is replaced with the inert solvent cyclohexane. This solvent exchange is essential for the rapid and effective inclusion of target compounds. The most crucial and delicate step is the selection of high-quality single crystals from the mixture of crystals of various shapes and sizes. We suggest using the facial indices of the single crystals as a criterion for crystal selection. Single-crystal samples for X-ray analysis can be prepared by immersing the selected crystals in a cyclohexane/dichloromethane solution of target compound. After a very slow evaporation of the solvent, typically over 2 d, the final crystal can be picked and directly subjected to SCD analysis. The protocol can be completed within ∼16 d.

  20. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  1. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    PubMed Central

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  2. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    PubMed

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  3. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  4. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    NASA Astrophysics Data System (ADS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  5. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen.

    PubMed

    Unni, Mythreyi; Uhl, Amanda M; Savliwala, Shehaab; Savitzky, Benjamin H; Dhavalikar, Rohan; Garraud, Nicolas; Arnold, David P; Kourkoutis, Lena F; Andrew, Jennifer S; Rinaldi, Carlos

    2017-02-28

    Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick "magnetically dead layer" experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.

  6. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry.

    PubMed

    Verleysen, E; Van Doren, E; Waegeneers, N; De Temmerman, P-J; Abi Daoud Francisco, M; Mast, J

    2015-04-08

    Metallic silver is an EU approved food additive referred to as E174. It is generally assumed that silver is only present in bulk form in the food chain. This work demonstrates that a simple treatment with water of "silver pearls", meant for decoration of pastry, results in the release of a subfraction of silver nanoparticles. The number-based size and shape distributions of the single, aggregated, and/or agglomerated particles released from the silver pearls were determined by combining conventional bright-field TEM imaging with semiautomatic particle detection and analysis. In addition, the crystal structure of the particles was studied by electron diffraction and chemical information was obtained by combining HAADF-STEM imaging with EDX spectroscopy and mapping. The TEM results were confirmed by SP-ICP-MS. The representative Ag test nanomaterial NM-300 K was used as a positive control to determine the uncertainty on the measurement of the size and shape of the particles.

  7. Nonequiatomic NiTi Alloy Produced by Self Propagating High Temperature Synthesis

    NASA Astrophysics Data System (ADS)

    Bassani, P.; Bassani, E.; Tuissi, A.; Giuliani, P.; Zanotti, C.

    2014-07-01

    Shape memory alloy NiTi in porous form is of high interest as implantable material, as low apparent elastic modulus, comparable to that of bone, can be achieved. This condition, combined with proper pore size, allows good osteointegration. Porous NiTi can be produced by self propagating high temperature synthesis (SHS), starting from mixed powders of pure Ni and Ti. Process parameters, among which powder compaction degree and preheating temperature, strongly influence the reaction temperature and the resulting product: at low reaction temperatures, high quantity of secondary phases are formed, which are generally considered detrimental for biocompatibility. On the contrary, at higher reaction temperatures, the powders melt and crystallize in ingots. The porous structure is lost and huge pores are formed. Mechanical activation of powders through ball milling and addition of TiH x are investigated as means to reduce reaction temperature and overheating, in order to preserve high porosity and limit secondary phases content. Both processes affect SHS reaction, and require adjustment of parameters such as heating rate. Changes in porous shape and size were observed especially for TiH x additions: the latter could be a promising route to obtain shaped porous products of improved quality.

  8. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination

    PubMed Central

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.

    2016-01-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658

  9. Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.

    PubMed

    Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R

    2016-11-01

    In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.

  10. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments aremore » described and claimed.« less

  11. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.

  12. Holographic photolysis of caged neurotransmitters

    PubMed Central

    Lutz, Christoph; Otis, Thomas S.; DeSars, Vincent; Charpak, Serge; DiGregorio, David A.; Emiliani, Valentina

    2009-01-01

    Stimulation of light-sensitive chemical probes has become a powerful tool for the study of dynamic signaling processes in living tissue. Classically, this approach has been constrained by limitations of lens–based and point-scanning illumination systems. Here we describe a novel microscope configuration that incorporates a nematic liquid crystal spatial light modulator (LC-SLM) to generate holographic patterns of illumination. This microscope can produce illumination spots of variable size and number and patterns shaped to precisely match user-defined elements in a specimen. Using holographic illumination to photolyse caged glutamate in brain slices, we demonstrate that shaped excitation on segments of neuronal dendrites and simultaneous, multi-spot excitation of different dendrites enables precise spatial and rapid temporal control of glutamate receptor activation. By allowing the excitation volume shape to be tailored precisely, the holographic microscope provides an extremely flexible method for activation of various photosensitive proteins and small molecules. PMID:19160517

  13. Purification, crystallization and preliminary X-ray characterization of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin.

    PubMed

    Albillos, Silvia M; Jin, Tengchuan; Howard, Andrew; Zhang, Yuzhu; Kothary, Mahendra H; Fu, Tong-Jen

    2008-07-09

    The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond ( Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0 A and belong to the tetragonal space group P4(1)22, with unit cell parameters of a = b = 150.912 A, c = 165.248 A. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.

  14. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    PubMed

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  15. LCD real-time mask technique for fabrication of arbitrarily shaped microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Chen, Bo; Du, Jinglei; Xiang, Jinshan; Cui, Zheng

    2002-04-01

    A new technique to fabricate arbitrarily shaped microstructures by using LCD (liquid crystal display) real- time mask is reported in this paper. Its principle and design method are explained. Based on partial coherent imaging theory, the process to fabricate micro-axicon array and zigzag grating has been simulated. The experiment using a color LCD as real-time mask has been set up. Micro-axicon array and zigzag grating has been fabricated by the LCD real-time mask technique. The 3D surface relief structures were made on pan chromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of zigzag grating is 46.26micrometers . The caliber of axicon is 118.7micrometers , and the etching depth is 1.332micrometers .

  16. Evidence from mixed hydrate nucleation for a funnel model of crystallization.

    PubMed

    Hall, Kyle Wm; Carpendale, Sheelagh; Kusalik, Peter G

    2016-10-25

    The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes.

  17. Evidence from mixed hydrate nucleation for a funnel model of crystallization

    PubMed Central

    Hall, Kyle Wm.; Carpendale, Sheelagh; Kusalik, Peter G.

    2016-01-01

    The molecular-level details of crystallization remain unclear for many systems. Previous work has speculated on the phenomenological similarities between molecular crystallization and protein folding. Here we demonstrate that molecular crystallization can involve funnel-shaped potential energy landscapes through a detailed analysis of mixed gas hydrate nucleation, a prototypical multicomponent crystallization process. Through this, we contribute both: (i) a powerful conceptual framework for exploring and rationalizing molecular crystallization, and (ii) an explanation of phenomenological similarities between protein folding and crystallization. Such funnel-shaped potential energy landscapes may be typical of broad classes of molecular ordering processes, and can provide a new perspective for both studying and understanding these processes. PMID:27790987

  18. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography.

    PubMed

    Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R

    2016-02-01

    In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3-3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%-7% with phosphor-coated crystals compared to uncoated crystals. These results demonstrate the feasibility of obtaining TOF-DOI capabilities with simple block detector readout using phosphor-coated crystals.

  19. Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.

    2018-05-01

    Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.

  20. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The forsterite crystal shapes (equant, b-platelets, c-platelets, b-colums - excluding a- and c-columns) derived from our modeling [17] of comet Hale-Bopp, compared to laboratory synthesis experiments [18], suggests that these crystals are high temperature condensates. By observing and modeling the crystalline features in comet ISON, we may constrain forsterite crystal shape(s) and link to their formation temperature(s) and environment(s). References: [1] Campins, H., Ryan, E.V. 1989. ApJ, 341, 1059 [2] Crovisier, J., et al. 1997. Science, 275, 1904 [3] Wooden, D.H., et al. 1999. ApJ, 517, 1034 [4] Wooden, D.H., et al. 2004. ApJL, 612, L77 [5] Harker, D.E., et al. 2002. ApJ, 580, 579 [6] --. 2004, ApJ, 615, 1081 [7] Lisse, C.M., et al. 2006. Icarus 195, 941-944. [8] Lisse, C.M., et.al. 2007. Icarus 191, 223-240. [9] Kelley, M.S., et al. 2010, LPSC, 41, #2375 [10] Harker, D.E., et al. 2011, AJ, 141, 26 [11] Draine, B.T., & Flatau, P.J. 1994, J. Opt. Soc. Am. A, 11, 1491 [12] Draine, B.T., & Flatau, P.J. 2008, J. Opt. Soc. Am. A, 25, 2693 [13] Fabian, D., et al., 2001, A&A, 378, 228 [14] Tamanai, A., et al. 2006. ApJ, 648, L147 [15] Tamanai, A., et al. 2009. ASP Conf. Ser., 414, 438 [16] Koike, C., et al. 2010. ApJ, 709, 983 [17] Lindsay, S.S., et al. 2013, ApJ, 766, 54 [18] Tsuchiyama, A. 1998. Mineralogical J., 20, 59 [19] Kobatake, H., et al., 2008. Icarus, 198, 208 [20] Takigawa, A., et al.. 2009. ApJL, 707, L97

  1. Data encoding based on the shape of the ferroelectric domains produced by a scanning probe microscopy tip

    DOE PAGES

    Ievlev, Anton; Kalinin, Sergei V.

    2015-05-28

    Ferroelectric materials are broadly considered for information storage due to extremely high storage and information processing densities they enable. To date, ferroelectric based data storage has invariably relied on formation of cylindrical domains, allowing for binary information encoding. Here we demonstrate and explore the potential of high-density encoding based on domain morphology. We explore the domain morphogenesis during the tip-induced polarization switching by sequences of positive and negative pulses in a lithium niobate single-crystal and demonstrate the principal of information coding by shape and size of the domains. We applied cross-correlation and neural network approaches for recognition of the switchingmore » sequence by the shape of the resulting domains and establish optimal parameters for domain shape recognition. These studies both provide insight into the highly non-trivial mechanism of domain switching and potentially establish a new paradigm for multilevel information storage and content retrieval memories. Furthermore, this approach opens a pathway to exploration of domain switching mechanisms via shape analysis.« less

  2. Structural similarities between hematoidin crystals and asteroid bodies: evidence of lipid composition.

    PubMed

    Brenner, D S; Drachenberg, C B; Papadimitriou, J C

    2001-02-01

    Hematoidin crystals (HC) are found in tissues where extravasated erythrocytes undergo degradation. Previous studies have determined that hematoidin is composed, in part, of a bilirubin-like pigment. In a previous study (Papadimitriou and Drachenberg, Ultrastruct. Pathol. 16, 413-421, 1992), we demonstrated that giant cell asteroid bodies (AB) are formed by membrane lipid bilayers. We evaluated three cases in which HC developed within splenic infarcts. The crystals were analyzed by light microscopy (LM), electron microscopy (EM), and X-ray microanalysis. A case of sarcoidosis with multiple epithelioid granulomas containing AB was studied for comparison. By LM the HC demonstrated intense, golden-color, fine threads, both intracellularly and extracellularly, in small and large clusters, and in radiating, star-shape patterns ranging in size from 2 to 200 microm. By EM the HC were composed of a core of empty clefts, consistent with dissolved lipids, suggestive of cholesterol crystals, and were surrounded by myelinoid membrane aggregates. The AB showed by LM significant morphological similarities with the intracellular HC. By EM, the AB were composed of a core of dense phospholipid bilayer tubes surrounded by a halo of myelinoid membranes. No accumulation of specific elements was found in either HC or AB by X-ray microanalysis. HC and AB show a similar star-shape morphology by both LM and EM. We postulate that this shape is due to the physicochemical properties of the accumulated lipids which originate from superfluous cell membranes created during cell fusion in the case of AB and after cellular (predominantly red cell) breakdown in the case of HC. The golden color of the HC likely results from adsorption of hydrophobic bilirubin-like pigments left over from erythrocyte breakdown into the accumulated lipids. Thus, this study shows two different (patho)physiological processes that lead to a markedly similar morphological end-product and provides further support to our proposed mechanism for AB formation.

  3. Effect of microstructure on the detonation initiation in energetic materials

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Jackson, T. L.

    2017-12-01

    In this work we examine the role of the microstructure on detonation initiation of energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is based on simulations of void collapse at the microscale, modeled at the mesoscale as hot-spots, while the reaction rate at the mesoscale is modeled using density-based kinetics. We carry out two-dimensional simulations of random packs of HMX crystals in a binder. We show that mean particle size, size distribution, and particle shape have a major effect on the transition between detonation and no-detonation, thus highlighting the importance of the microstructure for shock-induced initiation.

  4. Crystallization of proteins by dynamic control of supersaturation. Ph.D. Thesis Semiannual Status Report, 21 Mar. - 20 Sep. 1990

    NASA Technical Reports Server (NTRS)

    Wilson, Lori June

    1990-01-01

    The growth of protein crystals is known to be the limiting factor in the determination of the three-dimensional structures of most proteins. It is expected that the kinetics of supersaturation, which is directly related to solvent evaporation, will affect protein crystal growth and nucleation and accordingly determine the quality, number, size, and morphology of the crystals. With a technique that controls the evaporation of solvent from a protein solution with N2(g) it is possible to determine the effect of different evaporation profiles on hen egg white lysozyme crystals. Hen egg white lysozyme was chosen as the model protein because it crystallizes easily and has solubility data available for most salt, pH, and temperature ranges. Commercially available lysozyme was further purified by a number of methods. Crystals grown with the purified lysozyme and with the unpurified lysozyme in citrate buffer were different shapes but were found to be of the same symmetry space group by precession photos. Differences were seen in the lysozyme crystals grown using different evaporation rates. At three of the four initial conditions for lysozyme crystal growth, longer evaporation times yielded better crystals. The evaporation times required to see a change in the appearance of the crystals was much longer than expected. The number of rates studied so far represent only a small fraction of the ones now available with the gas evaporation device. The technique also provides for control of both solution pH and temperature which are related to the solubilities of proteins.

  5. Crystal Structure of Two V-shaped Ligands with N-Heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang

    2017-12-01

    Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.

  6. Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure

    NASA Astrophysics Data System (ADS)

    Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.

    2014-01-01

    A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.

  7. Thermal-capillary analysis of small-scale floating zones Steady-state calculations

    NASA Technical Reports Server (NTRS)

    Duranceau, J. L.; Brown, R. A.

    1986-01-01

    Galerkin finite element analysis of a thermal-capillary model of the floating zone crystal growth process is used to predict the dependence of molten zone shape on operating conditions for the growth of small silicon boules. The model accounts for conduction-dominated heat transport in the melt, feed rod and growing crystal and for radiation between these phases, the ambient and a heater. Surface tension acting on the shape of the melt/gas meniscus counteracts gravity to set the shape of the molten zone. The maximum diameter of the growing crystal is set by the dewetting of the melt from the feed rod when the crystal radius is large. Calculations with small Bond number show the increased zone lengths possible for growth in a microgravity environment. The sensitivity of the method to the shape and intensity of the applied heating distribution is demonstrated. The calculations are compared with experimental observations.

  8. 3D numerical simulation of free surface shape during the crystal growth of floating zone (FZ) silicon

    NASA Astrophysics Data System (ADS)

    Han, Xue-Feng; Liu, Xin; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji; Kakimoto, Koichi

    2018-02-01

    In FZ growth processes, the stability of the free surface is important in the production of single crystal silicon with high quality. To investigate the shape of the free surface in the FZ silicon crystal growth, a 3D numerical model that included gas and liquid phases was developed. In this present study, 3D Young-Laplacian equations have been solved using the Volume of Fluid (VOF) Model. Using this new model, we predicted the 3D shape of the free surface in FZ silicon crystal growth. The effect of magnetic pressure on shape of free surface has been considered. In particular, the free surface of the eccentric growth model, which could not be previously solved using the 2D Young-Laplacian equations, was solved using the VOF model. The calculation results are validated by the experimental results.

  9. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Song, M. J.; Leith, A.; McEwen, L.; McEwen, B. F.

    1993-01-01

    To define the ultrastructural accommodation of mineral crystals by collagen fibrils and other organic matrix components during vertebrate calcification, electron microscopic 3-D reconstructions were generated from the normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo. Embedded specimens containing initial collagen mineralizing sites were cut into 0.5-micron-thick sections and viewed and photographed at 1.0 MV in the Albany AEI-EM7 high-voltage electron microscope. Tomographic 3-D reconstructions were computed from a 2 degree tilt series of micrographs taken over a minimum angular range of +/- 60 degrees. Reconstructions of longitudinal tendon profiles confirm the presence of irregularly shaped mineral platelets, whose crystallographic c-axes are oriented generally parallel to one another and directed along the collagen long axes. The reconstructions also corroborate observations of a variable crystal length (up to 170 nm measured along crystallographic c-axes), the presence of crystals initially in either the hole or overlap zones of collagen, and crystal growth in the c-axis direction beyond these zones into adjacent overlap and other hole regions. Tomography shows for the first time that crystal width varies (30-45 nm) but crystal thickness is uniform (approximately 4-6 nm at the resolution limit of tomography); more crystals are located in the collagen hole zones than in the overlap regions at the earliest stages of tendon mineralization; the crystallographic c-axes of the platelets lie within +/- 15-20 degrees of one another rather than being perfectly parallel; adjacent platelets are spatially separated by a minimum of 4.2 +/- 1.0 nm; crystals apparently fuse in coplanar alignment to form larger platelets; development of crystals in width occurs to dimensions beyond single collagen hole zones; and a thin envelope of organic origin may be present along or just beneath the surfaces of individual mineral platelets. Implicit in the results is that the formation of crystals occurs at different sites and times by independent nucleation events in local regions of collagen. These data provide the first direct visual evidence from 3-D imaging describing the size, shape, orientation, and growth of mineral crystals in association with collagen of a normally mineralizing vertebrate tissue. They support concepts that c-axial crystal growth is unhindered by collage hole zone dimensions, that crystals are organized in the tendon in a series of generally parallel platelets, and that crystal growth in width across collagen fibrils may follow channels or grooves formed by adjacent hole zones in register.

  10. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals.

    PubMed

    Dang, Zhiya; Shamsi, Javad; Palazon, Francisco; Imran, Muhammad; Akkerman, Quinten A; Park, Sungwook; Bertoni, Giovanni; Prato, Mirko; Brescia, Rosaria; Manna, Liberato

    2017-02-28

    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr 3 ) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr 3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb 2+ ions to Pb 0 . Subsequently Pb 0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr 3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr 3 lattice. The comparison among CsPbBr 3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb 0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms.

  11. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  12. Design of Silicon Photonic Crystal Waveguides for High Gain Raman Amplification Using Two Symmetric Transvers-Electric-Like Slow-Light Modes

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2013-04-01

    We designed silicon photonic crystal (PhC) waveguides (WGs) for efficient silicon Raman amplifiers and lasers. We adopted narrow-width WGs to utilize two symmetric transvers-electric-like (TE-like) guided modes, which permit efficient external coupling for both the pump and Stokes waves. Modifying the size and shape of air holes surrounding the line-defect WG structures could tune the frequency difference between these two modes, at the Brillouin-zone edge, to match the Raman shift of silicon. Thus, small group velocities are also available both for pump and Stokes waves simultaneously, which results in a large enhancement of Raman gain. The enhancement factor of the Raman gain in the designed structure is more than 100 times that reported previously.

  13. Smectic Layer Origami via Preprogrammed Photoalignment.

    PubMed

    Ma, Ling-Ling; Tang, Ming-Jie; Hu, Wei; Cui, Ze-Qun; Ge, Shi-Jun; Chen, Peng; Chen, Lu-Jian; Qian, Hao; Chi, Li-Feng; Lu, Yan-Qing

    2017-04-01

    Hierarchical architecture is of vital importance in soft materials. Focal conic domains (FCDs) of smectic liquid crystals, characterized by an ordered lamellar structure, attract intensive attention. Simultaneously tailoring the geometry and clustering characteristics of FCDs remains a challenge. Here, the 3D smectic layer origami via a 2D preprogrammed photoalignment film is accomplished. Full control of hierarchical superstructures is demonstrated, including the domain size, shape, and orientation, and the lattice symmetry of fragmented toric FCDs. The unique symmetry breaking of resultant superstructures combined with the optical anisotropy of the liquid crystals induces an intriguing polarization-dependent diffraction. This work broadens the scientific understanding of self-assembled soft materials and may inspire new opportunities for advanced functional materials and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomically thin two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong

    2015-09-25

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.

  15. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation.

    PubMed

    Moribe, Kunikazu; Tozuka, Yuichi; Yamamoto, Keiji

    2008-02-14

    Supercritical fluid technique have been exploited in extraction, separation and crystallization processes. In the field of pharmaceutics, supercritical carbon dioxide (scCO(2)) has been used for the purpose of micronization, polymorphic control, and preparation of solid dispersion and complexes. Particle design of active pharmaceutical ingredients is important to make the solid dosage forms with suitable physicochemical properties. Control of the characteristic properties of particles, such as size, shape, crystal structure and morphology is required to optimize the formulation. For solubility enhancement of poorly water-soluble drugs, preparation of the solid dispersion or the complexation with proper drugs or excipients should be a promising approach. This review focuses on aspects of polymorphic control and complexation behavior of active pharmaceutical ingredients by scCO(2) processing.

  16. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.

    PubMed

    Corkery, Robert W; Tyrode, Eric C

    2017-08-06

    Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the [Formula: see text] band gap relative to the wings. Finally, the distributions of orientations, shapes, sizes and degree of order of crystals within single scales provide useful insights for understanding the mechanisms at play in the formation of these biophotonic nanostructures.

  17. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Amonette, James E.; Kukkadapu, Ravi K.

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals weremore » extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fe total ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.« less

  18. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  19. Influence of temperature on the rhombic shape of paracetamol molecular crystals

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.

    2017-04-01

    The method of differential scanning ellipsometry has been used to study the influence of heating on the rhombic shape of paracetamol molecular crystals. Rhombic molecular paracetamol crystals have been synthesized in vacuum from the vapor phase of paracetamol as a result of complex transformation, which includes a second-order transition that gives rise to a pretransition phase. It has been found that these crystals contain monoclinic nuclei, which favor the form I-to-form II polymorphic transformation during heating.

  20. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less

  1. Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.F.; Wohletz, K.H.

    1983-01-01

    Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less

  2. Thermal conductivity and thermoelectric power of melt processed (Nd/Y)BCO intergrowth crystals

    NASA Astrophysics Data System (ADS)

    Shams, G. A.; Cochrane, J. W.; Russell, G. J.

    2000-07-01

    In a previous paper [C. Cipagauta Mino, J.W. Cochrane, E.H. Volckmann, G.J. Russell, J. Electron. Mater. 26 (1997) 915.], we described a cryogenic thermoelectric cooler with a superconducting passive branch. The efficiency of this device depends on selecting an optimal cross-sectional area for the superconducting element based on its thermal conductivity in a magnetic field. (Nd/Y)BCO intergrowth crystals make an ideal superconducting element due to their relativity low thermal conductivity, high critical current, and large size. In this paper, we describe the thermal conductivity and thermoelectric power over the temperature range 20-300 K in applied magnetic fields up to 5000 G, for a specimen cut from a large high quality melt processed (Nd/Y)BCO intergrowth crystal that has almost optimum oxygen content, estimated to be 6.92±0.02. The shape of the κab and κc curves, without applied field, are similar to those reported for Y123 single crystals, but the absolute values are significantly smaller. This result is discussed in terms of the presence of dispersed particles of the (Nd/Y)211 phase and increased phonon and carrier scattering. However, in the normal state, the anisotropic ratio κabn/ κcn is almost identical in shape and magnitude to that of the electrical conductivity ratio σabn/ σcn. The application of magnetic fields either parallel or perpendicular to the heat flow direction always decreases κab and κc for temperatures below Tc and 120 K, respectively. Superconducting fluctuation phenomena was observed about Tc for both the thermoelectric power and κab data.

  3. Determination of Ice Cloud Models Using MODIS and MISR Data

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.

    2012-01-01

    Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.

  4. Hydrous melts weaken the mantle, crystallization of pargasite and phlogopite does not: Insights from a petrostructural study of the Finero peridotites, southern Alps

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Langone, Antonio; Padrón-Navarta, José Alberto; Zanetti, Alberto; Vauchez, Alain

    2017-11-01

    This study reports petrostructural observations in the pargasite and phlogopite-bearing Finero peridotite massif (Italian Western Alps), which suggest that the pervasive foliation in this massif was formed by deformation concomitant with percolation of hydrous Si-rich melts: (1) diffuse contacts, but systematic parallelism between the pyroxenitic layers and the foliation of the peridotite (2) strong shape and crystal preferred orientations (SPO and CPO), but subhedral or interstitial shapes and weak intracrystalline deformation of the hydrous phases, (3) CPO, but interstitial shapes of the pyroxenes, (4) very coarse olivine grain sizes, which are correlated to the olivine abundance, and (5) elongated shapes, but weak intracrystalline deformation, and extremely weak and highly variable CPO of olivine. The pervasive deformation of the Finero peridotite occurred therefore under conditions that allowed coexistence of H2O-CO2-bearing melts, pargasite, and spinel, that is, temperatures of 980-1080 °C and pressures <2 GPa. The petrostructural observations suggest that the presence of hydrous melts results in accommodation of large amounts of deformation by stress-controlled dissolution-precipitation and advective transport of matter by the melts and in fast grain boundary migration in olivine. By consequence, it produces significant rheological weakening. Water contents in olivine are <4 ppm wt., implying limited contribution of hydration of olivine to weakening. In addition, the analysis of protomylonites composing the external domains of the shear zones that overprint the pervasive foliation indicates that the transition to melt-free conditions results in enhanced contribution of dislocation creep to the deformation. The associated increase of the peridotites' strength leads to onset of strain localization. The latter is not correlated to the local abundance in pargasite or phlogopite, implying that crystallization of amphiboles or phlogopite, even at concentrations of 25 vol.%, does not produce rheological weakening in the upper mantle.

  5. Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots

    PubMed Central

    Songmuang, R; Rastelli, A; Heidemeyer, H; Schmidt, OG

    2006-01-01

    Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1-10] directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules) containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.

  6. Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment

    NASA Astrophysics Data System (ADS)

    Aivazoglou, E.; Metaxa, E.; Hristoforou, E.

    2018-04-01

    The development of magnetite and maghemite particles in uniform nanometer size has triggered the interest of the research community due to their many interesting properties leading to a wide range of applications, such as catalysis, nanomedicine-nanobiology and other engineering applications. In this study, a simple, time-saving and low energy-consuming, microwave-assisted synthesis of iron oxide nanoparticles, is presented. The nanoparticles were prepared by microwave-assisted synthesis using polyethylene glycol (PEG) or PEG and β-cyclodextrin (β-CD)/water solutions of chloride salts of iron in the presence of ammonia solution. The prepared nano-powders were characterized using X-Ray Diffraction (XRD), Transition Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Vibrating Sample Magnetometer (VSM), X-Ray Photoelectron Spectroscopy (XPS) and Thermal analysis (TG/DSC). The produced nanoparticles are crystallized mostly in the magnetite and maghemite lattice exhibiting very similar shape and size, with indications of partial PEG coating. Heating time, microwave power and presence of PEG, are the key factors shaping the size properties of nanoparticles. The average size of particles ranges from 10.3 to 19.2 nm. The nanoparticles exhibit a faceted morphology, with zero contamination levels. The magnetic measurements indicate that the powders are soft magnetic materials with negligible coercivity and remanence, illustrating super-paramagnetic behavior.

  7. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    PubMed

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  8. Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.

    2010-01-01

    Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.

  9. Modeling of dislocation dynamics in germanium Czochralski growth

    NASA Astrophysics Data System (ADS)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  10. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.

    PubMed

    Huang, J Y

    2007-08-01

    Because of technique difficulties in achieving the extreme high-pressure and high-temperature (HPHT) simultaneously, direct observation of the structures of carbon at extreme HPHT conditions has not been possible. Banhart and Ajayan discovered remarkably that carbon onions can act as nanoscopic pressure cells to generate high pressures. By heating carbon onions to approximately 700 degrees C and under electron beam irradiation, the graphite-to-diamond transformation was observed in situ by transmission electron microscopy (TEM). However, the highest achievable temperature in a TEM heating holder is less than 1000 degrees C. Here we report that, by using carbon nanotubes as heaters and carbon onions as high-pressure cells, temperatures higher than 2000 degrees C and pressures higher than 40 GPa were achieved simultaneously in carbon onions. At such HPHT conditions and facilitated by electron beam irradiation, the diamond formed in the carbon onion cores frequently changed its shape, size, orientation, and internal structure and moved like a fluid, implying that it was in a quasimelting state. The fluctuation between the solid phase of diamond and the fluid/amorphous phase of diamond-like carbon, and the changes of the shape, size, and orientation of the solid diamond, were attributed to the dynamic crystallization of diamond crystal from the quasimolten state and the dynamic graphite-diamond phase transformations. Our discovery offers unprecedented opportunities to studying the nanostructures of carbon at extreme conditions in situ and at an atomic scale.

  11. Effect of Al–5Ti–C Master Alloy on the Microstructure and Mechanical Properties of Hypereutectic Al–20%Si Alloy

    PubMed Central

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun; Xu, Yangtao

    2014-01-01

    Al–5Ti–C master alloy was prepared and used to modify hypereutectic Al–20%Si alloy. The microstructure evolution and mechanical properties of hypereutectic Al–20%Si alloy with Al–5Ti–C master alloy additions (0, 0.4, 0.6, 1.0, 1.6 and 2.0 wt%) were investigated. The results show that, Al–5Ti–C master alloy (0.6 wt%, 10 min) can significantly refine both eutectic and primary Si of hypereutectic Al–20%Si alloy. The morphology of the primary Si crystals was significantly refined from a coarse polygonal and star-like shape to a fine polyhedral shape and the grain size of the primary Si was refined from roughly 90–120 μm to 20–50 μm. The eutectic Si phases were modified from a coarse platelet-like/needle-like structure to a fine fibrous structure with discrete particles. The Al–5Ti–C master alloy (0.6 wt%, 30 min) still has a good refinement effect. The ultimate tensile strength (UTS), elongation (El) and Brinell hardness (HB) of Al–20%Si alloy modified by the Al–5Ti–C master alloy (0.6 wt%, 10 min) increased by roughly 65%, 70% and 51%, respectively, due to decreasing the size and changing the morphology on the primary and eutectic Si crystals. The change in mechanical properties corresponds to evolution of the microstructure. PMID:28788509

  12. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    NASA Astrophysics Data System (ADS)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  13. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho

    2015-06-01

    Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.

  14. Molecular Dynamics Study on Nucleation Behavior and Lamellar Mergence of Polyethylene Globule Crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhen; Wang, Simiao

    2012-02-01

    The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.

  15. Rotor-stator molecular crystals of fullerenes with cubane.

    PubMed

    Pekker, Sándor; Kováts, Eva; Oszlányi, Gábor; Bényei, Gyula; Klupp, Gyöngyi; Bortel, Gábor; Jalsovszky, István; Jakab, Emma; Borondics, Ferenc; Kamarás, Katalin; Bokor, Mónika; Kriza, György; Tompa, Kálmán; Faigel, Gyula

    2005-10-01

    Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.

  16. Bioprospecting for microbial products that affect ice crystal formation and growth.

    PubMed

    Christner, Brent C

    2010-01-01

    At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth's cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

  17. Review and comparison of non-conventional imaging systems for three-dimensional digitization of transparent objects

    NASA Astrophysics Data System (ADS)

    Mériaudeau, Fabrice; Rantoson, Rindra; Fofi, David; Stolz, Christophe

    2012-04-01

    Fashion and design greatly influence the conception of manufactured products which now exhibit complex forms and shapes. Two-dimensional quality control procedures (e.g., shape, textures, colors, and 2D geometry) are progressively being replaced by 3D inspection methods (e.g., 3D geometry, colors, and texture on the 3D shape) therefore requiring a digitization of the object surface. Three dimensional surface acquisition is a topic which has been studied to a large extent, and a significant number of techniques for acquiring 3D shapes has been proposed, leading to a wide range of commercial solutions available on the market. These systems cover a wide range from micro-scale objects such as shape from focus and shape from defocus techniques, to several meter sized objects (time of flight technique). Nevertheless, the use of such systems still encounters difficulties when dealing with non-diffuse (non Lambertian) surfaces as is the case for transparent, semi-transparent, or highly reflective materials (e.g., glass, crystals, plastics, and shiny metals). We review and compare various systems and approaches which were recently developed for 3D digitization of transparent objects.

  18. Microstructural Indicators Of Convection In Sills And Dykes

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Neufeld, J. A.; Gilbert, A. J.; Macdonald, R.

    2016-12-01

    The question of whether or not convection occurs in crustal magma chambers is a vexed one, with some advocating vigorous convection while others argue that convection is weak and short-lived. We argue that microstructural analysis is key to determining whether crystallization took place in solidification fronts or whether crystals grew suspended in a convecting magma before settling. The 168m, composite, Shiant Isles Main Sill is dominated by a 140m unit, of which the lower 45m contains olivine phenocrysts. The phenocrysts first fine upwards, then coarsen upwards. The coarsening-upwards sequence contains clustered olivines. Both the extent of sintering and average cluster size increase upwards. The coarsening-upwards sequence is mirrored at the roof. The fining-upwards sequence formed by rapid settling of incoming cargo crystals, while the coarsening-upwards sequence represents post-emplacement growth and clustering of grains suspended in a convecting magma. Convection is also recorded by plagioclase grain shape. Well-facetted and compact plagioclase grains are platy in rapidly-cooled rocks and blocky in slowly-cooled rocks. Plagioclase grain shape varies smoothly across mafic sills, consistent with growth in solidification fronts. In contrast, grain shape is invariant across mafic dykes, consistent with growth as individual grains and clusters suspended in a convecting magma. Convection in sills occurs when the critical Rayleigh number is exceeded, but cooling at vertical walls always results in convective instabilities. That the Shiant Isles Main Sill records prolonged and vigorous convection, while other sills of comparable thickness record grain growth predominantly in solidification fronts, is most likely due to the composite nature of the Shiant. The 140m unit is underlain by 23m of picrite which intruded shortly before - the strongly asymmetric cooling and absence of a cold, stagnant basal thermal boundary layer make convection throughout the sill more likely.

  19. Technical Operations Support III (TOPS III). Task Order 0018: Nanostructured Graphene-Like Polymers

    DTIC Science & Technology

    2010-06-01

    diverse response by a large class of materials: viscoelastic fluids, inelasticity, crystallization of polymers, twinning, shape memory alloys , single...crystal super alloys , and viscoelastic solids. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER...twinning (Rajagopal and Srinivasa (1997)), Kannan et al. (2002)), shape memory alloys (Rajagopal and Srinivasa (1999)), single crystal super alloys

  20. 3D printed glass: surface finish and bulk properties as a function of the printing process

    NASA Astrophysics Data System (ADS)

    Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven

    2015-03-01

    It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.

  1. Size dependent nanomechanics of coil spring shaped polymer nanowires

    PubMed Central

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-01-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials. PMID:26612544

  2. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    PubMed Central

    Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R.

    2016-01-01

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals. PMID:26843254

  3. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI providedmore » the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.« less

  4. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  5. Investigation of the geometrical barrier in Bi-2212 using the magneto-optical technique

    NASA Astrophysics Data System (ADS)

    Lin, Z. W.; Gu, G. D.; Russell, G. J.

    2000-08-01

    It has been found that the penetration of vortices into a weak pinning crystal is governed by a geometrical barrier and they form a dome-shaped flux profile across the crystal. Using the powerful magneto-optical technique, we investigated this geometrical barrier in a high-purity Bi2Sr2CaCu2O8+x single-crystal platelet. Our results show that over the temperature range 20-70 K the dome-shaped profile is observed. Also, the influences of the edge shape and the roughness on the geometrical barrier are discussed.

  6. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion

    NASA Astrophysics Data System (ADS)

    Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.

    2018-01-01

    Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.

  7. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  8. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    PubMed

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  9. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH){sub 3}) to bixbyite-type indium oxide (c-In{sub 2}O{sub 3}). The electron beam is focused onto a single cube-shaped In(OH){sub 3} crystal of {l_brace}100{r_brace} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turnmore » enables the evaluation of the kinetics of c-In{sub 2}O{sub 3} crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH){sub 3} is transformed to a diffuse strongly textured ring-like pattern of c-In{sub 2}O{sub 3} that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In{sub 2}O{sub 3} domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In{sub 2}O{sub 3}), calculated from the shrinkage of the parent c-In(OH){sub 3} crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In{sub 2}O{sub 3} crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of {approx}3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH){sub 3} to c-In{sub 2}O{sub 3} is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH){sub 6}] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH){sub 3} to vertices- and edge-shared octahedra in c-In{sub 2}O{sub 3}. - Graphical abstract: Frame-by-frame analysis of video sequences recorded of HR-TEM images reveals that a single cube-shaped In(OH){sub 3} nanocrystal with {l_brace}100{r_brace} morphology decomposes into bixbyite-type In{sub 2}O{sub 3} domains while being imaged. The mechanism of this decomposition is evaluated through the analysis of the structural relationship between initial (c-In(OH){sub 3}) and transformed (c-In{sub 2}O{sub 3}) phases and though the kinetics of the decomposition followed via the time-resolved shrinkage of the initial crystal of indium hydroxide. Highlights: Black-Right-Pointing-Pointer In-situ time-resolved High Resolution Transmission Electron Microscopy. Black-Right-Pointing-Pointer Crystallographic transformation path. Black-Right-Pointing-Pointer Kinetics of the decomposition in one nanocrystal.« less

  10. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    NASA Astrophysics Data System (ADS)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  11. Reduction of glycine particle size by impinging jet crystallization.

    PubMed

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  13. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ˜5% was observed for the as-extruded samples while it was decreased to ˜4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tension-compression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins. KEYWORDS: NiTiHf, High Temperature Shape memory alloys, Mechanical Characterization, High Strength Shape Memory Alloy, Orientation Dependence of NiTiHf Sayed.

  14. Thermomechanical behavior of shape memory elastomeric composites

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2012-01-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.

  15. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.

  16. Shape-Evolution Control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Guo, Fuqiang; Yang, Lianhong; Jia, Xiuling; Liu, Bin; Xie, Zili; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2017-02-01

    We systematically synthesized CH3NH3PbI3 crystals using solvothermal process, and the reaction conditions such as concentration of the precursor, temperature, time, and lead source have been comprehensively investigated to obtain shape-controlled CH3NH3PbI3 crystals. The results showed that the CH3NH3PbI3 crystals exhibit tetragonal phase and the crystals change from nanoparticles to hopper-faced cuboids. Photoluminescence spectra of the crystals obtained with different lead sources show a blue shift due to the presence of defects in the crystals, and the peak intensity is very sensitive to the lead sources. Moreover, impurities (undesirable byproducts and excess components like HI or CH3NH2) presented during crystal growth can result in hopper growth.

  17. Method for making precisely configured flakes useful in optical devices

    DOEpatents

    Trajkovska-Petkoska, Anka [Rochester, NY; Jacobs, Stephen D [Pittsford, NY; Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY

    2007-07-03

    Precisely configured, especially of geometric shape, flakes of liquid crystal material are made using a mechanically flexible polymer mold with wells having shapes which are precisely configured by making the mold with a photolithographically manufactured or laser printed master. The polymer liquid crystal is poured into the wells in the flexible mold. When the liquid crystal material has solidified, the flexible mold is bent and the flakes are released and collected for use in making an electrooptical cell utilizing the liquid crystal flakes as the active element therein.

  18. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    NASA Astrophysics Data System (ADS)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  19. Surface structure of micro-diamond from ultrahigh-pressure felsic granulite, Bohemian Massif: AFM study of growth and resorption phenomena

    NASA Astrophysics Data System (ADS)

    Kotková, J.; Klapetek, P.

    2012-04-01

    Morphology, associated phases and retrogression phenomena of in-situ microdiamonds formed at extreme pressures in ultrahigh-pressure metamorphic terranes represent excellent tools to study character of diamond-forming media at great depths. Well-preserved microdiamonds discovered recently along with coesite in ultrahigh-pressure granulites of the north Bohemian crystalline basement, European Variscan belt (Kotková et al., 2011), provide unique material for such investigations. The diamonds are enclosed in major granulite phases, i.e. garnet both in felsic and intermediate lithologies and in kyanite in the felsic sample, as well as in zircon. Transmitted and reflected light microscopy of the felsic granulite sample, with peak mineral assemblage garnet, kyanite, feldspar and quartz, revealed presence of numerous, 5-20 μm-sized, perfectly preserved diamond crystals enclosed in kyanite grains. In contrast, diamonds within garnet are rare, can reach up to 30 μm in size, and graphite rims as well as polycrystalline graphite aggregates possibly representing complete diamond retrogression are common. We applied atomic force microscopy to study in-situ crystal morphology and surface microtopographic features, representing clues to the conditions and mechanisms of crystal formation as well as diamond resorption and retrogression. Both diamond enclosed in garnet and in kyanite of the felsic granulite occur exclusively as single crystals. The crystals have octahedral crystal shapes with straight but rounded edges and rounded corners. Concentric triangular terraces delimiting a flat triangular table on crystal scale and small micron-sized negatively oriented downward-pointing trigons developed on the octahedron crystal faces. Higher magnification reveals presence of discontinuous elongate hillocks oriented parallel to the octahedron face edge with positively oriented trigons. We suggest that the large-scale triangular terraces represent growth features. In contrast, the rounding of crystal edges and corners and development of negative trigons reflect diamond resorption. According to experimental works, such features are attributed to high temperature resorption, i.e. oxidation above ~ 950°C due to interaction with CO2 and/or H2O-bearing fluids (or fluid-bearing melts). Our results are consistent with presence of supercritical C-O-H fluid in the rocks in subduction zones documented from other ultrahigh-pressure metamorphic terranes, the resorption morphology corresponding rather to the interaction with water-rich than CO2-rich fluids. Kotková J., ÓBrien P., Ziemann M. (2011): Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology, 39, 7, 667-670.

  20. The Petrogenesis of the Unit 7/8 and 11/12 Chrome-spinel Seams of the Rum Eastern Layered Intrusion (NW Scotland) Re-evaluated

    NASA Astrophysics Data System (ADS)

    O'Driscoll, B.; Daly, J. S.; Emeleus, C. H.; Donaldson, C. H.

    2007-12-01

    Laterally extensive (~2 mm thick) chrome-spinel seams in the Rum Layered Suite, NW Scotland, occur at the junctions of several of the coupled peridotite-troctolite macro-rhythmic units that make up the bulk of the eastern part of the intrusion. A detailed petrographic study of the rocks immediately above and below two of these seams suggests that existing models for seam formation involving early crystallisation and gravitational settling of chrome-spinel crystals from a newly emplaced body of picritic magma may be flawed. Instead, the textural relationships between minerals suggest that olivine crystallisation in the peridotite above each of the seams occurred before that of most of the chrome-spinel. Reaction textures between olivine and chrome-spinel crystals are commonly observed, with plagioclase usually occurring as thin rims between both olivine and chrome-spinel where both are in close proximity. The textural evidence suggests a significant degree of olivine crystal-shape change; it seems that many of the olivine crystals immediately above the main seams may initially have had much more complex (harrisitic) crystal shapes before modification to simpler morphologies in a crystal mush. Plagioclase occurs in the peridotite as large oikocrysts up to several cm in size. Additionally, the chrome-spinel seams occur only in those units that display extensive evidence of syn-magmatic deformation of unconsolidated cumulate in the underlying troctolite, and the seams themselves often exhibit small-scale load structures. A model suggesting in-situ crystallisation of the chrome-spinel seams is proposed, whereby mixing of an evolved interstitial liquid with a primitive picritic melt occurred approximately at the crystal mush-magma interface. The former was released from the unconsolidated troctolite mush as a response to re-mobilization and chaotic slumping, possibly triggered by emplacement of some of the hot picrite into the crystal mush pile. Significant undercooling in the picrite due to emplacement-related cooling had already produced a crystal framework comprising complex skeletal olivine crystal morphologies with very fast growth rates. It is envisaged that the significantly modified olivine textures in the peridotite immediately above both seams can be attributed to upward- moving porosity waves of the same 'mixed' interstitial melt that precipitated the chrome-spinel seams. In addition to formation of the seams at the main unit junctions, 'necklace' or 'chain-like' distributions of chrome-spinel crystals around olivine crystals in the peridotite, as well as the large plagioclase oikocrysts, argue for the presence of a mobile interstitial melt with a protracted cooling history.

  1. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli.

    PubMed

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-02-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.

  2. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli

    PubMed Central

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-01-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114

  3. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  4. All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure.

    PubMed

    Matsui, Katsuma; Segawa, Yasutomo; Itami, Kenichiro

    2014-11-19

    The design and synthesis of a series of carbon nanocages consisting solely of benzene rings are described. Carbon nanocages are appealing molecules not only because they represent junction unit structures of branched carbon nanotubes, but also because of their potential utilities as unique optoelectronic π-conjugated materials and guest-encapsulating hosts. Three sizes of strained, conjugated [n.n.n]carbon nanocages (1, n = 4; 2, n = 5; 3, n = 6) were synthesized with perfect size-selectivity. Cyclohexane-containing units and 1,3,5-trisubstituted benzene-containing units were assembled to yield the minimally strained bicyclic precursors, which were successfully converted into the corresponding carbon nanocages via acid-mediated aromatization. X-ray crystallography of 1 confirmed the cage-shaped structure with an approximately spherical void inside the cage molecule. The present studies revealed the unique properties of carbon nanocages, including strain energies, size-dependent absorption and fluorescence, as well as unique size-dependency for the electronic features of 1-3.

  5. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  6. Neurosurgery contact handheld probe based on sapphire shaped crystal

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Stryukov, D. O.; Rossolenko, S. N.; Kiselev, A. M.; Kurlov, V. N.

    2017-01-01

    A handheld contact probe based on sapphire shaped crystal is developed for intraoperative spectrally-resolved optical diagnostics, laser coagulation and aspiration of malignant brain tissue. The technology was integrated into the neurosurgical workflow for intraoperative real-time identification and removing of invasive brain cancer.

  7. Dependence of Raman Spectral Intensity on Crystal Size in Organic Nano Energetics.

    PubMed

    Patel, Rajen B; Stepanov, Victor; Qiu, Hongwei

    2016-08-01

    Raman spectra for various nitramine energetic compounds were investigated as a function of crystal size at the nanoscale regime. In the case of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), there was a linear relationship between intensity of Raman spectra and crystal size. Notably, the Raman modes between 120 cm(-1) and 220 cm(-1) were especially affected, and at the smallest crystal size, were completely eliminated. The Raman spectral intensity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), like that of CL-20's, depended linearly on crystal size. The Raman spectral intensity of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), however, was not observably changed by crystal size. A non-nitramine explosive compound, 2,4,6-triamino-1,3,5- trinitrobenzene (TATB), was also investigated. Its spectral intensity was also found to correlate linearly with crystal size, although substantially less so than that of HMX and CL-20. To explain the observed trends, it is hypothesized that disordered molecular arrangement, originating from the crystal surface, may be responsible. In particular, it appears that the thickness of the disordered surface layer is dependent on molecular characteristics, including size and conformational flexibility. Furthermore, as the mean crystal size decreases, the volume fraction of disordered molecules within a specimen increases, consequently, weakening the Raman intensity. These results could have practical benefit for allowing the facile monitoring of crystal size during manufacturing. Finally, these findings could lead to deep insights into the general structure of the surface of crystals. © The Author(s) 2016.

  8. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chezganov, D. S.; Lobov, A. I.; Baturin, I. S.; Smirnov, M. M.

    2013-12-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  9. Interface shape and crystallinity in LEC GaAs

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, R.; Pearah, P. J.; Ware, R. M.

    1991-12-01

    Growth striation mapping was used to relate the growth interface shape to crystallinity failure modes in LEC growth of undoped <100> GaAs. The onset of twinning and polycrystallinity were both found to depend on the interface shape near the crystal periphery. The origins of polycrystalline growth were investigated in 8 kg, 3-inch and 4-inch diameter crystals. Interface maps of these crystals show that polycrystalline growth begins when the growth interface periphery turns down, independent of the shape of the central portions. The cause of initial grain boundary formation was found to be included gallium droplets which originate on the surface and migrate through the crystal toward the growth interface. Twinning occurs on {111} facets, usually during shoulder growth. Growth striations show that the sequence of events leading to twin formation consists of deep facet growth, followed by meltback and rapid regrowth. We found it possible to avoid twinning by reducing melt instabilities or by reducing the extent of facet growth.

  10. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  11. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer.

    PubMed

    Cölfen, H; Qi, L

    2001-01-05

    In this paper, a systematic study of the influence of various experimental parameters on the morphology and size of CaCO3 crystals after room-temperature crystallization from water in the presence of poly(ethylene glycol)-block-poly(methacrylic acid) (PEG-b-PMAA) is presented. The pH of the solution, the block copolymer concentration, and the ratio [polymer]/[CaCO3] turned out to be important parameters for the morphogenesis of CaCO3, whereas a moderate increase of the ionic strength (0.016 M) had no influence. Depending on the experimental conditions, the crystal morphologies can be tuned from calcite rhombohedra via rods, ellipsoids or dumbbells to spheres. A morphology map is presented which allows the prediction of the crystal morphology from a combination of pH, and CaCO3 and polymer concentration. Morphologies reported in literature for the same system but under different crystallization conditions agree well with the predictions from the morphology map. A closer examination of the growth of polycrystalline macroscopic CaCO3 spheres by TEM and time-resolved dynamic light scattering showed that CaCO3 macrocrystals are formed from strings of aggregated amorphous nanoparticles and then recrystallize as dumbbell-shaped or spherical calcite macrocrystal.

  12. Transmission electron microscopy study of crystal growth, solid solution, and defect formation: Hollandite and synthetic tremolite

    NASA Astrophysics Data System (ADS)

    Bozhilov, Krassimir Nikolov

    Transmission electron microscopy was applied to study the crystal growth, origin of microstructures, and composition of hollandite and synthetic tremolite. The nonequilibrium shape of hollandite crystals, with reentrant angles between prismatic faces, is interpreted to be due to a multistage growth process and the development of lamellar defects that affect the growth rates of the F-faces. The process of crystal growth can be divided into three phases: (1) development of a core of intergrown romanechite and hollandite structures, (2) topotactic transformation of romanechite to hollandite and development of a lamellar microstructure, and (3) extensive overgrowth of hollandite with a high density of chain multiplicity faults, which alters the shapes of the crystals. The products from time-series of hydrothermal tremolite synthesis experiments from an oxide mixture and by recrystallization from diopside, enstatite, quartz, and water have been characterized. The crystallization starts with rapid, metastable formation of pyroxene and Mg-enriched amphibole. Chain multiplicity faults are low in density. The observed Mg enrichment is due primarily to solid solution involving the magnesio-cummingtonite component, which reaches up to 24 mol% in the initial, metastable growth stage. In products from the final stages of the experiments, the magnesio-cummingtonite component in tremolite varies between 7 and 13 mol%. Formation of monoclinic primitive tremolite is also observed. Experimental recrystallization of pyroxenes to amphibole takes place by a complex, multistage mechanism. The product amphibole crystals have low chain-multiplicity fault densities, which in general are not strongly correlated with variations in the Ca/Mg ratio. The yield of tremolitic amphibole is limited by the sluggishness of diopside hydration and dissolution and the formation of persistent, metastable solid solutions rich in the magnesio-cummingtonite component. Distance Least Squares refinements and lattice energy calculations for magnesio-cummingtonite/tremolite solid solutions reproduce the reduction of symmetry that occurs with reduction of the M4 cation size, as observed in natural amphiboles. Tremolitic amphibole with more than 20% magnesio-cummingtonite component in solid solution favors a primitive monoclinic structure. The intermediate compositions show significant structural distortions, which supports other observations suggesting that such intermediate compositions are unstable.

  13. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  14. Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, A.; Mansouri-Birjandi, M. A.

    2018-02-01

    Implementing intensity-dependent Kerr-like nonlinearity in octagonal-shape photonic crystal ring resonators (OSPCRRs), a new class of optical analog-to-digital converters (ADCs) with low power consumption is presented. Due to its size dependent refractive index, Silicon (Si) nanocrystal is used as nonlinear medium in the proposed ADC. Coding system of optical ADC is based on successive-like approximations which requires only one quantization level to represent each single bit, despite of conventional ADCs that require at least two distinct levels for each bit. Each is representing bit of optical ADC is formed by vertically alignment of double rings of OSPCRRs (DR-OSPCRR) and cascading m number of DR-OSPCRR, forms an m bit ADC. Investigating different parameters of DR-OSPCRR such as refractive indices of rings, lattice refractive index, and coupling coefficients of waveguide-to-ring and ring-to-ring, the ADC's threshold power is tuned. Increasing the number of bits of ADC, increases the overall power consumption of ADC. One can arrange to have any number of bits for this ADC, as long as the power levels are treated carefully. Finite difference time domain (FDTD) in-house codes were used to evaluate the ADC's effectiveness.

  15. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  16. Influence of the counteranion on the ability of 1-dodecyl-3-methyltriazolium ionic liquids to form mesophases

    DOE PAGES

    Stappert, Kathrin; Unal, Derya; Spielberg, Eike T.; ...

    2014-11-25

    The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl –, Br –, I –, I 3 –, PF 6 –, and Tf 2N – [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces themore » triazolium cation to align with it in this crystal structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. As a result, their clearing points shift with increasing anion radius to lower temperatures.« less

  17. Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1989-07-01

    Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.

  18. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low light scattering. Likewise, SEM cannot be used effectively for post-inspection defect review and classification of these very shallow types of defects. To verify and obtain accurate shape and three-dimensional information of those defects, automatic defect review AFM (ADR AFM) is utilized for accurate locating and imaging of DOI. In ADR AFM, non-contact mode imaging is used for non-destructive characterization and preserving tip sharpness for data repeatability and reproducibility. Locating DOI and imaging are performed automatically with a throughput of many defects per hour. Topography images of DOI has been collected and compared with SEM images. The ADR AFM has been shown as a non-destructive metrology tool for defect review and obtaining three-dimensional topography information.

  19. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  20. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    NASA Astrophysics Data System (ADS)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  1. Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization.

    PubMed

    Ambrus, Rita; Radacsi, Norbert; Szunyogh, Tímea; van der Heijden, Antoine E D M; Ter Horst, Joop H; Szabó-Révész, Piroska

    2013-03-25

    Interest in submicron-sized drug particles has emerged from both laboratory and industrial perspectives in the last decade. Production of crystals in the nano size scale offers a novel way to particles for drug formulation solving formulation problems of drugs with low solubility in class II of the Biopharmaceutical Classification System. In this work niflumic acid nanoparticles with a size range of 200-800nm were produced by the novel crystallization method, electrospray crystallization. Their properties were compared to those from evaporative and anti-solvent crystallizations, using the same organic solvent, acetone. There is a remarkable difference in the product crystal size depending on the applied methods. The size and morphology were analyzed by scanning electron microscopy and laser diffraction. The structure of the samples was investigated using differential scanning calorimetry, Fourier-transformed infrared spectroscopy and X-ray powder diffraction. The particles produced using electrospray crystallization process were probably changing from amorphous to crystalline state after the procedure. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Purification, Crystallization and Preliminary X-ray Characterization of Prunin-1, a Major Component of the Almond (Prunus dulcis) Allergen Amandin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albillos, Silvia M.; Jin, Tengchuan; Howard, Andrew

    2008-08-04

    The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond (Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0more » {angstrom} and belong to the tetragonal space group P4{sub 1}22, with unit cell parameters of a = b = 150.912 {angstrom}, c = 165.248 {angstrom}. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.« less

  3. Geochemical Identification in Sediment Provenance during Glacial/Interglacial Period: the Southern Drake Passage

    NASA Astrophysics Data System (ADS)

    Park, Y. K.; Jung, J.; Lee, J. I.; Yoo, K. C.; Kim, J. W.

    2016-12-01

    Clay mineralogy and crystal size distribution in marine sediment is used for the indication of a sediment provenance and climatic changes. Objective of this study is to trace the sediment provenances in the Southern Drake Passage with clay mineralogy, elemental composition and crystal size distributions (CSDs) of clay mineral. In the present study, X-Ray Diffractometer (XRD) measurements showed that smectite, illite and chlorite are dominant phases. The semi-quantitative analysis showed that the relatively proportion of smectite is 50 - 60% in interglacial stage, 30 - 39% in glacial stage. Comparing with REE data, sediments supply was influenced by Weddell sea current and Antarctic Circumpolar Current (ACC). Moreover, elemental composition and microscopic analysis of smectites were carried by Transmission Electron Microscopy (TEM) and energy dispersive spectroscopy (EDS). The composition of smectite clay minerals were plotted on the tertiary diagram indicating that Smectite in Drake Passage was transported from three provenances: South Shetland island, east and west side of Antarctic peninsula during glacial - interglacial period. The CSDs of smectite also indicate the various source of smectite. The variation in the values of α (mean thickness) and β2 (shape or uniformity of the distribution) of smectite grain size will be discussed in terms of the sediment provenance.

  4. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    DOE PAGES

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less

  5. Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27}: Solid-state synthesis, crystal structure and site-preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Beom-Yong; Nam, Gnu; Lee, Dong Woo

    A novel intermetallic compound of Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} has been synthesized through the high-temperature solid-state reaction using Nb-ampoules. A batch of well grown block-/short bar-shaped single-crystals has been obtained, and the crystal structure of the title compound has been characterized by single-crystal X-ray diffraction analyses. Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} adopts the Ho{sub 11}Ge{sub 10}-type structure belonging to the tetragonal space group I4/mmm (Z=4, Pearson symbol tI84) with nine crystallographically unique atomic positions in the asymmetric unit. The lattice parameters are a=12.0163(1) Å and c=16.5396(2) Å. The overall crystal structure can simply be depicted as an assembly of three differentmore » types of co-facial cationic polyhedra centered by anions, which is further enclosed by the three-dimensional (3-D) cage-like anionic framework. The extra amount of In is observed in one of three isolated anionic sites resulting in introducing the Ge/In-mixed site at the Wyckoff 4e site. This unique site-preference of In substitution for Ge at the 4e site has been enlightened via the atomic size-aspect which was fully supported and rationalized by the site- and bond-energies analyses using tight-binding linear muffin-tin orbital (TB-LMTO) calculations. Energy-dispersive X-ray spectroscopy (EDS), density of states (DOS), crystal orbital Hamilton population (COHP), and electron localization function (ELF) analyses for the title compound are also presented. Magnetic susceptibility measurement proves that an antiferromagnetic ordering of Ce atoms at a low temperature with a paramagnetic Curie temperature of −23.2 K. - Graphical abstract: Reported is experimental and theoretical investigations for Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27}, which is the first reported example having the extra amounts of In substitution for Ge at one of three “isolated” anionic sites in the Ho{sub 11}Ge{sub 10}-type phase. The observed In site-preference toward the particular anionic site was rationalized via the atomic size-aspect supported by comprehensive analyses for the site-energies including the Wyckoff 4e and 8j sites. - Highlights: • Block or short-bar shaped single-crystals of Ce{sub 11}Ge{sub 3.73(2)}In{sub 6.27} were synthesized. • The first example of having the In/Ge mixture at the “isolated” anionic site. • The site-preference of In was rationalized by the site- and bond-energies.« less

  6. Effect of crystal habits on the surface energy and cohesion of crystalline powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y

    2014-09-10

    The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.

  7. Connection between the growth rate distribution and the size dependent crystal growth

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  8. Improved detector for the measurement of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zelt, F. B.

    1985-07-01

    The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.

  9. Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2017-12-01

    We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.

  10. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    PubMed Central

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788

  11. Structure of potato tubers formed during spaceflight

    NASA Technical Reports Server (NTRS)

    Croxdale, J.; Cook, M.; Tibbitts, T. W.; Brown, C. S.; Wheeler, R. M.

    1997-01-01

    Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.

  12. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  13. Self-organized chiral colloidal crystals of Brownian square crosses.

    PubMed

    Zhao, Kun; Mason, Thomas G

    2014-04-16

    We study aqueous Brownian dispersions of microscale, hard, monodisperse platelets, shaped as achiral square crosses, in two dimensions (2D). When slowly concentrated while experiencing thermal excitations, the crosses self-organize into fluctuating 2D colloidal crystals. As the particle area fraction φA is raised, an achiral rhombic crystal phase forms at φA ≈ 0.52. Above φA ≈ 0.56, the rhombic crystal gives way to a square crystal phase that exhibits long-range chiral symmetry breaking (CSB) via a crystal-crystal phase transition; the observed chirality in a particular square crystallite has either a positive or a negative enantiomeric sense. By contrast to triangles and rhombs, which exhibit weak CSB as a result of total entropy maximization, square crosses display robust long-range CSB that is primarily dictated by how they tile space at high densities. We measure the thermal distribution of orientation angles γ of the crosses' arms relative to the diagonal bisector of the local square crystal lattice as a function of φA, and the average measured γ (φA) agrees with a re-scaled model involving efficient packing of rotated cross shapes. Our findings imply that a variety of hard achiral shapes can be designed to form equilibrium chiral phases by considering their tiling at high densities.

  14. A Theory of the von Weimarn Rules Governing the Average Size of Crystals Precipitated from a Supersaturated Solution

    NASA Technical Reports Server (NTRS)

    Barlow, Douglas A.; Baird, James K.; Su, Ching-Hua

    2003-01-01

    More than 75 years ago, von Weimarn summarized his observations of the dependence of the average crystal size on the initial relative concentration supersaturation prevailing in a solution from which crystals were growing. Since then, his empirically derived rules have become part of the lore of crystal growth. The first of these rules asserts that the average crystal size measured at the end of a crystallization increases as the initial value of the relative supersaturation decreases. The second rule states that for a given crystallization time, the average crystal size passes through a maximum as a function of the initial relative supersaturation. Using a theory of nucleation and growth due to Buyevich and Mansurov, we calculate the average crystal size as a function of the initial relative supersaturation. We confirm the von Weimarn rules for the case where the nucleation rate is proportional to the third power or higher of the relative supersaturation.

  15. Interaction of rising frazil with suspended particles: tank experiments with applications to nature

    USGS Publications Warehouse

    Reimnitz, E.; Clayton, J.R.; Kempema, E.W.; Payne, J.R.; Weber, W.S.

    1993-01-01

    Widespread occurrence of sediment-laden (turbid) sea ice and high concentrations of diatoms and foraminifers in ice have recently been reported from both polar regions. Many possible mechanisms of particle entrainment into ice have been postulated, among which scavenging by rising frazil ice and nucleation or adhesion of ice onto suspended particles appear to be the most likely ones. No reliable experimental data on the mechanisms, however, are available. Because of the importance of turbid ice for sediment transport, tanks for laboratory-scale experiments were constructed, in which frazil crystals produced at the base were monitored rising through water column laden with various types of particulate matter, including plankton. Observations made in salt water are reported here. Over a distance of 1.5 m, frazil < 1 mm in diameter grew to crystals or flocs several cm in diameter, rising at average velocities of 2 to 3 cm/s. Rise velocities were a function of frazil size, but varied greatly due to interactions of ice particles of different size and velocity and the resulting turbulence. Sand-size particles could be either trapped permanently by rising frazil, or were temporarily supported and again released. With live plankton, a several-fold enrichment of ice occurred, suggesting that their irregular shapes or appendages were caught by ice flocs. Diatom- and foram tests were also relatively effectively trapped. The concentration of silt- and clay-size terrigenous detritus in frazil tended to increase relative to the water. We found no preferential sorting by ice in this size range. Various kinds of evidence showed that ice does not nucleate onto foreign particles, and has no adhesive properties. Foreign material resided in the interstices of crystal aggregates, and particles denser than water could be released by agitation, suggesting that scavenging is a mechanical process. With rising frazil, the settling of particulate matter therefore is either retarded or reversed, resulting in a net upward sediment flux and a sediment-laden ice cover from this process of suspension freezing. ?? 1993.

  16. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  17. Electron crystallographic analysis of two-dimensional streptavidin crystals coordinated to metal-chelated lipid monolayers.

    PubMed Central

    Frey, W; Brink, J; Schief, W R; Chiu, W; Vogel, V

    1998-01-01

    Coordination of individual histidine residues located on a protein surface to metal-chelated lipid monolayers is a potentially general method for crystallizing proteins in two dimensions. It was shown recently by Brewster angle microscopy (BAM) that the model protein streptavidin binds via its surface histidines to Cu-DOIDA lipid monolayers, and aggregates into regularly shaped domains that have the appearance of crystals. We have used electron microscopy to confirm that the domains are indeed crystalline with lattice parameters similar to those of the same protein crystallized beneath biotinylated lipid monolayers. Although BAM demonstrates that the two-dimensional protein crystals grown via metal chelation are distinct from the biotin-bound crystals in both microscopic shape and thermodynamic behavior, the two crystal types show similar density projections and the same plane group symmetry. PMID:9591691

  18. Protein Crystals Grow Purer in Space: Physics of Phenomena

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.

    2000-01-01

    This presentation will summarize the quantitative experimental and theoretical results obtained by B.R. Thomas, P.G. Vekilov, D.C. Carter, A.M. Holmes, W.K. Widierow and the Author, the team with expertise in physics, biochemistry, crystallography and engineering. Impurities inhomogeneously trapped by a growing crystal - e.g., producing sectorial structure and/or striations - may induce macroscopic internal stress in it if an impurity molecule has slightly (less than 10%) different shape or volume than the regular one(s) they replace. We tested for the first time plasticity and measured Young modulus E of the triclinic, not cross-linked lysozyme by triple point bending technique. Triclinic lysozyme crystals are purely elastic with E similar or equal to 1/5 (raised dot) 10 (exp 9) partial derivative yn/sq cm. The strength limit, sigma (sub c) similar or equal to 10 (exp -3)E similar or equal to Epsilon (sub c), where sigma (sub c) and epsilon (sub c) are critical stress and strain, respectively. Scaling E and sigma (sub c) with the lattice spacing suggests similar binding stiffness in inorganic and biomolecular crystals. The inhomogeneous internal stress may be resolved in these brittle crystals either by cracking or by creation of misoriented mosaic blocks during, not after growth. If each impurity molecule induces in the lattice elementary strain epsilon (sub 0) similar or equal to 3 (raised dot) 10 (exp -2) (this is maximal elementary strain that can arise at the supersaturation DELTA mu/kT similar or equal to 2 and macroscopic molecular concentration difference between subsequent macrolayers or growth sectors is partial derivativeC similar or equal to 5 (raised dot) 10 (exp -3), the internal strain epsilon similar or equal to epsilon (sub 0) partial derivative C similar or equal to 10 (exp -4). Mosaic misorientation resolving such strain is approximately 30 arcsec. Tenfold increase of impurity concentration may cause cracking. Estimates of stress in an isometric sectorial crystal show that lysozyme crystals can tolerate the stress till the size of 0.5mm. Dissolving mosaic lysozyme crystal shows that the mosaicity, indeed, is absent below that size.

  19. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  20. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

Top