Sample records for crystal structure charge

  1. Anharmonic vibrational spectroscopy, NBO charges and global chemical reactivity studies on the charge transfer PDCA-.AHMP+ single crystal using DFT calculations

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Bhat, Sheeraz Ahmad; Alam, Mohamad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    The charge transfer (CT) complex of the 2-amino-4-hydroxy-6-methylpyrimidine and 2,3 pyrazinedicarboxylic acid (PDCA-.AHMP+) was synthesized and its single crystal was grown by solution method. The structure of the crystalline complex has been investigated by single crystal X-ray diffraction (SCXRD). The vibrational features of the complex have been studied with the help of FTIR spectra and DFT computation. The anharmonic corrections in vibrational frequencies are made using the GVPT2 method at B3LYP/6-311++G(d,p) level of theory. The frontier molecular orbitals and global chemical reactivity have been calculated to understand the pharmacological aspect of the synthesized crystal. Furthermore, Hirshfeld electrostatic potential (ESP) surface, void space in the crystal structure and natural as well as Mulliken atomic charges are studied.

  2. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    PubMed Central

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  3. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    NASA Astrophysics Data System (ADS)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  4. Multi-temperature study of potassium uridine-5'-monophosphate: electron density distribution and anharmonic motion modelling.

    PubMed

    Jarzembska, Katarzyna N; Řlepokura, Katarzyna; Kamiński, Radosław; Gutmann, Matthias J; Dominiak, Paulina M; Woźniak, Krzysztof

    2017-08-01

    Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a β-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH - anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Han, Fei

    A new polymorph of the RE 2Ru 3Ge 5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc 2Fe 3Si 5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge densitymore » wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm 2Ru 3Ge 5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the onedimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (T CDW) observed in the Pr and Sm analogues are ~200 and ~175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.« less

  6. Bimolecular crystals with an intercalated structure improve poly(p-phenylenevinylene)-based organic photovoltaic cells.

    PubMed

    Lim, Kyung-Geun; Park, Jun-Mo; Mangold, Hannah; Laquai, Frédéric; Choi, Tae-Lim; Lee, Tae-Woo

    2015-01-01

    The exciton dissociation, recombination, and charge transport of bulk heterojunction organic photovoltaic cells (OPVs) is influenced strongly by the nanomorphology of the blend, such as the grain size and the molecular packing. Although it is well known that polymers based on amorphous poly(p-phenylenevinylene) (PPV) have a fundamental limit to their efficiency because of low carrier mobility, which leads to increased recombination and unbalanced charge extraction, herein, we demonstrate that the issue can be overcome by forming bimolecular crystals of an amorphous PPV-based polymer:phenyl-C61 -butyric acid methyl ester (PCBM) intercalated structure. We used amorphous poly(2,5-dioctyloxy-p-phenylene vinylene-alt-2',5'-thienylene vinylene) (PPVTV), which has a simple chemical structure. A reasonably high power conversion efficiency (∼3.5 %) was obtained, although the material has an intrinsically amorphous structure and a relatively large band gap (2.0 eV). We demonstrate a correlation between a well-ordered bimolecular crystal of PPVTV:PCBM and an improved hole mobility of a PPVTV:PCBM film compared to a pristine PPVTV film by using 2 D grazing incidence XRD and space-charge-limited current measurements. Furthermore, we show that the bimolecular crystal structure in high-performance OPVs is related to an optimum molecular packing, which is influenced by the PPVTV:PCBM blending ratio, side-chain length, and molecular weight of the PPVTV polymer. Improved charge transport in PPVTV:PCBM bimolecular crystals leads to a fast sweep out of charges and thus suppression of nongeminate recombination under the operating conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of channeling and radiation of relativistic electrons in charged planes of the crystals with zinc blende structure

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.

    2018-04-01

    In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.

  8. Crystal nucleation and metastable bcc phase in charged colloids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ji, Xinqiang; Sun, Zhiwei; Ouyang, Wenze; Xu, Shenghua

    2018-05-01

    The dynamic process of homogenous nucleation in charged colloids is investigated by brute-force molecular dynamics simulation. To check if the liquid-solid transition will pass through metastable bcc, simulations are performed at the state points that definitely lie in the phase region of thermodynamically stable fcc. The simulation results confirm that, in all of these cases, the preordered precursors, acting as the seeds of nucleation, always have predominant bcc symmetry consistent with Ostwald's step rule and the Alexander-McTague mechanism. However, the polymorph selection is not straightforward because the crystal structures formed are not often determined by the symmetry of intermediate precursors but have different characters under different state points. The region of the state point where bcc crystal structures of large enough size are formed during crystallization is narrow, which gives a reasonable explanation as to why the metastable bcc phase in charged colloidal suspensions is rarely detected in macroscopic experiments.

  9. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  10. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Infinite charge mobility in muscovite at 300 K

    NASA Astrophysics Data System (ADS)

    Russell, F. Michael; Archilla, Juan F. R.; Frutos, Fabian; Medina-Carrasco, Santiago

    2017-11-01

    Evidence is presented for infinite charge mobility in natural crystals of muscovite mica at room temperature. Muscovite has a basic layered structure containing a flat monatomic sheet of potassium sandwiched between mirror silicate layers. It is an excellent electrical insulator. Studies of defects in muscovite crystals indicated that positive charge could propagate over great distances along atomic chains in the potassium sheets in the absence of an applied electric potential. The charge moved in association with anharmonic lattice excitations that moved at about sonic speed and created by nuclear recoil of the radioactive isotope 40K. This was verified by measuring currents passing through crystals when irradiated with energetic alpha particles at room temperature. The charge propagated more than 1000 times the range of the alpha particles of average energy and 250 times the range of channelling particles of maximum energy. The range is limited only by size of the crystal.

  12. Parametrization of semiempirical models against ab initio crystal data: evaluation of lattice energies of nitrate salts.

    PubMed

    Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav

    2005-09-01

    A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.

  13. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  14. The charge-discharge characteristics and diffusion mechanism of Ti-Si-Al thin film anode using an electrically induced crystallization process

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Hung, Fei-Yi; Lui, Truan-Sheng

    2018-04-01

    In this study, an Al-Si-Ti multilayer thin film structure is designed as the anode of a lithium ion battery. The novel structure restricts the expansion of Si during charge-discharge, and its battery capacity can reach 1112 mA h g-1 after a 100-cycle charge-charging test under a 0.2 C charge-discharge rate without annealing. Notably, after a 200 °C vacuum annealing process, the cyclic capacity of the anode rises to 1208 mA h g-1 through crystallization of the Al and Ti buffer layer. However, its thermal diffusion behavior in the Al/Si or Ti/Si interfaces seriously reduces the performance and restricts the expansion of Si. The electrically induced crystallization (EIC) process not only performs crystallization but also controls the interfacial stability, after which its capacity can obviously improve to 1602 mA h g-1 after 100 cycles. Using EIC, the electron flow drives the Cu and Al atoms to endow the Si matrix with doping properties and further increases the electron conductivity of the anode. This result demonstrates that the EIC process is a suitable post-treatment process for multilayer anodes and provides a reference for future battery designs.

  15. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca; Hu, M. Y.

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by randommore » packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.« less

  16. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl 4

    DOE PAGES

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; ...

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI 4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI 4 under ambient conditions. Although high pressure structures of SnI 4 were thought to be determined by random packingmore » of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less

  17. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4.

    PubMed

    Liu, H; Tse, J S; Hu, M Y; Bi, W; Zhao, J; Alp, E E; Pasternak, M; Taylor, R D; Lashley, J C

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure (119)Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  18. Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.

    PubMed

    Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi

    2017-10-04

    Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.

  19. Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs)

    NASA Astrophysics Data System (ADS)

    Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2016-11-01

    Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

  20. Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective

    DOE PAGES

    Pilania, G.; Gubernatis, J. E.; Lookman, T.

    2015-12-03

    The role of dynamical (or Born effective) charges in classification of octet AB-type binary compounds between four-fold (zincblende/wurtzite crystal structures) and six-fold (rocksalt crystal structure) coordinated systems is discussed. We show that the difference in the dynamical charges of the fourfold and sixfold coordinated structures, in combination with Harrison’s polarity, serves as an excellent feature to classify the coordination of 82 sp–bonded binary octet compounds. We use a support vector machine classifier to estimate the average classification accuracy and the associated variance in our model where a decision boundary is learned in a supervised manner. Lastly, we compare the out-of-samplemore » classification accuracy achieved by our feature pair with those reported previously.« less

  1. Charge Stabilized Crystalline Colloidal Arrays As Templates For Fabrication of Non-Close-Packed Inverted Photonic Crystals

    PubMed Central

    Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.

    2010-01-01

    We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800

  2. Structural Variations in β-(BDA-TTP)2FeCl4 at Low Temperature and under Pressure: Charge-Ordered State with a Two-Fold Crystal Structure

    NASA Astrophysics Data System (ADS)

    Sasamori, Kota; Takahashi, Kazuyuki; Kodama, Takeshi; Fujita, Wataru; Kikuchi, Koichi; Yamada, Jun-ichi

    2013-05-01

    The pressure-induced organic superconductor β-(BDA-TTP)2FeCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene], which shows a metal--insulator (MI) transition at TMI = 113 K under ambient pressure, has been found by X-ray study to have a two-fold crystal structure along the c-axis in the insulating state at 10 K. In the donor layer, there are four independent BDA-TTP molecules, which are divided into two charge-poor ones and two charge-rich ones on the basis of the folding dihedral angles around the intramolecular sulfur-to-sulfur axes of two outer dithiane rings in BDA-TTP. The charge separation leads to the formation of two types of dimers: a dimer consisting of two charge-poor donors and a dimer consisting of two charge-rich ones. The tight-binding band calculation revealed a band gap of 5.3 meV in the energy dispersion. The MI transition can be therefore accounted for by the charge separation. In addition, we investigated the crystal and electronic structures of β-(BDA-TTP)2FeCl4 at different pressures up to 21 kbar, and found that the application of pressures causes variations in both the conformation of donor molecule and the donor arrangement, which are responsible for almost uniform interaction in the donor stacking and for an increase in bandwidth (W). As a result, the suppression of MI transition and subsequent occurrence of superconductivity in β-(BDA-TTP)2FeCl4 would be observed with increasing pressure.

  3. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  4. Reversible structure manipulation by tuning carrier concentration in metastable Cu2S

    PubMed Central

    Tao, Jing; Chen, Jingyi; Li, Jun; Mathurin, Leanne; Zheng, Jin-Cheng; Li, Yan; Lu, Deyu; Cao, Yue; Wu, Lijun; Cava, Robert Joseph; Zhu, Yimei

    2017-01-01

    The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects––electronic or structural––is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure. PMID:28855335

  5. Crystal structure of class III chitinase from pomegranate provides the insight into its metal storage capacity.

    PubMed

    Masuda, Taro; Zhao, Guanghua; Mikami, Bunzo

    2015-01-01

    Chitinase hydrolyzes the β-1,4-glycosidic bond in chitin. In higher plants, this enzyme has been regarded as a pathogenesis-related protein. Recently, we identified a class III chitinase, which functions as a calcium storage protein in pomegranate (Punica granatum) seed (PSC, pomegranate seed chitinase). Here, we solved a crystal structure of PSC at 1.6 Å resolution. Although its overall structure, including the structure of catalytic site and non-proline cis-peptides, was closely similar to those of other class III chitinases, PSC had some unique structural characteristics. First, there were some metal-binding sites with coordinated water molecules on the surface of PSC. Second, many unconserved aspartate residues were present in the PSC sequence which rendered the surface of PSC negatively charged. This acidic electrostatic property is in contrast to that of hevamine, well-characterized plant class III chitinase, which has rather a positively charged surface. Thus, the crystal structure provides a clue for metal association property of PSC.

  6. Restoring interlayer Josephson coupling in La 1.885 Ba 0.115 CuO 4 by charge transfer melting of stripe order

    DOE PAGES

    Khanna, V.; Mankowsky, R.; Petrich, M.; ...

    2016-06-30

    Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less

  7. Restoring interlayer Josephson coupling in La 1.885 Ba 0.115 CuO 4 by charge transfer melting of stripe order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanna, V.; Mankowsky, R.; Petrich, M.

    Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less

  8. Stochastic and Deterministic Crystal Structure Solution Methods in GSAS-II: Monte Carlo/Simulated Annealing Versus Charge Flipping

    DOE PAGES

    Von Dreele, Robert

    2017-08-29

    One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less

  9. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    PubMed Central

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka

    2016-01-01

    Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514

  10. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.

    PubMed

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco

    2016-01-01

    An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  11. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity.

    PubMed

    Takahashi, Yukari; Obara, Rena; Lin, Zheng-Zhong; Takahashi, Yukihiro; Naito, Toshio; Inabe, Tamotsu; Ishibashi, Shoji; Terakura, Kiyoyuki

    2011-05-28

    The structural and electrical properties of a metal-halide cubic perovskite, CH(3)NH(3)SnI(3), have been examined. The band structure, obtained using first-principles calculation, reveals a well-defined band gap at the Fermi level. However, the temperature dependence of the single-crystal electrical conductivity shows metallic behavior down to low temperatures. The temperature dependence of the thermoelectric power is also metallic over the whole temperature range, and the large positive value indicates that charge transport occurs with a low concentration of hole carriers. The metallic properties of this as-grown crystal are thus suggested to result from spontaneous hole-doping in the crystallization process, rather than the semi-metal electronic structure. The present study shows that artificial hole doping indeed enhances the conductivity.

  12. Specific Features of the Domain Structure of BaTiO3 Crystals during Thermal Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Kiselev, D. A.; Ilina, T. S.; Malinkovich, M. D.; Sergeeva, O. N.; Bolshakova, N. N.; Semenova, E. M.; Kuznetsova, Yu. V.

    2018-04-01

    This paper presents the results of the study of the domain structure of barium titanate crystals in a wide temperature range including the Curie point ( T C) using the polarization-optical method in the reflected light and the force microscopy of the piezoelectric response. It is shown that a new a-c domain structure forms during cyclic heating of the crystal above T C and subsequent cooling to the ferroelectric phase. The role of uncompensated charges appeared on the crystal surface during the phase transition and their influence on the formation of the domain structure during cooling are discussed.

  13. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  14. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    PubMed

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  15. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.

    PubMed

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-15

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies.

    PubMed

    Giuffre, Anthony J; Hamm, Laura M; Han, Nizhou; De Yoreo, James J; Dove, Patricia M

    2013-06-04

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate-crystal and substrate-liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate-crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.

  17. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies

    PubMed Central

    Hamm, Laura M.; Han, Nizhou; De Yoreo, James J.; Dove, Patricia M.

    2013-01-01

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation. PMID:23690577

  18. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    PubMed Central

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  19. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts

    NASA Astrophysics Data System (ADS)

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-01

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.

  20. Spectroscopic characterization of charge-transfer complexes of morpholine with chloranilic and picric acids in organic media: crystal structure of bis(morpholinium 2,4,6-trinitrocyclohexanolate).

    PubMed

    Refat, Moamen S; El-Zayat, Lamia A; Yeşilel, Okan Zafer

    2010-02-01

    Electron donor-acceptor interaction of morpholine (morp) with chloranilic acid (cla) and picric acid (pa) as pi-acceptors was investigated spectrophotometrically and found to form stable charge-transfer (CT) complexes (n-pi*) of [(Hmorp)(2)(cla)] and [(Hmorp)(pa)](2). The donor site involved in CT interaction is morpholine nitrogen. These complexes are easily synthesized from the reaction of morp with cla and pa within MeOH and CHCl(3) solvents, respectively. (1)HNMR, IR, elemental analyses, and UV-vis techniques characterize the two morpholinium charge-transfer complexes. Benesi-Hildebrand and its modification methods were applied to the determination of association constant (K), molar extinction coefficient (epsilon). The X-ray crystal structure was carried out for the interpretation the predict structure of the [(Hmorp)(pa)](2) complex. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Spectroscopic characterization of charge-transfer complexes of morpholine with chloranilic and picric acids in organic media: Crystal structure of bis(morpholinium 2,4,6-trinitrocyclohexanolate)

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Zayat, Lamia A.; Yeşilel, Okan Zafer

    2010-02-01

    Electron donor-acceptor interaction of morpholine (morp) with chloranilic acid (cla) and picric acid (pa) as π-acceptors was investigated spectrophotometrically and found to form stable charge-transfer (CT) complexes (n-π*) of [(Hmorp) 2(cla)] and [(Hmorp)(pa)] 2. The donor site involved in CT interaction is morpholine nitrogen. These complexes are easily synthesized from the reaction of morp with cla and pa within MeOH and CHCl 3 solvents, respectively. 1HNMR, IR, elemental analyses, and UV-vis techniques characterize the two morpholinium charge-transfer complexes. Benesi-Hildebrand and its modification methods were applied to the determination of association constant ( K), molar extinction coefficient ( ɛ). The X-ray crystal structure was carried out for the interpretation the predict structure of the [(Hmorp)(pa)] 2 complex.

  2. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  3. Understanding polymorphism in organic semiconductor thin films through nanoconfinement.

    PubMed

    Diao, Ying; Lenn, Kristina M; Lee, Wen-Ya; Blood-Forsythe, Martin A; Xu, Jie; Mao, Yisha; Kim, Yeongin; Reinspach, Julia A; Park, Steve; Aspuru-Guzik, Alán; Xue, Gi; Clancy, Paulette; Bao, Zhenan; Mannsfeld, Stefan C B

    2014-12-10

    Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.

  4. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges

    PubMed Central

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-01-01

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881

  5. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.

  6. Structural morphology of crystals with the barite (BaSO 4) structure: A revision and extension

    NASA Astrophysics Data System (ADS)

    Hartman, P.; Strom, C. S.

    1989-09-01

    The structural morphology of crystals with the barite (BaSO 4) structure (sulphates, chromates, perchlorates, permanganates and tetrafluoroborates) has been determined with the use of computer programs. Uniquely defined F forms are {002}, {210}, {211}, {020} and {201}. Two different F slices were found for {101} and {200}, 33 for {011}. Attachment energies and specific surface energies have been calculated for an electrostatic point charge model as a function of the charge distribution in the anion. On this basis it is concluded that {101} behaves as an F form, {200} as an S form and {011} as a K form. The theoretical growth form shows {210}, {101} and {002} as main forms. A comparison is made with habits of natural and synthetic crystals. Experiments on KCIO 4 show that {011} appears at high supersaturations (>38; ;20%). It is shown that a broken bond model provides relative attachment energies that are higher by a factor of about three.

  7. Structure of the human DNA-repair protein RAD52 containing surface mutations.

    PubMed

    Saotome, Mika; Saito, Kengo; Onodera, Keiichi; Kurumizaka, Hitoshi; Kagawa, Wataru

    2016-08-01

    The Rad52 protein is a eukaryotic single-strand DNA-annealing protein that is involved in the homologous recombinational repair of DNA double-strand breaks. The isolated N-terminal half of the human RAD52 protein (RAD52(1-212)) forms an undecameric ring structure with a surface that is mostly positively charged. In the present study, it was found that RAD52(1-212) containing alanine mutations of the charged surface residues (Lys102, Lys133 and Glu202) is highly amenable to crystallization. The structure of the mutant RAD52(1-212) was solved at 2.4 Å resolution. The structure revealed an association between the symmetry-related RAD52(1-212) rings, in which a partially unfolded, C-terminal region of RAD52 extended into the DNA-binding groove of the neighbouring ring in the crystal. The alanine mutations probably reduced the surface entropy of the RAD52(1-212) ring and stabilized the ring-ring association observed in the crystal.

  8. Fabrication of Poly(styrene-co-maleic anhydride)@Ag Spheres with High Surface Charge Intensity and their Self-Assembly into Photonic Crystal Films.

    PubMed

    Bi, Jiajie; Fan, Genrui; Wu, Suli; Su, Xin; Xia, Hongbo; Zhang, Shu-Fen

    2017-10-01

    Herein, we developed a method to prepare monodisperse poly(styrene-co-maleic anhydride)@Ag (PSMA@Ag) core-shell microspheres with high surface charge intensity by using an in situ reduction method. In this method, ethylenediamine tetraacetic acid tetrasodium salt (Na 4 EDTA) was used as a reducing agent to promote the growth of Ag, and at the same time endowed the PSMA@Ag spheres with a surface charge. The monodispersity of PSMA and PSMA@Ag and the ordered array of the photonic crystal films were characterized by using SEM. The formation of Ag nanoparticles was confirmed by using TEM, HR-TEM, and XRD characterizations. Due to the existence of surface charges, the obtained PSMA@Ag microspheres easily self-assembled to form photonic crystal structures. In addition, the surface-enhanced Raman scattering (SERS) activity of the PSMA@Ag photonic crystal films was evaluated by detecting the signal from Raman probe molecules, 4-aminothiophenol (4-ATP). The PSMA@Ag photonic crystal films exhibited a high SERS effect, a low detection limit of up to 10 -8 for 4-ATP, good uniformity, and reproducibility.

  9. Crystal Structure, Conformational Analysis, and Charge Density Distribution for Eng-Epifisetinidol: An Explanation for Regiospecific Aromatic Substitution of 5-Deoxyflavan

    Treesearch

    Fred L. Tobiason; Frank R. Fronczek; Jan P. Steynberg; Elizabeth C. Steynberg; Richard W. Hemingway; Wayne L. Mattice

    1993-01-01

    Molecular modeling and molecular orbital analyses of ent-epifisetinidol gave &ood predictions of the approximate "reverse half-chair" conformation found for the crystal structure. MNDO and AM1 analyses of HOMO electron densities provided an explanation for the stereospecific electrophilic aromatic substitution at C(6) in 5-deoxy-flavans...

  10. Characterization of molecular associations involving L-ornithine and α-ketoglutaric acid: crystal structure of L-ornithinium α-ketoglutarate.

    PubMed

    Allouchi, H; Céolin, R; Berthon, L; Tombret, F; Rietveld, I B

    2014-07-01

    The crystal structure of L-ornithinium α-ketoglutarate (C5H13N2O2, C5H5O5) has been solved by direct methods using single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group P21, unit cell parameters a=15.4326(3), b=5.2015(1), c=16.2067(3) Å and β=91.986(1)°, containing two independent pairs of molecular ions in the asymmetric unit. An extensive hydrogen-bond network and electrostatic charges due to proton transfer provide an important part of the cohesive energy of the crystal. The conformational versatility of L-ornithine and α-ketoglutaric acid is illustrated by the present results and crystal structures available from the Cambridge Structural Database. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Structural Stability and Electronic Properties of Na2C6O6 for a Rechargeable Sodium-ion Battery

    NASA Astrophysics Data System (ADS)

    Yamashita, Tomoki; Fujii, Akihiro; Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    Sodium-ion batteries have been explored as a promising alternative to lithium-ion batteries owing to a significant advantage of a natural abundance of sodium. Recently, it has been reported that disodium rhodizonate, Na2C6O6, exhibit good electrochemical properties and cycle performance as a minor-metal free organic cathode for sodium-ion batteries. However, its crystal structures during discharge/charge cycle still remain unclear. In this work, we theoretically propose feasible crystal structures of Na2+xC6O6 using first principles calculations. A structural phase transition has been found: Na4C6O6 has a different C6O6 packing arrangement from Na2C6O6. Electronic structures of Na2+xC6O6 during discharge/charge cycle are also discussed. Our predictions could be the key to understanding the discharge/charge process of Na2C6O6. Supported by MEXT program ``Elements Strategy Initiative to Form Core Rersearch Center'' (since 2012), MEXT; Ministry of Education Culture, Sports, Science and Technology, Japan.

  12. Hydrogen-bonded structures from adamantane-based catechols

    NASA Astrophysics Data System (ADS)

    Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro

    2018-07-01

    Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.

  13. A comparative study of two polymorphs of L-aspartic acid hydrochloride.

    PubMed

    Benali-Cherif, Rim; Takouachet, Radhwane; Bendeif, El-Eulmi; Benali-Cherif, Nourredine

    2014-07-01

    Two polymorphs of L-aspartic acid hydrochloride, C4H8NO4(+)·Cl(-), were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N-H···Cl and O-H···Cl interactions and form alternating cation-anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.

  14. Synthesis, characterization, crystal structure and solution studies of a novel proton transfer (charge transfer) complex of 2,2‧-dipyridylamine with 2,6-pyridine dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael

    2015-06-01

    Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.

  15. Semiconducting molecular crystals: Bulk in-gap states modified by structural and chemical defects

    NASA Astrophysics Data System (ADS)

    Haas, S.; Krellner, C.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B.

    2007-03-01

    Charge transport in organic molecular crystals is strongly influenced by the density of localized in-gap states (traps). Thus, a profound knowledge of the defect states' origin is essential. Temperature-dependent space-charge limited current (TD-SCLC) spectroscopy was used as a powerful tool to quantitatively study the density of states (DOS) in high-quality rubrene and pentacene single crystals. In particular, changes of the DOS due to intentionally induced chemical and structural defects were monitored. For instance, the controlled exposure of pentacene and rubrene to x-ray radiation results in a broad over-all increase of the DOS. Namely, the ionizing radiation induces a variety of both chemical and structural defects. On the other hand, exposure of rubrene to UV-excited oxygen is reflected in a sharp peak in the DOS, whereas in a similar experiment with pentacene oxygen acts as a dopant, and possible defects are metastable on the time-scale of the measurement, thus leaving the extracted DOS virtually unchanged.

  16. Suppressing molecular vibrations in organic semiconductors by inducing strain

    PubMed Central

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-01-01

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501

  17. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    PubMed

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  18. A Novel Compact Pyroelectric X-Ray and Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaron Danon

    2007-08-31

    This research was focused on the utilization of pyroelectric crystals for generation of radiation. When in constant temperature pyroelectric crystals are spontaneously polarized. The polarization causes internal charges to accumulate near the crystal faces and masking charges from the environment are attracted to the crystal faces and neutralize the charge. When a pyroelectric crystal is heated or cooled it becomes depolarized and the surface charges become available. If the heating or cooling is done on a crystal in vacuum where no masking charges are available, the crystal becomes a charged capacitor and because of its small capacitance large potential developsmore » across the faces of the crystal.« less

  19. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    PubMed

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  20. Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Nevskaya, N. A.; Kljashtorny, V. G.; Vakhrusheva, A. V.; Garber, M. B.; Nikonov, S. V.

    2017-07-01

    The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA-protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.

  1. Structural and electron charge density studies of a nonlinear optical compound 4,4 di-methyl amino cyano biphenyl

    NASA Astrophysics Data System (ADS)

    Naima, Boubegra; Abdelkader, Chouaih; Mokhtaria, Drissi; Fodil, Hamzaoui

    2014-01-01

    The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å-1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I >= 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.

  2. Exploiting MIC architectures for the simulation of channeling of charged particles in crystals

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Karpusenko, Vadim

    2016-08-01

    Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.

  3. Electronic structure, bonding, charge distribution, and x-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles

    NASA Astrophysics Data System (ADS)

    Rulis, Paul; Yao, Hongzhi; Ouyang, Lizhi; Ching, W. Y.

    2007-12-01

    Fluorapatite (FAP) and hydroxyapatite (HAP) are two very important bioceramic crystals. The (001) surfaces of FAP and HAP crystals are studied by ab initio density functional calculations using a supercell slab geometry. It is shown that in both crystals, the O-terminated (001) surface is more stable with calculated surface energies of 0.865 and 0.871J/m2 for FAP and HAP, respectively. In FAP, the two surfaces are symmetric. In HAP, the orientation of the OH group along the c axis reduces the symmetry such that the top and bottom surfaces are no longer symmetric. It is revealed that the atoms near the surface and subsurface are significantly relaxed especially in the case of HAP. The largest relaxations occurred via the lateral movements of the O ions at the subsurface level. The electronic structures of the surface models in the form of layer-by-layer resolved partial density of states for all the atoms show systematic variation from the surface region toward the bulk region. The calculated Mulliken effective charge on each type of atom and the bond order values between cations (Ca, P) and anions (O, F) show different charge transfers and bond strength variations from the bulk crystal values. Electron charge density calculations show that the surfaces of both FAP and HAP crystals are mostly positively charged due to the presence of Ca ions at the surface. The positively charged surfaces have implications for the absorption on apatite surfaces of water and other organic molecules in an aqueous environment which are an important part of its bioactivity. The x-ray absorption near-edge structure (XANES) spectra ( Ca-K , O-K , F-K , P-K , and P-L3 edges) of both the surface models and the bulk crystals are calculated and compared. The calculations use a supercell approach which takes into account the electron-core-hole interaction. It is shown that the site-specific XANES spectra show significant differences between atoms near the surface and in the bulk and are very sensitive to the local atomic environment of each atom. This information will be very valuable for characterizing the apatite materials and in the interpretation of experimental data. Comparisons of several sets of experimental data with the weighted sums of the calculated spectra at different sites for the same element show very good agreement.

  4. Synthesis, electronic structure, molecular packing/morphology evolution, and carrier mobilities of pure oligo-/poly(alkylthiophenes).

    PubMed

    Zhang, Lei; Colella, Nicholas S; Liu, Feng; Trahan, Stephan; Baral, Jayanta K; Winter, H Henning; Mannsfeld, Stefan C B; Briseno, Alejandro L

    2013-01-16

    Monodispersed conjugated oligothiophenes are receiving attention in fundamental and applied science due to their interesting optical, optoelectronic, and charge transport properties. These "low molecular weight" polymers serve as model structures for the corresponding polymer analogues, which are inherently polydispersed. Here we report the synthesis, electronic structure, molecular packing/morphology, and charge transport properties of monodispersed oligothiophenes with up to six didodecylquaterthiophene (DDQT) building block repeat units (i.e., 24 thiophene units). At the point where the effective conjugation length is reached, the electronic structure showed convergence behavior to the corresponding polymer, poly(3,3"-didodecyl-quaterthiophene) (PQT-12). X-ray crystal structure analysis of the dimer (DDQT-2) showed that terminal thiophenes exhibit syn-conformations, similar to the terminal syn-conformations observed in the trimer (DDQT-3). The dimer also exhibits a rare bending of the terminal alkyl side chains in order to prevent steric hindrance with neighboring hydrogens attached to core thiophenes. Grazing incidence X-ray scattering measurements revealed a morphology evolution from small molecule-like packing to polymer-like packing in thin films, with a morphology transition occurring near the effective conjugation length. Charge transport measurements showed a mobility increase with decreasing chain length. We correlated the molecular packing and morphology to charge transport and determined that carrier mobilities are most sensitive to crystallinity and crystal grain misorientation. This indicates that molecular weight is not a decisive factor for improved carrier mobility in the low molecular weight region, but rather the degree in crystallinity and in-plane crystal orientation. These results represent a fundamental advancement in understanding the relationship between conjugation length and carrier mobilities in oligothiophene semiconductors.

  5. Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans.

    PubMed

    Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin

    2015-02-27

    Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.

  6. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  7. Density functional theory determination of structural and electronic properties of struvite.

    PubMed

    Romanowski, Zbigniew; Kempisty, Paweł; Prywer, Jolanta; Krukowski, Stanisław; Torzewska, Agnieszka

    2010-07-29

    Crystallographic structure, total energy, electronic structure, and the most important elastic properties of struvite, NH(4)MgPO(4).6H(2)O, the main component of infectious urinary stones, are presented. The calculations were performed using ab initio full-electron calculations within the density functional theory-generalized gradient approximation (DFT-GGA) framework. The obtained crystallographic symmetry and the calculated lattice parameters and also the elastic constants are in good agreement with the experimental data. The elastic properties are essential for establishing an optimal response of urinary stones during shock-wave lithotripsy. The calculated electronic charge distribution confirms the layered structure of the struvite crystals. The polar character of the crystal, well-known from crystal growth experiments, was also confirmed by the magnitude of spontaneous polarization which was obtained from direct determination of the electrical dipole density. The calculated value of spontaneous polarization is equal to -8.8 microC cm(-2). This feature may play a key role in struvite crystallization, electrically binding the charged active impurities and other active species, and consequently determining urinary stone formation. We also present the results of our own experiment of the mineralization of struvite induced to growth by Proteus bacteria which are mainly isolated from infectious urinary stones.

  8. Lightning Activity Relative to the Microphysical and Kinematic Structure of Storms during a Thunder-Snow Episode on 29-30 November 2006

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.

    2007-12-01

    We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.

  9. Oppositely charged colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface potential and charge are studied by electrophoresis. Here, the velocity of the particles is measured while they are moving in an electric field. Using our real-space CLSM setup, we find that for a single-component system, the charge on the particles decreases with increasing volume fraction. Apart from structures that oppositely charged particles form close to thermodynamic equilibrium, we also study pattern formation when the system is driven out of equilibrium by an electric field. When oppositely charged particles are driven in opposite directions, the collisions between them cause particle of the same kind to form lanes. By combining our CLSM experiments with Brownian dynamics computer simulations, we study the structure and the dynamics of the suspension on the single-particle level. We find that the number of particles in a lane increases continuously with the field strength. By studying the dynamics and fluctuations parallel and perpendicular to the electric field direction, we identify the key mechanism of lane-formation. We show that pattern formation can easily become more complicated when we introduce alternating current (AC) fields. In addition to the formation of lanes parallel to the field-axis, bands of like-charged particles can form perpendicular to it. When the particles are sufficiently mobile, the system can be remixed again by changing the frequency. When AC-fields with higher field strengths are used, we show that complex patterns, including rotating instabilities, can emerge. The results in this thesis yield fundamental insight in electrophoresis, crystallization and pattern formation when systems are driven out of equilibrium. The results on lane- and band-formation can be relevant for the design of electronic ink (e-ink), where electrically driven oppositely charged particles are used to change the image on a piece of electronic paper.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Suresh, E-mail: ajay-phy@rediffmail.com; Tiwari, R. K.; Gupta, D. C.

    In this paper, we present the expressions relating the inter atomic force constants like as bond-stretching force constant (α in N/m) and bond-bending force constant (β in N/m) for the binary (zinc blende structure) and ternary (chalcopyrite structure) semiconductors with the product of ionic charges (PIC) and crystal ionicity (f{sub i}). Interatomic force constants of these compounds exhibit a linear relationship; when plot a graph between Interatomic force constants and the nearest neighbor distance d (Å) with crystal ionicity (f{sub i}), but fall on different straight lines according to the product of ionic charges of these compounds. A fairly goodmore » agreement has been found between the observed and calculated values of the α and β for binary and ternary tetrahedral semiconductors.« less

  11. Near-infrared sensitive photorefractive device using polymer dispersed liquid crystal and BSO:Ru hybrid structure.

    PubMed

    Liu, Ren Chung; Marinova, Vera; Lin, Shiuan Huei; Chen, Ming-Syuan; Lin, Yi-Hsin; Hsu, Ken Yuh

    2014-06-01

    A near-infrared sensitive hybrid device, based on a Ru-doped BSO photorefractive substrate and polymer dispersed liquid crystal (PDLC) layer, is reported. It is found that the photoexcited charge carriers generated in the BSO:Ru substrate create an optically induced space charge field, sufficient to penetrate into the PDLC layer and to re-orient the LC molecules inside the droplets. Beam-coupling measurements at the Bragg regime are performed showing prospective amplification values and high spatial resolution. The proposed structure does not require indium tin oxide (ITO) contacts and alignment layers. Such a device allows all the processes to be controlled by light, thus opening further potential for real-time image processing at the near-infrared range.

  12. Resonant Coherent Excitation of Hydrogen-Like Ar Ions to the n =: 3 States

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Ito, T.; Takabayashi, Y.; Komaki, K.; Yamazaki, Y.; Yamazaki, Y.; Takada, E.; Murakami, T.

    We have succeeded in observing resonant coherent excitaion (RCE) of 1s electrons to the n = 3 states in 390 MeV/u hydrogen-like Ar17+ ions planar channeled in a silicon crystal through measurements of the charge-state distribution of ions transmitting the crystal. Furthermore, we directly confirmed RCE to the n = 3 states by observing the enhancement of the de-excitation X-rays, i.e., Kβ X-rays under the resonance condition. The resonance profiles of the charge-state distribution as functions of the incident angle to the crystal, which uniquely relates with the transition energy, have a characteristic structure consisting of several peaks. Compared with the profile of RCE to the n = 2 states, the present profiles show a large peak shift from the j = 1/2 and 3/2 levels in vacuum, and the profiles are much wider than those expected from the Stark-split level structure of the n = 3 manifolds due to the position- (distance from the channel center in the planar channel) dependent strong static field in the crystal.

  13. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    PubMed

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI 2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH 3 NH 3 PbI 3 perovskite crystals and PbI 2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI 2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  14. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunmao; Yu, You; Yang, Maojun, E-mail: maojunyang@tsinghua.edu.cn

    2015-10-23

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. Wemore » speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.« less

  15. X-ray photoemission spectroscopy investigation of CaTiO{sub 3}:Eu for luminescence property: effect of Eu{sup 3+} ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaichen; Zhao, Baijun; Gao, Lu, E-mail: gaolu@jlu.edu.cn

    2016-06-15

    Graphical abstract: The influence on the photoluminescent performance due to the electronic structure change in Eu-doped CaTiO{sub 3} of the specific core-level and valence band spectrum via X-ray photoemission spectroscopy were characterized. - Highlights: • Single phase CaTiO{sub 3} and CaTiO{sub 3}: Eu crystals were prepared under mild hydrothermal method. • Crystal structure, doping level and the relations to their luminescent property were discussed. • Charge compensation mechanism was discussed via valance band spectrum by XPS. - Abstract: Charge compensation of on-site Eu 4f–5d transition that determines the luminescent performance was confirmed with valance band spectrum. Influence of photoelectrons frommore » CaTiO{sub 3}: Eu to the corresponding luminescent performance was discussed based on the crystal structure, doping level and the relations to their luminescent property. This paper is important to further optimize the luminescent performance for improving the efficiency and reducing the cost in light emitting diode industry.« less

  16. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.

    PubMed

    Cho, Uhn Soo; Xu, Wenqing

    2007-01-04

    Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.

  17. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  18. Crystal Structure, Electric Polarization and Heat Capacity Measurements on Small R-Ion Multiferroic Hexagonal RMnO3

    NASA Astrophysics Data System (ADS)

    Yu, Tian; Gao, Peng; Wu, Tao; Tyson, Trevor; Lalancette, Roger

    2013-03-01

    Crystal structure, electric polarization and heat capacity measurements on the hexagonal multiferroic RMnO3 reveal that small R ion (Lu and lower cation size) systems are ferroelectric and possess the same space-group as YMnO3. Combined local and long range structural measurements were conducted by XAFS, PDF and single crystal and powder XRD methods. The influence of the Mn-O and R-O distribution on the electric polarization is discussed. Point charge estimates of the electrical polarization are given for comparison with the YMnO3 system. This work is supported by DOE Grant DE-FG02-07ER46402.

  19. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  20. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    PubMed

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  1. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    PubMed

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  2. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-01

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ˜3 nm . Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  3. Anisotropic high-harmonic generation in bulk crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Reis, David A.; Ghimire, Shambhu

    2016-11-21

    The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less

  4. Synthesis, crystal structure, antimicrobial activity and DNA-binding of hydrogen-bonded proton-transfer complex of 2,6-diaminopyridine with picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq; Ullah, M F

    2011-04-04

    A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associatedmore » with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?« less

  6. Crystal growth, structure and morphology of hydrocortisone methanol solvate

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Wang, Jiangkang; Zhang, Ying; Wu, Hong; Chen, Wei; Guo, Zhichao

    2004-04-01

    Hydrocortisone (HC), an important grucocorticoid, was crystallized from methanol solvent in the form of its methanol solvate. Its crystal structure belongs to orthorhombic, space group P2 12 12 1, with the unit cell parameters a=7.712(3) Å, b=14.392(5) Å, c=18.408(6) Å, Z=4. The methanol takes part in intermolecular hydrogen bonding, so if we change the solvent, the crystal habit of HC maybe different. The long parallelepiped morphology was also predicted by Cerius 2TM simulation program. The influence of intermolecular interaction was taken into account in the attachment energy model. The morphology calculation performed on the potential energy minimized model using a generic DREIDING 2.21 force field and developed minimization protocol with derived partial charges fits the experimental crystal shape well.

  7. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  8. Al{sub 4}SiC{sub 4} wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O.

    New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude thatmore » the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.« less

  9. The influence of oxalate-promoted growth of saponite and talc crystals

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2013-01-01

    The intercalating growth of new silicate layers or metal hydroxide layers in the interlayer space of other clay minerals is known from various mixed-layer clay minerals such as illite-smectite (I-S), chlorite-vermiculite, and mica-vermiculite. In a recent study, the present authors proposed that smectite-group minerals can be synthesized from solution as new 2:1 silicate layers within the low-charge interlayers of rectorite. That study showed how oxalate catalyzes the crystallization of saponite from a silicate gel at low temperatures (60ºC) and ambient pressure. As an extension of this work the aim of the present study was to test the claim that new 2:1 silicate layers can be synthesized as new intercalating layers in the low-charge interlayers of rectorite and whether oxalate could promote such an intercalation synthesis. Two experiments were conducted at 60ºC and atmospheric pressure. First, disodium oxalate solution was added to a suspension of rectorite in order to investigate the effects that oxalate anions have on the structure of rectorite. In a second experiment, silicate gel of saponitic composition (calculated interlayer charge −0.33 eq/O10(OH)2) was mixed with a suspension of rectorite and incubated in disodium oxalate solution. The synthesis products were extracted after 3 months and analyzed by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The treatment of ultrathin sections with octadecylammonium (nC = 18) cations revealed the presence of 2:1 layer silicates with different interlayer charges that grew from the silicate gel. The oxalate-promoted nucleation of saponite and talc crystallites on the rectorite led to the alteration and ultimately to the destruction of the rectorite structure. The change was documented in HRTEM lattice-fringe images. The crystallization of new 2:1 layer silicates also occurred within the expandable interlayers of rectorite but not as new 2:1 silicate layers parallel to the previous 2:1 silicate layers. Instead, they grew independently of any orientation predetermined by the rectorite crystal substrate and their crystallization was responsible for the destruction of the rectorite structure.

  10. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  11. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  12. Crystalline, Glassy and Polymeric Electrolytes:. Similarities and Differences in Ionic Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Souquet, Jean Louis

    2006-06-01

    Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate that entropic process, associated to long scale deformations, may also exist in crystalline structures.

  13. CaB2 S4 O16 : A Borosulfate Exhibiting a New Structure Type with Phyllosilicate Analogue Topology.

    PubMed

    Bruns, Jörn; Podewitz, Maren; Schauperl, Michael; Joachim, Bastian; Liedl, Klaus R; Huppertz, Hubert

    2017-11-27

    The reaction of Ca(CO 3 ) with H 3 BO 3 in oleum (20 % SO 3 ) yielded colorless single-crystals of CaB 2 S 4 O 16 (monoclinic, P2 1 /c, a=5.5188(2), b=15.1288(6), c=13.2660(6) Å, β=92.88(1)°, V=1106.22(8) Å 3 ). X-ray single-crystal structure analysis revealed a phyllosilicate-analogue anionic sub-structure, forming 2D infinite anionic layers, which exhibit an unprecedented arrangement of condensed twelve-membered (zwölfer) and four-membered (vierer) rings of corner-shared (SO 4 ) and (BO 4 ) tetrahedra. Charge compensation is achieved by Ca 2+ cations, residing exclusively above the centers of the twelve-membered rings. DFT investigations on the solid-state structure corroborate the experimental findings and allow for a detailed valuation of charge distribution within the anionic network and an assignment of vibrational frequencies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Betavoltaic p--n+-structure simulation

    NASA Astrophysics Data System (ADS)

    Urchuk, S. U.; Murashev, V. N.; Legotin, S. A.; Krasnov, A. A.; Rabinovich, O. I.; Kuzmina, K. A.; Omel'chenko, Y. K.; Osipov, U. V.; Didenko, S. I.

    2016-08-01

    In order to increase the betavoltaic batteries efficiency output characteristics of the p--n+ (n--p+) - structures were simulated. Replacing the p+-n-structures on the p-n+ and n-p+ -structures enables the space-charge expansion to the crystal surface and thus to reduce the recombination loss in the heavy doped p+-layer and improve conversion of betavoltaic elements efficiency.

  15. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    NASA Astrophysics Data System (ADS)

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-02-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.

  16. Hidden topological constellations and polyvalent charges in chiral nematic droplets

    PubMed Central

    Posnjak, Gregor; Čopar, Simon; Muševič, Igor

    2017-01-01

    Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770

  17. Electronic structure and pair potential energy analysis of 4-n-methoxy-4′-cyanobiphenyl: A nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Dipendra, E-mail: d-11sharma@rediffmail.com; Tiwari, S. N., E-mail: sntiwari123@rediffmail.com; Dwivedi, M. K., E-mail: dwivedi-ji@gmail.com

    2016-05-06

    Electronic structure properties of 4-n-methoxy-4′-cyanobiphenyl, a pure nematic liquid crystal have been examined using an ab‒initio, HF/6‒31G(d,p) technique with GAMESS program. Conformational and charge distribution analysis have been carried out. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the liquid crystal molecule have been calculated. Further, stacking, side by side and end to end interactions between a molecular pair have been evaluated. Results have been used to elucidate the physico-chemical and liquid crystalline properties of the system.

  18. Theoretical explanation of spin-Hamiltonian parameters and local structure for the orthorhombic MnO2 -4 clusters in K2CrO4 : Mn6 + crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Xie, Linhua

    2017-12-01

    In this paper, the spin-Hamiltonian parameters (g factors gx, gy, gz and hyperfine structure constants A Ax, Ay, Az) and the absorption spectrum of K2CrO4 : Mn6 + crystal are theoretically explained by using the high-order perturbation theory, the double-spin-orbit-coupling model theory and the double-mechanism theory (the crystal field mechanism and the charge-transfer (CT) mechanism). The calculation results show that the contribution of the CT mechanism cannot be neglected for Mn6 + ions in orthorhombic clusters with the ground state ?.

  19. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.

    PubMed

    Yang, Yu; Jin, Shu; Medvedeva, Julia E; Ireland, John R; Metz, Andrew W; Ni, Jun; Hersam, Mark C; Freeman, Arthur J; Marks, Tobin J

    2005-06-22

    A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on single-crystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CYO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Y doping widens the optical band gap from 2.86 to 3.27 eV via a Burstein-Moss shift. Room temperature thin film conductivities of 8,540 and 17,800 S/cm on glass and MgO(100), respectively, are obtained at an optimum Y doping level of 1.2-1.3%. Finally, electronic band structure calculations are carried out to systematically compare the structural, electronic, and optical properties of the In-, Sc-, and Y-doped CdO systems. Both experimental and theoretical results reveal that dopant ionic radius and electronic structure have a significant influence on the CdO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii in the order Y (1.09 A) < In (0.94 A) < Sc (0.89 A); (2) the carrier mobilities and doping efficiencies decrease in the order In > Y > Sc; (3) the dopant d state has substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.

  20. Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ

    DOE PAGES

    Yang, Tianrang; Mattick, Victoria F.; Chen, Yan; ...

    2018-01-29

    The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less

  1. Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tianrang; Mattick, Victoria F.; Chen, Yan

    The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less

  2. Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding.

    PubMed Central

    Wlodawer, A.; Pavlovsky, A.; Gustchina, A.

    1993-01-01

    Crystal and NMR structures of helical cytokines--interleukin-4 (IL-4), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-2 (IL-2)--have been compared. Root mean square deviations in the C alpha coordinates for the conserved regions of the helices were 1-2 A between different cytokines, about twice the differences observed for independently determined crystal and solution structures of IL-4. Considerable similarity in amino acid sequence in the areas expected to interact with the receptors was detected, and the available mutagenesis data for these cytokines were correlated with structure conservation. Models of cytokine-receptor interactions were postulated for IL-4 based on its structure as well as on the published structure of human growth hormone interacting with its receptors (de Vos, A.M., Ultsch, M., & Kossiakoff, A.A., 1992, Science 255, 306-312). Patches of positively charged residues on the surfaces of helices C and D of IL-4 may be responsible for the interactions with the negatively charged residues found in the complementary parts of the IL-4 receptors. PMID:8401223

  3. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    PubMed

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  4. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  5. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  6. The effect of sulfated polysaccharides on the crystallization of calcite superstructures

    NASA Astrophysics Data System (ADS)

    Fried, Ruth; Mastai, Yitzhak

    2012-01-01

    Calcite with unique morphology and uniform size has been successfully synthesized in the presence of classes of polysaccharides based on carrageenans. In the crystallization of calcite, the choice of different carrageenans, (iota, lambda and kappa), as additives concedes systematic study of the influence of different chemical structures and particularly molecular charge on the formation of CaCO 3 crystals. The uniform calcite superstructures are formed by assemblies and aggregation of calcite crystals. The mechanism for the formation of calcite superstructures was studied by a variety of techniques, SEM, TEM, XRD, time-resolved conductivity and light scattering measurements, focusing on the early stages of crystals' nucleation and aggregation.

  7. Electrostatic assembly of binary nanoparticle superlattices using protein cages

    NASA Astrophysics Data System (ADS)

    Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari; Lemieux, Vincent; Seitsonen, Jani; Ruokolainen, Janne; Ceci, Pierpaolo

    2013-01-01

    Binary nanoparticle superlattices are periodic nanostructures with lattice constants much shorter than the wavelength of light and could be used to prepare multifunctional metamaterials. Such superlattices are typically made from synthetic nanoparticles, and although biohybrid structures have been developed, incorporating biological building blocks into binary nanoparticle superlattices remains challenging. Protein-based nanocages provide a complex yet monodisperse and geometrically well-defined hollow cage that can be used to encapsulate different materials. Such protein cages have been used to program the self-assembly of encapsulated materials to form free-standing crystals and superlattices at interfaces or in solution. Here, we show that electrostatically patchy protein cages--cowpea chlorotic mottle virus and ferritin cages--can be used to direct the self-assembly of three-dimensional binary superlattices. The negatively charged cages can encapsulate RNA or superparamagnetic iron oxide nanoparticles, and the superlattices are formed through tunable electrostatic interactions with positively charged gold nanoparticles. Gold nanoparticles and viruses form an AB8fcc crystal structure that is not isostructural with any known atomic or molecular crystal structure and has previously been observed only with large colloidal polymer particles. Gold nanoparticles and empty or nanoparticle-loaded ferritin cages form an interpenetrating simple cubic AB structure (isostructural with CsCl). We also show that these magnetic assemblies provide contrast enhancement in magnetic resonance imaging.

  8. Synthesis, crystal structure and DFT studies of a dual fluorescent ketamine: Structural changes in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Latha, V.; Balakrishnan, C.; Neelakantan, M. A.

    2015-07-01

    A fluorescent probe 2Z,2‧Z-3,3‧-(4,4‧-methylenebis(4,1-phenylene) bis(azanediyl))bis (1,3-diphenylprop-2-en-1-one) (L) was synthesized and characterized by IR, 1H NMR, ESI-mass, UV-visible and fluorescence spectral techniques. The single crystal analysis illustrates the existence of L in ketamine form. The crystal structure is stabilized by intramolecular and intermolecular hydrogen bonding. The thermal stability of L was studied by TG analysis. The fluorescence spectrum of L shows dual emission, and is due to excited state intramolecular proton transfer (ESIPT) process. This is supported by the high Stokes shift value. Electronic structure calculations of L in the ground and excited state have been carried out using DFT and TD-DFT at B3LYP/6-31G (d,p) level, respectively. The vibrational spectrum was computed at this level and compared with experimental values. Major orbital contributions for the electronic transitions were assigned with the help of TD-DFT. The changes in the Mulliken charge, bond lengths and bond angles between the ground and excited states of the tautomers demonstrate that twisted intramolecular charge transfer (TICT) process occurs along with ESIPT in the excited state.

  9. Transistor and memory devices based on novel organic and biomaterials

    NASA Astrophysics Data System (ADS)

    Tseng, Jia-Hung

    Organic semiconductor devices have aroused considerable interest because of the enormous potential in many technological applications. Organic electroluminescent devices have been extensively applied in display technology. Rapid progress has also been made in transistor and memory devices. This thesis considers aspects of the transistor based on novel organic single crystals and memory devices using hybrid nanocomposites comprising polymeric/inorganic nanoparticles, and biomolecule/quantum dots. Organic single crystals represent highly ordered structures with much less imperfections compared to amorphous thin films for probing the intrinsic charge transport in transistor devices. We demonstrate that free-standing, thin organic single crystals with natural flexing ability can be fabricated as flexible transistors. We study the surface properties of the organic crystals to determine a nearly perfect surface leading to high performance transistors. The flexible transistors can maintain high performance under reversible bending conditions. Because of the high quality crystal technique, we further develop applications on organic complementary circuits and organic single crystal photovoltaics. In the second part, two aspects of memory devices are studied. We examine the charge transfer process between conjugated polymers and metal nanoparticles. This charge transfer process is essential for the conductance switching in nanoseconds to induce the memory effect. Under the reduction condition, the charge transfer process is eliminated as well as the memory effect, raising the importance of coupling between conjugated systems and nanoparticle accepters. The other aspect of memory devices focuses on the interaction of virus biomolecules with quantum dots or metal nanoparticles in the devices. We investigate the impact of memory function on the hybrid bio-inorganic system. We perform an experimental analysis of the charge storage activation energy in tobacco mosaic virus with platinum nanoparticles. It is established that the effective barrier height in the materials systems needs to be further engineered in order to have sufficiently long retention times. Finally other novel architectures such as negative differential resistance devices and high density memory arrays are investigated for their influence on memory technology.

  10. Effect of a mutation at arginine 301 on the stability, crystal quality and the preliminary crystallographic analysis of recombinant canavalin from Canavalia ensiformis

    NASA Astrophysics Data System (ADS)

    Elizabeth Green, M.; Kirkland, Natalie; Ng, Joseph D.

    2001-11-01

    The technique of site-directed mutagenesis was used to implement rational amino acid changes in the plant storage protein canavalin, the major seed storage protein of the jack bean ( Canavali ensiformis). The mutations were targeted to amino acids previously demonstrated to be involved in either the intra- or intermolecular salt bridges, thought to be responsible for maintaining the three-dimensional structure of the trimer. The amino acid changes were designed to disrupt the salt bridge interactions by substituting a neutral alanine for a negatively charged aspartate or glutamate, or by substituting a negatively charged glutamate for a positively charged arginine. The resulting recombinant mutants were subsequently expressed, purified, and crystallized. The crystals of the mutant versions of canavalin were compared to those of the wild-type canavalin by visual inspection and X-ray analysis. Of the crystals obtained for the mutants, those for the Arg301Glu mutation appeared to be more stable with fewer surface defects than any of the other mutants or the wild-type protein. The I/ σ ratio of reflections versus the resolution for the Arg301Glu mutation was approximately 30% greater over the entire resolution range than that obtained for any of the other mutations or for the wild-type. Additionally, the crystals of Arg301Glu mutations displayed lower mosaicity. Finally, the Arg301Glu mutation displayed a striking increase in the transition temperature when subjected to thermal denaturation. This paper describes the rationale and techniques behind the mutation of canavalin and suggests possible explanations for the observed and measured differences between the Arg301Glu mutant and the wild-type protein. We show the initial crystallographic structure analysis of this mutant and its preliminary implications.

  11. Molecular interactions investigated with DFT calculations of QTAIM and NBO analyses: An application to dimeric structures of rice α-amylase/subtilisin inhibitor

    NASA Astrophysics Data System (ADS)

    Astani, Elahe K.; Hadipour, Nasser L.; Chen, Chun-Jung

    2017-03-01

    Characterization of the dimer interactions at the dimeric interface of the crystal structure of rice α-amylase/subtilisin inhibitor (RASI) were performed using the quantum theory of atoms in molecules (QTAIM) and natural bonding orbital (NBO) analyses at the density-functional theory (DFT) level. The results revealed that Gly27 and Arg151 of chain A are the main residues involved in hydrogen bonds, dipole-dipole, and charge-dipole interactions with Gly64, Ala66, Ala67 and Arg81 of chain B at the dimeric interface. Calcium ion of chain A plays the significant role in the stability of the dimeric structure through a strong charge-charge interaction with Ala66.

  12. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  13. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

    PubMed

    Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu

    2012-08-21

    Si-based inorganic electronics have long dominated the semiconductor industry. However, in recent years conjugated polymers have attracted increasing attention because such systems are flexible and offer the potential for low-cost, large-area production via roll-to-roll processing. The state-of-the-art organic conjugated molecular crystals can exhibit charge carrier mobilities (μ) that nearly match or even exceed that of amorphous silicon (1-10 cm(2) V(-1) s(-1)). The mean free path of the charge carriers estimated from these mobilities corresponds to the typical intersite (intermolecular) hopping distances in conjugated organic materials, which strongly suggests that the conduction model for the electronic band structure only applies to μ > 1 cm(2) V(-1) s(-1) for the translational motion of the charge carriers. However, to analyze the transport mechanism in organic electronics, researchers conventionally use a disorder formalism, where μ is usually less than 1 cm(2) V(-1) s(-1) and dominated by impurities, disorders, or defects that disturb the long-range translational motion. In this Account, we discuss the relationship between the alternating-current and direct-current mobilities of charge carriers, using time-resolved microwave conductivity (TRMC) and other techniques including field-effect transistor, time-of-flight, and space-charge limited current. TRMC measures the nanometer-scale mobility of charge carriers under an oscillating microwave electric field with no contact between the semiconductors and the metals. This separation allows us to evaluate the intrinsic charge carrier mobility with minimal trapping effects. We review a wide variety of organic electronics in terms of their charge carrier mobilities, and we describe recent studies of macromolecules, molecular crystals, and supramolecular architecture. For example, a rigid poly(phenylene-co-ethynylene) included in permethylated cyclodextrin shows a high intramolecular hole mobility of 0.5 cm(2) V(-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large π-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered π-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of π-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices.

  14. Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas

    NASA Astrophysics Data System (ADS)

    Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.

    2018-01-01

    The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.

  15. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  16. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  17. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs

    PubMed Central

    Chen, Lei; Chen, Xiuling; Liu, Fayong; Chen, Haohong; Wang, Hui; Zhao, Erlong; Jiang, Yang; Chan, Ting-Shan; Wang, Chia-Hsin; Zhang, Wenhua; Wang, Yu; Chen, Shifu

    2015-01-01

    The deficiency of Y3Al5O12:Ce (YAG:Ce) luminescence in red component can be compensated by doping Gd3+, thus lead to it being widely used for packaging warm white light-emitting diode devices. This article presents a systematic study on the photoluminescence properties, crystal structures and electronic band structures of (Y1−xGdx)3Al5O12: Ce3+ using powerful experimental techniques of thermally stimulated luminescence, X-ray diffraction, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and ultraviolet photoelectron spectra (UPS) of the valence band, assisted with theoretical calculations on the band structure, density of states (DOS), and charge deformation density (CDD). A new interpretation from the viewpoint of compression deformation of electron cloud in a rigid structure by combining orbital hybridization with solid-state energy band theory together is put forward to illustrate the intrinsic mechanisms that cause the emission spectral shift, thermal quenching, and luminescence intensity decrease of YAG: Ce upon substitution of Y3+ by Gd3+, which are out of the explanation of the classic configuration coordinate model. The results indicate that in a rigid structure, the charge deformation provides an efficient way to tune chromaticity, but the band gaps and crystal defects must be controlled by comprehensively accounting for luminescence thermal stability and efficiency. PMID:26175141

  18. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    NASA Astrophysics Data System (ADS)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  19. Protein sensing by nanofluidic crystal and its signal enhancement

    PubMed Central

    Sang, Jianming; Du, Hongtan; Wang, Wei; Chu, Ming; Wang, Yuedan; Li, Haichao; Alice Zhang, Haixia; Wu, Wengang; Li, Zhihong

    2013-01-01

    Nanofluidics has a unique property that ionic conductance across a nanometer-sized confined space is strongly affected by the space surface charge density, which can be utilized to construct electrical read-out biosensor. Based on this principle, this work demonstrated a novel protein sensor along with a sandwich signal enhancement approach. Nanoparticles with designed aptamer onside are assembled in a suspended micropore to form a 3-dimensional network of nanometer-sized interstices, named as nanofluidic crystal hereafter, as the basic sensing unit. Proteins captured by aptamers will change the surface charge density of nanoparticles and thereby can be detected by monitoring the ionic conductance across this nanofluidic crystal. Another aptamer can further enlarge the variations of the surface charge density by forming a sandwich structure (capturing aptamer/protein/signal enhancement aptamer) and the read-out conductance as well. The preliminary experimental results indicated that human α-thrombin was successfully detected by the corresponding aptamer modified nanofluidic crystal with the limit of detection of 5 nM (0.18 μg/ml) and the read-out signal was enhanced up to 3 folds by using another thrombin aptamer. Being easy to graft probe, facile and low-cost to prepare the nano-device, and having an electrical read-out, the present nanofluidic crystal scheme is a promising and universal strategy for protein sensing. PMID:24404017

  20. Low leakage current Ni/CdZnTe/In diodes for X/ γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V. M.; Gnatyuk, V. A.; Pecharapa, W.

    2018-01-01

    The electrical characteristics of the Ni/Cd1-xZnxTe/In structures with a metal-semiconductor rectifying contact are investigated. The diodes, fabricated on the base of In-doped n-type Cd1-xZnxTe (CZT) crystals with resistivity of ∼1010 Ω ṡ cm, have low leakage current and can be used as X/ γ-ray detectors. The rectifying contact was obtained by vacuum deposition of Ni on the semiconductor surface pretreated with argon plasma. The high barrier rectifying contact allowed us to increase applied reverse bias voltage up to 2500 V at the CZT crystal thickness of 1 mm. Dark (leakage) currents of the diodes with the rectifying contact area of 4 mm2 did not exceed 3-5 nA at bias voltage of 2000 V and room temperature. The charge transport mechanisms in the Ni/CZT/In structures have been interpreted as generation-recombination in the space charge region within the range of reverse bias of 5-100 V and as currents limited by space charge at both forward and reverse bias at V >100 V.

  1. Synthesis, growth, structural modeling and physio-chemical properties of a charge transfer molecule: Guanidinium tosylate

    NASA Astrophysics Data System (ADS)

    Era, Paavai; Jauhar, RO. MU.; Vinitha, G.; Murugakoothan, P.

    2018-05-01

    An organic nonlinear optical material, guanidinium tosylate was synthesized adopting slow evaporation method and the crystals were harvested from aqueous methanolic medium with dimensions 13 × 9 × 3 mm3. Constitution of crystalline material was confirmed by single crystal X-ray diffraction study. The title compound crystallizes in the monoclinic crystal system with space group P21/c. The UV-vis-NIR spectral study of the grown crystal exhibits high transparency of 80% in the entire visible region with lower cut-off wavelength at 282 nm. Optimized molecular geometry of the grown crystal was obtained using density functional theory (DFT) and the frontier energy gaps calculated from the DFT aids to understand the charge transfer taking place in the molecule. The dielectric properties were studied as a function of temperature and frequency to find the charge distribution within the crystal. The titular compound is thermally stable up to 230 °C assessed by thermogravimetric and differential thermal analysis. Anisotropy in the mechanical behavior was observed while measuring for individual planes. The laser induced surface damage threshold of the grown crystal was measured to be 0.344 GW/cm2 for 1064 nm Nd:YAG laser radiation. Z-scan technique confirms the third-order nonlinear optical property with the ascertained nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)). Optical limiting study divulges that the transmitted output power step-up linearly with the increase of the input power at lower power realms and saturates from the threshold 24.95 mW/cm2 and amplitude 0.23 mW/cm2.

  2. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation.

    PubMed

    Kurimoto, Eiji; Satoh, Tadashi; Ito, Yuri; Ishihara, Eri; Okamoto, Kenta; Yagi-Utsumi, Maho; Tanaka, Keiji; Kato, Koichi

    2017-05-01

    The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets. © 2017 The Protein Society.

  3. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  4. Single crystal growth and structural evolution across the 1st order valence transition in (Pr 1–yY y) 1–xCa xCoO 3-δ

    DOE PAGES

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...

    2017-06-27

    Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less

  5. Discrete charge diagnostics on Pre-DIRECT COURSE

    NASA Astrophysics Data System (ADS)

    Guice, R. L.; Bryant, C.

    1984-02-01

    The Air Force Weapons Laboratory attempted to make 100 time-of-arrival measurements on Pre-DIRECT COURSE. With an 88 percent success rate, the detonation wave propagation within the charge was measured. The top and bottom hemispheres detonated at two different rates. However, the detonation velocities were well within the existing data base for Ammonium-Nitrate Fuel Oil charges. One large jet was observed on the charge but its location should not have caused any problems for ground level measurements. Twenty experimental time-of-arrival crystals were also fielded; however, the results are skeptical due to the grounding system of the support structure.

  6. Anion-cation charge-transfer properties and spectral studies of [M(phen)3][Cd4(SPh)10] (M = Ru, Fe, and Ni).

    PubMed

    Jiang, Jian-Bing; Bian, Guo-Qing; Zhang, Ya-Ping; Luo, Wen; Zhu, Qin-Yu; Dai, Jie

    2011-10-07

    Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.

  7. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7

    NASA Astrophysics Data System (ADS)

    Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo

    2017-10-01

    We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.

  8. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    NASA Astrophysics Data System (ADS)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  9. Synthesis, growth, structural, optical, luminescence, surface and HOMO LUMO analysis of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko

    2016-02-01

    Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.

  10. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less

  11. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    DOE PAGES

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; ...

    2015-05-08

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less

  12. Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals

    NASA Astrophysics Data System (ADS)

    Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B.

    2003-11-01

    A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the dc transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a prefabricated substrate which incorporates a gate dielectric (SiO2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm2/V s and is nearly temperature independent above ˜150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.

  13. Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution.

    PubMed

    Bilgrami, Sameeta; Yadav, Savita; Kaur, Punit; Sharma, Sujata; Perbandt, Markus; Betzel, Christian; Singh, Tej P

    2005-08-23

    Disintegrins constitute a family of potent polypeptide inhibitors of integrins. Integrins are transmembrane heterodimeric molecules involved in cell-cell and cell-extracellular matrix interactions. They are involved in many diseases such as cancer and thrombosis. Thus, disintegrins have a great potential as anticancer and antithrombotic agents. A novel heterodimeric disintegrin was isolated from the venom of saw-scaled viper (Echis carinatus) and was crystallized. The crystals diffracted to 1.9 A resolution and belonged to space group P4(3)2(1)2. The data indicated the presence of a pseudosymmetry. The structure was solved by applying origin shifts to the disintegrin homodimer schistatin solved in space group I4(1)22 with similar cell dimensions. The structure refined to the final R(cryst)/R(free) factors of 0.213/0.253. The notable differences are observed between the loops, (Gln39-Asp48) containing the important Arg42-Gly43-Asp44, of the present heterodimer and schistatin. These differences are presumably due to the presence of two glycines at positions 43 and 46 that allow the molecule to adopt variable conformations. A comparative analysis of the surface-charge distributions of various disintegrins showed that the charge distribution on monomeric disintegrins occurred uniformly over the whole surface of the molecule, while in the dimeric disintegrins, the charge is distributed only on one face. Such a feature may be important in the binding of two integrins to a single dimeric disintegrin. The phylogenetic analysis developed on the basis of amino acid sequence and three-dimensional structures indicates that the protein diversification and evolution presumably took place from the medium disintegrins and both the dimeric and short disintegrins evolved from them.

  14. High-frequency dielectric study of proustite crystals Ag3AsS3

    NASA Astrophysics Data System (ADS)

    Bordovsky, V. A.; Gunia, N. Yu; Castro, R. A.

    2014-12-01

    The dielectric properties of the crystals proustite in the frequency of 106-109 Hz and a temperature range of 173 to 473 K were studied. The dispersion of the dielectric parameters indicates the existence of non-Debye relaxation mechanism correlates with structural changes in the phase transition region. The charge transfer is temperature activated with an activation energy of 2.40 ± 0.01 eV.

  15. Stabilized thallium bromide radiation detectors and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leao, Cedric Rocha; Lordi, Vincenzo

    According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.

  16. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer.

    PubMed

    Steyrleuthner, Robert; Di Pietro, Riccardo; Collins, Brian A; Polzer, Frank; Himmelberger, Scott; Schubert, Marcel; Chen, Zhihua; Zhang, Shiming; Salleo, Alberto; Ade, Harald; Facchetti, Antonio; Neher, Dieter

    2014-03-19

    We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes but with different orientations of the polymer chains with respect to the substrate surface. RI-P(NDI2OD-T2), though exhibiting a rather similar LUMO structure and energy compared with the regioregular counterpart, displayed a very different packing structure characterized by the formation of ordered stacks along the lamellar direction without detectible π-stacking. Vertical electron mobilities were extracted from the space-charge-limited currents in unipolar devices. We demonstrate the anisotropy of the charge transport along the different crystallographic directions and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).

  17. Robust diamond-like Fe-Si network in the zero-strain Na xFeSiO 4 cathode

    DOE PAGES

    Ye, Zhuo; Zhao, Xin; Li, Shouding; ...

    2016-07-14

    Sodium orthosilicates Na 2 MSiO 4 ( M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na 2FeSiO 4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.

  18. High-mobility strained organic semiconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Takeya, Jun; Matsui, H.; Kubo, T.; Hausermann, Roger

    2016-11-01

    Small molecular organic semiconductor crystals form interesting electronic systems of periodically arranged "charge clouds" whose mutual electronic coupling determines whether or not electronic states can be coherent over fluctuating molecules. This presentation focuses on two methods to reduce molecular fluctuation, which strongly restricts mobility of highly mobile charge in single-crystal organic transistors. The first example is to apply external hydrostatic pressure. Using Hall-effect measurement for pentacene FETs, which tells us the extent of the electronic coherence, we found a crossover from hopping-like transport of nearly localized charge to band transport of delocalized charge with full coherence. As the result of temperature dependence measurement, it turned out that reduced molecular fluctuation is mainly responsible for the crossover. The second is to apply uniaxial strain to single-crystal organic FETs. We applied stain by bending thin films of newly synthesized decyldinaphthobenzodithiophene (C10-DNBDT) on plastic substrate so that 3% strain is uniaxially applied. As the result, the room-temperature mobility increased by the factor of 1.7. In-depth analysis using X-ray diffraction (XRD) measurements and density functional theory (DFT) calculations reveal the origin to be the suppression of the thermal fluctuation of the individual molecules, which is confirmed by temperature dependent measurements. Our findings show that compressing the crystal structure directly restricts the vibration of the molecules, thus suppressing dynamic disorder, a unique mechanism in organic semiconductors. Since strain can easily be induced during the fabrication process, these findings can directly be exploited to build high performance organic devices.

  19. Structural and spectroscopic investigation of glycinium oxalurate

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Pasupathi, G.; Marchewka, M. K.; Anbalagan, G.; Kanagathara, N.

    2017-09-01

    Glycinium oxalurate (GO) single crystals has been synthesized and grown by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction study confirms that GO crystal crystallizes in the monoclinic system with centrosymmetric space group P121/c1. The grown crystals are built up from single protonated glycinium residues and single dissociated oxalurate anions. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the glycine and oxaluric acid residues forms a three-dimensional network. Hydrogen bonded network present in the crystal gives notable vibrational effect. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on HF and density functional theory B3LYP methods with 6-311++G(d,p) basis set. Frontier molecular orbital energies and other related electronic properties are calculated. The natural bonding orbital (NBO) charges have been calculated and interpreted. The molecular electrostatic potential map has been constructed and discussed in detail.

  20. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  1. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    PubMed

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Phase transition detection by surface photo charge effect in liquid crystals

    NASA Astrophysics Data System (ADS)

    Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.

    2018-05-01

    The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.

  3. Charge transport through one-dimensional Moiré crystals

    PubMed Central

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067

  4. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  5. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  6. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  7. Large Ice Crystal Charge Transfer Studies

    DTIC Science & Technology

    1988-10-28

    electrification. However, the extra- polation using qcd 4 was completely unjustified. With corrected values of the separation probability of ice crystals...contact to leak away from the local area or become trapped in the crystal lattice . Obviously, larger initial charge transfers, with larger 6 crystals

  8. Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile Solid-State Optoelectronics.

    PubMed

    Zhu, Weigang; Zheng, Renhui; Zhen, Yonggang; Yu, Zhenyi; Dong, Huanli; Fu, Hongbing; Shi, Qiang; Hu, Wenping

    2015-09-02

    Charge-transfer (CT) interactions between donor (D) and acceptor (A) groups, as well as CT exciton dynamics, play important roles in optoelectronic devices, such as organic solar cells, photodetectors, and light-emitting sources, which are not yet well understood. In this contribution, the self-assembly behavior, molecular stacking structure, CT interactions, density functional theory (DFT) calculations, and corresponding physicochemical properties of two similar halogen-bonded co-crystals are comprehensively investigated and compared, to construct an "assembly-structure-CT-property" relationship. Bpe-IFB wire-like crystals (where Bpe = 1,2-bis(4-pyridyl)ethylene and IFB = 1,3,5-trifluoro-2,4,6-triiodobenzene), packed in a segregated stacking form with CT ground and excited states, are measured to be quasi-one-dimensional (1D) semiconductors and show strong violet-blue photoluminescence (PL) from the lowest CT1 excitons (ΦPL = 26.1%), which can be confined and propagate oppositely along the 1D axial direction. In comparison, Bpe-F4DIB block-like crystals (F4DIB = 1,4-diiodotetrafluorobenzene), packed in a mixed stacking form without CT interactions, are determined to be insulators and exhibit unique white light emission and two-dimensional optical waveguide property. Surprisingly, it seems that the intrinsic spectroscopic states of Bpe and F4DIB do not change after co-crystallization, which is also confirmed by theoretical calculations, thus offering a new design principle for white light emitting materials. More importantly, we show that the CT interactions in co-crystals are related to their molecular packing and can be triggered or suppressed by crystal engineering, which eventually leads to distinct optoelectronic properties. These results help us to rationally control the CT interactions in organic D-A systems by tuning the molecular stacking, toward the development of a fantastic "optoelectronic world".

  9. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    PubMed

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  10. Ten Good Reasons for the Use of the Tellurium-Centered Anderson-Evans Polyoxotungstate in Protein Crystallography.

    PubMed

    Bijelic, Aleksandar; Rompel, Annette

    2017-06-20

    Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein-ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson-Evans polyoxotungstate [TeW 6 O 24 ] 6- (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW's positive effects on the crystallization behavior of proteins with a particular focus on the protein-TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step.

  11. Ten Good Reasons for the Use of the Tellurium-Centered Anderson–Evans Polyoxotungstate in Protein Crystallography

    PubMed Central

    2017-01-01

    Conspectus Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein–ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson–Evans polyoxotungstate [TeW6O24]6– (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW’s positive effects on the crystallization behavior of proteins with a particular focus on the protein–TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step. PMID:28562014

  12. SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function.

    PubMed

    Ko, Tzu-Ping; Tseng, Shih-Ting; Lai, Shu-Jung; Chen, Sheng-Chia; Guan, Hong-Hsiang; Shin Yang, Chia; Jung Chen, Chun; Chen, Yeh

    2016-09-01

    The negatively charged bacterial polysaccharides-wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two-component transporter, TagGH, comprising a transmembrane subunit TagG and an ATPase subunit TagH. We determined the crystal structure of the C-terminal domain of TagH (TagH-C) to investigate its function. The structure shows an N-terminal SH3-like subdomain wrapped by a C-terminal subdomain with an anti-parallel β-sheet and an outer shell of α-helices. A stretch of positively charged surface across the subdomain interface is flanked by two negatively charged regions, suggesting a potential binding site for negatively charged polymers, such as WTAs or acidic peptide chains. Proteins 2016; 84:1328-1332. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.

    2011-01-15

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less

  14. Reconfigurable and writable magnetic charge crystals

    DOEpatents

    Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong

    2017-07-18

    Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.

  15. Ultrafast fluorescence upconversion technique and its applications to proteins.

    PubMed

    Chosrowjan, Haik; Taniguchi, Seiji; Tanaka, Fumio

    2015-08-01

    The basic principles and main characteristics of the ultrafast time-resolved fluorescence upconversion technique (conventional and space-resolved), including requirements for nonlinear crystals, mixing spectral bandwidth, acceptance angle, etc., are presented. Applications to flavoproteins [wild-type (WT) FMN-binding protein and its W32Y, W32A, E13R, E13K, E13Q and E13T mutants] and photoresponsive proteins [WT photoactive yellow protein and its R52Q mutant in solution and as single crystals] are demonstrated. For flavoproteins, investigations elucidating the effects of ionic charges on ultrafast electron transfer (ET) dynamics are summarized. It is shown that replacement of the ionic amino acid Glu13 and the resulting modification of the electrostatic charge distribution in the protein chromphore-binding pocket substantially alters the ultrafast fluorescence quenching dynamics and ET rate in FMN-binding protein. It is concluded that, together with donor-acceptor distances, electrostatic interactions between ionic photoproducts and other ionic groups in the proteins are important factors influencing the ET rates. In WT photoactive yellow protein and the R52Q mutant, ultrafast photoisomerization dynamics of the chromophore (deprotonated trans-p-coumaric acid) in liquid and crystal phases are investigated. It is shown that the primary dynamics in solution and single-crystal phases are quite similar; hence, the photocycle dynamics and structural differences observed at longer time scales arise mostly from the structural restraints imposed by the crystal lattice rigidity versus the flexibility in solution. © 2014 FEBS.

  16. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  18. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    NASA Astrophysics Data System (ADS)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.

    2018-03-01

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.

  19. Mixed stack charge transfer crystals: Crossing the neutral-ionic borderline by chemical substitution

    NASA Astrophysics Data System (ADS)

    Castagnetti, Nicola; Masino, Matteo; Rizzoli, Corrado; Girlando, Alberto; Rovira, Concepció

    2018-02-01

    We report extensive structural and spectroscopic characterization of four mixed stack charge-transfer (ms-CT) crystals formed by the electron donor 3,3',5 ,5' -tetramethylbenzidine (TMB) with Chloranil (CA), Bromanil (BA), 2,5-difluoro-tetracyanoquinodimethane (TCNQF2), and tetrafluoro-tetracyanoquinodimethane (TCNQF4). Together with the separately studied TMB-TCNQ [Phys. Rev. B 95, 024101 (2017), 10.1103/PhysRevB.95.024101] the TMB-acceptor series spans a wide range of degree of CT, from about 0.14 to 0.91, crossing the neutral-ionic interface, yet retaining similar packing and donor-acceptor CT integrals. First principle calculations of key phenomenological parameters allow us to get insight into the factors determining the degree of CT and other relevant physical properties.

  20. Improved solubility and bioactivity of theophylline (a bronchodilator drug) through its new nitrate salt analysed by experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Mary Novena, L.; Suresh Kumar, S.; Athimoolam, S.

    2016-07-01

    Synthesis, crystal structure, vibrational spectroscopy, quantum chemical studies and biological activity of the new semi organic compound, Theophyllinium Nitrate [C7H9N4 O2)+. (NO3)-], are reported here. Crystals of Theophyllinium nitrate (TN) were grown by slow solvent evaporation technique. The crystal packing is dominated by N-H···O intermolecular hydrogen bonds. The cations and anions are aggregated almost parallel leading to a lamellar structure. This molecular aggregation features two alternate hydrogen bonded chain C22(8) and C21(6) motifs. Further, a bifurcated ring R12(4) motifs is also seen. This aggregated molecular sheets are parallel to (2 bar 06) and (20 6 bar) planes of the crystal. The solubility test is carried out to enhance the physico-chemical activity of the compound. The atomic charge distribution on different atoms of TN has been calculated by Mulliken charge analysis. A detailed interpretation of FT-IR and FT-Raman spectra of TN show that most of the bands are matching between the experimental and theoretical methods. The strong intensity bands and shifting of bands due to intermolecular hydrogen bonds are also investigated. The NBO analysis is carried out to elucidate the stability of the molecule and charge delocalization within the molecule. The HOMO-LUMO analysis reveals molecular stability and chemical reactivity of the present compound. Also, the compound was examined for its antibacterial activity and found to exhibit notable activity against Pseudomonas aeruginosa. This shows that the present compound is a good candidate for the antimicrobial agent apart from its inherent Bronchodilator drug property. Hence, the new compound (TN) may be a good alternative for patients with Chronic Obstructive Pulmonary Disease (COPD) and bacterial infections.

  1. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  2. Systematic Approach to Electrostatically Induced 2D Crystallization of Nanoparticles at Liquid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuto, M.; Kewalramani, S.; Wang, S.

    2011-02-07

    We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less

  3. Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang

    2018-02-01

    Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.

  4. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  5. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  6. Camel and bovine chymosin: the relationship between their structures and cheese-making properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langholm Jensen, Jesper; Chr. Hansen A/S, Bøge Allé 10-12, DK-2970 Hørsholm; Mølgaard, Anne

    Analysis of the crystal structures of the two milk-clotting enzymes bovine and camel chymosin has revealed that the better milk-clotting activity towards bovine milk of camel chymosin compared with bovine chymosin is related to variations in their surface charges and their substrate-binding clefts. Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovinemore » chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined. Different variants of the enzymes were isolated by hydrophobic interaction chromatography and showed variations in their glycosylation, N-terminal sequences and activities. Glycosylation at Asn291 and the loss of the first three residues of camel chymosin significantly decreased its activity. Thermal differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Å and the crystal structure of unglycosylated bovine chymosin was redetermined at a slightly higher resolution (1.8 Å) than previously determined structures. Camel and bovine chymosin share the same overall fold, except for the antiparallel central β-sheet that connects the N-terminal and C-terminal domains. In bovine chymosin the N-terminus forms one of the strands which is lacking in camel chymosin. This difference leads to an increase in the flexibility of the relative orientation of the two domains in the camel enzyme. Variations in the amino acids delineating the substrate-binding cleft suggest a greater flexibility in the ability to accommodate the substrate in camel chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk.« less

  7. Sunitinib: from charge-density studies to interaction with proteins.

    PubMed

    Malińska, Maura; Jarzembska, Katarzyna N; Goral, Anna M; Kutner, Andrzej; Woźniak, Krzysztof; Dominiak, Paulina M

    2014-05-01

    Protein kinases are targets for the treatment of a number of diseases. Sunitinib malate is a type I inhibitor of tyrosine kinases and was approved as a drug in 2006. This contribution constitutes the first comprehensive analysis of the crystal structures of sunitinib malate and of complexes of sunitinib with a series of protein kinases. The high-resolution single-crystal X-ray measurement and aspherical atom databank approach served as a basis for reconstruction of the charge-density distribution of sunitinib and its protein complexes. Hirshfeld surface and topological analyses revealed a similar interaction pattern in the sunitinib malate crystal structure to that in the protein binding pockets. Sunitinib forms nine preserved bond paths corresponding to hydrogen bonds and also to the C-H···O and C-H···π contacts common to the VEGRF2, CDK2, G2, KIT and IT kinases. In general, sunitinib interacts with the studied proteins with a similar electrostatic interaction energy and can adjust its conformation to fit the binding pocket in such a way as to enhance the electrostatic interactions, e.g. hydrogen bonds in ligand-kinase complexes. Such behaviour may be responsible for the broad spectrum of action of sunitinib as a kinase inhibitor.

  8. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    PubMed

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  9. The crystal structure and crystal chemistry of fernandinite and corvusite

    USGS Publications Warehouse

    Evans, H.T.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  10. Fast iodide-SAD phasing for high-throughput membrane protein structure determination

    PubMed Central

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A.; Gordeliy, Valentin; Popov, Alexander

    2017-01-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques. PMID:28508075

  11. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  12. Dipicolinate salt of imidazole: Discovering its structure and properties using different experimental methodologies and quantum chemical investigations

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2018-03-01

    A novel organic proton transfer complex of imidazolium dipicolinate (ID) has been synthesized and it was grown as single crystals using slow evaporation method. The molecular structure of synthesized compound and vibrational modes of its functional groups were confirmed by (1H and 13C) NMR, FTIR and FT-Raman spectroscopic studies, respectively. Single crystal X-ray diffraction (SCXRD) analysis confirmed the orthorhombic system with noncentrosymmetric (NCS), P212121, space group of grown ID crystal. UV-Vis-NIR spectral study confirmed its high optical transparency within the region of 285-1500 nm. Powder second harmonic generation (SHG) efficiency of ID crystal was confirmed and it was 6.8 times that of KDP crystal. TG-DTA and DSC analysis revealed the higher thermal stability of grown crystal as 249 °C. The dielectric response and mechanical behaviour of grown crystal were studied effectively. Density functional theory calculations were performed to probe the relationship between the structure and its properties including molecular optimization, Mulliken atomic charge distribution, frontier molecular orbital (FMOs) and molecular electrostatic potential map (MEP) analysis and first hyperpolarizability. All these experimental and computational results were discussed in this communication and it endorsed the ID compound as a potential NLO candidate could be employed in optoelectronics device applications in near future.

  13. Experimental observation of charge-shift bond in fluorite CaF2.

    PubMed

    Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof

    2017-08-01

    On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

  14. Optical, Fluorescence with quantum analysis of hydrazine (1, 3- Dinitro Phenyl) by DFT and Ab initio approach

    NASA Astrophysics Data System (ADS)

    Cecily Mary Glory, D.; Sambathkumar, K.; Madivanane, R.; Velmurugan, G.; Gayathri, R.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2018-07-01

    Experimental and computational study of molecular structure, vibrational and UV-spectral analysis of Hydrazine (1, 3- Dinitrophenyl) (HDP) derivatives. The crystal was grown by slow cooling method and the crystalline perfection of single crystals was evaluated by high resolution X-ray diffractometry (HRXRD) using a multicrystal X-ray diffractometer. Fluorescence, FT-IR and FT-Raman spectra of HDP crystal were recorded. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) followed by scaled quantum force field methodology (SQMFF). NMR studies have confirmed respectively the crystal structure and functional groups of the grown crystal. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) result complements the experimental findings. The calculated MESP, UV, HOMO-LUMO energies show that charge transfer done within the molecule. And various thermodynamic parameters are studied. Fukui determines the local reactive site of electrophilic, nucleophilic, descriptor.

  15. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe 2As 2

    DOE PAGES

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; ...

    2016-02-12

    Within the BaFe 2As 2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba 1-xTl xFe 2As 2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe 2As 2 (T N = T s = 133 K) increase for x = 0.05 (T N = 138 K, T s = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidencemore » from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (T N = T s = 131 K), and this is due to charge doping. Lastly, we illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.« less

  16. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    PubMed Central

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  17. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors.

    PubMed

    Bussolotti, F; Yang, J; Yamaguchi, T; Yonezawa, K; Sato, K; Matsunami, M; Tanaka, K; Nakayama, Y; Ishii, H; Ueno, N; Kera, S

    2017-08-02

    The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. Here, we report on the electronic properties of rubrene single crystal as investigated by angle resolved ultraviolet photoelectron spectroscopy. A gap opening and kink-like features in the rubrene electronic band dispersion are observed. In particular, the latter results in a large enhancement of the hole effective mass (> 1.4), well above the limit of the theoretical estimations. The results are consistent with the expected modifications of the band structures in organic semiconductors as introduced by hole-phonon coupling effects and represent an important experimental step toward the understanding of the charge localization phenomena in organic materials.The charge transport properties in organic semiconductors are affected by the impact of molecular vibrations, yet it has been challenging to quantify them to date. Here, Bussolotti et al. provide direct experimental evidence on the band dispersion modified by molecular vibrations in a rubrene single crystal.

  18. Hydrogen bonded charge transfer molecular salt (4-chloro anilinium-3-nitrophthalate) for photophysical and pharmacological applications

    NASA Astrophysics Data System (ADS)

    Singaravelan, K.; Chandramohan, A.; Saravanabhavan, M.; Muthu Vijayan Enoch, I. V.; Suganthi, V. S.

    2017-09-01

    Radical scavenging activity against DPPH radical and binding properties of a hydrogen bonded charge transfer molecular salt 4-chloro anilinium-3-nitrophthalate(CANP) with calf thymus DNA has been studied by electronic absorption and emission spectroscopy. The molecular structure and crystallinity of the CANP salt have been established by carried out powder and single crystal X-ray diffraction analysis which indicated that cation and anion are linked through strong N+sbnd H…O- type of hydrogen bond. FTIR spectroscopic study was carried out to know the various functional groups present in the crystal. 1H and 13C NMR spectra were recorded to further confirm the molecular structure of the salt crystal. The thermal stability of the title salt was established by TG/DTA analyses simultaneously on the powdered sample of the title crystal. Further, the CANP salt was examined against various bacteria and fungi strains which showed a remarkable antimicrobial activity compared to that of the standards Ciproflaxin and Clotrimazole. The results showed that the CANP salt could interact with CT-DNA through intercalation. Antioxidant studies of the substrates alone and synthesized CANP salt showed that the latter has been better radical scavenging activity than that of the former against DPPH radical. The third order nonlinear susceptibility of the CANP salt was established by the Z-scan study.

  19. Highly Luminescent 2D-Type Slab Crystals Based on a Molecular Charge-Transfer Complex as Promising Organic Light-Emitting Transistor Materials.

    PubMed

    Park, Sang Kyu; Kim, Jin Hong; Ohto, Tatsuhiko; Yamada, Ryo; Jones, Andrew O F; Whang, Dong Ryeol; Cho, Illhun; Oh, Sangyoon; Hong, Seung Hwa; Kwon, Ji Eon; Kim, Jong H; Olivier, Yoann; Fischer, Roland; Resel, Roland; Gierschner, Johannes; Tada, Hirokazu; Park, Soo Young

    2017-09-01

    A new 2:1 donor (D):acceptor (A) mixed-stacked charge-transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene-based D and A molecules is designed and synthesized. Uniform 2D-type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non-negligible oscillator strength of the S 1 transition, and rigidified 2D-type structure. Moreover, this luminescent 2D-type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10 -4 cm 2 V -1 s -1 ). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active-layered organic light-emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed-stacked CT cocrystals in OLET applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    PubMed Central

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  1. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.

    PubMed

    Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W

    2009-09-22

    Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.

  2. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  3. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  4. Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes

    PubMed Central

    Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996

  5. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex.

    PubMed

    Hogan, Christopher J; Ruotolo, Brandon T; Robinson, Carol V; Fernandez de la Mora, Juan

    2011-04-07

    A parallel-plate differential mobility analyzer and a time-of-flight mass spectrometer (DMA-MS) are used in series to measure true mobility in dry atmospheric pressure air for mass-resolved electrosprayed GroEL tetradecamers (14-mers; ~800 kDa). Narrow mobility peaks are found (2.6-2.9% fwhm); hence, precise mobilities can be obtained for these ions without collisional activation, just following their generation by electrospray ionization. In contrast to previous studies, two conformers are found with mobilities (Z) differing by ~5% at charge state z ~ 79. By extrapolating to small z, a common mobility/charge ratio Z(0)/z = 0.0117 cm(2) V(-1) s(-1) is found for both conformers. When interpreted as if the GroEL ion surface were smooth and the gas molecule-protein collisions were perfectly elastic and specular, this mobility yields an experimental collision cross section, Ω, 11% smaller than in an earlier measurement, and close to the cross section, A(C,crystal), expected for the crystal structure (determined by a geometric approximation). However, the similarity between Ω and A(C,crystal) does not imply a coincidence between the native and gas-phase structures. The nonideal nature of protein-gas molecule collisions introduces a drag enhancement factor, ξ = 1.36, with which the true cross section A(C) is related to Ω via A(C) = Ω/ξ. Therefore, A(C) for GroEL 14-mer ions determined by DMA measurements is 0.69A(C,crystal). The factor 1.36 used here is based on the experimental Stokes-Millikan equation, as well as on prior and new numerical modeling accounting for multiple scattering events via exact hard-sphere scattering calculations. Therefore, we conclude that the gas-phase structure of the GroEL complex as electrosprayed is substantially more compact than the corresponding X-ray crystal structure.

  6. A Model-Based Investigation of Charge-Generation According to the Relative Diffusional Growth Rate Theory

    NASA Astrophysics Data System (ADS)

    Glassmeier, F.; Arnold, L.; Lohmann, U.; Dietlicher, R.; Paukert, M.

    2016-12-01

    Our current understanding of charge generation in thunderclouds is based on collisional charge transfer between graupel and ice crystals in the presence of liquid water droplets as dominant mechanism. The physical process of charge transfer and the sign of net charge generated on graupel and ice crystals under different cloud conditions is not yet understood. The Relative-Diffusional-Growth-Rate (RDGR) theory (Baker et al. 1987) suggests that the particle with the faster diffusional radius growth is charged positively. In this contribution, we use simulations of idealized thunderclouds with two-moment warm and cold cloud microphysics to generate realistic combinations of RDGR-parameters. We find that these realistic parameter combinations result in a relationship between sign of charge, cloud temperature and effective water content that deviates from previous theoretical and laboratory studies. This deviation indicates that the RDGR theory is sensitive to correlations between parameters that occur in clouds but are not captured in studies that vary temperature and water content while keeping other parameters at fixed values. In addition, our results suggest that diffusional growth from the riming-related local water vapor field, a key component of the RDGR theory, is negligible for realistic parameter combinations. Nevertheless, we confirm that the RDGR theory results in positive or negative charging of particles under different cloud conditions. Under specific conditions, charge generation via the RDGR theory alone might thus be sufficient to explain tripolar charge structures in thunderclouds. In general, however, additional charge generation mechanisms and adaptations to the RDGR theory that consider riming other than via local vapor deposition seem necessary.

  7. Capabilities of CdTe-Based Detectors With {mathrm {MoO}}_{x} Contacts for Detection of X- and gamma -Radiation

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, O. L.; Solovan, M. M.; Brus, V. V.; Kulchynsky, V. V.; Maryanchuk, P. D.; Fodchuk, I. M.; Gnatyuk, V. A.; Aoki, T.; Potiriadis, C.; Kaissas, Y.

    2017-05-01

    The charge transport mechanism and spectrometric properties of the X-ray and γ-ray detectors, fabricated by the deposition of molybdenum oxide thin films onto semi-insulating p-CdTe crystals were studied. The current transport processes in the Mo-MoOx/p-CdTe/MoOx-Mo structure are well described in the scope of the carrier's generation in the space-charge region and the space-charge-limited current models. The lifetime of charge carriers, the energy of hole traps, and the density of discrete trapping centers were determined from the comparison of the experimental data and calculations. Spectrometric properties of Mo-MoOx/p-CdTe/MoOx-Mo structures were also investigated. It is shown that the investigated heterojunctions have demonstrated promising characteristics for practical application in X-ray and γ-ray detector fabrication.

  8. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.

    PubMed

    Godoy, Andre S; Lima, Gustavo M A; Oliveira, Ketllyn I Z; Torres, Naiara U; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius

    2017-03-27

    The current Zika virus (ZIKV) outbreak became a global health threat of complex epidemiology and devastating neurological impacts, therefore requiring urgent efforts towards the development of novel efficacious and safe antiviral drugs. Due to its central role in RNA viral replication, the non-structural protein 5 (NS5) RNA-dependent RNA-polymerase (RdRp) is a prime target for drug discovery. Here we describe the crystal structure of the recombinant ZIKV NS5 RdRp domain at 1.9 Å resolution as a platform for structure-based drug design strategy. The overall structure is similar to other flaviviral homologues. However, the priming loop target site, which is suitable for non-nucleoside polymerase inhibitor design, shows significant differences in comparison with the dengue virus structures, including a tighter pocket and a modified local charge distribution.

  9. Dehydration process in NaCl solutions under various external electric fields

    NASA Astrophysics Data System (ADS)

    Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2007-06-01

    Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.

  10. Crystal structure of octa-kis-(4-meth-oxy-pyridinium) bis-(4-meth-oxy-pyridine-κN)tetra-kis-(thio-cyanato-κN)ferrate(III) bis-[(4-meth-oxypyri-dine-κN)pentakis-(thio-cyanato-κN)ferrate(III)] hexa-kis-(thio-cyanato-κN)ferrate(III) with iron in three different octa-hedral coordination environments.

    PubMed

    Jochim, Aleksej; Jess, Inke; Näther, Christian

    2018-03-01

    The crystal structure of the title salt, (C 6 H 8 NO) 8 [Fe(NCS) 4 (C 6 H 7 NO) 2 ][Fe(NCS) 5 (C 6 H 7 NO)] 2 [Fe(NCS) 6 ], comprises three negatively charged octa-hedral Fe III complexes with different coordination environments in which the Fe III atoms are coordinated by a different number of thio-cyanate anions and 4-meth-oxy-pyridine ligands. Charge balance is achieved by 4-meth-oxy-pyridinium cations. The asymmetric unit consists of three Fe III cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio-cyanate anions, two 4-meth-oxy-pyridine ligands and 4-meth-oxy-pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter-actions between organic cations and the ferrate(III) anions, weak N-H⋯S hydrogen-bonding inter-actions involving the pyridinium N-H groups of the cations and the thio-cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.

  11. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  12. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    NASA Astrophysics Data System (ADS)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  13. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  14. Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Nazir, S.; Singh, N.; Schwingenschlögl, U.

    2011-03-01

    The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.

  15. Interplay of local structure, charge, and spin in bilayered manganese perovskites

    DOE PAGES

    Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...

    2018-03-27

    Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less

  16. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    NASA Astrophysics Data System (ADS)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  17. Understanding the Unique Properties of Organometal Trihalide Perovskite with Single Crystals

    NASA Astrophysics Data System (ADS)

    Huang, Jinsong

    Organometal Trihalide Perovskite has been discovered to be all-round optoelectronic materials many types of electronic devices. The understanding of this family of materials is however limited yet due to the complicated grain structures in polycrystalline films which are generally used in most of the devices. In this contribution, I will present our recent progress in understanding the fundamental properties, including optoelectronic properties and electromechanical properties, using the high quality organometal trihalide perovskite single crystals. I will report the crystallographic orientation dependent charge transport and collection, surface and bulk charge recombination process, and direction measuring of carrier diffusion length using the lasing induced photocurrent scanning. The polarity of the organometal trihalide perovskite crystals will also be examined. We thank financial support from SunShot Initiative at Department of Energy under Award DE-EE0006709, and from National Science Foundation Grant DMR-1505535 and Grant DMR-1420645, and from Office of Naval Research under Award N00014-15-1-2713.

  18. Improved electrochemical property of nanoparticle polyoxovanadate K7NiV13O38 as cathode material for lithium battery

    NASA Astrophysics Data System (ADS)

    Ni, Erfu; Uematsu, Shinya; Quan, Zhen; Sonoyama, Noriyuki

    2013-06-01

    Molecular cluster ion compound K7NiV13O38 (KNiV) has been studied as a novel cathode material for lithium ion battery. The nanoparticles are prepared by a simple re-crystallization method adding different volumes of acetone to the water solution containing the dissolved KNiV. The KNiV re-crystallized from water/acetone ratio of 1:5 shows the most uniform particle size distribution and the smallest particles with thickness of 100 nm and width of 150 nm. The nanoparticle KNiV shows significant improvement in initial discharge capacity and capacity retention after 50 cycles compared to the as-prepared micro-sized particles at various current densities. Ex situ XRD patterns demonstrate that the discharge-charge process proceeds with amorphous KNiV, which is independent from the crystal structure. Ex situ FT-IR spectra indicate that [NiV13O38]7- cluster ion is stable and reacts reversibly with lithium ion in the discharge-charge process.

  19. Density functional theory studies on molecular structure and vibrational spectra of NLO crystal L-phenylalanine phenylalanium nitrate for THz application

    NASA Astrophysics Data System (ADS)

    Amalanathan, M.; Hubert Joe, I.; Rastogi, V. K.

    2011-12-01

    Molecular structure, FT-IR and Raman spectra of L-phenylalanine phenylalanium nitrate have been investigated using density functional theory calculation. The polarizability and hyperpolarizability value of the crystal is also calculated. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Simultaneous activation of ring C sbnd C stretching modes shows the non-centrosymmetric symmetry. Terahertz time-domain spectroscopy has been used to detect the absorption spectra in the frequency range from 0.05 to 1.3 THz. Theoretically predicted β value exhibits the high nonlinear optical activity.

  20. Template-mediated nano-crystallite networks in semiconducting polymers.

    PubMed

    Kwon, Sooncheol; Yu, Kilho; Kweon, Kyoungchun; Kim, Geunjin; Kim, Junghwan; Kim, Heejoo; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Jehan; Lee, Seoung Ho; Lee, Kwanghee

    2014-06-18

    Unlike typical inorganic semiconductors with a crystal structure, the charge dynamics of π-conjugated polymers (π-CPs) are severely limited by the presence of amorphous portions between the ordered crystalline regions. Thus, the formation of interconnected pathways along crystallites of π-CPs is desired to ensure highly efficient charge transport in printable electronics. Here we report the formation of nano-crystallite networks in π-CP films by employing novel template-mediated crystallization (TMC) via polaron formation and electrostatic interaction. The lateral and vertical charge transport of TMC-treated films increased by two orders of magnitude compared with pristine π-CPs. In particular, because of the unprecedented room temperature and solution-processing advantages of our TMC method, we achieve a field-effect mobility of 0.25 cm(2) V(-1) s(-1) using a plastic substrate, which corresponds to the highest value reported thus far. Because our findings can be applied to various π-conjugated semiconductors, our approach is universal and is expected to yield high-performance printable electronics.

  1. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  2. Competing nucleation pathways in a mixture of oppositely charged colloids: out-of-equilibrium nucleation revisited.

    PubMed

    Peters, Baron

    2009-12-28

    Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.

  3. Competing nucleation pathways in a mixture of oppositely charged colloids: Out-of-equilibrium nucleation revisited

    NASA Astrophysics Data System (ADS)

    Peters, Baron

    2009-12-01

    Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.

  4. Machine learning for the structure-energy-property landscapes of molecular crystals.

    PubMed

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  5. Theoretical insights of proton transfer and hydrogen bonded charge transfer complex of 1,2-dimethylimidazolium-3,5-dinitrobenzoate crystal

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    Proton transfer (PT) and hydrogen bonded charge transfer (HBCT) 1:1 complex of 1,2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) have been theoretically analyzed and compared with reported experimental results. Both the structures in the isolated gaseous state have been optimized at DFT/B3LYP/6-311G(d,p) level of theory and further, the PT energy barrier has been calculated from potential energy surface scan. Along with structural investigations, theoretical vibrational spectra have been inspected and compared with the FTIR spectrum. Moreover, frontier molecular analysis has also been carried out.

  6. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile.

    PubMed

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S

    2014-01-24

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.

  7. Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile*

    PubMed Central

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.

    2014-01-01

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789

  8. Allowing for crystalline structure effects in Geant4

    DOE PAGES

    Bagli, Enrico; Asai, Makoto; Dotti, Andrea; ...

    2017-03-24

    In recent years, the Geant4 toolkit for the Monte Carlo simulation of radiation with matter has seen large growth in its divers user community. A fundamental aspect of a successful physics experiment is the availability of a reliable and precise simulation code. Geant4 currently does not allow for the simulation of particle interactions with anything other than amorphous matter. To overcome this limitation, the GECO (GEant4 Crystal Objects) project developed a general framework for managing solid-state structures in the Geant4 kernel and validate it against experimental data. As a result, accounting for detailed geometrical structures allows, for example, simulation ofmore » diffraction from crystal planes or the channeling of charged particle.« less

  9. Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries

    NASA Astrophysics Data System (ADS)

    Le, Xuan Que; Nguyen, Phu Thuy

    2002-12-01

    As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.

  10. The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament.

    PubMed

    Fu, Yang; Slaymaker, Ian M; Wang, Junfeng; Wang, Ganggang; Chen, Xiaojiang S

    2014-04-03

    Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined association pathway may lead to formation of multiple species, i.e., amorphous precipitation. Weak interactions, such as hydrogen bonds, are promiscuous, serving to strengthen rather than define specific interactions. Participation in an interaction sequesters that surface from subsequent interactions, and we expect the strongest bonds to form first. This model, its basis, how it fits into the currently understood osmotic second virial coefficient approach to crystallization, and what it suggests will be discussed.

  12. Layering and Ordering in Electrochemical Double Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yihua; Kawaguchi, Tomoya; Pierce, Michael S.

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  13. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    NASA Astrophysics Data System (ADS)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  14. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    PubMed

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  15. Effect of acetate and nitrate anions on the molecular structure of 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone

    NASA Astrophysics Data System (ADS)

    Kamat, Vinayak; Naik, Krishna; Revankar, Vidyanand K.

    2017-04-01

    A novel Schiff base ligand 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone has been synthesized by the condensation reaction of 2-Hydrazinobenzimidazole with diacetyl monoxime in presence of acetic acid catalyst. The ligand has crystallized as its acetate salt, due to the charge-assisted hydrogen bonding between protonated benzimidazole ring and acetate anion. Efforts to synthesize the zinc(II) complex of the title compound, has resulted in the formation of a nitrate salt of the ligand, instead of coordination complex of zinc(II). Acetate salt has crystallized in monoclinic P 21/n, while the nitrate salt has crystallized in a triclinic crystal system with P -1 space group. Hirshfeld surface analysis is presented for both of the crystal structures. Structures of synthesized molecules are even computationally optimized using DFT. A comparative structural approach between the synthesized molecules and DFT optimized structure of bare ligand without any counterions is analyzed in terms of bond parameters. Hydrogen bonding is explained keeping the anions as the central dogma. Mass fragmentation pattern of the organic molecule and comparative account of IR, 1H and 13C NMR chemical shifts are also presented. Compounds are screened for their antibacterial and antifungal potencies against few pathogenic microorganisms. The organic motif is found be an excellent antifungal agent.

  16. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-01

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  17. Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules - Synthesis and Characterization

    DTIC Science & Technology

    2016-04-12

    AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To)  15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene

  18. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  19. Topological Switching and Orbiting Dynamics of Colloidal Spheres Dressed with Chiral Nematic Solitons

    PubMed Central

    Porenta, T.; Čopar, S.; Ackerman, P. J.; Pandey, M. B.; Varney, M. C. M.; Smalyukh, I. I.; Žumer, S.

    2014-01-01

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that “dress” the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed. PMID:25477195

  20. Topological switching and orbiting dynamics of colloidal spheres dressed with chiral nematic solitons.

    PubMed

    Porenta, T; Copar, S; Ackerman, P J; Pandey, M B; Varney, M C M; Smalyukh, I I; Žumer, S

    2014-12-05

    Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that "dress" the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed.

  1. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    NASA Astrophysics Data System (ADS)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  2. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Pegah M.; Yung, Daniel; Panaitescu, Eugen; Heiman, Don; Menon, Latika; Budil, David; Lewis, Laura H.

    2014-12-01

    Titania nanotubes have the potential to be employed in a wide range of energy-related applications such as solar energy-harvesting devices and hydrogen production. As the functionality of titania nanostructures is critically affected by their morphology and crystallinity, it is necessary to understand and control these factors in order to engineer useful materials for green applications. In this study, electrochemically-synthesized titania nanotube arrays were thermally processed in inert and reducing environments to isolate the role of post-synthesis processing conditions on the crystallization behavior, electronic structure and morphology development in titania nanotubes, correlated with the nanotube functionality. Structural and calorimetric studies revealed that as-synthesized amorphous nanotubes crystallize to form the anatase structure in a three-stage process that is facilitated by the creation of structural defects. It is concluded that processing in a reducing gas atmosphere versus in an inert environment provides a larger unit cell volume and a higher concentration of Ti3+ associated with oxygen vacancies, thereby reducing the activation energy of crystallization. Further, post-synthesis annealing in either reducing or inert atmospheres produces pronounced morphological changes, confirming that the nanotube arrays thermally transform into a porous morphology consisting of a fragmented tubular architecture surrounded by a network of connected nanoparticles. This study links explicit data concerning morphology, crystallization and defects, and shows that the annealing gas environment determines the details of the crystal structure, the electronic structure and the morphology of titania nanotubes. These factors, in turn, impact the charge transport and consequently the functionality of these nanotubes as photocatalysts.

  3. Energetics and crystal chemistry of Ruddlesden-Popper type structures in high T(sub c) ceramic superconductors

    NASA Technical Reports Server (NTRS)

    Dwivedi, Anurag; Cormack, A. N.

    1990-01-01

    The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is seen in these oxides which is similar in many respects to what is seen in the system Sr-Ti-O. However, it was observed that there are some significant differences, for example the rocksalt and perovskite blocks in new superconducting compounds are not necessarily electrically, unlike in Sr-Ti-O systems. This will certainly render an additional coulombic bonding energy between two different types of blocks and may well lead to significant differences in their structural chemistry. In the higher order members of the various homologous series, additional Cu-O planes are inserted in the perovskite blocks. In order for the unit cell to electrically neutral the net positive charge on rocksalt block (which remains constant throughout the homologous series) should be balanced by an equal negative charge on perovskite block. It, thus becomes necessary to create oxygen vacancies in the basic perovskite structure, when width of the perovskite slab changes on addition of extra Cu-O planes. Results of atomistic simulations suggest that these missing oxygen ions allow the Cu-O planes to buckle in these compounds. This is also supported by the absence of buckling in the first member of Bi-containing compounds in which there are no missing oxygen ions and the Sr-Ti-O series of compounds. Additional results are presented on the phase stability of polytypoid structures in these crystal chemically complex systems. The studies will focus on the determination of the location of Cu(3+) in the structures of higher order members of the La-Cu-O system and whether Cu(3+) ions or oxygen vacancies are energetically more favorable charge compensating mechanism.

  4. Organic semiconductor crystals.

    PubMed

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  5. Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.

    PubMed

    Tanner, Peter A; Ning, Lixin

    2013-02-21

    Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.

  6. Structural and Mechanistic Insights into the Latrophilin3-FLRT3 Complex that Mediates Glutamatergic Synapse Development.

    PubMed

    Ranaivoson, Fanomezana M; Liu, Qun; Martini, Francesca; Bergami, Francesco; von Daake, Sventja; Li, Sheng; Lee, David; Demeler, Borries; Hendrickson, Wayne A; Comoletti, Davide

    2015-09-01

    Latrophilins (LPHNs) are adhesion-like G-protein-coupled receptors implicated in attention-deficit/hyperactivity disorder. Recently, LPHN3 was found to regulate excitatory synapse number through trans interactions with fibronectin leucine-rich repeat transmembrane 3 (FLRT3). By isothermal titration calorimetry, we determined that only the olfactomedin (OLF) domain of LPHN3 is necessary for FLRT3 association. By multi-crystal native single-wavelength anomalous diffraction phasing, we determined the crystal structure of the OLF domain. This structure is a five-bladed β propeller with a Ca(2+) ion bound in the central pore, which is capped by a mobile loop that allows the ion to exchange with the solvent. The crystal structure of the OLF/FLRT3 complex shows that LPHN3-OLF in the closed state binds with high affinity to the concave face of FLRT3-LRR with a combination of hydrophobic and charged residues. Our study provides structural and functional insights into the molecular mechanism underlying the contribution of LPHN3/FLRT3 to the development of glutamatergic synapses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  8. Critical detonation thickness in vapor-deposited hexanitroazobenzene (HNAB) films with different preparation conditions

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander; Knepper, Robert; Marquez, Michael; Ball, J.; Miller, Jill

    2013-06-01

    At Sandia National Laboratories, we have coined the term ``microenergetics'' to describe sub-millimeter energetic material studies aimed at gaining knowledge of combustion and detonation behavior at the mesoscale. Films of the high explosive hexanitroazobenzene (HNAB) have been deposited through physical vapor deposition. HNAB deposits in an amorphous state that crystallizes over time and modest heating accelerates this crystallization. HNAB films were prepared under different crystallization temperatures, and characterized with surface profilometry and scanning electron microscopy. The critical detonation thickness for HNAB at different crystallization conditions was determined in a configuration where charge width was large compared to film thickness, and thus side losses did not play a role in detonation propagation. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, crystal structure, and density.

  9. Experimental and quantum chemical studies of a new organic proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate

    NASA Astrophysics Data System (ADS)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2018-02-01

    A new proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate (IMHTP), was crystallized by slow evaporation-solution growth technique. 1H and 13C NMR spectral studies confirm the molecular structure of the grown crystal. Single crystal X-ray diffraction study confirms that IMHTP crystallizes in monoclinic system with space group P21/c. Thermal curves (TG/DTA) show that the material is thermally stable up to 198 °C. The crystal emits fluorescence at 510 nm, proving its utility in making green light emitting materials in optical applications. The stable molecular structure was optimized by Gaussian 09 program with B3LYP/6-311++G(d,p) level of basis set. The frontier molecular orbital study shows that the charge transfer interaction occurs within the complex. The calculated first-order hyperpolarizability value of IMHTP is 44 times higher than that the reference material, urea. The electrostatic potential map was used to probe into electrophilic and nucleophilic reactive sites present in the molecule.

  10. Theoretical research on the spin-Hamiltonian parameters of the rhombic W5+ centers in CaWO4:Y3+ crystal

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Wei, Cheng-Fu; Zheng, Wen-Chen

    2016-02-01

    Detailed theoretical calculations for the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) of the rhombic W5+ center in CaWO4:Y3+ crystal are performed by using the high-order perturbation formulas for d1 ions in rhombic tetrahedral clusters with the ground state |dz2>. These formulas consist of the contributions from two mechanisms, the crystal-field (CF) mechanism connected with CF excited states in the vastly-used CF theory and the frequently-neglected charge-transfer (CT) mechanism related to CT excited states. The calculated results agree well with the experimental values. The calculations indicate that for W5+ ion (or other high valence state dn ions) in crystals, the model calculations of spin-Hamiltonian parameters should take both the CF and CT mechanisms into account. The signs of hyperfine structure constants Ai are suggested and the forming (or defect model) of rhombic W5+ center in CaWO4:Y3+ crystal is confirmed from the calculations.

  11. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE PAGES

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; ...

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li 2MoO 3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO 2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li 2MoO 3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O asmore » controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  12. Investigation of the Presence of Charge Order in Magnetite by Measurement of the Sprin Wave Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron scattering results on magnetite (Fe{sub 3}O{sub 4}) show a large splitting in the acoustic spin wave branch, producing a 7 meV gap midway to the Brillouin zone boundary at q = (0,0,1/2) and {h_bar}{omega} = 43 meV. The splitting occurs below the Verwey transition temperature, where a metal-insulator transition occurs simultaneously with a structural transformation, supposedly caused by the charge ordering on the iron sublattice. The wavevector (0,0,1/2) corresponds to the superlattice peak in the low symmetry structure. The dependence of the magnetic superexchange on changes in the crystal structure and ionic configurations that occur below the Verweymore » transition affect the spin wave dispersion. To better understand the origin of the observed splitting, several Heisenberg models intended to reproduce the pair-wise variation of the magnetic superexchange arising from both small crystalline distortions and charge ordering were studied. None of the models studied predicts the observed splitting, whose origin may arise from charge-density wave formation or magnetoelastic coupling.« less

  13. DNA Nanotubes for NMR Structure Determination of Membrane Proteins

    PubMed Central

    Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.

    2013-01-01

    Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667

  14. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  15. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE PAGES

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun; ...

    2017-04-05

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  16. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu; School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducingmore » scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.« less

  17. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  18. Crystal structure of a cocaine-binding antibody.

    PubMed

    Larsen, N A; Zhou, B; Heine, A; Wirsching, P; Janda, K D; Wilson, I A

    2001-08-03

    Murine monoclonal antibody GNC92H2 was elicited by active immunization with a cocaine immunoconjugate and binds free cocaine with excellent specificity and moderate affinity. Improvement of affinity, as well as humanization of GNC92H2, would be advantageous in immunopharmacotherapy for cocaine addiction, and for emergency cases of drug overdose. Toward this end, the crystal structure of an engineered murine-human chimeric Fab of GNC92H2 complexed with cocaine was determined at 2.3 A resolution. Structural analysis reveals a binding pocket with high shape and charge complementarity to the cocaine framework, which explains the specificity for cocaine, as opposed to the pharmacologically inactive cocaine metabolites. Importantly, the structure provides a foundation for mutagenesis to enhance the binding affinity for cocaine and potent cocaine derivatives, such as cocaethylene, and for additional humanization of the antibody. Copyright 2001 Academic Press.

  19. Nontypical iodine–halogen bonds in the crystal structure of (3 E )-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4- ij ]quinolin-4-ium triiodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.

    2016-03-23

    Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. The influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.

  20. Synthesis, crystal structure investigation, spectroscopic characterizations and DFT computations on a novel 1-(2-chloro-4-phenylquinolin-3-yl)ethanone

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Stephen, C. S. Jacob Prasanna; Subashini, R.; Reddy, H. Raveendranatha; AnanthaKrishnan, Dhanabalan

    2016-10-01

    The title compound 1-(2-chloro-4-phenylquinolin-3-yl)ethanone (CPQE) was synthesised effectively by chlorination of 3-acetyl-4-phenylquinolin-2(1H)-one (APQ) using POCl3 reagent. Structural and vibrational spectroscopic studies were performed by utilizing single crystal X-ray diffraction, FTIR and NMR spectral analysis along with DFT method utilizing GAUSSIAN‧ 03 software. Veda program has been employed to perform a detailed interpretation of vibrational spectra. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NBO, Global chemical reactivity descriptors and thermodynamic properties have been examined by (DFT/B3LYP) method with the 6-311G(d,p) basis set level.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotin, B. M., E-mail: bolotin70@yandex.ru; Mikhlina, Ya. A.; Arkhipova, S. A.

    The crystal and molecular structures of two crystal forms (pale yellow form 1 and yellow form 2) of N-[2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)phenyl]naphthalene-2-sulfonamide (Orlyum White 520T), which is an organic luminophore with an anomalously high Stokes shift, were determined. Crystal 2 is a solvate with para-xylene. Crystal 1 is a solvent-free form. The molecular geometry in crystal 1 differs from that in 2 only in the orientation of the SO{sub 2}Ar substituent. The bond-length distribution in the planar moiety of the molecule in crystal 1 is virtually identical to that in 2, but the bonds in the NH-SO{sub 2}Ar-bearing benzene ring in crystal 1more » are systematically longer than the corresponding bonds in crystal 2. This fact can be attributed to the crystal-packing effects. In 2 the molecules form stacked dimers with {pi}-stacking interactions between two planar conjugated tricyclic systems. The charge transfer in this system accounts for the intensification of the color of these crystals and the observed difference in the optical properties of 1 and 2.« less

  2. Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strong π-Acceptors: Crystal Structures and Comparison of π-Donor Strengths

    PubMed Central

    Kinnibrugh, Tiffany L.; Salman, Seyhan; Getmanenko, Yulia A.; Coropceanu, Veaceslav; Porter, William W.; Timofeeva, Tatiana V.; Matzger, Adam J.; Brédas, Jean-Luc; Marder, Seth R.; Barlow, Stephen

    2009-01-01

    Crystal structures have been determined for six dipolar polyene chromophores with metallocenyl – ferrocenyl (Fc), octamethylferrocenyl (Fc″), or ruthenocenyl (Rc) – donors and strong heterocyclic acceptors based on 1,3-diethyl-2-thiobarbituric acid or 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide. In each case, crystals were found to belong to centrosymmetric space groups. For one example, polymer-induced heteronucleation revealed the existence of two additional polymorphs, which were inactive in second-harmonic generation, suggesting that they were also centrosymmetric. The bond-length alternations between the formally double and single bonds of the polyene bridges are reduced compared to simple polyenes, indicating significant contribution from charge-separated resonance structures, although the metallocenes are not significantly distorted towards the [(η6-fulvene)(η5-cyclopentadienyl)metal(II)]+ extreme. DFT geometries are in excellent agreement with those determined crystallographically; while the π-donor strengths of the three metallocenyl groups are insufficiently different to result in detectable differences in the crystallographic bond-length alternations, the DFT geometries, as well as DFT-calculations of partial charges for atoms, suggest that π-donor strength decreases in the order Fc″ ≫ Fc > Rc. NMR, IR and electrochemical evidence also suggests that octamethylferrocenyl is the stronger π-donor, exhibiting similar π-donor strength to a p-(dialkylamino)phenyl group, while ferrocenyl and ruthenocenyl show very similar π-donor strengths to one another in chromophores of this type. PMID:20047010

  3. Vibrational, DFT, and thermal analysis of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.

    2013-12-01

    New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  4. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    NASA Astrophysics Data System (ADS)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  5. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    PubMed

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  6. Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions.

    PubMed

    Grohe, Bernd; Taller, Adam; Vincent, Peter L; Tieu, Long D; Rogers, Kem A; Heiss, Alexander; Sørensen, Esben S; Mittler, Silvia; Goldberg, Harvey A; Hunter, Graeme K

    2009-10-06

    To gain more insight into protein structure-function relationships that govern ectopic biomineralization processes in kidney stone formation, we have studied the ability of urinary proteins (Tamm-Horsfall protein, osteopontin (OPN), prothrombin fragment 1 (PTF1), bikunin, lysozyme, albumin, fetuin-A), and model compounds (a bikunin fragment, recombinant-, milk-, bone osteopontin, poly-L-aspartic acid (poly asp), poly-L-glutamic acid (poly glu)) in modulating precipitation reactions of kidney stone-related calcium oxalate mono- and dihydrates (COM, COD). Combining scanning confocal microscopy and fluorescence imaging, we determined the crystal faces of COM with which these polypeptides interact; using scanning electron microscopy, we characterized their effects on crystal habits and precipitated volumes. Our findings demonstrate that polypeptide adsorption to COM crystals is dictated first by the polypeptide's affinity for the crystal followed by its preference for a crystal face: basic and relatively hydrophobic macromolecules show no adsorption, while acidic and more hydrophilic polypeptides adsorb either nonspecifically to all faces of COM or preferentially to {100}/{121} edges and {100} faces. However, investigating calcium oxalates grown in the presence of these polypeptides showed that some acidic proteins that adsorb to crystals do not affect crystallization, even if present in excess of physiological concentrations. These proteins (albumin, bikunin, PTF1, recombinant OPN) have estimated total hydrophilicities from 200 to 850 kJ/mol and net negative charges from -9 to -35, perhaps representing a "window" in which proteins adsorb and coat urinary crystals (support of excretion) without affecting crystallization. Strongest effects on crystallization were observed for polypeptides that are either highly hydrophilic (>950 kJ/mol) and highly carboxylated (poly asp, poly glu), or else highly hydrophilic and highly phosphorylated (native OPN isoforms), suggesting that highly hydrophilic proteins strongly affect precipitation processes in the urinary tract. Therefore, the level of hydrophilicity and net charge is a critical factor in the ability of polypeptides to affect crystallization and to regulate biomineralization processes.

  7. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  8. Charge Effects on the Efflorescence in Single Levitated Droplets.

    PubMed

    Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart

    2017-09-14

    The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.

  9. The crystalline structure of copper phthalocyanine films on ZnO(1100).

    PubMed

    Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P

    2012-09-05

    The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

  10. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Dreele, Robert

    One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less

  12. Photomagnetic switching of heterometallic complexes [M(dmf)4(H2O)3(mu-CN)Fe(CN)5].H2O (M=Nd, La, Gd, Y) analyzed by single-crystal X-ray diffraction and ab initio theory.

    PubMed

    Svendsen, Helle; Overgaard, Jacob; Chevallier, Marie A; Collet, Eric; Chen, Yu-Sheng; Jensen, Frank; Iversen, Bo B

    2010-06-25

    Single-crystal X-ray diffraction measurements have been carried out on [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (1; dmf=dimethylformamide), [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Co(CN)(5)].H(2)O (2), [La(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (3), [Gd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (4), and [Y(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (5), at 15(2) K with and without UV illumination of the crystals. Significant changes in unit-cell parameters were observed for all the iron-containing complexes, whereas 2 showed no response to UV illumination. Photoexcited crystal structures have been determined for 1, 3, and 4 based on refinements of two-conformer models, and excited-state occupancies of 78.6(1), 84(6), and 86.6(7)% were reached, respectively. Significant bond-length changes were observed for the Fe-ligand bonds (up to 0.19 A), the cyano bonds (up to 0.09 A), and the lanthanide-ligand bonds (up to 0.10 A). Ab initio theoretical calculations were carried out for the experimental ground-state geometry of 1 to understand the electronic structure changes upon UV illumination. The calculations suggest that UV illumination gives a charge transfer from the cyano groups on the iron atom to the lanthanide ion moiety, {Nd(dmf)(4)(H(2)O)(3)}, with a distance of approximately 6 A from the iron atom. The charge transfer is accompanied by a reorganization of the spin state on the {Fe(CN)(6)} complex, and a change in geometry that produces a metastable charge-transfer state with an increased number of unpaired electrons, thus accounting for the observed photomagnetic effect.

  13. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    PubMed

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.

  14. Tris(acetonitrile)chloropalladium tetrafluoroborate synthesis, application and structural analysis

    NASA Astrophysics Data System (ADS)

    Dybała, Izabela; Demchuk, Oleg M.

    2016-10-01

    Results of the single crystal X-ray diffraction analysis of tris(acetonitrile)chloropalladium tetrafluoroborate [PdCl(CH3CN)3]BF4 are presented in details. It was found that the title compound crystallises in the monoclinic system, in the space group C2/c. The role of charge-assisted C-HṡṡṡF-B interactions in crystal architecture was investigated. Due to its untypical properties the prepared [PdCl(CH3CN)3]BF4 has proved to be an excellent palladium source in the synthesis of phosphine-palladium complexes.

  15. Measurements of high energy loss rates of fast highly charged U ions channeled in thin silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, C.; Chevallier, M.; Dauvergne, D.

    2011-07-01

    The results of two channeling experiments show that highly charged heavy ions at moderate velocities (v<

  16. Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals.

    PubMed

    Yao, Yifan; Dong, Huanli; Liu, Feng; Russell, Thomas P; Hu, Wenping

    2017-08-01

    Charge transport of small molecules is measured well with scanning tunneling microscopy, conducting atomic force microscopy, break junction, nanopore, and covalently bridging gaps. However, the manipulation and measurement of polymer chains remain a long-standing fundamental issue in conjugated polymers and full of challenge since conjugated polymers are naturally disordered materials. Here, a fundamental breakthrough in generating high-quality conjugated-polymer nanocrystals with extended conjugation and exceptionally high degrees of order using a surface-supported topochemical polymerization method is demonstrated. In the crystal the conjugated-polymer chains are extended along the long axis of the crystal with the side chains perpendicular to the long axis. Devices with conducting channels along the polymer chains show efficient charge transport, nearly two orders of magnitude greater than the interchain charge transport along the π-π stacking direction. This is the first example to clarify intra- and interchain charge transport based on an individual single crystal of conjugated polymers, and demonstrate the importance of intrachain charge transport in plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Crystal growth, physical properties and computational insights of semi-organic non-linear optical crystal diphenylguanidinium perchlorate grown by conventional solvent evaporation method

    NASA Astrophysics Data System (ADS)

    Kajamuhideen, M. S.; Sethuraman, K.; Ramamurthi, K.; Ramasamy, P.

    2018-02-01

    A splendid nonlinear optical single crystals diphenylguanidinium perchlorate (DPGP) was lucratively grown by low cost solvent evaporation method with the dimensions of 8 × 4 × 2 mm3. Structural and morphological studies of grown crystal were confirmed using X-ray diffraction studies. The presence of diverse functional groups was identified using FTIR and RAMAN studies. The molecular structure of a grown crystal was inveterate by NMR studies. The optical transmittance of DPGP crystal was analyzed using UV-vis-NIR studies. Photoluminescence spectrum shows sharp, well defined emission peak at 388 nm. Thermal studies assign that adduct is stable with the melting point of 164 °C. Microhardness studies declare that DPGP crystal belongs to the soft material class and their yield strength and elastic stiffness constant values were evaluated. Photoconductivity studies revealed the negative photoconductive nature of DPGP crystal. Second harmonic generation (SHG) efficiency of the DPGP crystal was 1.4 times that of potassium dihydrogen phosphate. Etching studies were carried out for different etching time. The dielectric studies were performed at different frequency. Laser damage threshold properties of DPGP crystal were examined using Nd:YAG laser system. The HOMO-LUMO energy gap evident the charge transfer interaction of the molecule. The calculated first order hyperpolarizability value is 5 times greater than that of urea. Thus, the grown DPGP single crystals are well suited for NLO device fabrications.

  18. Low temperature time resolved photoluminescence in ordered and disordered Cu2ZnSnS4 single crystals

    NASA Astrophysics Data System (ADS)

    Raadik, Taavi; Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M.; Ernits, K.; Bleuse, J.

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu2ZnSnS4 (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be ET (PO) =65±9 meV for partially ordered and ET (PD) =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers' recombination dynamics at low temperature.

  19. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    NASA Astrophysics Data System (ADS)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  20. Undulated oxo-centered layers in PbLn3O4(VO4) (Ln= La and Nd) and relationship with Nd4O4(GeO4)

    NASA Astrophysics Data System (ADS)

    Colmont, Marie; Mentré, Olivier; Henry, Natacha; Pautrat, Alain; Leclercq, Bastien; Capet, Frédéric; Djelal, Nora; Roussel, Pascal

    2018-04-01

    Single crystals of PbLa3O4(VO4) have been synthesized using the flux growth technique and characterized by X-ray diffraction. The crystal structure of the tittle phase was solved by charge flipping and refined to R1 = 0.024 (wR2 = 0.031) for 2777 reflections [I>3σ(I)]. The compound is orthorhombic and crystallized in the space group Cmcm: a = 5.8686(6)Å, b = 17.898(2)Å, c = 7.9190(7)Å, V = 831.8(1)Å3, Z = 4. The structure is built on [PbLa3O4]3+ layers with zig-zag cross-sections, surrounded by isolated (VO4)3- tetrahedra. Its crystal structure shows direct relationship with the isoformular Nd4O4(GeO4) compound which crystallized in the primitive non centrosymmetric Pb21m sub-group. Its stability in temperature and under air was checked as well as optical properties. In a second part, lanthanum was substituted by neodymium giving rise to a paramagnet and f→ f electronic excitations superposed to the broad absorption front below 3.05 eV related to the presence of VO4 groups.

  1. Picosecond fluorescence of intact and dissolved PSI-LHCI crystals.

    PubMed

    van Oort, Bart; Amunts, Alexey; Borst, Jan Willem; van Hoek, Arie; Nelson, Nathan; van Amerongen, Herbert; Croce, Roberta

    2008-12-15

    Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 +/- 2.5 ps) and rates of excitation energy transfer from LHCI to core (k(LC)) and vice versa (k(CL)). The ratio between these rates, R = k(CL)/k(LC), appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. k(LC) depends slightly but nonsystematically on detection wavelength, averaging (9.4 +/- 4.9 ps)(-1). R ranges from 0.5 (<690 nm) to approximately 1.3 above 720 nm.

  2. Theoretical investigation of the structural, elastic, electronic and optical properties of the ternary indium sulfide layered structures AInS2 (A = K, Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.

    2018-02-01

    Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.

  3. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K.

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometricmore » analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.« less

  4. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley, S.; Okumura, N; Lord, S

    'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptidemore » GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.« less

  6. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE PAGES

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    2017-05-17

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  7. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    NASA Astrophysics Data System (ADS)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. Through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.

  8. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less

  9. Deducing chemical structure from crystallographically determined atomic coordinates

    PubMed Central

    Bruno, Ian J.; Shields, Gregory P.; Taylor, Robin

    2011-01-01

    An improved algorithm has been developed for assigning chemical structures to incoming entries to the Cambridge Structural Database, using only the information available in the deposited CIF. Steps in the algorithm include detection of bonds, selection of polymer unit, resolution of disorder, and assignment of bond types and formal charges. The chief difficulty is posed by the large number of metallo-organic crystal structures that must be processed, given our aspiration that assigned chemical structures should accurately reflect properties such as the oxidation states of metals and redox-active ligands, metal coordination numbers and hapticities, and the aromaticity or otherwise of metal ligands. Other complications arise from disorder, especially when it is symmetry imposed or modelled with the SQUEEZE algorithm. Each assigned structure is accompanied by an estimate of reliability and, where necessary, diagnostic information indicating probable points of error. Although the algorithm was written to aid building of the Cambridge Structural Database, it has the potential to develop into a general-purpose tool for adding chemical information to newly determined crystal structures. PMID:21775812

  10. Molecular structure and charge density analysis of p-methoxybenzoic acid (anisic acid)

    NASA Astrophysics Data System (ADS)

    Fausto, R.; Matos-Beja, A.; Paixão, J. A.

    1997-12-01

    A concerted X-ray and ab initio SCF-MO study of the structure and charge density of p-methoxybenzoic acid (anisic acid) is reported. An extensive X-ray data set (7401 reflections) was measured on a single crystal using Mo K α radiation and the structure refined with 2121 unique reflections, leading to a final R( F)-factor of 0.047 calculated for reflections with I>2 σ. The molecular geometry of crystalline anisic acid, where the molecules dimerize via a moderately strong CO-H⋯O hydrogen bond, is compared with that of the isolated molecule, resulting from SCF-MO ab initio calculations. A topological analysis of the molecular charge density was performed using Bader's method to gain insight into the dominant intra- and intermolecular interactions in this compound. In particular, the effects of the substituents on the observed distortions of the benzene ring were investigated as well as the internal rotation of the methyl group.

  11. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huanbin; Xue, Guobiao; Wu, Jiake

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  12. TlBr and TlBr xI 1-x crystals for γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Churilov, Alexei V.; Ciampi, Guido; Kim, Hadong; Higgins, William M.; Cirignano, Leonard J.; Olschner, Fred; Biteman, Viktor; Minchello, Mark; Shah, Kanai S.

    2010-04-01

    TlBr and TlBr xI 1-x are wide bandgap semiconductor materials being investigated for applications in γ-ray spectroscopy. They have a good combination of density and atomic numbers, promising to make them very efficient detectors. Their low melting points and simple cubic and orthorhombic crystal structures are favorable for bulk crystal growth. However, these semiconductors need to be extremely pure to become useful as radiation detectors. Impurities can lead to charge trapping and scattering, reducing the charge transit lengths and limiting the detector thickness to <1 mm. Additional purification steps were implemented to improve the purity and mobility-lifetime product ( μτ) of electrons. Detector-grade TlBr with the electron μτ product of up to 6×10 -3 cm 2/V has been produced, which allowed operation of detectors up to 15 mm thickness. The ternary TlBr xI 1-x was investigated at different compositions to vary the bandgap and explore the effect of added TlI on the long term stability of detectors. The material analysis and detector characterization results are included.

  13. Long-range ordering of composites for organic electronics: TIPS-pentacene single crystals with incorporated nano-fibers

    DOE PAGES

    Li, Huanbin; Xue, Guobiao; Wu, Jiake; ...

    2017-08-18

    Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. In this paper, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanofiber guest incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single-crystalline nature. As a result, the incorporation ofmore » the PBI guest introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm 2 V -1 s -1 even though 26.4% of the channel area is taken over by the guest. Finally, as such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.« less

  14. DNA nanotubes for NMR structure determination of membrane proteins.

    PubMed

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  15. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    NASA Astrophysics Data System (ADS)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.

  16. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-26

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  17. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  18. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density

    NASA Astrophysics Data System (ADS)

    Guster, Bogdan; Canadell, Enric; Pruneda, Miguel; Ordejón, Pablo

    2018-04-01

    We present a density functional theory study of the electronic structure of single-layer TiSe2, and focus on the charge density wave (CDW) instability present on this 2D material. We explain the 2× 2 periodicity of the CDW from the phonon band structure of the undistorted crystal, which is unstable under one of the phonon modes at the M point. This can be understood in terms of a partial band gap opening at the Fermi level, which we describe on the basis of the symmetry of the involved crystal orbitals, leading to an energy gain upon the displacement of the atoms following the phonon mode in a 2  ×  1 structure. Furthermore, the combination of the corresponding phonons for the three inequivalent M points of the Brillouin zone leads to the 2  ×  2 distortion characteristic of the CDW state. This leads to a further opening of a full gap, which reduces the energy of the 2  ×  2 structure compared to the 2  ×  1 one of a single M point phonon, and makes the CDW structure the most stable one. We also analyze the effect of charge injection into the layer on the structural instability. We predict that the 2  ×  2 structure only survives for a certain range of doping levels, both for electrons and for holes, as doping reduces the energy gain due to the gap opening. We predict the transition from the commensurate 2  ×  2 distortion to an incommensurate one with increasing wavelength upon increasing the doping level, followed by the appearance of the undistorted 1  ×  1 structure for larger carrier concentrations.

  19. Lead and uranium group abundances in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yadav, J. S.; Perelygin, V. P.

    1985-01-01

    The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.

  20. Chaotic behavior of channeling particles.

    PubMed

    Chen, Ling; Kaloyeros, Alain E.; Wang, Guang-Hou

    1994-03-01

    Channeling describes the collimated motion of energetic charged particles along the lattice plane or axis in a crystal. The energetic particles are steered through the channels formed by strings of atomic constituents in the lattice. In the case of planar channeling, the motion of a charged particle between the atomic planes can be periodic or quasiperiodic, such as a simple oscillatory motion in the transverse direction. In practice, however, the periodic motion of the channeling particles can be accompanied by an irregular, chaotic behavior. In this paper, the Moliere potential, which is considered as a good analytical approximation for the interaction of channeling particles with the rows of atoms in the lattice, is used to simulate the channeling behavior of positively charged particles in a tungsten (100) crystal plane. By appropriate selection of channeling parameters, such as the projectile energy E(0) and incident angle psi(0), the transition of channeling particles from regular to chaotic motion is demonstrated. It is argued that the fine structures that appear in the angular scan channeling experiments are due to the particles' chaotic motion.

  1. Current trends in protein crystallization.

    PubMed

    Gavira, José A

    2016-07-15

    Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented. Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  3. Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru

    2018-01-01

    The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.

  4. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.

    2017-03-01

    We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.

  5. Crystal structure and electrochemical characteristics of non-AB 5 type La-Ni system alloys

    NASA Astrophysics Data System (ADS)

    Shi, Siqi; Ouyang, Chuying; Lei, Minsheng

    The La-Ni system compounds have been prepared by arc-melting method under Ar atmosphere. X-ray diffraction analysis reveals that the as-prepared alloys consist of different phases. The electrochemical properties, including activation, maximum discharge capacity, high rate chargeability (HRC), and high rate dischargeability (HRD) of these alloy electrodes have been studied through the charge-discharge recycle testing at different temperatures and charge (or discharge) currents. Among the La-Ni alloy electrodes studied, LaNi 2.28 alloy has the most excellent high rate charging performance, and La 2Ni 7 alloy exhibit the highest high rate dischargeability, while La 7Ni 3 alloy is capable of discharging at low temperature.

  6. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  7. Mixed valence transition metal 2D-oxides: Comparison between delafossite and crednerite compounds

    NASA Astrophysics Data System (ADS)

    Martin, Christine; Poienar, Maria

    2017-08-01

    Transition metal oxides offer large opportunities to study relationships between structures and properties. Indeed these compounds crystallize in numerous frameworks corresponding to different dimensionalities and, accordingly, show a huge variety of properties (as high Tc superconductivity, colossal magnetoresistivity, multiferroicity..). The control of the oxidation state of the transition metal, via the monitoring of the oxygen content, is of prime importance to understand and optimize the properties, due to the strong coupling that exists between the lattice and the charges and spins of the transition metals. In this large playground for chemists, we reinvestigated several 2D-compounds derived from delafossite structure. Considering this paper as a very short review, we report here the results obtained on CuMO2 compounds (with M = Cr, Mn or Mn+Cu) by using a combination of techniques, as X-ray, neutrons and/or electrons diffraction on poly-crystals for structural characterisations that are correlated with electrical and/or magnetic properties. The complementarity of studies is also addressed by the synthesis and characterization of single crystals in addition to poly-crystals. Moreover the comparison of the structures of similar Cr and Mn based oxides highlights the crucial role of the Jahn-Teller effect of trivalent manganese to lift the degeneracy, which is responsible of the magnetic frustration in CuCrO2.

  8. Glass Forming Ability in Systems with Competing Orderings

    NASA Astrophysics Data System (ADS)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2018-04-01

    Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy state. The tendency for a material to form a glass when quenched is called "glass-forming ability," and it is of key significance both fundamentally and for materials science applications. Here, we consider liquids with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple or eutectic points. With simulations of two model systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming ability is caused by an increase in the structural difference between liquid and crystal: stronger competition in orderings towards the melting point minimum makes a liquid structure more disordered (more complex). This increase in the liquid-crystal structure difference can be described by a single adimensional parameter, i.e., the interface energy cost scaled by the thermal energy, which we call the "thermodynamic interface penalty." Our finding may provide a general physical principle for not only controlling the glass-forming ability but also the emergence of glassy behavior of various systems with competing orderings, including orderings of structural, magnetic, electronic, charge, and dipolar origin.

  9. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.

    PubMed

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-03-01

    The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.

  10. Loss for photoemission versus gain for Auger: Direct experimental evidence of crystal-field splitting and charge transfer in photoelectron spectroscopy

    DOE PAGES

    Woicik, J. C.; Weiland, C.; Rumaiz, A. K.

    2015-05-29

    Here, we find a 5 eV satellite in the Ti1s photoelectron spectrum of the transition-metal oxide SrTiO 3. This satellite appears in addition to the well-studied 13 eV structure that is typically associated with the Ti2p core line. We give direct experimental evidence that the presence of two satellites is due to the crystal-field splitting of the metal 3d orbitals. They originate from ligand 2pt 2g → metal3dt 2g and ligand 2pe g → metal 3de g monopole charge-transfer excitations within the sudden approximation of quantum mechanics. This assignment is made by the energetics of the resonant and high-energy thresholdmore » behaviors of the TiK–L 2L 3 Auger decay that follows Ti1s photoionization.« less

  11. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less

  12. Taub-Nut Crystal

    NASA Astrophysics Data System (ADS)

    Imazato, Harunobu; Mizoguchi, Shun'ya; Yata, Masaya

    We consider the Gibbons-Hawking metric for a three-dimensional periodic array of multi-Taub-NUT centers, containing not only centers with a positive NUT charge but also ones with a negative NUT charge. The latter are regarded as representing the asymptotic form of the Atiyah-Hitchin metric. The periodic arrays of Taub-NUT centers have close parallels with ionic crystals, where the Gibbons-Hawking potential plays the role of the Coulomb static potential of the ions, and are similarly classified according to their space groups. After a periodic identification and a Z2 projection, the array is transformed by T-duality to a system of NS5-branes with the SU(2) structure, and a further standard embedding yields, though singular, a half-BPS heterotic 5-brane background with warped compact transverse dimensions. A discussion is given on the possibility of probing the singular geometry by two-dimensional gauge theories.

  13. Enabling Earth-Abundant Pyrite (FeS2) Semiconductor Nanostructures for High Performance Photovoltaic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Song

    2014-11-18

    This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fullymore » characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.« less

  14. Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport.

    PubMed

    Fan, Congcheng; Zoombelt, Arjan P; Jiang, Hao; Fu, Weifei; Wu, Jiake; Yuan, Wentao; Wang, Yong; Li, Hanying; Chen, Hongzheng; Bao, Zhenan

    2013-10-25

    Organic single-crystalline p-n junctions are grown from mixed solutions. First, C60 crystals (n-type) form and, subsequently, C8-BTBT crystals (p-type) nucleate heterogeneously on the C60 crystals. Both crystals continue to grow simultaneously into single-crystalline p-n junctions that exhibit ambipolar charge transport characteristics. This work provides a platform to study organic single-crystalline p-n junctions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Crystal structure of a designed, thermostable, heterotrimeric coiled coil.

    PubMed Central

    Nautiyal, S.; Alber, T.

    1999-01-01

    Electrostatic interactions are often critical for determining the specificity of protein-protein complexes. To study the role of electrostatic interactions for assembly of helical bundles, we previously designed a thermostable, heterotrimeric coiled coil, ABC, in which charged residues were employed to drive preferential association of three distinct, 34-residue helices. To investigate the basis for heterotrimer specificity, we have used multiwavelength anomalous diffraction (MAD) analysis to determine the 1.8 A resolution crystal structure of ABC. The structure shows that ABC forms a heterotrimeric coiled coil with the intended arrangement of parallel chains. Over half of the ion pairs engineered to restrict helix associations were apparent in the experimental electron density map. As seen in other trimeric coiled coils, ABC displays acute knobs-into-holes packing and a buried anion coordinated by core polar amino acids. These interactions validate the design strategy and illustrate how packing and polar contacts determine structural uniqueness. PMID:10210186

  16. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    PubMed

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  17. Mutation Induced Conformational Change In CaMKII Peptide Alters Binding Affinity to CaM Through Alternate Binding Site

    NASA Astrophysics Data System (ADS)

    Ezerski, Jacob; Cheung, Margaret

    CaM forms distinct conformation states through modifications in its charge distribution upon binding to Ca2+ ions. The occurrence of protein structural change resulting from an altered charge distribution is paramount in the scheme of cellular signaling. Not only is charge induced structural change observed in CaM, it is also seen in an essential binding target: calmodulin-depended protein kinase II (CaMKII). In order to investigate the mechanism of selectivity in relation to changes in secondary structure, the CaM binding domain of CaMKII is isolated. Experimentally, charged residues of the CaMKII peptide are systematically mutated to alanine, resulting in altered binding kinetics between the peptide and the Ca2+ saturated state of CaM. We perform an all atom simulation of the wildtype (RRK) and mutated (AAA) CaMKII peptides and generate structures from the trajectory. We analyze RRK and AAA using DSSP and find significant structural differences due to the mutation. Structures from the RRK and AAA ensembles are then selected and docked onto the crystal structure of Ca2+ saturated CaM. We observe that RRK binds to CaM at the C-terminus, whereas the 3-residue mutation, AAA, shows increased patterns of binding to the N-terminus and linker regions of CaM. Due to the conformational change of the peptide ensemble from charged residue mutation, a distinct change in the binding site can be seen, which offers an explanation to experimentally observed changes in kinetic binding rates

  18. Anisotropic charge transport in large single crystals of π-conjugated organic molecules.

    PubMed

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-05-07

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.

  19. Reply to ``Comment on `Spin- and charge-ordering in oxygen-vacancy-ordered mixed-valence Sr4Fe4O11 ' ''

    NASA Astrophysics Data System (ADS)

    Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A.

    2008-04-01

    Recently, using density-functional theoretical calculations, we have reported [Phys. Rev. B 74, 054422 (2006)] that formal Fe3+ ions reside at the square-pyramidal site and Fe4+ ions in the octahedral site in Sr4Fe4O11 . Based on the interpretation of experimental structural and Mössbauer data from the literature, Adler concludes that our previous first-principles results disagree with experiments on the assignment of oxidation states to Fe in the square-pyramidal and octahedral environments in Sr4Fe4O11 . From a critical examination of the structure data for Sr4Fe4O11 and related oxides with Fe in different oxidation states and theoretically simulated Mössbauer parameters (hyperfine field, isomer shift, and quadrupole splitting), here we show that information on charges residing on the different constituents cannot be directly derived either from experimental structure or Mössbauer data. From additional analyses of the chemical bonding on the basis of charge density, charge transfer, electron localization function, crystal orbital Hamilton population, Born effective charge, and partial density of states, we substantiate our previous assignment of formal Fe3+ and Fe4+ to the square-pyramidal and octahedral sites, respectively, in Sr4Fe4O11 .

  20. Fabrication and characterization of controllable grain boundary arrays in solution-processed small molecule organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Wo, Songtao; Headrick, Randall L.; Anthony, John E.

    2012-04-01

    We have produced solution-processed thin films of 6,13-bis(tri-isopropyl-silylethynyl) pentacene with grain sizes from a few micrometers up to millimeter scale by lateral crystallization from a rectangular stylus. Grains are oriented along the crystallization direction, and the grain size transverse to the crystallization direction depends inversely on the writing speed, hence forming a regular array of oriented grain boundaries with controllable spacing. We utilize these controllable arrays to systematically study the role of large-angle grain boundaries in carrier transport and charge trapping in thin film transistors. The effective mobility scales with the grain size, leading to an estimate of the potential drop at individual large-angle grain boundaries of more than 1 volt. This result indicates that the structure of grain boundaries is not molecularly abrupt, which may be a general feature of solution-processed small molecule organic semiconductor thin films, where relatively high energy grain boundaries are typically formed. Transient measurements after switching from positive to negative gate bias or between large and small negative gate bias reveal reversible charge trapping, with time constants on the order of 10 s and trap densities that are correlated with grain boundary density. We suggest that charge diffusion along grain boundaries and other defects is the rate-determining mechanism of the reversible trapping.

  1. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    NASA Astrophysics Data System (ADS)

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  2. Growth, density functional theory (DFT) and spectral studies on L-2-aminobutyric acid -biologically active material

    NASA Astrophysics Data System (ADS)

    Usha, C.; Santhakumari, R.; Meenakshi, R.; Jayasree, R.; Bhuvaneswari, M.

    2017-12-01

    Single crystal of L-2-aminobutyric acid (ABA) was grown from water by slow evaporation at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction studies. The grown crystal was subjected to FT-IR, FT-Raman, 1H NMR and 13C NMR spectral analyses to confirm the presence of functional group and molecular structure respectively. Thermal properties were investigated by thermogravimetric and differential thermal analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. The electronic charge distribution and reactivity of the molecules within the crystal were studied by HOMO and LUMO analysis and the molecular electrostatic potential (MEP) of the grown crystal was performed using the B3LYP method. The anti-bacterial activities of the crystal were performed by disk diffusion method against the standard bacteria E. coli. The crystal exhibits good anti-bacterial activity. Second harmonic generation efficiency of the powdered ABA crystal was tested using Nd:YAG laser and it is found to be ∼3.3 times that of potassium dihydrogen orthophosphate.

  3. A Crystal-Physical Model of Electrotransfer in the Superionic Conductor Pb1 - x Sc x F2 + x ( x = 0.1)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-04-01

    The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).

  4. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  5. Nontypical iodine–halogen bonds in the crystal structure of (3 E )-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4- ij ]quinolin-4-ium triiodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.

    2016-04-29

    Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. Lastly, the influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.

  6. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor

    PubMed Central

    Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.

    2012-01-01

    DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915

  7. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  8. Crystal structure and charge transport properties of poly(arylene-ethynylene) derivatives: A DFT approach

    NASA Astrophysics Data System (ADS)

    Garzón, Andrés; Granadino-Roldán, José M.; García, Gregorio; Moral, Mónica; Fernández-Gómez, Manuel

    2013-04-01

    In the present study, a series of crystalline poly(arylene-ethynylene) copolymers containing phenylethynylene and 2,5-dialkoxy-phenylethynylene units together with 1,3,4-thiadiazole rings has been modeled by means of periodic calculations. Optimized three-dimensional polymeric structures show interchain distances that are consistent with the experimental values reported for a related polymer. It has also been observed that the presence of pendant alkoxy chains brings on both a further flattening and a separation of the coplanar chains. This fact is linked to a decrease of the interchain cofacial distance. The electron transport character of the polymer crystal structures was assessed through Marcus theory. Electronic coupling between neighboring polymer chains is most influenced by the presence of alkoxy chains giving rise to an expectable enhancement of the electron hopping mobility.

  9. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  10. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    PubMed

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  11. Transient current induced in thin film diamonds by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  12. Transient current induced in thin film diamonds by swift heavy ions

    DOE PAGES

    Sato, Shin-ichiro; Makino, Takahiro; Ohshima, Takeshi; ...

    2017-04-05

    Single crystal diamond is a suitable material for the next generation particle detectors because of the superior electrical properties and the high radiation tolerance. In order to investigate charge transport properties of diamond particle detectors, transient currents generated in diamonds by single swift heavy ions (26 MeV O 5 + and 45 MeV Si 7 +) are investigated. We also measured two dimensional maps of transient currents by single ion hits. In the case of 50 μm-thick diamond, both the signal height and the collected charge are reduced by the subsequent ion hits and the charge collection time is extended.more » Our results are thought to be attributable to the polarization effect in diamond and it appears only when the transient current is dominated by hole current. In the case of 6 μm-thick diamond membrane, an “island” structure is found in the 2D map of transient currents. Signals in the islands shows different applied bias dependence from signals in other regions, indicating different crystal and/or metal contact quality. Simulation study of transient currents based on the Shockley-Ramo theorem clarifies that accumulation of space charges changes distribution of electric field in diamond and causes the polarization effect.« less

  13. Chalcogenide nanocrystal assembly: Controlling heterogeneity and modulating heterointerfaces

    NASA Astrophysics Data System (ADS)

    Davis, Jessica

    This dissertation work is focused on developing methods to facilitate charge transport in heterostructured materials that comprise a nanoscale component. Multicomponent semiconductor materials were prepared by (1) spin coating of discrete nanomaterials onto porous silicon (pSi) or (2) self-assembly. Spin-coating of colloidal quantum dot (QD) PbS solutions was employed to create prototype PbS QD based radiation detection devices using porous silicon (pSi) as an n-type support and charge transport material. These devices were initially tested as a photodetector to ascertain the possibility of their use in high energy radiation detection. Short chain thiolate ligands (4-fluorothiophenolate) and anion passivation at the particle interface were evaluated to augment interparticle transport. However, the samples showed minimum interaction with the light source possibly due to poor infiltration into the pSi. The second project was also driven by the potential synergistic properties that can be achieved in multicomponent metal chalcogenide nanostructures, potentially useful in optoelectronic devices. Working with well-established methods for single component metal chalcogenide (MQ) particle gels this dissertation research sought to develop practical methods for co-gelation of different component particles with complimentary functionalities. By monitoring the kinetics of aggregation using time resolved dynamic light scattering and NMR spectroscopy the kinetics of aggregation of the two most common crystal structures for CdQ nanocrystals was studied and it was determined that the hexagonal (wurtzite) crystal structure aggregated faster than the cubic (zinc blende) crystal structure. For gel coupling of nanoparticles with differing Q (Q=S, Se and Te), once we accounted for the crystal structure effects, it was determined that the relative redox characteristics of Q govern the reaction rate. The oxidative sol-gel assembly routes were also employed to fabricate metal chalcogenide NC gels with different NC components with control over the degree of mixing. In order to control the degree of mixing, the factors that underscore sol-gel oxidative assembly were elucidated and the aggregation and gelation kinetics of metal chalcogenide QDs were monitored through time-resolved dynamic light scattering (TR-DLS), and nuclear magnetic resonance spectroscopy (NMR). Through these kinetic studies of the surface speciation of metal chalcogenides, control over heterogeneity in dual component CdSe-ZnS system, was achieved through adjustment of the capping ligand, the native crystal structure and the chalcogenide, thereby changing the relative rates of assembly for each component independently.

  14. Synthesis, structural, optical and thermal studies of an organic nonlinear optical 4-aminopyridinium maleate single crystal.

    PubMed

    Pandi, P; Peramaiyan, G; Kumar, M Krishna; Kumar, R Mohan; Jayavel, R

    2012-03-01

    Synthesis and growth of a novel organic nonlinear optical (NLO) crystal of 4-aminopyridinium maleate (4APM) in larger size by the slow evaporation solution growth technique are reported. Single crystal and powder X-ray diffraction analyses reveal that 4APM crystallizes in monoclinic system with space group P2(1) with cell parameters a=8.140(4)Å, b=5.457(5)Å, c=10.926(10)Å and volume=481.4(7)Å(3). The grown crystal has been characterized by Fourier transform infrared and UV-visible spectral analyses. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been carried out to study its thermal properties. Dielectric measurements have been carried out to study the distribution of charges within the crystal. The mechanical strength of the crystal has been studied by using Vickers' microhardness test. The etching studies have been carried out on the grown crystal. The Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal and the SHG efficiency of 4APM was found to be 4.8 times greater than that of KDP crystal. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The role of the collaborative functions of the composite structure of organic and inorganic constituents and their influence on the electrical properties of human bone.

    PubMed

    Kohata, Kazuhiro; Itoh, Soichiro; Horiuchi, Naohiro; Yoshioka, Taro; Yamashita, Kimihiro

    2016-08-12

    The electrical potential, which is generated in bone by collagen displacement, has been well documented. However, the role of mineral crystals in bone piezoelectricity has not yet been elucidated. We examined the mechanism that the composite structure of organic and inorganic constituents and their collaborative functions play an important role in the electrical properties of human bone. The electrical potential and bone structure were evaluated using thermally stimulated depolarized current (TSDC) and micro computed tomography, respectively. After electrical polarization of bone specimens, the stored electrical charge was calculated using TSDC measurements. The CO3/PO4 peak ratio was calculated using attenuated total reflection to compare the content of carbonate ion in the bone specimens. The TSDC curve contained 3 peaks at 100, 300 and 500°C, which were classified into 4 patterns. The CO3/PO4 peak ratio positively correlated with the stored charges at approximately 300°C in the polarized bone. There was a positive correlation between the stored bone charge and the bone mineral density only. It is suggested that the peak at 300°C is attributed to carbonate apatite and the total bone mass of human bone, not the three-dimensional structure, affects the stored charge.

  16. Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal

    NASA Astrophysics Data System (ADS)

    Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco

    2018-03-01

    Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.

  17. Organic field-effect transistors using single crystals.

    PubMed

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  18. Organic field-effect transistors using single crystals

    PubMed Central

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287

  19. Structural and spectroscopic characterization, reactivity study and charge transfer analysis of the newly synthetized 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Krishnaswamy, G.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Desai, Nivedita R.; Suneetha, V.; SreenivasaRao, R.; Bhargavi, G.; Aruna Kumar, D. B.

    2018-06-01

    The title compound 2-(6-hydroxy-1-benzofuran-3-yl) acetic acid (abbreviated as HBFAA) has been synthetized and characterized by FT-IR, FT-Raman and NMR spectroscopic techniques. Solid state crystal structure of HBFAA has been determined by single crystal X-ray diffraction technique. The crystal structure features O-H⋯O and C-H⋯O intermolecular interactions resulting in a two dimensional supramolecular architecture. The presence of various intermolecular interactions is well supported by the Hirshfeld surface analysis. The molecular properties of HBFAA were performed by Density functional theory (DFT) using B3LYP/6-311G++(d,p) method at ground state in gas phase, compile these results with experimental values and shows mutual agreement. The vibrational spectral analysis were carried out using FT-IR and FT-Raman spectroscopic techniques and assignment of each vibrational wavenumber made on the basis of potential energy distribution (PED). And also frontier orbital analysis (FMOs), global reactivity descriptors, non-linear optical properties (NLO) and natural bond orbital analysis (NBO) of HBFAA were computed with same method. Efforts were made in order to understand global and local reactivity properties of title compound by calculations of MEP, ALIE, BDE and Fukui function surfaces in gas phase, together with thermodynamic properties. Molecular dynamics simulation and radial distribution functions were also used in order to understand the influence of water to the stability of title compound. Charge transfer between molecules of HBFAA has been investigated thanks to the combination of MD simulations and DFT calculations.

  20. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: Functional convergence of a common protein fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.

    Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less

  1. Crystal structure of octa­kis­(4-meth­oxy­pyridinium) bis­(4-meth­oxy­pyridine-κN)tetra­kis­(thio­cyanato-κN)ferrate(III) bis­[(4-meth­oxypyri­dine-κN)pentakis­(thio­cyanato-κN)ferrate(III)] hexa­kis­(thio­cyanato-κN)ferrate(III) with iron in three different octa­hedral coordination environments

    PubMed Central

    Jochim, Aleksej; Jess, Inke; Näther, Christian

    2018-01-01

    The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octa­hedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thio­cyanate anions and 4-meth­oxy­pyridine ligands. Charge balance is achieved by 4-meth­oxy­pyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio­cyanate anions, two 4-meth­oxy­pyridine ligands and 4-meth­oxy­pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter­actions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding inter­actions involving the pyridinium N—H groups of the cations and the thio­cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure. PMID:29765708

  2. Synthesis, properties and crystal structure of (Gly) 2H 4SiW 12O 40·5.5H 2O

    NASA Astrophysics Data System (ADS)

    Lihua, Bi; Qizhuang, He; Qiong, Jia; Enbo, Wang

    2001-10-01

    A novel polyoxometalate containing Glycine (Gly), (Gly)2H4SiW12O40·5.5H2O (I), has been synthesized and characterized by single-crystal X-ray diffraction, elemental analyzes, IR spectrum, cyclic voltammograms and thermogravimetric analysis. The compound crystallizes in the monoclinic space group C2/C with a=40.362 (8) Å, b=12.478 (3) Å, c=19.879 (4) Å, β=96.22 (3)°, V=9953 (4) Å3, Z=8 and R1 (wR2)=0.0699 (0.1609). The crystal structure consists of [SiW12O40]4- units linked together with Gly molecules through hydrogen bonding. The electrochemical properties of I showed that the electrode reaction is surface-controlled. The compound has photosensitivity under irradiation of sunlight to result in charge transfer by oxidation of Gly and the reduction of SiW12O404-. We also found that the compound exhibited effectiveness in preventing cucumber mosaic virus (CMV).

  3. Inhomogeneous field induced magnetoelectric effect in Mott insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulaevskii, Lev N; Batista, Cristian D

    2008-01-01

    We consider a Mott insulator like HoMnO{sub 3} whose magnetic lattice is geometrically frustrated and comprises a 3D array of triangular layers with magnetic moments ordered in a 120{sup o} structure. We show that the effect of a uniform magnetic field gradient, {gradient}H, is to redistribute the electronic charge of the magnetically ordered phase leading to a unfirom electric field gradient. The resulting voltage difference between the crystal edges is proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts for |{gradient}H| {approx} 0.01 T/cm and L {approx_equal} 1mm, as longmore » as the crystal is free of antiferromagnetic domain walls.« less

  4. A Non-Linear Model for Elastic Dielectric Crystals with Mobile Vacancies

    DTIC Science & Technology

    2009-07-01

    crystals, vacancies typically carry an electric charge [18,37]. Such charged vacancies notably influence dielectric properties and elec- trical loss...characteristics of capacitors, oscillators, and tunable fil- ters [19], for example those comprised of perovskite ceramic crystals such as barium titanate...thermomechanical and thermoelectrical couplings, respectively, and the final term capturing non-mechanical sources of heat energy. 3.3. Representative free energy

  5. Three-dimensional structure of an antibody-antigen complex.

    PubMed

    Sheriff, S; Silverton, E W; Padlan, E A; Cohen, G H; Smith-Gill, S J; Finzel, B C; Davies, D R

    1987-11-01

    We have determined the three-dimensional structure of two crystal forms of an antilysozyme Fab-lysozyme complex by x-ray crystallography. The epitope on lysozyme consists of three sequentially separated subsites, including one long, nearly continuous, site from Gln-41 through Tyr-53 and one from Gly-67 through Pro-70. Antibody residues interacting with lysozyme occur in each of the six complementarity-determining regions and also include one framework residue. Arg-45 and Arg-68 form a ridge on the surface of lysozyme, which binds in a groove on the antibody surface. Otherwise the surface of interaction between the two proteins is relatively flat, although it curls at the edges. The surface of interaction is approximately 26 X 19 A. No water molecules are found in the interface. The positive charge on the two arginines is complemented by the negative charge of Glu-35 and Glu-50 from the heavy chain of the antibody. The backbone structure of the antigen, lysozyme, is mostly unperturbed, although there are some changes in the epitope region, most notably Pro-70. One side chain not in the epitope, Trp-63, undergoes a rotation of approximately 180 degrees about the C beta--C gamma bond. The Fab elbow bends in the two crystal forms differ by 7 degrees.

  6. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  7. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  8. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    PubMed

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  9. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  10. Crystal structure refinement of reedmergnerite, the boron analog of albite

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.

    1960-01-01

    Ordering of boron in a feldspar crystallographic site T1(0) has been found in reedmergnerite, which has silicon-oxygen and sodium-oxygen distances comparable to those in isostructural low albite. If a simple ionic model is assumed, calculated bond strengths yield a considerable charge imbalance in reedmergnerite, an indication of the inadequacy of the model with respect to these complex structures and of the speculative nature of conclusions based on such a model.

  11. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp; Tsuruta, Osamu; Akao, Naoya

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}-more » or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.« less

  12. A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals.

    PubMed

    Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E

    2016-11-23

    Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .

  13. Crystal structures of two tropinone reductases: Different reaction stereospecificities in the same protein fold

    PubMed Central

    Nakajima, Keiji; Yamashita, Atsuko; Akama, Hiroyuki; Nakatsu, Toru; Kato, Hiroaki; Hashimoto, Takashi; Oda, Jun’ichi; Yamada, Yasuyuki

    1998-01-01

    A pair of tropinone reductases (TRs) share 64% of the same amino acid residues and belong to the short-chain dehydrogenase/reductase family. In the synthesis of tropane alkaloids in several medicinal plants, the TRs reduce a carbonyl group of an alkaloid intermediate, tropinone, to hydroxy groups with different diastereomeric configurations. To clarify the structural basis for their different reaction stereospecificities, we determined the crystal structures of the two enzymes at 2.4- and 2.3-Å resolutions. The overall folding of the two enzymes was almost identical. The conservation was not confined within the core domains that are conserved within the protein family but extended outside the core domain where each family member has its characteristic structure. The binding sites for the cofactor and the positions of the active site residues were well conserved between the two TRs. The substrate binding site was composed mostly of hydrophobic amino acids in both TRs, but the presence of different charged residues conferred different electrostatic environments on the two enzymes. A modeling study indicated that these charged residues play a major role in controlling the binding orientation of tropinone within the substrate binding site, thereby determining the stereospecificity of the reaction product. The results obtained herein raise the possibility that in certain cases different stereospecificities can be acquired in enzymes by changing a few amino acid residues within substrate binding sites. PMID:9560196

  14. Investigation of Structural Re-ordering of Hydrogen Bonds in LiNbO3:Mg Crystals Around the Threshold Concentration of Magnesium

    NASA Astrophysics Data System (ADS)

    Sidorov, N. V.; Teplyakova, N. A.; Palatnikov, M. N.; Bobreva, L. A.

    2017-09-01

    Crystals of LiNbO3congr and LiNbO3:Mg (0.19-5.91 mole %) were studied by IR and Raman spectroscopy. It was found that the intensities of the bands corresponding to the stretching vibrations of the OH groups in the IR spectra of LiNbO3:Mg crystals change and components of the bands disappear with increase of the Mg content. This was explained by disappearance of the OH groups close to {Nb}_{Li}^{4+}-{V}_{Li}- defects as a result of displacement of NbLi defects by Mg cations. In the Raman spectra of the LiNbO3:Mg (5.1 mole %) compared with the congruent crystal the lines corresponding to the vibrations of oxygen atoms in the oxygen octahedra and the stretching bridge vibrations of the oxygen atoms along the polar axis become broader, and new low-intensity lines that may correspond to pseudoscalar vibrations of A2-type symmetry also appear. The broadening of the lines is due to deformation of the oxygen octahedra caused both by increase of the Mg content in the crystal structure and by change in the localization of the protons. Suppression of the photorefraction effect in the LiNbO3:Mg crystals with Mg contents above the threshold level can be explained by change in the localization of the protons in the structure and by screening of the space charge field.

  15. Supramolecular networks with electron transfer in two dimensions

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  16. Investigation on synthesis, growth, structure and physical properties of AgGa0.5In0.5S2 single crystals for Mid-IR application

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2018-02-01

    Silver Gallium Indium Sulfide (AgGa0.5In0.5S2) belongs to the family of AIBIIIC2VI ternary compound semiconductors which crystallize in the chalcopyrite structure. Synthesis of the polycrystalline material from the starting elements is achieved using melt temperature oscillation method. The AgGa0.5In0.5S2 single crystals have been grown by the vertical Bridgman technique. The synthesized AgGa0.5In0.5S2 polycrystalline charge was confirmed by powder XRD. The peak positions are in good agreement with the powder diffraction file. Thermal property was analyzed using differential scanning calorimetry (DSC) technique. The melting point of the crystal is 896 °C and freezing point is 862 °C. The unit cell parameters were confirmed by single crystal X-ray. The transmittance of the grown crystal is 55% in the NIR region and 60% in the mid-IR region. The optical band gap was found to be 2.0 eV. The stoichiometric composition of AgGa0.5In0.5S2 was measured using energy dispersive spectrometry (EDS). The photoluminescence behavior of AgGa0.5In0.5S2 has been analyzed. The resistivity of the grown single crystal has been measured.

  17. Crystal field analysis of the energy level structure of Cs2NaAlF6:Cr3+

    NASA Astrophysics Data System (ADS)

    Rudowicz, C.; Brik, M. G.; Avram, N. M.; Yeung, Y. Y.; Gnutek, P.

    2006-06-01

    An analysis of the energy level structure of Cr3+ ions in Cs2NaAlF6 crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr3+ ions at the two crystallographically inequivalent sites in Cs2NaAlF6. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr3+ ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the so-obtained CFP datasets reveals that the latter axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr3+ ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the Cs2NaAlF6:Cr3+ system is trigonal D3d. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr3+ ions in structurally similar hosts.

  18. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  19. Antiferromagnetic defect structure in LaNi O 3 – δ single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bi -Xia; Rosenkranz, Stephan; Rui, X.

    Here, the origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO 3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO 3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNiO 3–δ crystals, wemore » show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ~152 K and a Curie temperature of ~225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNiO 3–δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO 3 are discussed.« less

  20. Antiferromagnetic defect structure in LaNi O3 -δ single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Bi-Xia; Rosenkranz, S.; Rui, X.; Zhang, Junjie; Ye, F.; Zheng, H.; Klie, R. F.; Mitchell, J. F.; Phelan, D.

    2018-06-01

    The origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNi O3 -δ crystals, we show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ˜152 K and a Curie temperature of ˜225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNi O3 -δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO3 are discussed.

  1. Antiferromagnetic defect structure in LaNi O 3 – δ single crystals

    DOE PAGES

    Wang, Bi -Xia; Rosenkranz, Stephan; Rui, X.; ...

    2018-06-12

    Here, the origins of the metal-insulator and magnetic transitions exhibited by perovskite rare-earth nickelates, RNiO 3 (where R is a rare-earth element), remain open issues, with charge disproportionation, magnetic interactions, and lattice response across multiple length scales being among the many possible origins. Recently, growth of single crystals of LaNiO 3, which is the only member of these compounds that remains metallic in its ground state, has been reported, opening a new chapter in the investigation of the perovskite nickelates. Here, using a combination of magnetometry, heat capacity, and neutron scattering on as-grown and purposely reduced LaNiO 3–δ crystals, wemore » show that both antiferromagnetic and ferromagnetic phases with a Néel temperature of ~152 K and a Curie temperature of ~225 K can be induced by reduction of the oxygen content. Transmission electron microscopy shows that these phases are characterized by ordered oxygen vacancy defect structures that exist as dilute secondary phases in as-grown crystals despite growth in partial oxygen pressures up to at least 130 bar. The demonstration of antiferromagnetism resulting from oxygen vacancy ordered structures implies that stoichiometry must be explicitly considered when interpreting the bulk properties of LaNiO 3–δ single crystals; accordingly, the implications of our results for putative oxygen-stoichiometric LaNiO 3 are discussed.« less

  2. Magnetocaloric properties of distilled gadolinium: Effects of structural inhomogeneity and hydrogen impurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhanov, G. S.; Kolchugina, N. B.; Chzhan, V. B.

    2014-06-16

    High-purity Gd prepared by distillation is a structurally inhomogeneous system consisting of needle-shaped crystals of cross section 0.5–2.5 μm with near-c-axis orientation embedded in a matrix of nanosized (30–100 nm) grains. By measuring the magnetocaloric effect (MCE) directly, we find that the MCE values differ markedly for the plate-shaped samples cut out of a distillate along and perpendicular to the crystals. The effect of small controlled amounts of impurity (hydrogen) on the properties of distilled Gd is further studied. We observe opposite trends in the MCE response to hydrogen charging with respect to the crystal's orientation within the samples and discuss mechanismsmore » interrelating the unique structural morphology with the impurity behavior. As an overall assessment, the Curie temperatures of α-GdH{sub x} solid solutions increase from 291 K up to 294 K when increasing hydrogen concentration x from 0 to 0.15. Hydrogenation is found to broaden the ferromagnetic-to-paramagnetic phase transition. Hydrogen-containing specimens demonstrate reversibility of MCE at these temperatures.« less

  3. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  4. Synthesis, crystal structure and characterization of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III)

    NASA Astrophysics Data System (ADS)

    Saritha, A.; Raju, B.; Ramachary, M.; Raghavaiah, P.; Hussain, K. A.

    2012-11-01

    The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3- units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV-vis-NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.

  5. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang; Frisbie, Daniel

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  6. Thermal analysis of the vertical bridgman semiconductor crystal growth technique. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.

    1982-01-01

    The quality of semiconductor crystals grown by the vertical Bridgman technique is strongly influenced by the axial and radial variations of temperature within the charge. The relationship between the thermal parameters of the vertical Bridgman system and the thermal behavior of the charge are examined. Thermal models are developed which are capable of producing results expressable in analytical form and which can be used without recourse to extensive computer work for the preliminary thermal design of vertical Bridgman crystal growth systems. These models include the effects of thermal coupling between the furnace and the charge, charge translation rate, charge diameter, thickness and thermal conductivity of the confining crucible, thermal conductivity change and liberation of latent heat at the growth interface, and infinite charge length. The hot and cold zone regions, considered to be at spatially uniform temperatures, are separated by a gradient control region which provides added thermal design flexibility for controlling the temperature variations near the growth interface.

  7. Positioning and joining of organic single-crystalline wires

    PubMed Central

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  8. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases

    PubMed Central

    Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom

    2003-01-01

    DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230

  9. Theoretical and Experimental Studies of N,N-Dimethyl-N'-Picryl-4,4'-Stilbenediamine.

    PubMed

    Papper, Vladislav; Wu, Yuanyuan; Kharlanov, Vladimir; Sukharaharja, Ayrine; Steele, Terry W J; Marks, Robert S

    2018-01-01

    N,N-dimethyl-N'-picryl-4,4'-stilbenediamine (DMPSDA) was prepared, purified and crystallised in a form of black lustrous crystals, and its absorption and fluorescence spectra were recorded in cyclohexane, acetonitrile and dimethyl sulfoxide. Non-emissive intramolecular charge transfer state (ICT) was clearly observed in this molecule in all three solvents. Theoretical calculations demonstrating a betaine electronic structure of the trinitrophenyl group in the ground state of the molecule and a charge transfer nature of the long wavelength transition S 0  → S 1 supported the experimental observations of the ICT formation in the molecule.

  10. Polarization pattern of vector vortex beams generated by q-plates with different topological charges.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Slussarenko, Sergei; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2012-04-01

    We describe the polarization topology of the vector beams emerging from a patterned birefringent liquid crystal plate with a topological charge q at its center (q-plate). The polarization topological structures for different q-plates and different input polarization states have been studied experimentally by measuring the Stokes parameters point-by-point in the beam transverse plane. Furthermore, we used a tuned q=1/2-plate to generate cylindrical vector beams with radial or azimuthal polarizations, with the possibility of switching dynamically between these two cases by simply changing the linear polarization of the input beam.

  11. Vacancy effects on the electronic and structural properties pentacene

    NASA Astrophysics Data System (ADS)

    Laraib, Iflah; Janotti, Anderson

    Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.

  12. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two.

    PubMed

    Kozarich, John W

    2010-06-28

    A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine. See research article: http://www.biomedcentral.com/1472-6807/10/16/

  13. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes.

    PubMed

    Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S

    2015-12-15

    The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Camel and bovine chymosin: the relationship between their structures and cheese-making properties.

    PubMed

    Langholm Jensen, Jesper; Mølgaard, Anne; Navarro Poulsen, Jens Christian; Harboe, Marianne Kirsten; Simonsen, Jens Bæk; Lorentzen, Andrea Maria; Hjernø, Karin; van den Brink, Johannes M; Qvist, Karsten Bruun; Larsen, Sine

    2013-05-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined. Different variants of the enzymes were isolated by hydrophobic interaction chromatography and showed variations in their glycosylation, N-terminal sequences and activities. Glycosylation at Asn291 and the loss of the first three residues of camel chymosin significantly decreased its activity. Thermal differential scanning calorimetry revealed a slightly higher thermal stability of camel chymosin compared with bovine chymosin. The crystal structure of a doubly glycosylated variant of camel chymosin was determined at a resolution of 1.6 Å and the crystal structure of unglycosylated bovine chymosin was redetermined at a slightly higher resolution (1.8 Å) than previously determined structures. Camel and bovine chymosin share the same overall fold, except for the antiparallel central β-sheet that connects the N-terminal and C-terminal domains. In bovine chymosin the N-terminus forms one of the strands which is lacking in camel chymosin. This difference leads to an increase in the flexibility of the relative orientation of the two domains in the camel enzyme. Variations in the amino acids delineating the substrate-binding cleft suggest a greater flexibility in the ability to accommodate the substrate in camel chymosin. Both enzymes possess local positively charged patches on their surface that can play a role in interactions with the overall negatively charged C-terminus of κ-casein. Camel chymosin contains two additional positive patches that favour interaction with the substrate. The improved electrostatic interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk.

  15. Third Structure Determination by Powder Diffractometery Round Robin (SDPDRR-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bail, A.; Cranswick, L; Adil, K

    2009-01-01

    The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solvingmore » a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction experts.« less

  16. Large Ice Crystal Charge Transfer Studies

    DTIC Science & Technology

    1991-06-01

    knocked off by the airborne ice crystals when they make glancing collisions with the target, thus charging the ice target positively. Findeisen (1940...long when it encounters the passing ice crystals. Such a fiber is very different from the substantial frost fibers noted by Findeisen and may not be...Niederschlagselektrizitat, Phys. Z. 14, 1287-1292, 1913. Findeisen , W., Uber die Entstehung der Gewittelektrizitat, Meteor. Zeit, 57, 201, 1940. Fletcher N. H., The physics

  17. Propagation optical quarks after an uniaxial crystal: the experiment

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. A.; Konovalenko, V. L.; Zinovev, A. O.; Anischenko, P. M.; Glumova, M. V.

    2013-12-01

    There is a lots of different papers reporting about the propagation of the different types of an optical beams in a uniaxial crystals are known by that time. This beams are: Lager-Gaussian and Bessel- Gaussian beams. It is common for all this types of beams, that if propagation axis and crystal axis coincides, and accident beam had a circular polarization, are can get type spiral type degenerated umbilici, which corresponds to the charge 2 optical vortex in the orthogonal polarized beam component, generated by crystal [1] (Fig 1). This generation accurse due to total angular momentum conservation law symmetry axis of the crystal. One to the changing of the spin momentum which is associated with the beam polarization, this leads to the orbital momentum changes that associated with topological charge of formed orthogonal circular component. Double charged optical vortex could be easily perturbed by tilting beam axis with respect to the crystal axis. If the tilt angles are small (<0.1°) central umbilici splits on two lemons and the surrounding ring umbilici splits on two pairs of monster-star. The further increasing of the tilt angle leads to the topological charge of circular components becomes, equal, and additional orbital moment correspond to the beam mass center displacement.

  18. Controlling silk fibroin particle features for drug delivery

    PubMed Central

    Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas

    2010-01-01

    Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241

  19. Liquid crystal colloidal structures for increased silicone deposition efficiency on colour-treated hair.

    PubMed

    Brown, M A; Hutchins, T A; Gamsky, C J; Wagner, M S; Page, S H; Marsh, J M

    2010-06-01

    An approach is described to increase the deposition efficiency of silicone conditioning actives from a shampoo on colour-treated hair via liquid crystal (LC) colloidal structures, created with a high charge density cationic polymer, poly(diallyldimethyl ammonium chloride) and negatively charged surfactants. LCs are materials existing structurally between the solid crystalline and liquid phases, and several techniques, including polarized light microscopy, small angle X-Ray analysis, and differential scanning calorimetry, were used to confirm the presence of the LC structures in the shampoo formula. Silicone deposition from the LC-containing shampoo and a control shampoo was measured on a range of hair substrates, and data from inductively coupled plasma optical emission spectroscopy analysis and ToF-SIMS imaging illustrate the enhancement in silicone deposition for the LC shampoo on all hair types tested, with the most pronounced enhancement occurring on hair that had undergone oxidative treatments, such as colouring. A model is proposed in which the LC structure deposits from the shampoo onto the hair to: (i) provide 'slip planes' along the hair surface for wet conditioning purposes and (ii) form a hydrophobic layer which changes the surface energy of the fibres. This increase in hydrophobicity of the hair surface thereby increases the deposition efficiency of silicone conditioning ingredients. Zeta potential measurements, dynamic absorbency testing analysis and ToF-SIMS imaging were used to better understand the mechanisms of action. This approach to increasing silicone deposition is an improvement relative to conventional conditioning shampoos, especially for colour-treated hair.

  20. Domain topology and domain switching kinetics in a hybrid improper ferroelectric

    PubMed Central

    Huang, F. -T.; Xue, F.; Gao, B.; Wang, L. H.; Luo, X.; Cai, W.; Lu, X. -Z.; Rondinelli, J. M.; Chen, L. Q.; Cheong, S. -W.

    2016-01-01

    Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr)3Ti2O7 crystals. From the exploration of antiphase boundaries in bilayer-perovskites, here we discover that each of four polarization-direction states is degenerate with two antiphase domains, and these eight structural variants form a Z4 × Z2 domain structure with Z3 vortices and five distinct types of domain walls, whose topology is directly relevant to the presence of abundant charged walls. We also discover a zipper-like nature of antiphase boundaries, which are the reversible creation/annihilation centres of pairs of two types of ferroelectric walls (and also Z3-vortex pairs) in 90° and 180° polarization switching. Our results demonstrate the unexpectedly rich nature of hybrid improper ferroelectricity. PMID:27215944

  1. X-ray diffraction, crystal structure, and spectral features of the optical susceptibilities of single crystals of the ternary borate oxide lead bismuth tetraoxide, PbBiBO4.

    PubMed

    Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean

    2009-05-14

    The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.

  2. Superconductivity in CaBi 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  3. Superconductivity in CaBi 2

    DOE PAGES

    Winiarski, M. J.; Wiendlocha, B.; Golba, S.; ...

    2016-07-12

    We observed superconductivity with critical temperature T c = 2.0 K in self-flux-grown single crystals of CaBi 2. This material adopts the ZrSi 2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi 2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at T c is ΔC/γT c = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol -1 K -2 and the Debye temperature Θ D = 157 K. The electron–phonon coupling strength ismore » λ el–ph = 0.59, and the thermodynamic critical field H c is low, between 111 and 124 Oe CaBi 2 is a moderate coupling type-I superconductor. Our results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin–orbit coupling and electronic property anisotropy. Furthermore, we find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.« less

  4. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations.

    PubMed

    Sangeetha, V; Govindarajan, M; Kanagathara, N; Marchewka, M K; Gunasekaran, S; Anbalagan, G

    2014-05-05

    Melaminium bis(trifluoroacetate) trihydrate (MTFA), an organic material has been synthesized and single crystals of MTFA have been grown by the slow solvent evaporation method at room temperature. X-ray powder diffraction analysis confirms that MTFA crystal belongs to the monoclinic system with space group P2/c. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets. The X-ray diffraction data have been compared with the data of optimized molecular structure. The theoretical results show that the crystal structure can be reproduced by optimized geometry and the vibrational frequencies show good agreement with the experimental values. The nuclear magnetic resonance (NMR) chemical shift of the molecule has been calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. HOMO-LUMO, and other related molecular and electronic properties are calculated. The Mulliken and NBO charges have also been calculated and interpreted. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.

    2014-07-01

    We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less

  6. Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH 3NH 3) 2CdX 4 (X = Cl, Br, I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.

    Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less

  7. Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH 3NH 3) 2CdX 4 (X = Cl, Br, I)

    DOE PAGES

    Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.; ...

    2017-11-02

    Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less

  8. Theoretical study on the charge transport in single crystals of TCNQ, F2-TCNQ and F4-TCNQ.

    PubMed

    Ji, Li-Fei; Fan, Jian-Xun; Zhang, Shou-Feng; Ren, Ai-Min

    2018-01-31

    2,5-Difluoro-7,7,8,8-tetracyanoquinodimethane (F 2 -TCNQ) was recently reported to display excellent electron transport properties in single crystal field-effect transistors (FETs). Its carrier mobility can reach 25 cm 2 V -1 s -1 in devices. However, its counterparts TCNQ and F 4 -TCNQ (tetrafluoro-7,7,8,8-tetracyanoquinodimethane) do not exhibit the same highly efficient behavior. To better understand this significant difference in charge carrier mobility, a multiscale approach combining semiclassical Marcus hopping theory, a quantum nuclear enabled hopping model and molecular dynamics simulations was performed to assess the electron mobilities of the F n -TCNQ (n = 0, 2, 4) systems in this work. The results indicated that the outstanding electron transport behavior of F 2 -TCNQ arises from its effective 3D charge carrier percolation network due to its special packing motif and the nuclear tunneling effect. Moreover, the poor transport properties of TCNQ and F 4 -TCNQ stem from their invalid packing and strong thermal disorder. It was found that Marcus theory underestimated the mobilities for all the systems, while the quantum model with the nuclear tunneling effect provided reasonable results compared to experiments. Moreover, the band-like transport behavior of F 2 -TCNQ was well described by the quantum nuclear enabled hopping model. In addition, quantum theory of atoms in molecules (QTAIM) analysis and symmetry-adapted perturbation theory (SAPT) were used to characterize the intermolecular interactions in TCNQ, F 2 -TCNQ and F 4 -TCNQ crystals. A primary understanding of various noncovalent interaction responses for crystal formation is crucial to understand the structure-property relationships in organic molecular materials.

  9. Photomagnetic Switching of the Complex [Nd(dmf)[subscript 4](H[subscript 2]O)[subscript 3]([mu]-CN)Fe(CN)[subscript 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, Helle; Overgaard, Jacob; Chevallier, Marie

    2009-10-21

    Single-crystal XRD experiments (see picture) reveal the excited-state structure of the photomagnetic heterobimetallic title complex. The system shows a decrease in all the iron-ligand bond lengths, suggesting that photoexcitation involves a ligand-to-metal charge transfer or a change in the superexchange coupling between the metal centers.

  10. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  11. A Serendipitous Discover that in situ Proteolysis is Essential for the Crystallization of Yeast CPSF-100 (Ydh1p)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel,C.; Gebauer, D.; Zhang, H.

    2006-01-01

    The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted bymore » the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.« less

  12. Solid State Chemistry of Clathrate Phases: Crystal Structure, Chemical Bonding and Preparation Routes

    NASA Astrophysics Data System (ADS)

    Baitinger, Michael; Böhme, Bodo; Ormeci, Alim; Grin, Yuri

    Clathrates represent a family of inorganic materials called cage compounds. The key feature of their crystal structures is a three-dimensional (host) framework bearing large cavities (cages) with 20-28 vertices. These polyhedral cages bear—as a rule—guest species. Depending on the formal charge of the framework, clathrates are grouped in anionic, cationic and neutral. While the bonding in the framework is of (polar) covalent nature, the guest-host interaction can be ionic, covalent or even van-der Waals, depending on the chemical composition of the clathrates. The chemical composition and structural features of the cationic clathrates can be described by the enhanced Zintl concept, whereas the composition of the anionic clathrates deviates often from the Zintl counts, indicating additional atomic interactions in comparison with the ionic-covalent Zintl model. These interactions can be visualized and studied by applying modern quantum chemical approaches such as electron localizability.

  13. Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2

    DOE PAGES

    Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...

    2015-11-16

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less

  14. Towards predictive molecular dynamics simulations of DNA: electrostatics and solution/crystal environments

    NASA Astrophysics Data System (ADS)

    Babin, Volodymr; Baucom, Jason; Darden, Thomas; Sagui, Celeste

    2006-03-01

    We have investigated to what extend molecular dynamics (MD) simulatons can reproduce DNA sequence-specific features, given different electrostatic descriptions and different cell environments. For this purpose, we have carried out multiple unrestrained MD simulations of the duplex d(CCAACGTTGG)2. With respect to the electrostatic descriptions, two different force fields were studied: a traditional description based on atomic point charges and a polarizable force field. With respect to the cell environment, the difference between crystal and solution environments is emphasized, as well as the structural importance of divalent ions. By imposing the correct experimental unit cell environment, an initial configuration with two ideal B-DNA duplexes in the unit cell is shown to converge to the crystallographic structure. To the best of our knowledge, this provides the first example of a multiple nanosecond MD trajectory that shows and ideal structure converging to an experimental one, with a significant decay of the RMSD.

  15. Studying the properties of a predicted tetragonal silicon by first principles

    NASA Astrophysics Data System (ADS)

    Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Huang, Xue-Qian; Lv, Zhen-Long; Duan, Man-Yi

    2018-03-01

    Silicon is a very important material in many technological fields. It also has a complicated phase diagram of scientific interest. Here we reported a new allotrope of silicon obtained from crystal structure prediction. We studied its electronic, vibrational, dielectric, elastic and hardness properties by first-principles calculations. The results indicate that it is an indirect narrow-band-gap semiconductor. It is dynamically stable with a doubly degenerate infrared-active mode at its Brillouin zone center. Born effective charges of the constituent element are very small, resulting in a negligible ionic dielectric contribution. Calculated elasticity-related quantities imply that it is mechanically stable but anisotropic. There exist slowly increasing stages in the stress-strain curves of this crystal, which make it difficult to estimate the hardness of the crystal by calculating its ideal strengths. Taking advantage of the hardness model proposed by Šimůnek, we obtained a value of 12.0 GPa as its hardness. This value is lower than that of the cubic diamond-structural Si by about 5.5%.

  16. Studies on the self-catalyzed Knoevenagel condensation, characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.

    2014-10-01

    We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.

  17. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    PubMed

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  18. Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

    NASA Astrophysics Data System (ADS)

    Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.

    2018-05-01

    Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.

  19. Superconducting and charge density wave transition in single crystalline LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Gupta, Ritu; Dhar, S. K.; Thamizhavel, A.; Rajeev, K. P.; Hossain, Z.

    2017-06-01

    We present results of our comprehensive studies on single crystalline LaPt2Si2. Pronounced anomaly in electrical resistivity and heat capacity confirms the bulk nature of superconductivity (SC) and charge density wave (CDW) transition in the single crystals. While the charge density wave transition temperature is lower, the superconducting transition temperature is higher in single crystal compared to the polycrystalline sample. This result confirms the competing nature of CDW and SC. Another important finding is the anomalous temperature dependence of upper critical field H C2(T). We also report the anisotropy in the transport and magnetic measurements of the single crystal.

  20. Crystal Phase Quantum Well Emission with Digital Control.

    PubMed

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  1. Layered crystal structure, conformational and vibrational properties of 2,2,2-trichloroethoxysulfonamide: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gil, Diego M.; Piro, Oscar E.; Echeverría, Gustavo A.; Tuttolomondo, María E.; Altabef, Aída Ben

    2013-12-01

    The molecular structure of 2,2,2-trichloroethoxysulfonamide, CCl3CH2OSO2NH2, has been determined in the solid state by X-ray diffraction data and in the gas phase by ab initio (MP2) and DFT calculations. The substance crystallizes in the monoclinic P21/c space group with a = 9.969(3) Å, b = 22.914(6) Å, c = 7.349(2) Å, β = 91.06(3)°, and Z = 8 molecules per unit cell. There are two independent, but closely related molecular conformers in the crystal asymmetric unit. They only differ in the angular orientation of the sulfonamide (sbnd SO2NH2) group. The conformers are arranged in the lattice as center-symmetric Nsbnd H⋯O(sulf)-bonded dimers. Neighboring dimers are linked through further Nsbnd H⋯O(sulf) bonds giving rise to a crystal layered structure. The solid state infrared and Raman spectra have been recorded and the observed bands assigned to the molecular vibration modes. Also, the thermal behavior of the substance was investigated by TG-DT analysis. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond (NBO) analysis.

  2. Luminescence of Mn4+ ions in CaTiO3 and MgTiO3 perovskites: Relationship of experimental spectroscopic data and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.

    2017-12-01

    Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.

  3. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling regime by a buried oxide layer / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- A positron source using channeling in crystals for linear colliders / X. Artru ... [et al.] -- Parametric channeling and collapse of charged particles beams in crystals / M. Vysotskyy and V. Vysotskii.The formation and usage of coherent correlated charged particles states in the physics of channeling in crystals / S. V. Adamenko, V. I. Vysotskii and M. V. Vysotskyy -- Surface channeling of magnetic-charged particles on multilayer surface / S. V. Adamenko and V. I. Vysotskii -- Coherent creation of anti-hydrogen atoms in a crystal by relativistic antiproton / Yu. P. Kunashenko -- Thermal equilibrium of light ions in heavy crystals / E. Tsyganov -- Photon emission of electrons in a crystalline undulator / H. Backe ... [et al.] -- Channeling radiation from relativistic electrons in a crystal target as complementary x-ray and gamma ray source at synchrotron light facilities / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Diffracted channeling radiation and other compound radiation processes / H. Nitta -- Collective scattering on the atom planes under the condition of full transition / A. R. Mkrtchyan ... [et al.] -- The proposal of the experiment on the research of the diffracted channeling radiation / D. A. Baklanov ... [et al.] -- Positron channeling at the DaOne BTF Facility: the cup experiment / L. Quintieri ... [et al.] -- Radiation spectra of 200 MeV electrons in diamond and silicon crystals at axial and planar orientations / K. Fissum ... [et al.] -- Channeling experiments with electrons at the Mainz Microtron Mami / W. Lauth ... [et al.] -- Dechanneling of positrons by dislocations: effects of anharmonic interactions / J. George and A. P. Pathak -- Diffracted channeling radiation from axially channeled relativistic electrons / K. B. Korotchenko ... [et al.] -- Intensive quasi-monochromatic, directed x-ray radiation of planar channeled positron bunch / L. Gevorgian -- Probing channeling radiation influenced by ultrasound / W. Wagner ... [et al.] -- Radiation characteristics under electrons planar channeling and quasichanneling in complex crystals / L. Gevorgian -- Formation of relativistic positron atoms by axially channeled positrons and their decay on [symbol]-rays / A. Gevorkyan, A. R. Mkrtchyan and K. Oganesyan -- New features of diffracted channeling radiation from electrons in Si and LiF Crystals / K. B. Korotchenko, Yu. L. Pivovarov and T. A. Tukhfatullin -- Modulated particle beam in a crystal channel / A. Kostyuk ... [et al.] -- Computer simulations of resonant coherent excitation of heavy hydrogenlike ions under planar channeling / A. A. Babaev and Yu. L. Pivovarov -- Parametric x-ray and diffracted transition radiation of 4.5 GeV electrons in diamond / R. O. Avakian ... [et al.] -- Possible use of small accelerators in student laboratory for engineering education / I. Endo, M. Tanaka and T. Yoshimura.The Status of the SPARC Project / A. Cianchi -- Laser-plasma acceleration: first experimental results from the Plasmon-X Project / L. A. Gizzi ... [et al.] -- The powerful nanosecond duration electron beam effect on the crystalline tungsten target / Y. N. Adischev ... [et al.] -- "Shadowing" of the electromagnetic field of a relativistic electron / G. Naumenko ... [et al.] -- The acceleration of the charged particles in a low temperature acoustoplasma / A. S. Abrahamyan, A. R. Mkrtchyan and R. B. Kostanyan -- The experimental study of the surface current excitation by a relativistic electron electromagnetic field / G. A. Naumenko ... [et al.] -- Synchrotron radiation from a charge moving along helical orbit around a dielectric cylinder / A. A. Saharian and A. S. Kotanjyan -- Particle acceleration in a helical wave guide / X. Artru and C. Ray -- Effect of heavy ion charge fluctuations on Cherenkov radiation / V. S. Malyshevsky -- Hard photons powerful radiation of electron bunch interacting with plasma beat waves / A. Shamamian and L. Gevorgian -- Diffraction radiation as a diagnostics tool at flash / M. Castellano, E. Chiadroni and A. Cianchi -- Methods of charged particle beam cooling / E. G. Bessonov -- Ray tracing calculation of PXR produced in curved and flat crystals by electron beams with large emittance / K. A. Ispirian ... [et al.] -- On dynamic effects in coherent x-radiation of relativistic electron in Bragg scattering geometry / S. V. Blazhevich and A. V. Noskov -- Optimization of relativistic electron diffracted transition radiation yield / S. V. Blazhevich and A. V. Noskov -- Geometrical effect of target crystal on PXR generation as a coherent x-ray source / Y. Hayakawa ... [et al.] -- Observation of dynamical maxima of parametric x-ray radiation for 20 Me V electron energy beam / A. R. Mkrtchyan ... [et al.] -- The comparison of monochromatic x-ray sources based on compact electron accelerators and x-ray tube / Yu. N. Adischev ... [et al.] -- Labsync: a project to develop a European facility based on a table-top synchrotron light source / G. Di Domenico ... [et al.] -- New experimental results with optical diffraction radiation diagnostics / E. Chiadroni ... [et al.] -- The radiation yield in different spectral ranges from low density structured laser plasma with different high Z-admixture / V. Rozanov and G. Vergunova -- Time and angular distributions of ions transmitted through insulating capillaries / F. F. Komarov and A. S. Kamyshan -- X-ray propagation in multiwall carbon nanotubes / P. A. Childs ... [et al.] -- Tunable x-ray source based on mosaic crystals using for medicine applications / D. A. Baklanov ... [et al.] -- Capillary optics based x-ray micro-imaging elemental analysis / D. Hampai ... [et al.] -- Neutron number enhancement in uranium thin film waveguides / S. P. Pogossian -- Schwinger scattering of fast neutrons in aligned crystal / Yu. P. Kunashenko and Yu. L. Pivovarov -- Experimental investigation of Smith-Purcell radiation focusing by using the parabolic gratings / G. A. Naumenko ... [et al.] -- Plasma channels in air produced by UV laser beam: mechanisms of photoionization and possible applications/ V. D. Zvorykin ... [et al.].

  4. A serendipitous discovery that in situ proteolysis is essential for the crystallization of yeast CPSF-100 (Ydh1p)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel, Corey R.; Gebauer, Damara; Zhang, Hailong

    2006-10-01

    Proteolysis in situ by a protease secreted by a contaminating fungus is essential for the crystallization of yeast CPSF-100. The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3′-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion ofmore » an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.« less

  5. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    PubMed

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  6. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films.

    PubMed

    Giri, Gaurav; Li, Ruipeng; Smilgies, Detlef-M; Li, Er Qiang; Diao, Ying; Lenn, Kristina M; Chiu, Melanie; Lin, Debora W; Allen, Ranulfo; Reinspach, Julia; Mannsfeld, Stefan C B; Thoroddsen, Sigurdur T; Clancy, Paulette; Bao, Zhenan; Amassian, Aram

    2014-04-16

    A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.

  7. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  8. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  9. Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.

  10. Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Siva, K. Venkata

    2018-07-01

    The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, D.E.

    The structures of 0-0-dimethyl-0-(3,5,6-trichloro-2-pyridyl) phosphorothioate (Dowco 214) and dicarbonylbis(eta-cyclopentadienyl)-..mu..-carbonyl-..mu..-thiocarbonyldiiron have been solved by single crystal x-ray diffraction and use of a modified Patterson superposition technique that uses two multiple vectors to define a structural parallelogram. This method results in a simpler and more accurate shift vector position determination and a general improvement in map clarity. Dowco 214 crystallizes in the space group P/sub 1//sup -/ with a = 11.598(2) A, b = 13.619(3) A, c = 8.281(1) A, ..cap alpha.. = 94.65(1)/sup 0/, ..beta.. = 94.87(2)/sup 0/, ..gamma.. = 79.97(2)/sup 0/ and four molecules per cell (two per asymmetric unit).more » A CNDO II calculation was performed and partial charge densities assigned. The molecule contains distances between positively charged centers that correspond well to the reported anionic-esteratic distance (a possible reaction variable) in AChE. Additional reaction variables are discussed. Cp/sub 2/Fe/sub 2/(CO)/sub 3/CS crystallizes in the space group P2/sub 1//c with a = 14.508(8) A, b = 13.618(5) A, c = 15.193(7) A, ..beta.. = 110.50(6)/sup 0/ and eight molecules per unit cell (two per asymmetric unit). The compound contains both a carbonyl and thiocarbonyl bridge and ..pi..-bonded cyclopentadienyl rings that are cis to one another. The iron--iron bond length is intermediate to that of its carbonyl and thiocarbonyl analogs.« less

  12. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A.

    PubMed

    Kita, Shunsuke; Matsubara, Haruki; Kasai, Yoshiyuki; Tamaoki, Takaharu; Okabe, Yuki; Fukuhara, Hideo; Kamishikiryo, Jun; Krayukhina, Elena; Uchiyama, Susumu; Ose, Toyoyuki; Kuroki, Kimiko; Maenaka, Katsumi

    2015-06-01

    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended β-sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Yan, Jiejuan; Liu, Cailong

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportationmore » is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.« less

  14. Magnon Splitting Induced by Charge Transfer in the Three-Orbital Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Huang, Edwin W.; Moritz, Brian; Devereaux, Thomas P.

    2018-06-01

    Understanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-Tc materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal. Generally, we find that the absolute energy scale and momentum dependence of the excitations primarily are sensitive to the effective charge-transfer energy, while changes in the on-site Coulomb interactions have little effect on the details of the dispersion. In particular, our result highlights the splitting between spin excitations along the axial and diagonal directions in the Brillouin zone. This splitting decreases with increasing charge-transfer energy and correlates with changes in the apical oxygen position, and general structural variations, for different cuprate families.

  15. A mechanism of charge transport in electroluminescent structures consisting of porous silicon and single-crystal silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtukh, A. A., E-mail: dept_5@isp.kiev.ua; Kaganovich, E. B.; Manoilov, E. G.

    2006-02-15

    Electroluminescent structures that emit in the visible region of the spectrum and are based on porous silicon (por-Si) formed on the p-Si substrate electrolytically using an internal current source are fabricated. The photoluminescent and electroluminescent properties, as well as the current-and capacitance-voltage characteristics of the structures are studied. Electroluminescence is observed only if the forward bias voltage is applied to the structure; the electroluminescence mechanism is based on the injection and is related to the radiative recombination of electrons and holes in quantum-dimensional Si nanocrystals. The injection of holes is controlled by the condition of their accumulation in the space-chargemore » region of p-Si and by a comparatively low concentration of electronic states at the por-Si/p-Si interface. The charge transport in por-Si is caused by the direct tunneling of charge carriers between the quantum-mechanical levels, which is ensured by an appreciable number of quantum-dimensional Si nanocrystals. The leakage currents are low as a result of a small variance in the sizes of Si nanocrystals and the absence of comparatively large nanocrystals.« less

  16. The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate

    PubMed Central

    Adamiv, Volodymyr.T.; Burak, Yaroslav.V.; Wooten, David. J.; McClory, John; Petrosky, James; Ketsman, Ihor; Xiao, Jie; Losovyj, Yaroslav B.; Dowben, Peter A.

    2010-01-01

    We review the pyroelectric properties and electronic structure of Li2B4O7(110) and Li2B4O7(100) surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness C33D contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature. PMID:28883341

  17. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  18. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    NASA Astrophysics Data System (ADS)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  19. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    NASA Astrophysics Data System (ADS)

    Krishnan, M.

    2017-05-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.

  20. Orthorhombic lysozyme crystallization at acidic pH values driven by phosphate binding.

    PubMed

    Plaza-Garrido, Marina; Salinas-Garcia, M Carmen; Camara-Artigas, Ana

    2018-05-01

    The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space group P2 1 2 1 2 1 (unit-cell parameters a = 30, b = 56, c = 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60-Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.

  1. The growth rates of KDP crystals in solutions with potassium permanganate additives

    NASA Astrophysics Data System (ADS)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  2. Structural and electronic evolution of Cr[subscript 2]O[subscript 3] on compression to 55 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dera, Przemyslaw; Lavina, Barbara; Meng, Yue

    2016-08-15

    Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr{sub 2}O{sub 3} up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15-30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr{supmore » 3+} coordination environment than was previously assumed.« less

  3. Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.

    2018-05-01

    We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is expected to enhance the current scientific understanding of the lead-free ferroelectric materials.

  4. Acid-base properties of 2:1 clays. I. Modeling the role of electrostatics.

    PubMed

    Delhorme, Maxime; Labbez, Christophe; Caillet, Céline; Thomas, Fabien

    2010-06-15

    We present a theoretical investigation of the titratable charge of clays with various structural charge (sigma(b)): pyrophyllite (sigma(b) = 0 e x nm(-2)), montmorillonite (sigma(b) = -0.7 e x nm(-2)) and illite (sigma(b) = -1.2 e x nm(-2)). The calculations were carried out using a Monte Carlo method in the Grand Canonical ensemble and in the framework of the primitive model. The clay particle was modeled as a perfect hexagonal platelet, with an "ideal" crystal structure. The only fitting parameters used are the intrinsic equilibrium constants (pK(0)) for the protonation/deprotonation reactions of the broken-bond sites on the lateral faces of the clay particles, silanol, =SiO(-) + H(+) --> =SiOH, and aluminol, =AlO(-1/2) + H(+) --> =AlOH(+1/2). Simulations are found to give a satisfactory description of the acid-base titration of montmorillonite without any additional fitting parameter. In particular, combining the electrostatics from the crystal substitutions with ionization constants, the simulations satisfactorily catch the shift in the titration curve of montmorillonite according to the ionic strength. Change in the ionic strength modulates the screening of the electrostatic interactions which results in this shift. Accordingly, the PZNPC is found to shift toward alkaline pH upon increasing the permanent basal charge. Unlike previous mean field model results, a significant decrease in PZNPC values is predicted in response to stack formation. Finally, the mean field approach is shown to be inappropriate to study the acid-base properties of clays.

  5. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays.

    PubMed

    Kim, Jae-Hun; Zhu, Kai; Yan, Yanfa; Perkins, Craig L; Frank, Arthur J

    2010-10-13

    We report on the synthesis and electrochemical properties of oriented NiO-TiO(2) nanotube (NT) arrays as electrodes for supercapacitors. The morphology of the films prepared by electrochemically anodizing Ni-Ti alloy foils was characterized by scanning and transmission electron microscopies, X-ray diffraction, and photoelectron spectroscopies. The morphology, crystal structure, and composition of the NT films were found to depend on the preparation conditions (anodization voltage and postgrowth annealing temperature). Annealing the as-grown NT arrays to a temperature of 600 °C transformed them from an amorphous phase to a mixture of crystalline rock salt NiO and rutile TiO(2). Changes in the morphology and crystal structure strongly influenced the electrochemical properties of the NT electrodes. Electrodes composed of NT films annealed at 600 °C displayed pseudocapacitor (redox-capacitor) behavior, including rapid charge/discharge kinetics and stable long-term cycling performance. At similar film thicknesses and surface areas, the NT-based electrodes showed a higher rate capability than the randomly packed nanoparticle-based electrodes. Even at the highest scan rate (500 mV/s), the capacitance of the NT electrodes was not much smaller (within 12%) than the capacitance measured at the slowest scan rate (5 mV/s). The faster charge/discharge kinetics of NT electrodes at high scan rates is attributed to the more ordered NT film architecture, which is expected to facilitate electron and ion transport during the charge-discharge reactions.

  6. Effect of Te inclusions in CdZnTe crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Kim, K.-H.; Cui, Y.; Yang, G.; Xu, L.; James, R. B.

    2011-02-01

    CdZnTe crystals often exhibit nonuniformities due to the presence of Te inclusions and dislocations. High concentrations of such defects in these crystals generally entail severe charge-trapping, a major problem in ensuring the device's satisfactory performance. In this study, we employed a high-intensity, high-spatial-resolution synchrotron x-ray beam as the ideal tool to generate charges by focusing it over the large Te inclusions, and then observing the carrier's response at room- and at low-temperatures. A high spatial 5-μm resolution raster scan revealed the fine details of the presence of extended defects, like Te inclusions and dislocations in the CdZnTe crystals. A noticeable change was observed in the efficiency of electron charge collection at low temperature (1 °C), but it was hardly altered at room-temperature.

  7. A mixed valence zinc dithiolene system with spectator metal and reactor ligands.

    PubMed

    Ratvasky, Stephen C; Mogesa, Benjamin; van Stipdonk, Michael J; Basu, Partha

    2016-08-16

    Neutral complexes of zinc with N,N'-diisopropylpiperazine-2,3-dithione ( i Pr 2 Dt 0 ) and N,N'-dimethylpiperazine-2,3-dithione (Me 2 Dt 0 ) with chloride or maleonitriledithiolate (mnt 2- ) as coligands have been synthesized and characterized. The molecular structures of these zinc complexes have been determined using single crystal X-ray diffractometry. Complexes recrystallize in monoclinic P type systems with zinc adopting a distorted tetrahedral geometry. Two zinc complexes with mixed-valent dithiolene ligands exhibit ligand-to-ligand charge transfer bands. Optimized geometries, molecular vibrations and electronic structures of charge-transfer complexes were calculated using density functional theory (B3LYP/6-311G+(d,p) level). Redox orbitals are shown to be almost exclusively ligand in nature, with a HOMO based heavily on the electron-rich maleonitriledithiolate ligand, and a LUMO comprised mostly of the electron-deficient dithione ligand. Charge transfer is thus believed to proceed from dithiolate HOMO to dithione LUMO, showing ligand-to-ligand redox interplay across a d 10 metal.

  8. Structure-function Analysis of Receptor-binding in Adeno-Associated Virus Serotype 6 (AAV-6)

    PubMed Central

    Xie, Qing; Lerch, Thomas F.; Meyer, Nancy L.; Chapman, Michael S.

    2011-01-01

    Crystal structures of the AAV-6 capsid at 3 Å reveal a subunit fold homologous to other parvoviruses with greatest differences in two external loops. The electrostatic potential suggests that receptor-attachment is mediated by four residues: Arg576, Lys493, Lys459 and Lys531, defining a positively charged region curving up from the valley between adjacent spikes. It overlaps only partially with the receptor-binding site of AAV-2, and the residues endowing the electrostatic character are not homologous. Mutational substitution of each residue decreases heparin affinity, particularly Lys531 and Lys459. Neither is conserved among heparin-binding serotypes, indicating that diverse modes of receptor attachment have been selected in different serotypes. Surface topology and charge are also distinct at the shoulder of the spike, where linear epitopes for AAV-2’s neutralizing monoclonal antibody A20 come together. Evolutionarily, selection of changed side-chain charge may have offered a conservative means to evade immune neutralization while preserving other essential functionality. PMID:21917284

  9. Structural Mechanism of Voltage-Dependent Gating in an Isolated Voltage-Sensing Domain

    PubMed Central

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos; Hulse, Raymond E.; Roux, Benoit; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-01-01

    SUMMARY The transduction of transmembrane electric fields into protein motion plays an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSD) carry out these functions through reorientations of S4 helix with discrete gating charges. Here, crystal structures of the VSD from Ci-VSP were determined in both, active (Up) and resting (Down) conformations. The S4 undergoes a ~5 Å displacement along its main axis accompanied by a ~60o rotation, consistent with the helix-screw gating mechanism. This movement is stabilized by a change in countercharge partners in helices S1 and S3, generating an estimated net charge transfer of ~1 eo. Gating charges move relative to a “hydrophobic gasket” that electrically divides intra and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent cellular activities. PMID:24487958

  10. Spectroscopic and physical measurements on charge-transfer complexes: Interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3,5-dinitrobenzoic acid acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Elfalaky, A.; Elesh, Eman

    2011-03-01

    Charge-transfer complexes formed between norfloxacin (nor) or ciprofloxacin (cip) drugs as donors with picric acid (PA) and/or 3,5-dinitrobenzoic acid (DNB) as π-acceptors have been studied spectrophotometrically in methanol solvent at room temperature. The results indicated the formation of CT-complexes with molar ratio1:1 between donor and acceptor at maximum CT-bands. In the terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment (μ), resonance energy ( RN) and ionization potential ( ID) were estimated. IR, H NMR, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigations were used to characterize the structural of charge-transfer complexes. It indicates that the CT interaction was associated with a proton migration from each acceptor to nor or cip donors which followed by appearing intermolecular hydrogen bond. In addition, X-ray investigation was carried out to scrutinize the crystal structure of the resulted CT-complexes.

  11. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  12. Self-assembled novel multi-porphyrin micro-crystals as a photocatalyst for 2,4,6-trinitrotoluene degradation

    NASA Astrophysics Data System (ADS)

    Hikal, Walid M.

    In this thesis I have presented the findings of my research pursued during my Ph.D. study. Following the findings that 2,4,6-trinitrotoluene binds to porphyrins at room temperature and could be photoctalytically degraded using porphyrin solutions and visible light, the purpose of this work was to determine the nature of the binding between the two species and develop a solid porphyrin-based photocatalyst for TNT degradation. C1TPP porphyrin is found to be able to bind to TNT via 1.94 kcal/mole hydrogen bonds at room temperature and hydrophobic bonds at higher temperatures. Photocatalytic solid porphyrin crystalline structures have been developed using two oppositely charged, commercially available, and low cost porphyrins in presence and absence of PAMAM generation 4 (G4) dendrimer, by self-assembly at room temperature without acidification. Solid porphyrin crystals were characterized by means of optical microscopy, UV-visible spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction. A hypothetical model for the structure of the crystals is proposed. The porphyrin crystals show photocatalytic capabilities; illumination of the crystals in a 2,4,6-trinitrotoluene solution by visible light results in degradation of TNT and the intermediates have been determined using high pressure liquid chromatography (HPLC) and gas chromatography (GC).

  13. An excellent fluorescent dye with a twistable aromatic chain and its axially chiral crystals.

    PubMed

    Ma, Yan; Hao, Rui; Shao, Guangsheng; Wang, Yuan

    2009-04-30

    A new organic fluorescent dye, 2,4-dichloro-6-[p-(N,N-diethylamino)biphenylyl]-1,3,5-triazine (DBQ), with an electron withdrawing-donating pair bridged by a twistable aromatic chain has been synthesized. DBQ exhibits high fluorescence quantum yields (0.96 in hexane and 0.71 in THF), high extinction coefficients, and an excitation window extending up to approximately 480 nm. Due to the strong intramolecular charge transfer character, DBQ shows obviously solvent-dependent Stokes shifts with a value as high as 6360 cm(-1) in THF and controllable fluorescence emission in the visible region from "blue" to "orange". The axially chiral structures of DBQ crystals were clearly revealed by the X-ray analyses and CD spectroscopy measurements. Two enantiomers of DBQ were obtained by spontaneous resolution upon crystallization without any chiral auxiliary. The low rotation barriers around the interannular bonds in DBQ molecules resulted in an efficient and selective multiplication of each of the chiral structures when DBQ crystallized in THF at room temperature in the presence of an enantiopure crystal seed, leaving racemized DBQ molecules in the solution. The special crystalline properties of DBQ provided a new approach to the design and synthesis of organic chiral crystals. The photophysical properties of DBQ make it promising in the preparation of new fluorescent probes with high sensitivity.

  14. Pressure-induced organic topological nodal-line semimetal in the three-dimensional molecular crystal Pd (dddt) 2

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Wang, Haidi; Wang, Z. F.; Yang, Jinlong; Liu, Feng

    2018-04-01

    The nodal-line semimetal represents a class of topological materials characterized with highest band degeneracy. It is usually found in inorganic materials of high crystal symmetry or a minimum symmetry of inversion aided with accidental band degeneracy [Phys. Rev. Lett. 118, 176402 (2017), 10.1103/PhysRevLett.118.176402]. Based on first-principles band structure, Wannier charge center, and topological surface state calculations, here we predict a pressure-induced topological nodal-line semimetal in the absence of spin-orbit coupling (SOC) in the synthesized single-component 3D molecular crystal Pd (dddt) 2 . We show a Γ -centered single nodal line undulating within a narrow energy window across the Fermi level. This intriguing nodal line is generated by pressure-induced accidental band degeneracy, without protection from any crystal symmetry. When SOC is included, the fourfold degenerated nodal line is gapped and Pd (dddt) 2 becomes a strong 3D topological metal with an Z2 index of (1;000). However, the tiny SOC gap makes it still possible to detect the nodal-line properties experimentally. Our findings afford an attractive route for designing and realizing topological states in 3D molecular crystals, as they are weakly bonded through van der Waals forces with a low crystal symmetry so that their electronic structures can be easily tuned by pressure.

  15. Surface charge effects in protein adsorption on nanodiamonds

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h

  16. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-01

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μmax of ANIH and ANICl crystals is 1.3893 and 0.0272 cm2 V-1 s-1, which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  17. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.

    PubMed

    Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu

    2017-09-21

    The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.

  18. Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth. Part 1: Analytical treatment of the axial temperature distribution

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.; Rohsenow, W. M.; Witt, A. F.

    1982-01-01

    All first order effects on the axial temperature distribution in a solidifying charge in a Bridgman-Stockbarger configuration for crystal growth are analyzed on the basis of a one dimensional model whose validity can be verified through comparison with published finite difference ana;uses of two dimensional models. The model presented includes an insulated region between axially aligned heat pipes and considers the effects of charge diameter, charge motion, thickness, and thermal conductivity of a confining crucible, thermal conductivity change at the crystal-melt interface, generation of latent heat at the interface, and finite charge length. Results are primarily given in analytical form and can be used without recourse to computer work for both improve furnace design and optimization of growth conditions in a given thermal configuration.

  19. Ultrafast large-amplitude relocation of electronic charge in ionic crystals

    PubMed Central

    Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas

    2012-01-01

    The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621

  20. Crystal Structure of a Coiled-Coil Domain from Human ROCK I

    PubMed Central

    Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.

    2011-01-01

    The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309

  1. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    NASA Astrophysics Data System (ADS)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  2. A New Protein Architecture for Processing Alkylation Damaged DNA: The Crystal Structure of DNA Glycosylase AlkD

    PubMed Central

    Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.

    2013-01-01

    Summary DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases. PMID:18585735

  3. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.

    PubMed

    Glushko, O; Meisels, R; Kuchar, F

    2010-03-29

    The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.

  4. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.

    PubMed

    Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian

    2015-04-01

    Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.

  5. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask.

    PubMed

    Hossain, Md Nazmul; Justice, John; Lovera, Pierre; McCarthy, Brendan; O'Riordan, Alan; Corbett, Brian

    2014-09-05

    Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU.

  6. Efficient photodegradation of organic dye using anatase TiO2 plants as catalyst

    NASA Astrophysics Data System (ADS)

    Bahadur, Jitendra; Pal, Kaushik

    2017-11-01

    Anatase TiO2 hierarchical nanostructures with higher photocatalytic activity are of special importance in various applications. We have reported the synthesis of TiO2 as water chestnut plants like morphology via facile hydrothermal method, by using Titanium (IV) butoxide (TBOT) as a precursor solution. It is found that TiO2 nanoparticles work as seed and completely convert into water chestnut plants like structure or morphology, which are composed of crystallized anatase nanocrystals. X-ray diffraction spectra confirmed the presence of anatase phase of crystallized TiO2 plants (TPs). The average life time delay for generated charge carriers in TPs was calculated to be around 2.45 ns, which reflects slow recombination of charge carriers. The prepared TPs show excellent photocatalytic performance when applied in photo degradation of Rhodamine B organic dye. The unique features exhibited by TPs make them a promising candidate for vast potential applications in field such as solar cells, photocatalysis, supercapacitor, lithium ion batteries and some related fields.[Figure not available: see fulltext.

  7. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    PubMed Central

    Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM

    2008-01-01

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025

  8. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    PubMed

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.

  9. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03068h

  10. Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis.

    PubMed

    Kuang, Siyun; Zheng, Jun; Yang, Hui; Li, Suhua; Duan, Shuyan; Shen, Yanfang; Ji, Chaoneng; Gan, Jianhua; Xu, Xue-Wei; Li, Jixi

    2017-10-03

    Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.

  11. Experimental and computational studies on creatininium 4-nitrobenzoate - An organic proton transfer complex

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2017-10-01

    A new organic proton transfer complex of creatininium 4-nitrobenzoate (C4NB) has been synthesized and its single crystals were grown successfully by slow evaporation technique. The grown single crystal was subjected to various characterization techniques like single crystal X-ray diffraction (SCXRD), FTIR, FT-Raman and Kurtz-Perry powder second harmonic generation (SHG). The SCXRD analysis revealed that C4NB was crystallized into orthorhombic crystal system, with noncentrosymmetric (NCS), P212121 space group. The creatininium cation and 4-nitrobenzoate anion were connected through a pair of N__H⋯O hydrogen bonds (N(3)__H(6) ⋯ O(3) (x+1, y, z) and N(2)__H(5) &ctdot O(2) (x-1/2, -y-1/2, -z+2)) and fashioned a R22(8) ring motif. The crystal structure was stabilized by strong N__H⋯O and weak C__H⋯O intermolecular interactions and it was quantitatively analysed by Hirshfeld surface and fingerprint (FP) analysis. FTIR and FT-Raman studies confirmed the vibrational modes of functional groups present in C4NB compound indubitably. SHG efficiency of grown crystal was 4.6 times greater than that of standard potassium dihydrogen phosphate (KDP) material. Moreover, density functional theory (DFT) studies such as Mulliken charge distribution, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) map, natural bond orbital analysis (NBO) and first order hyperpolarizability (β0) were calculated to explore the structure-property relationship.

  12. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite

    PubMed Central

    2018-01-01

    Double perovskites, comprising two different cations, are potential nontoxic alternatives to lead halide perovskites. Here, we characterized thin films and crystals of Cs2AgBiBr6 by time-resolved microwave conductance (TRMC), which probes formation and decay of mobile charges upon pulsed irradiation. Optical excitation of films results in the formation of charges with a yield times mobility product, φΣμ > 1 cm2/Vs. On excitation of millimeter-sized crystals, the TRMC signals show, apart from a fast decay, a long-lived tail. Interestingly, this tail is dominant when exciting close to the bandgap, implying the presence of mobile charges with microsecond lifetimes. From the temperature and intensity dependence of the TRMC signals, we deduce a shallow trap state density of around 1016/cm3 in the bulk of the crystal. Despite this high concentration, trap-assisted recombination of charges in the bulk appears to be slow, which is promising for photovoltaic applications. PMID:29545908

  13. Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, K.; Fujii, T.; Tanda, S.

    2017-09-01

    We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.

  14. Different electronic and charge-transport properties of four organic semiconductors Tetraazaperopyrenes derivatives

    NASA Astrophysics Data System (ADS)

    Shi, Yarui; Wei, Huiling; Liu, Yufang

    2015-03-01

    Tetraazaperopyrenes (TAPPs) derivatives are high-performance n-type organic semiconductor material families with the remarkable long-term stabilities. The charge carrier mobilities in TAPPs derivatives crystals were calculated by the density functional theory (DFT) method combined with the Marcus-Hush electron-transfer theory. The existence of considerable C-H…F-C bonding defines the conformation of the molecular structure and contributes to its stability. We illustrated how it is possible to control the electronic and charge-transport parameters of TAPPs derivatives as a function of the positions, a type of the substituents. It is found that the core substitution of TAPPs has a drastic influence on the charge-transport mobilities. The maximum electron mobility value of the core-brominated 2,9-bis (perfluoroalkyl)-substituted TAPPs is 0.521 cm2 V-1 s-1, which appear in the orientation angle 95° and 275°. The results demonstrate that the TAPPs with bromine substituents in ortho positions exhibit the best charge-transfer efficiency among the four different TAPP derivatives.

  15. Shear-induced partial translational ordering of a colloidal solid

    NASA Astrophysics Data System (ADS)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  16. Electrostatics at the oil–water interface, stability, and order in emulsions and colloids

    PubMed Central

    Leunissen, Mirjam E.; van Blaaderen, Alfons; Hollingsworth, Andrew D.; Sullivan, Matthew T.; Chaikin, Paul M.

    2007-01-01

    Oil–water mixtures are ubiquitous in nature and are particularly important in biology and industry. Usually additives are used to prevent the liquid droplets from coalescing. Here, we show that stabilization can also be obtained from electrostatics, because of the well known remarkable properties of water. Preferential ion uptake leads to a tunable droplet charge and surprisingly stable, additive-free, water-in-oil emulsions that can crystallize. For particle-stabilized (“Pickering”) emulsions we find that even extremely hydrophobic, nonwetting particles can be strongly bound to (like-charged) oil–water interfaces because of image charge effects. These basic insights are important for emulsion production, encapsulation, and (self-)assembly, as we demonstrate by fabricating a diversity of structures in bulk, on surfaces, and in confined geometries. PMID:17307876

  17. Enhanced Electrical Resistivity after Rapid Cool of the Specimen in Layered Oxide LixCoO2

    NASA Astrophysics Data System (ADS)

    Miyoshi, K.; Manami, K.; Takeuchi, J.; Sasai, R.; Nishigori, S.

    Measurements of electrical resistivity and DC magnetization for LixCoO2 (x=0.71 and 0.64) have been performed using single crystal specimens. It has been found that electrical resistivity measured after rapid cool of the specimen becomes larger compared with that after slow cool below the temperature TS∽155 K at which charge ordering of Co3+/Co4+(=2:1) occurs. The behavior can be understood considering that the charge ordering can be destroyed by Li ions which are in an amorphous state after rapid cool via the interlayer Coulomb interactions, and also that the disordered Co3+/Co4+ state becomes insulating, while the charge ordered state has a metallic electronic structure, as recently revealed by the scanning tunneling microscopy.

  18. Bands dispersion and charge transfer in β-BeH2

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  19. Determination of the Bridging Ligand in the Active Site of Tyrosinase.

    PubMed

    Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun

    2017-10-28

    Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  20. The influence of temperature on a nutty-cake structural material: LiMn1-xFexPO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Huo, Zhen-Qing; Cui, Yu-Ting; Wang, Dan; Dong, Yue; Chen, Li

    2014-01-01

    The extremely low electronic conductivity, slow ion diffusion kinetics, and the Jahn-Teller effect of LiMnPO4 limit its electrochemical performance. In this work, a nutty-cake structural C-LiMn1-xFexPO4-LiFePO4 cathode material is synthesized by hydrothermal method and further calcined at different temperatures. The influence of calcination temperature on the electrochemical behavior is investigated by X-ray diffractometer, scanning electron microscope, field-emission high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and charge-discharge tests. And the performance of C-LiMn1-xFexPO4-LiFePO4 materials has a relationship with its crystal structure. The well-crystallized Sample-600 calcined at 600 °C shows the smallest charge transfer resistance, the largest lithium ion diffusion coefficient (DLi) and the best cycling stability. The discharge capacity of Sample-600 holds around 112 mAh g-1 after the 3rd cycle at 0.1 C rate. The performances improvement of C-LiMn1-xFexPO4-LiFePO4 material can be mainly attributed to the iron diffusion from the LiFePO4 core to the outer LiMnPO4 layer under appropriate calcination temperature.

  1. Topological charge algebra of optical vortices in nonlinear interactions.

    PubMed

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

  2. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prhavc, M.; Prakash, T.P.; Minasov, G.

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  3. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    NASA Astrophysics Data System (ADS)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  4. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  5. Human glucose-6-phosphate dehydrogenase: the crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency.

    PubMed

    Au, S W; Gover, S; Lam, V M; Adams, M J

    2000-03-15

    Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first committed step in the pentose phosphate pathway; the generation of NADPH by this enzyme is essential for protection against oxidative stress. The human enzyme is in a dimer<-->tetramer equilibrium and its stability is dependent on NADP(+) concentration. G6PD deficiency results from many different point mutations in the X-linked gene encoding G6PD and is the most common human enzymopathy. Severe deficiency causes chronic non-spherocytic haemolytic anaemia; the usual symptoms are neonatal jaundice, favism and haemolytic anaemia. We have determined the first crystal structure of a human G6PD (the mutant Canton, Arg459-->Leu) at 3 A resolution. The tetramer is a dimer of dimers. Despite very similar dimer topology, there are two major differences from G6PD of Leuconostoc mesenteroides: a structural NADP(+) molecule, close to the dimer interface but integral to the subunit, is visible in all subunits of the human enzyme; and an intrasubunit disulphide bond tethers the otherwise disordered N-terminal segment. The few dimer-dimer contacts making the tetramer are charge-charge interactions. The importance of NADP(+) for stability is explained by the structural NADP(+) site, which is not conserved in prokaryotes. The structure shows that point mutations causing severe deficiency predominate close to the structural NADP(+) and the dimer interface, primarily affecting the stability of the molecule. They also indicate that a stable dimer is essential to retain activity in vivo. As there is an absolute requirement for some G6PD activity, residues essential for coenzyme or substrate binding are rarely modified.

  6. Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure

    NASA Astrophysics Data System (ADS)

    Tian, Yongming; M. Beavers, Christine; Busani, Tito; Martin, Kathleen E.; Jacobsen, John L.; Mercado, Brandon Q.; Swartzentruber, Brian S.; van Swol, Frank; Medforth, Craig J.; Shelnutt, John A.

    2012-02-01

    Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers. Electronic supplementary information (ESI) available: Details of the crystallographic refinement, tables of refinement parameters and bond distances and NSD analysis, and figures showing SEM images of Zn/Sn nanosheets and clovers, the solid grown at different porphyrin concentrations, SEM images of nanosheets at high and low magnification, an ORTEP image showing the five crystallographically distinct porphyrin molecules and the water molecules, and a view of the crystal structure down the b axis are given in the ESI. CCDC reference number 833006. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr11826b

  7. DNA-mediated nanoparticle crystallization into Wulff polyhedra

    NASA Astrophysics Data System (ADS)

    Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.

    2014-01-01

    Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.

  8. The importance of amino acid interactions in the crystallization of hydroxyapatite

    PubMed Central

    Jahromi, M. Tavafoghi; Yao, G.; Cerruti, M.

    2013-01-01

    Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca5(PO4)3OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism. PMID:23269851

  9. Intermolecular interactions in the solid state structures of neutral and N-protonated 5-alkoxymethyl-8-hydroxyquinolines

    NASA Astrophysics Data System (ADS)

    Schulze, Mathias M.; Böhme, Uwe; Schwarzer, Anke; Weber, Edwin

    2017-04-01

    A series of five different alkoxymethyl substituted derivatives of 8-hydroxyquinoline was synthesised both in protonated (1a-1e) and neutral (2a-2e) form. The alkoxymethyl groups are MeO (1a, 2a), EtO (1b, 2b), n-PrO (1c, 2c), iso-PrO (1d, 2d), n-BuO (1e, 2e). The compounds were characterised by single crystal X-ray diffraction and spectroscopic methods. Hirshfeld surface analysis was performed to analyse the crystal packing quantitatively. Topological analysis of the electron density distribution delivers information about the strength of the hydrogen bonds. The overall results reveal a main difference between the charged (1a-1d) and uncharged (2a-2e) compounds in the orientation of the hydroxyl group resulting in a different cyclic dimer formation. In both cases the structures are dominated by hydrogen bonding (1a-1d: Osbnd H⋯Cl, Nsbnd H⋯Cl and 2a-2e: Osbnd H⋯N). Furthermore, all crystal structures show π involved interactions though taking only a minor part in the packing of the molecules.

  10. On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.

    PubMed

    Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri

    2015-12-01

    Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.

  11. Surface charge effects in protein adsorption on nanodiamonds.

    PubMed

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  12. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan

    2016-08-01

    Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.

  13. Hybridization wave as the cause of the metal-insulator transition in rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Park, Hyowon; Marianetti, Chris A.; Millis, Andrew J.

    2012-02-01

    The metal-insulator transition driven by varying rare earth (Re) ion in ReNiO3 has been a longstanding challenge to materials theory. Experimental evidence suggesting charge order is seemingly incompatible with the strong Mott-Hubbard correlations characteristic of transition metals. We present density functional, Hartree-Fock and Dynamical Mean field calculations showing that the origin of the insulating phase is a hybridization wave, in which a two sublattice ordering of the oxygen breathing mode produces two Ni sites with almost identical Ni d-charge densities but very different magnetic moments and other properties. The high temperature crystal structure associated with smaller Re ions such as Lu is shown to be more susceptible to the distortion than the high temperature structure associated with larger Re ions such as La.

  14. Synthesis of Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} through a reactive flux method and its visible-light photocatalytic performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Zeyan, E-mail: wangzeyan@sdu.edu.cn, E-mail: bbhuang@sdu.edu.cn; Huang, Baibiao, E-mail: wangzeyan@sdu.edu.cn, E-mail: bbhuang@sdu.edu.cn

    2015-10-01

    Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} was prepared by a reactive flux method. The structures, morphologies, and light absorption properties were investigated. Owing to the polar crystal structure, an internal electric field can be formed inside the material, which can facilitate the photogenerated charge separation during the photocatalytic process. Based on both the wide light absorption spectra and high charge separation efficiency originated from the polarized internal electric field, Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} exhibit higher efficiency over Ag{sub 3}PO{sub 4} during the degradation of organic dyes under visible light irradiation, which is expected to be a potential material for solarmore » energy harvest and conversion.« less

  15. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  16. Mechanisms responsible for two possible electrochemical reactions in Li1.2Ni0.13Mn0.54Co0.13O2 used for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa

    2018-02-01

    Two electrochemical reactions are possible in regard to Li1.2Ni0.13Mn0.54Co0.13O2 (0.5Li2MnO3-0.5LiNi0.33Mn0.33Co0.33O2), viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like reactions. The open circuit potential (OCP) and changes in crystal structure during the charge-discharge process of Li1.2Ni0.13Mn0.54Co0.13O2 were investigated to clarify the mechanism responsible for the two reactions. Li2MnO3 and LiNi0.33Mn0.33Co0.33O2 were separately prepared for the investigation, and the OCPs and crystal structures in these cathodes were measured and then compared with those for Li1.2Ni0.13Mn0.54Co0.13O2. The results obtained using X-ray diffraction (XRD) indicated that two phases existed in Li1.2Ni0.13Mn0.54Co0.13O2. The changes in crystal structure of the two phases during the charge-discharge process were similar to those in Li2MnO3 and LiNi0.33Mn0.33Co0.33O2. This indicated that two phases, viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like, existed in Li1.2Ni0.13Mn0.54Co0.13O2. Li2MnO3-like, LiNi0.33Mn0.33Co0.33O2-like, and Li2MnO3-like phases were found to contribute mainly to electrochemical reactions in the low, middle, and high state of charge (SOC) ranges during the charge process from the results obtained using XRD and electrochemical measurements carried out on Li1.2Ni0.13Mn0.54Co0.13O2. In contrast, the Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like phases mainly contributed to electrochemical reactions in the low and high SOC ranges during the discharge process. Furthermore, the high polarization and potential decay during the charge-discharge cycling of Li1.2Ni0.13Mn0.54Co0.13O2 were mainly attributed to the Li2MnO3-like phase.

  17. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  18. Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening

    NASA Astrophysics Data System (ADS)

    de Graaf, J.

    2012-06-01

    In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our investigation is therefore particularly relevant to current and future experimental studies of colloids. We examine several topics for which shape anisotropy plays an important role: (1.) - Interfacial adsorption. We introduced the triangular-tessellation technique to approximate the surface areas and line length which are associated with a plane-particle intersection. Our method allowed us to determine the free energy of adsorption for a single irregular colloid with heterogeneous surface properties adsorbed at a flat liquid-liquid interface in the Pieranski approximation. Ellipsoids only adsorbed at the interface perpendicular to the interfacial normal. However, for cylinders we could find a metastable adsorption minimum corresponding to parallel adsorption. We also considered the possible time dependence of the adsorption process using simple dynamics. Finally, we studied the adsorption of truncated nanocubes with a contact-angle surface pattern and we observed that there are three prototypical equilibrium adsorption configurations for these particles. (2.) - Crystal-structure prediction. We extended an existing crystal-structure-prediction algorithm to predict structures for systems comprised of irregular hard particles. Using this technique we examined the high-density crystal structures for 17 irregular nonconvex shapes and we confirmed several mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also proved that we have obtained the densest configurations for rhombicuboctahedra and rhombic enneacontrahedra, respectively. Moreover, we considered a family of truncated cubes, which interpolates between a cube and an octahedron, for which we obtained a fascinating richness in crystal structures. For the octahedron we determined the equation of state and we obtained a liquid, a (metastable) body-centred-cubic rotator phase, and a crystal phase. (3.) - Octapod hierarchical self-assembly. We analysed the recently observed hierarchical self-assembly of octapod-shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We constructed an empirical simulation model capable of reproducing the initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions between octapods suspended in an (a)polar medium were obtained by means of a Hamaker-de-Boer-type integration and the nature of these interactions allowed us to justify elements of our empirical model. We used the theoretical vdW calculation, together with the experimental and simulation results, to formulate a mechanism which explained the observed self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod interactions. (4.) - Ionic screening of charged Janus particles. We studied the screening of charged Janus particles in an electrolyte by primitive-model Monte Carlo (MC) simulations for a wide variety of parameters. We also introduced a method to compare these results to the predictions of nonlinear Poisson-Boltzmann (PB) theory. The comparison of MC and PB results allowed us to probe the range of validity of the PB approximation. This range of validity corresponds well to the range that was predicted by field-theoretical studies of homogeneously charged flat surfaces.

  19. New structural phase obtained by exerting high pressure on (Br2)n@AFI composite material

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Lv, Jia-Yin; Liu, Bo; Liu, Bing-Bing; Yang, Bai

    2018-06-01

    In this paper, we present a theoretical study on the high-pressure behaviors of a (Br2)n@AlPO4-5 (AFI) peapod structure. The influence of the encapsulated Br2 molecule on the structural deformation of AFI crystal is analyzed using the volume-pressure function. The bonding process of the linearly arrayed Br2 molecule transferring to the bromine atomic chain is analyzed by the electron density distribution. A new high-pressure phase with P2 point group symmetry is obtained as the pressure increases to 34 GPa. In addition, electron density difference calculations are used to study the systematic charge transformation. Further analysis indicates that the encapsulated Br2 molecules can significantly modify the electronic structure of the AFI crystal. The band gap of the (Br2)n@AFI decreases with pressure and closes at 9 GPa. Moreover, the calculated bulk modulus and electronic properties indicate that the new structural phase is metallic with a high hardness, providing a new strategy for exploring novel nanomaterials.

  20. Charge and orbital orders and structural instability in high-pressure quadruple perovskite CeCuMn6O12

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Yamaura, Kazunari; Belik, Alexei A.

    2018-02-01

    We prepared a quadruple perovskite CeCuMn6O12 under high-pressure and high-temperature conditions at 6 GPa and about 1670 K and investigated its structural, magnetic and transport properties. CeCuMn6O12 crystallizes in space group Im-3 above T CO  =  297 K below this temperature, it adopts space group R-3 with the 1:3 (Mn4+:Mn3+) charge and orbital orders. Unusual compressed Mn3+O6 octahedra are realized in CeCuMn6O12 similar to CaMn7O12 with the  -Q 3 Jahn-Teller distortion mode. Below about 90 K, structural instability takes place with phase separation and the appearance of competing phases; and below 70 K, two R-3 phases coexist. CeCuMn6O12 exhibits a ferromagnetic-like transition below T C  =  140 K, and it is a semiconductor with the magnetoresistance reaching about  -40% at 140 K and 70 kOe. We argued that the valence of Ce is  +3 in CeCuMn6O12 with the Ce3+(C{{u}2+}Mn23+ )(Mn33+M{{n}4+} )O12 charge distribution in the charge-ordered R-3 phase and Ce3+(C{{u}2+}Mn23+ )(Mn43.25+ )O12 in the charge-disordered Im-3 phase.

  1. Study of hydrogen bond polarized IR spectra of cinnamic acid crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Jabłońska, Magdalena

    2004-11-01

    This paper presents the results of investigation of the polarized IR spectra of cinnamic acid and of its deuterium derivative crystals. The spectra were measured by a transmission method, using polarized light, at the room temperature and at 77 K, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in cinnamic acid crystals, at the frequency ranges of the νO-H and the νO-D bands. The basic crystal spectral properties could be satisfactorily interpreted in a quantitative way for a centrosymmetric cyclic hydrogen bond dimer model. Such a model explains not only a two-branch structure of the νO-H and νO-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, measured for isotopically diluted crystals. Model calculations, performed within the limits of the 'strong-coupling' model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of cinnamic acid crystals, H/D isotopic, temperature and dichroic effects included. In the scope of our studies the mechanism of H/D isotopic 'self-organization' processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of cinnamic acid, a non-random distribution of protons and deuterons occurs exclusively in the hydrogen bond dimers. Nevertheless, these co-operative interactions between the hydrogen bonds do not involve the adjacent hydrogen bond dimers in each unit cell. The two-branch fine structure pattern of the νO-H and νO-D bands was ascribed to the vibronic mechanism of vibrational dipole selection rule breaking in centrosymmetric hydrogen bond dimers. The observed in the spectra very high intensity of the forbidden transition sub-band in the analyzed νO-H and νO-D bands is a manifestation of an extremely effective symmetry rule breaking mechanism. It correlates with a relatively large excess electron charge on the cinnamic aid dimer carboxyl groups. This effect is a result of a partial withdrawal of the electron charge, from the conjugated π-bond systems of the styryl substituents, by the carboxyl groups. This statement has been supported by ab initio calculations.

  2. Advances in structural and functional analysis of membrane proteins by electron crystallography

    PubMed Central

    Wisedchaisri, Goragot; Reichow, Steve L.; Gonen, Tamir

    2011-01-01

    Summary Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. PMID:22000511

  3. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    PubMed

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Structural Determination of Biomolecules in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Butler, John C.; Menard, Etienne; Rogers, John A.; Wong, Gerard C. L.

    2004-03-01

    Supramolecular biological complexes are often too large to be crystallized for structural studies. Here, we explore the use of microfluidic arrays to order a model self-assembled cytoskeletal system. Filamentous actin (F-actin) is a negatively charged protein rod and is a key structural component in the eukaryotic cytoskeleton. In this context, F-actin can self-assemble with actin binding proteins (ABP) in a highly regulated manner to dynamically form structures for a wide range of biomechanical functions. In this work, we will systematically study the action of 3 types of actin binding proteins (a-actinin, fimbrin, cofilin) on the self-assembled structures of F-actin that have been aligned in microfluidic arrays.

  5. Growth, structural, physical and computational perspectives of trans-4-hydroxy-l-proline: a promising organic nonlinear optical material with large laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Thirumurugan, Ramaiah; Anitha, Kandasamy

    2017-05-01

    In this work, a systematic study of an organic nonlinear optical (NLO) material, trans-4-hydroxy-l-proline (THP), C5H9NO3 is reported. An optical quality single crystals of THP have been successfully grown by using slow evaporation solution growth technique (SEST). The single crystal x-ray diffraction (SXRD) analysis reveals that grown crystal belongs to the orthorhombic system with non-centrosymmetric space group (NCS), P212121. Powder x-ray diffraction (PXRD) analysis shows relatively a good crystalline nature. The molecular structure of THP was recognized by NMR (1H and 13C) studies and its vibrational modes were confirmed by FTIR and FT-Raman vibrational studies. UV-Vis-NIR spectrum of grown crystal shows high optical transparency in the visible and near-IR region with low near-UV cut-off wavelength at 218 nm. Photoluminescence study confirms ultraviolet wavelength emission of THP crystal. The second harmonic generation (SHG) efficiency of grown crystal is 1.6 times greater with respect to standard potassium dihydrogen phosphate (KDP). Nonlinear refractive index (n 2) and nonlinear absorption coefficient (β) were determined using the Z-scan technique. The title compound owns high thermal stability of 294 °C and specific heat capacity (C P) of 1.21 J g-1 K-1 at 300 K and 11.33 J g-1 K-1 at 539 K (melting point). The laser-induced damage threshold (LDT) value of grown crystal was measured as 7.25 GW cm-2. The crystal growth mechanism and defects of grown crystal were studied by chemical etching technique. Mechanical strength was extensively studied by Vickers microhardness test and crystal void percentage analysis. Moreover, density functional theory (DFT) studies were carried out to probe the Mulliken charge distribution, frontier molecular orbitals (FMOs) and first order hyperpolarizability (β) of the optimized molecular structure to get a better insight of the molecular properties. These characterization results endorse that grown THP crystal as a suitable candidate for NLO applications with large LDT.

  6. Undergraduates improve upon published crystal structure in class assignment.

    PubMed

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the protein sequence. With minimal direction from the instructor on how the students should complete the assignment, the students fared remarkably well in this task, with over half the class able to reconstruct the original sequence with over 77% sequence identity, and with structures whose median ranked in the 91(st) percentile of all structures of comparable resolution in terms of structure quality. Fourteen percent of the students' structures produced Molprobity steric clash validation scores even better than that of the original structure, suggesting that multiple students achieved an improvement in the overall structure quality compared to the published structure. Students were able to delineate limiting case chemical environments, such as charged interactions or complete solvent exposure, but were less able to distinguish finer details of hydrogen bonding or hydrophobicity. Our results prompt several questions: why were students able to perform so well in their structural validation scores? How were some students able to outperform the 88% sequence identity mark that would constitute a perfect score, given the level of degenerate density or surface residues with poor density? And how can the methodology used by the best students inform the practices of professional X-ray crystallographers? Copyright © 2014 Wiley Periodicals, Inc.

  7. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase

    PubMed Central

    Patra, Niladri; Ioannidis, Efthymios I.

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases. PMID:27564542

  8. Crystal-chemistry and partitioning of REE in whitlockite

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Jolliff, B. L.

    1993-01-01

    Partitioning of Rare Earth Elements (REE) in whitlockite is complicated by the fact that two or more charge-balancing substitutions are involved and by the fact that concentrations of REE in natural whitlockites are sufficiently high such that simple partition coefficients are not expected to be constant even if mixing in the system is completely ideal. The present study combines preexisting REE partitioning data in whitlockites with new experiments in the same compositional system and at the same temperature (approximately 1030 C) to place additional constraints on the complex variations of REE partition coefficients and to test theoretical models for how REE partitioning should vary with REE concentration and other compositional variables. With this data set, and by combining crystallographic and thermochemical constraints with a SAS simultaneous-equation best-fitting routine, it is possible to infer answers to the following questions: what is the speciation on the individual sites Ca(B), Mg, and Ca(IIA) (where the ideal structural formula is Ca(B)18 Mg2Ca(IIA)2P14O56); how are REE's charge-balanced in the crystal; and is mixing of REE in whitlockite ideal or non-ideal. This understanding is necessary in order to extrapolate derived partition coefficients to other compositional systems and provides a broadened understanding of the crystal chemistry of whitlockite.

  9. Ultrasensitive Laser Spectroscopy in Solids: Statistical Fine Structure and Single-Molecule Detection

    DTIC Science & Technology

    1990-03-28

    observation, detection of the optical absorption of a single pentacene molecule in a p-terphenyl crystal, opens the door to new studies of single local ...produce appreciable quadratic Stark shifting. Such effects would greatly perturb the local field around the pentacene molecule, making detection of the...of the local surroundings of pentacene molecules with single injected charge carriers nearby may become an interesting field; however, for the

  10. Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM.

    PubMed

    Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi

    2013-10-09

    A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.

  11. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain.

    PubMed

    Potter, Jane A; Randall, Richard E; Taylor, Garry L

    2008-02-28

    IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region. The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to 2.1A resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP) fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure. IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology and, in common with a number of other known CARD structures, contains two major polar surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan residue that may explain the poor solubility of untagged expression constructs. The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an asymmetric surface charge distribution that is typical of CARD domains involved in homotypic protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif CARD suggest possible types of associations that this domain makes with the two CARD domains of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures. These models show a very different charge profile for the equivalent surfaces compared to IPS-1/MAVS/VISA/Cardif CARD.

  12. Dimensional crossover and thermoelectric properties in CeTe2-xSbx single crystals

    NASA Astrophysics Data System (ADS)

    Rhyee, Jong-Soo; Lee, Kyung Eun; Nyeong Kim, Jae; Shim, Ji Hoon; Min, Byeong Hun; Kwon, Yong Seung

    2013-03-01

    Several years before, we proposed that the charge density wave is a new pathway for high thermoelectric performance in In4Se3-x bulk crystalline materials. (Nature v.459, p. 965, 2009) Recently, from the increase of the chemical potential by halogen doped In4Se3-xH0.03 (H =Halogen elements) crystals, we achieved high ZT (maximum ZT 1.53) over a wide temperature range. (Adv. Mater. v.23, p.2191, 2011) Here we demonstrate the low dimensionality increases power factor in CeTe2-xSbx single crystals. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior as well as a 3-dimensional (3D) electron Fermi surface hindering the perfect charge density wave (CDW) gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. This research was supported by Basic Science Research Program (2011-0021335), Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.

  13. Spin State Control using Oxide Interfaces in LaCoO3-based Heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Sangjae; Disa, Ankit; Walker, Frederick; Ahn, Charles

    The flexibility of the spin degree of freedom of the Co 3d orbitals in LaCoO3 suggests that they can be changed through careful design of oxide heterostructures. Interfacial coupling and dimensional confinement can be used to control the magnetic exchange, crystal fields, and Hund's coupling, through orbital and charge reconstructions. These parameters control the balance between multiple spin configurations, thereby modifying the magnetic ordering of LaCoO3. We study (LaCoO3)m /(LaTiO3)2 heterostructures grown by molecular beam epitaxy, which allow interfacial charge transfer from Ti to Co, in addition to structural and dimensional constraints. The electronic polarization at the interface and consequent structural distortions suppress the ferromagnetism in the LaCoO3 layers. This effect extends well beyond the interface, with ferromagnetic order absent up to LaCoO3 layer thickness of m =10. We compare the properties of the LaCoO3/LaTiO3heterostructureswithLaCoO3/SrTiO3, to untangle how charge transfer and structural modifications control the spin and magnetic configuration in cobaltates.

  14. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    PubMed

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  15. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  16. Modeling of monolayer charge-stabilized colloidal crystals with static hexagonal crystal lattice

    NASA Astrophysics Data System (ADS)

    Nagatkin, A. N.; Dyshlovenko, P. E.

    2018-01-01

    The mathematical model of monolayer colloidal crystals of charged hard spheres in liquid electrolyte is proposed. The particles in the monolayer are arranged into the two-dimensional hexagonal crystal lattice. The model enables finding elastic constants of the crystals from the stress-strain dependencies. The model is based on the nonlinear Poisson-Boltzmann differential equation. The Poisson-Boltzmann equation is solved numerically by the finite element method for any spatial configuration. The model has five geometrical and electrical parameters. The model is used to study the crystal with particles comparable in size with the Debye length of the electrolyte. The first- and second-order elastic constants are found for a broad range of densities. The model crystal turns out to be stable relative to small uniform stretching and shearing. It is also demonstrated that the Cauchy relation is not fulfilled in the crystal. This means that the pair effective interaction of any kind is not sufficient to proper model the elasticity of colloids within the one-component approach.

  17. Role of Acentric Displacements on the Crystal Structure and Second-Harmonic Generating Properties of RbPbCO3F and CsPbCO3F

    PubMed Central

    2015-01-01

    Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet–visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class 6̅m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even–odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb2+. The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates. PMID:24867361

  18. Hen Egg-White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centred Polyoxotungstate

    PubMed Central

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-01

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson–Evans-type polyoxometalate (POM), specifically Na6[TeW6O24]⋅22 H2O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid–liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein–protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  19. DNA–protein π-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar

    PubMed Central

    Wilson, Katie A.; Kellie, Jennifer L.; Wetmore, Stacey D.

    2014-01-01

    Four hundred twenty-eight high-resolution DNA–protein complexes were chosen for a bioinformatics study. Although 164 crystal structures (38% of those searched) contained no interactions, 574 discrete π–contacts between the aromatic amino acids and the DNA nucleobases or deoxyribose were identified using strict criteria, including visual inspection. The abundance and structure of the interactions were determined by unequivocally classifying the contacts as either π–π stacking, π–π T-shaped or sugar–π contacts. Three hundred forty-four nucleobase–amino acid π–π contacts (60% of all interactions identified) were identified in 175 of the crystal structures searched. Unprecedented in the literature, 230 DNA–protein sugar–π contacts (40% of all interactions identified) were identified in 137 crystal structures, which involve C–H···π and/or lone–pair···π interactions, contain any amino acid and can be classified according to sugar atoms involved. Both π–π and sugar–π interactions display a range of relative monomer orientations and therefore interaction energies (up to –50 (–70) kJ mol−1 for neutral (charged) interactions as determined using quantum chemical calculations). In general, DNA–protein π-interactions are more prevalent than perhaps currently accepted and the role of such interactions in many biological processes may yet to be uncovered. PMID:24744240

  20. Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.

    PubMed

    Eronen, Paula; Laine, Janne; Ruokolainen, Janne; Osterberg, Monika

    2012-05-01

    The multilayer formation between polyelectrolytes of opposite charge offers possibility for creating new tailored materials. Exchanging one or both components for charged nanofibrillated cellulose (NFC) further increases the variety of achievable properties. We explored this by introducing unmodified, low charged NFC and high charged TEMPO-oxidized NFC. Systematic evaluation of the effect of both NFC charge and properties of cationic polyelectrolytes on the structure of the multilayers was performed. As the cationic component cationic NFC was compared with two different cationic polyelectrolytes, poly(dimethyldiallylammoniumchloride) and cationic starch. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the multilayer formation and AFM colloidal probe microscopy (CPM) was further applied to probe surface interactions in order to gain information about fundamental interactions and layer properties. Generally, the results verified the characteristic multilayer formation between NFC of different charge and how the properties of formed multilayers can be tuned. However, the strong nonelectrostatic affinity between cellulosic fibrils was observed. CPM measurements revealed monotonically repulsive forces, which were in good correspondence with the QCM-D observations. Significant increase in adhesive forces was detected between the swollen high charged NFC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Disappearance of the metal-insulator transition in iridate pyrochlores on approaching the ideal R2Ir2O7 stoichiometry

    NASA Astrophysics Data System (ADS)

    Sleight, Arthur W.; Ramirez, Arthur P.

    2018-07-01

    Recently, rare earth iridates, R2Ir2O7, with the pyrochlore structure have been intensively investigated due to their promise as either topological Mott insulators or Weyl semimetals. Single crystals of such pyrochlores with R = Nd, Sm, Eu, and Dy were prepared hydrothermally in sealed gold tubes at 975 K and show significantly higher electrical resistivities than previously reported for either crystals or polycrystalline samples. Furthermore, none of the present crystals exhibit the metal-insulator transition found for some samples of these phases. Lower resistivities are ascribed to lack of control of x and y in R2-xIr2O7-y in other more commonly used synthesis methods, yielding uncertainty in the Ir oxidation state. We also report resistivity of R2Ru2O7 crystals for R = Yb, Gd, Eu, and Nd, prepared in the same manner. These results suggest that the observed charge transport in hydrothermally grown iridate crystals is that of essentially stoichiometric phases and is consistent a with the existence of Weyl nodes.

  2. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  3. Loop electrostatics modulates the intersubunit interactions in ferritin.

    PubMed

    Bernacchioni, Caterina; Ghini, Veronica; Pozzi, Cecilia; Di Pisa, Flavio; Theil, Elizabeth C; Turano, Paola

    2014-11-21

    Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranieri, M.G.A., E-mail: gabi.ranieri@ig.com.br; Aguiar, E.C.; Cilense, M.

    Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} thick films were obtained by SSR and PPM methods. • Both systems crystallize in an orthorhombic structure. • Textured characteristics were evidenced. • Grain morphology affects the P–E loops. - Abstract: Bismuth titanate powders (Bi{sub 4}Ti{sub 3}O{sub 12}-BIT) were fabricated by solid state reaction (SSR) and polymeric precursor method (PPM). From these powders, Bi{sub 4}Ti{sub 3}O{sub 12} pellets were obtained by tape-casting using plate-like templates particles prepared by a molten salt method. The BIT phase crystallizes in an orthorhombic structure type with space group Fmmm. Agglomeration of the particles, which affects the densification ofmore » the ceramic, electrical conduction and leakage current at high electric fields, was monitored by transmission electronic microscopy (TEM) analyses. FEG-SEM indicated that different shape of grains of BIT ceramics was influenced by the processing route. Both SSR and PPM methods lead to unsaturated P–E loops of BIT ceramics originating from the highly c-axis orientation and high conductivity which was affected by charge carriers flowing normally to the grain boundary of the crystal lattice.« less

  5. Effect of Structural Relaxation on the In-Plane Electrical Resistance of Oxygen-Underdoped ReBaCuO (Re = Y, Ho) Single Crystals

    NASA Astrophysics Data System (ADS)

    Vovk, Ruslan V.; Vovk, Nikolaj R.; Dobrovolskiy, Oleksandr V.

    2014-05-01

    The effect of jumpwise temperature variation and room-temperature storing on the basal-plane electrical resistivity of underdoped ReBaCuO (Re = Y, Ho) single crystals is investigated. Reducing the oxygen content has been revealed to lead to the phase segregation accompanied by both, labile component diffusion and structural relaxation in the sample volume. Room-temperature storing of single crystals with different oxygen hypostoichiometries leads to a substantial widening of the rectilinear segment in in conjunction with a narrowing of the temperature range of existence of the pseudogap state. It is established that the excess conductivity obeys an exponential law in a broad temperature range, while the pseudogap's temperature dependence is described satisfactory in the framework of the BCS-BEC crossover theory. Substituting yttrium with holmium essentially effects the charge distribution and the effective interaction in CuO planes, thereby stimulating disordering processes in the oxygen subsystem. This is accompanied by a notable shift of the temperature zones corresponding to transitions of the metal-insulator type and to the regime of manifestation of the pseudogap anomaly.

  6. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  7. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex.

    PubMed

    Fan, Q R; Long, E O; Wiley, D C

    2001-05-01

    Inhibitory natural killer (NK) cell receptors down-regulate the cytotoxicity of NK cells upon recognition of specific class I major histocompatibility complex (MHC) molecules on target cells. We report here the crystal structure of the inhibitory human killer cell immunoglobulin-like receptor 2DL1 (KIR2DL1) bound to its class I MHC ligand, HLA-Cw4. The KIR2DL1-HLA-Cw4 interface exhibits charge and shape complementarity. Specificity is mediated by a pocket in KIR2DL1 that hosts the Lys80 residue of HLA-Cw4. Many residues conserved in HLA-C and in KIR2DL receptors make different interactions in KIR2DL1-HLA-Cw4 and in a previously reported KIR2DL2-HLA-Cw3 complex. A dimeric aggregate of KIR-HLA-C complexes was observed in one KIR2DL1-HLA-Cw4 crystal. Most of the amino acids that differ between human and chimpanzee KIRs with HLA-C specificities form solvent-accessible clusters outside the KIR-HLA interface, which suggests undiscovered interactions by KIRs.

  8. Screening and structural elucidation of the zwitterionic cocrystal o-picolinic acid with p-nitro aniline

    NASA Astrophysics Data System (ADS)

    Mekala, R.; Jagdish, P.; Mathammal, R.; Sangeetha, K.

    2017-04-01

    The cocrystal was screened by solvent drop grinding method and the crystals were grown by slow evaporation method at ambient conditions. The cocrystal formation of o-picolinic acid with p-nitro aniline was initially analysed by powder X-ray diffraction. Further the structural properties of the grown crystal were confirmed by the single X-ray diffraction which indicates that the cocrystal were connected by the strong N+sbnd H-⋯O hydrogen bond interaction. The cell parameters of the grown crystal were a = 14.2144(5) Å, b = 5.7558(2) Å, c = 16.0539(6) Å. The functional groups were identified using Fourier transform infrared and Raman spectral analysis. The excitation and emission state of the sample was analysed by the UV-Visible and Fluorescence studies. The red emission was observed from the Fluorescence studies. NMR studies revealed the chemical shift of the cocrystal. Thermal stability and its melting behaviour were studied by TGA and DSC analytical techniques. Electrical behaviour was studied using the dielectric studies. The intermolecular charge transfer within the molecule were analysed using HOMO- LUMO plots.

  9. Quantitative analysis of weak interactions by Lattice energy calculation, Hirshfeld surface and DFT studies of sulfamonomethoxine

    NASA Astrophysics Data System (ADS)

    Patel, Kinjal D.; Patel, Urmila H.

    2017-01-01

    Sulfamonomethoxine, 4-Amino-N-(6-methoxy-4-pyrimidinyl) benzenesulfonamide (C11H12N4O3S), is investigated by single crystal X-ray diffraction technique. Pair of N-H⋯N and C-H⋯O intermolecular interactions along with π···π interaction are responsible for the stability of the molecular packing of the structure. In order to understand the nature of the interactions and their quantitative contributions towards the crystal packing, the 3D Hirshfeld surface and 2D fingerprint plot analysis are carried out. PIXEL calculations are performed to determine the lattice energies correspond to intermolecular interactions in the crystal structure. Ab initio quantum chemical calculations of sulfamonomethoxine (SMM) have been performed by B3LYP method, using 6-31G** basis set with the help of Schrodinger software. The computed geometrical parameters are in good agreement with the experimental data. The Mulliken charge distribution, calculated using B3LYP method to confirm the presence of electron acceptor and electron donor atoms, responsible for intermolecular hydrogen bond interactions hence the molecular stability.

  10. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins

    NASA Astrophysics Data System (ADS)

    Liljeström, Ville; Mikkilä, Joona; Kostiainen, Mauri A.

    2014-07-01

    Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.

  11. Single crystal growth and anisotropic magnetic properties of HoAl2Ge2

    NASA Astrophysics Data System (ADS)

    Matin, Md.; Mondal, Rajib; Thamizhavel, A.; Provino, A.; Manfrinetti, P.; Dhar, S. K.

    2018-05-01

    We have grown a single crystal of HoAl2Ge2, which crystallizes in the hexagonal CaAl2Si2 type structure with Ho ions in the trigonal coordination in the ab plane. The data obtained from the bulk measurement techniques of magnetization, heat capacity and transport reveal that HoAl2Ge2 orders antiferromagnetically at TN ˜6.5 K. The susceptibility below TN and isothermal magnetization at 2 K indicate the ab plane as the easy plane of magnetization. Heat capacity data reveal a prominent Schottky anomaly with a broad peak centered around 25 K, suggesting a relatively low crystal electric field (CEF) splitting. The electrical resistivity reveals the occurrence of a superzone gap below TN. The point charge model of the CEF is applied to the magnetization and the heat capacity data. While a good fit to the paramagnetic susceptibility is obtained, the CEF parameters do not provide a satisfactory fit to the isothermal magnetization at 2 K and the Schottky anomaly.

  12. Defect related electrical and optical properties of AlN bulk crystals grown by physical vapor transport

    NASA Astrophysics Data System (ADS)

    Irmscher, Klaus

    AlN crystallizes thermodynamically stable in the wurtzite structure and possesses a direct band gap of about 6 eV. It is the ideal substrate for the epitaxial growth of Al-rich AlxGa1-xN films that enable deep ultraviolet (UV) emitters. Appropriate AlN bulk crystals can be grown by physical vapor transport (PVT). Besides high structural perfection, such substrate crystals should be highly UV transparent and ideally, electrically conductive. It is well known that point defects like impurities and intrinsic defects may introduce electronic energy levels within the bandgap, which lead to additional optical absorption or electrical compensation. Among the impurities, which may be incorporated into the AlN crystals during PVT growth at well above 2000 ° C, oxygen, carbon, and silicon play the major role. Based on our own experimental data as well as on experimental and theoretical results reported in literature, we discuss energy levels, charge states and possible negative-U behavior of these impurities and of vacancy-type defects. In particular, we develop a model that explains the absorption behavior of the crystals in dependence on the Fermi level that can be controlled by the growth conditions, including intentional doping. Further, we pay attention on spectroscopic investigations giving direct evidence for the chemical nature and atomic arrangement of the involved point defects. As examples local vibrational mode (LVM) spectroscopy of carbon related defects and recent reports of electron paramagnetic resonance (EPR) spectroscopy are discussed.

  13. Sensitive and Specific Guest Recognition through Pyridinium-Modification in Spindle-Like Coordination Containers.

    PubMed

    Bhuvaneswari, Nagarajan; Dai, Feng-Rong; Chen, Zhong-Ning

    2018-05-02

    An elaborately designed pyridinium-functionalized octanuclear zinc(II) coordination container 1-Zn was prepared through the self-assembly of Zn 2+ , p-tert-butylsulfonylcalix[4]arene, and pyridinium-functionalized angular flexible dicarboxylate linker (H 2 BrL1). The structure was determined by a single-crystal X-ray diffractometer. 1-Zn displays highly sensitive and specific recognition to 2-picolylamine as revealed by drastic blueshifts of the absorption and emission spectra, ascribed to the decrease of intramolecular charge transfer (ICT) character of the container and the occurrence of intermolecular charge transfer between the host and guest molecules. The intramolecular charge transfer plays a key role in the modulation of the electronic properties and is tunable through endo-encapsulation of specific guest molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Hu, Enyuan; Nordlund, Dennis

    The phase transition, charge compensation, and local chemical environment of Ni in LiNiO 2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge–discharge cycling conditions. We observed the phase transition from the original hexagonal H1 phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surfacemore » over the extended cycles. In conclusion, the degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO 2.« less

  15. Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F2-TCNQ).

    PubMed

    Sosorev, Andrey Yu

    2017-09-27

    Theoretical understanding of charge transport in organic semiconductors is exclusively important for organic electronics, but still remains a subject of debate. The recently discovered record-high band-like electron mobility in single crystals of 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F 2 -TCNQ) is challenging from the theoretical viewpoint. First, the very small size of the F 2 -TCNQ molecule implies high reorganization energy that seems incompatible with efficient charge transport. Second, it is not clear why the crystals of a similar compound, 7,7,8,8-tetracyanoquinodimethane (TCNQ), show an inefficient hopping electron transport mechanism. To address these issues, we apply DFT and QM/MM calculations to the F n -TCNQ (n = 0,2,4) crystal series. We show that multidimensional intermolecular charge delocalization is of key importance for efficient charge transport in materials consisting of small-sized molecules, and commonly used guidelines for the search for high-mobility organic semiconductors are to be corrected.

  16. Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides

    PubMed Central

    2017-01-01

    We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster–Kronig induced) nonresonant X-ray emission is a measure of ligand covalency. PMID:29170686

  17. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    DOE PAGES

    Zhou, X. W.; Foster, M. E.; Yang, P.; ...

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr agingmore » mechanisms under external fields.« less

  18. Crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525

  19. Defect interactions in anisotropic two-dimensional fluids

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Harth, Kirsten

    Disclinations in liquid crystals bear striking analogies to defect structures in a wide variety of physical systems, they are excellent models to study fundamental properties of defect interactions. Freely suspended smectic C films behave like quasi 2D polar nematics. An experimental procedure is introduced to capture high-strength disclinations in localized spots. After they are released in a controlled way, the motion of the mutually repelling topological charges is studied. We demonstrate that the classical models, based on elastic one-constant approximation, fail to describe their dynamics correctly. In realistic liquid crystals, the models work only in ideal configurations. In general, additional director walls modify interactions substantially. Funded by DFG within project STA 425/28-1.

  20. X-Ray Crystallographic Studies of Electrostatic Effects in Cubic Insulin

    NASA Astrophysics Data System (ADS)

    Gursky, Olga

    1992-09-01

    Cubic crystals of bovine insulin were obtained at pH 9 from sodium phosphate buffer. Pathway dependence of crystallization was analysed and crystallization using controlled nucleation was developed. Crystal stability and solubility were surveyed by dialysing the crystals against salt solutions varying in salt composition and ionic strength. Crystals dialysed in 0.1-0.2M Li, Na, K, Rb, NH(4) or Tl salt solutions at pH 9 diffracted to beyond 2.8A, while crystals dialysed in Cs, Mg, Ca or La rapidly lost lattice order. Change in the solvent anion did not affect crystal stability. Electron density maps calculated from X-ray data to 2.8A resolution showed two specific cation binding sites which may be occupied by monovalent cations with ionic radii <1.5A. One site lies between insulin dimers near crystallographic two-fold axis without the close involvement of protein charged groups. Cation binding at this site is important for crystal stability. The other site is alternatively occupied by B10 His in one of its two conformations. At pH 7, the Tl occupancy at both sites was decreased, at pH 9.5 the Tl occupancy of the site near B10 His was increased. The structure was refined using the refined model of cubic porcine insulin and the X-ray data collected to 2A resolution from a bovine insulin crystal at pH 9, to R = 16.1% for the data extending from 10A to 2A. High -resolution data from crystals at pH 7 and pH 10 were collected and analysed. The weights of the two B10 His conformers and the cation occupancy near B10 vary in the pH range from 7 to 10, indicating histidine titration. Shifts in the positions of B1-B4 at pH 7 suggest titration of the B-chain terminal amino groups. Co-operative conformational changes in the surface charged residues A1, A4, B21, B29, B30 at pH 10.2 suggest titration of the A-chain terminal amino groups. In several crystals treated with dichloroethane, the syn-dichloroethane was bound in the niche across the two-fold axis connecting insulin monomers. Dichloroethane binding does not perturb the site geometry and probably leads to cubic insulin preparations of increased stability.

Top