Sample records for crystal structure solution

  1. How to tackle protein structural data from solution and solid state: An integrated approach.

    PubMed

    Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio

    2016-02-01

    Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. High Temperature Stability of Binary Microstructures Derived from Liquid Precursors

    DTIC Science & Technology

    1994-06-30

    isopropoxide , Ti(OC3H7 )4 was stirred into the solution under nitrogen to produce a composition with a 1:1 Pb:Ti ratio. The solution was then boiled and...This program has emphasized two topics: 1) the crystallization of metastable, solid- solution structures, their partitioning into equilibrium structures...structural ceramics and their composites, and 2) the formation of single crystal thin films via spin coating single crystal substrates with solution

  3. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    NASA Astrophysics Data System (ADS)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate

  4. The influence of growth environment on the crystallization of nortriptyline hydrochloride, a tricyclic antidepressant

    NASA Astrophysics Data System (ADS)

    MacCalman, M. L.; Roberts, K. J.; Hendriksen, B. A.

    1993-03-01

    The preparation of the nortriptyline hydrochloride, an important pharmaceutical product, by crystallization from both alcohol and aqueous solutions is presented. At low temperatures this material shows a higher solubility in absolute alcohol compared to aqueous solutions in a trend which reverses at higher temperatures. Examination of crystals prepared from alcohol solutions reveal essentially a needle-like crystal habit which is in excellent agreement with morphological predictions based on the bulk crystallographic structure. In contrast crystals prepared from aqueous solution at high temperatures reveal a particulate structure dominated by heavily agglomerated crystallites with plate-like morphology. When this material is crystallized at the lower temperatures, where the solubility curve is steep, X-ray and thermal analysis appear to show that crystallization results in a new polymorphic structure associated with a less agglomerated product.

  5. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  6. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  7. Shaped nanocrystal particles and methods for working the same

    DOEpatents

    Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato

    2007-12-25

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  8. Shaped Nonocrystal Particles And Methods For Making The Same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2005-02-15

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  9. Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana.

    PubMed

    Li, Congmin; Guo, Xianrong; Jia, Zongchao; Xia, Bin; Jin, Changwen

    2005-07-01

    Antifreeze proteins (AFPs) are widely employed by various organisms as part of their overwintering survival strategy. AFPs have the unique ability to suppress the freezing point of aqueous solution and inhibit ice recrystallization through binding to the ice seed crystals and restricting their growth. The solution structure of CfAFP-501 from spruce budworm has been determined by NMR spectroscopy. Our result demonstrates that CfAFP-501 retains its rigid and highly regular structure in solution. Overall, the solution structure is similar to the crystal structure except the N- and C-terminal regions. NMR spin-relaxation experiments further indicate the overall rigidity of the protein and identify a collection of residues with greater flexibilities. Furthermore, Pro91 shows a cis conformation in solution instead of the trans conformation determined in the crystal structure.

  10. Structural studies of bean pod mottle virus, capsid, and RNA in crystal and solution states by laser Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tiansheng; Thomas, G.J. Jr.; Chen, Zhongguo

    Structures of protein and RNA components of bean pod mottle virus (BPMV) have been investigated by use of laser Raman spectroscopy. Raman spectra were collected from both aqueous solutions and single crystals of BPMV capsids (top component) and virions (middle and bottom components, which package, respectively, small and large RNA molecules). Analysis of the data permits the assignment of conformation-sensitive Raman bands to viral protein and RNA constituents and observation of structural similarities and differences between solution and crystalline states of BPMV components. The Raman results show that the protein subunits of the empty capsid contain between 45% and 55%more » {beta}-strand and {beta}-turn secondary structure, in agreement with the recently determined X-ray crystal structure, and that this total {beta}-strand content undergoes a small increase with packaging of RNA. A comparison of Raman spectra of crystal and solution states of the BPMV middle component reveals only minor structural differences between the two, and these are restricted almost exclusively to Raman bands of RNA in the region of assigned phosphodiester conformation markers. Although in both the crystal and solution only C3{prime} endo/anti nucleosides are detected, the crystal exhibits a weaker 813-cm{sup {minus}1} band and strong 870-cm{sup {minus}1} band, which suggests that {approximately}8% of the nucleotides have O-P-O torsions configured differently in the crystal from that in the solution.« less

  11. Dehydration process in NaCl solutions under various external electric fields

    NASA Astrophysics Data System (ADS)

    Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2007-06-01

    Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.

  12. Persistent Self-Association of Solute Molecules in Solution.

    PubMed

    Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei

    2017-11-02

    The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.

  13. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  14. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE PAGES

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.; ...

    2017-09-05

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  15. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations

    PubMed Central

    Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510

  16. Effect of the Crystal Environment on Side-Chain Conformational Dynamics in Cyanovirin-N Investigated through Crystal and Solution Molecular Dynamics Simulations.

    PubMed

    Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu

    2017-01-01

    Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.

  17. The application of crystal soaking technique to study the effect of zinc and cresol on insulinotropin crystals grown from a saline solution.

    PubMed

    Kim, Y; Haren, A M

    1995-11-01

    The purpose of this study is to investigate the effect of zinc and cresol on the structure of insulinotropin crystals. Insulinotropin crystals grown from a saline solution were treated with zinc and/or m-cresol using a crystal soaking technique. The effects of these additives on the crystal structure were investigated with powder X-ray diffraction, photomicrography, and differential scanning calorimetry. The molecular interaction between insulinotropin and m-trifluorocresol in solution was also studied by 19F NMR: The data suggest that the original crystals grown from a saline solution have relatively weak lattice forces. After the addition of m-cresol to the suspension of the insulinotropin crystals, the crystals were immediately rendered amorphous. The m-cresol molecules which diffused into the crystals through solvent channels may have disturbed the lattice interactions that maintain the integrity of the crystal. In contrast, the zinc added to the suspension stabilized the crystal lattice so that the subsequent addition of m-cresol did not alter the integrity of the crystals. A marked increase in melting point (206 degrees versus 184 degrees) and heat of fusion (24.6 J/g versus 1.4 J/g) of the crystals was observed after the treatment with zinc. The solubility of the zinc treated crystals in a pH 7.1 phosphate buffered saline was 1/20 of that of the original crystals. When the insulinotropin crystals were treated with the additives using a crystal soaking method, the crystals underwent structural changes. Zinc stabilized the crystal lattice, and reduced the solubility of the peptide.

  18. Solution Structures of Mycobacterium tuberculosis Thioredoxin C and Models of the Intact Thioredoxin System Suggest New Approaches to Inhibitor and Drug Design

    PubMed Central

    Olson, Andrew L.; Neumann, Terrence S.; Cai, Sheng; Sem, Daniel S.

    2012-01-01

    Here we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C-terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared to the solution structure. Based on these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti-mycobacterial agents, or as chemical genetic probes of function. PMID:23229911

  19. Crystal structure and solution species of Ce(III) and Ce(IV) formates: from mononuclear to hexanuclear complexes.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Kraus, Werner; Weiss, Stephan; Pattison, Philip; Emerich, Hermann; Abdala, Paula M; Scheinost, Andreas C

    2013-10-21

    Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(μ3-O)4(μ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(μ3-O)4(μ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(μ3-O)4(μ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.

  20. Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.

    PubMed

    Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M

    1999-09-01

    We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.

  1. Raman Spectroscopy Adds Complementary Detail to the High-Resolution X-Ray Crystal Structure of Photosynthetic PsbP from Spinacia oleracea

    PubMed Central

    Lapkouski, Mikalai; Hofbauerova, Katerina; Sovova, Zofie; Ettrichova, Olga; González-Pérez, Sergio; Dulebo, Alexander; Kaftan, David; Kuta Smatanova, Ivana; Revuelta, Jose L.; Arellano, Juan B.; Carey, Jannette; Ettrich, Rüdiger

    2012-01-01

    Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally “dry,” has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein. PMID:23071614

  2. A hybrid computational-experimental approach for automated crystal structure solution

    NASA Astrophysics Data System (ADS)

    Meredig, Bryce; Wolverton, C.

    2013-02-01

    Crystal structure solution from diffraction experiments is one of the most fundamental tasks in materials science, chemistry, physics and geology. Unfortunately, numerous factors render this process labour intensive and error prone. Experimental conditions, such as high pressure or structural metastability, often complicate characterization. Furthermore, many materials of great modern interest, such as batteries and hydrogen storage media, contain light elements such as Li and H that only weakly scatter X-rays. Finally, structural refinements generally require significant human input and intuition, as they rely on good initial guesses for the target structure. To address these many challenges, we demonstrate a new hybrid approach, first-principles-assisted structure solution (FPASS), which combines experimental diffraction data, statistical symmetry information and first-principles-based algorithmic optimization to automatically solve crystal structures. We demonstrate the broad utility of FPASS to clarify four important crystal structure debates: the hydrogen storage candidates MgNH and NH3BH3; Li2O2, relevant to Li-air batteries; and high-pressure silane, SiH4.

  3. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet

    PubMed Central

    Lee, Sooheyong; Wi, Haeng Sub; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Jeong, Se-Young; Kim, Yong-Il; Lee, Geun Woo

    2016-01-01

    Solution studies have proposed that crystal nucleation can take more complex pathways than previously expected in classical nucleation theory, such as formation of prenucleation clusters or densified amorphous/liquid phases. These findings show that it is possible to separate fluctuations in the different order parameters governing crystal nucleation, that is, density and structure. However, a direct observation of the multipathways from aqueous solutions remains a great challenge because heterogeneous nucleation sites, such as container walls, can prevent these paths. Here, we demonstrate the existence of multiple pathways of nucleation in highly supersaturated aqueous KH2PO4 (KDP) solution using the combination of a containerless device (electrostatic levitation), and in situ micro-Raman and synchrotron X-ray scattering. Specifically, we find that, at an unprecedentedly deep level of supersaturation, a high-concentration KDP solution first transforms into a metastable crystal before reaching stability at room temperature. However, a low-concentration solution, with different local structures, directly transforms into the stable crystal phase. These apparent multiple pathways of crystallization depend on the degree of supersaturation. PMID:27791068

  4. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet.

    PubMed

    Lee, Sooheyong; Wi, Haeng Sub; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Jeong, Se-Young; Kim, Yong-Il; Lee, Geun Woo

    2016-11-29

    Solution studies have proposed that crystal nucleation can take more complex pathways than previously expected in classical nucleation theory, such as formation of prenucleation clusters or densified amorphous/liquid phases. These findings show that it is possible to separate fluctuations in the different order parameters governing crystal nucleation, that is, density and structure. However, a direct observation of the multipathways from aqueous solutions remains a great challenge because heterogeneous nucleation sites, such as container walls, can prevent these paths. Here, we demonstrate the existence of multiple pathways of nucleation in highly supersaturated aqueous KH 2 PO 4 (KDP) solution using the combination of a containerless device (electrostatic levitation), and in situ micro-Raman and synchrotron X-ray scattering. Specifically, we find that, at an unprecedentedly deep level of supersaturation, a high-concentration KDP solution first transforms into a metastable crystal before reaching stability at room temperature. However, a low-concentration solution, with different local structures, directly transforms into the stable crystal phase. These apparent multiple pathways of crystallization depend on the degree of supersaturation.

  5. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  6. A Few Good Crystals Please

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  7. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  8. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function.

    PubMed

    Prill, Dragica; Juhás, Pavol; Billinge, Simon J L; Schmidt, Martin U

    2016-01-01

    A method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may be used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.

  9. Glycine glycinium picrate—Reinvestigation of the structure and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2011-01-01

    The crystal of diglycine picrate (glycine glycinum picrate) has been obtained from an aqueous solution containing stoichiometric quantities of the components. The species crystallizes in the monoclinic system (space group P2 1/ c). The crystal structure was determined with high accuracy, IR and Raman spectra are discussed and compared with previous results, and the molecular structure is presented. It was shown that crystals of diglycine picrate obtained from the solution containing equimolar quantities may contain picric acid as impurity, which is the reason for the previously reported observation of second harmonic generation in this centrosymmetric crystal. With this example we want to point out the risk of misinterpretation of SHG signals in general.

  10. Probing the crystal structure landscape by doping: 4-bromo, 4-chloro and 4-methylcinnamic acids.

    PubMed

    Desiraju, Gautam R; Chakraborty, Shaunak; Joseph, Sumy

    2018-06-11

    Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br-atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii and others, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of pi...pi interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Changes in the IR Spectra of Aqueous Solutions of Alkali Metal Chlorides during Crystallization

    NASA Astrophysics Data System (ADS)

    Koroleva, A. V.; Matveev, V. K.; Koroleva, L. A.; Pentin, Yu. A.

    2018-02-01

    The IR spectra of aqueous solutions of sodium chloride and rubidium chloride with the same concentration of 0.1 M upon freezing are studied in the middle IR region. The changes that occur in the absorption bands of the bending ν2, compound ν2 + νL, and stretching (ν1, 2ν2, and ν3) vibrations of water molecules with gradual crystallization of the solutions are studied. The obtained spectra of crystallized solutions are compared to the IR spectrum of ice Ih. Analysis allows conclusions about the structure of the investigated frozen crystallized solutions.

  12. High-throughput crystallization screening.

    PubMed

    Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei

    2014-01-01

    Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.

  13. Physicochemical and crystal structure analyses of the antidiabetic agent troglitazone.

    PubMed

    Kobayashi, Katsuhiro; Fukuhara, Hiroshi; Hata, Tadashi; Sekine, Akiko; Uekusa, Hidehiro; Ohashi, Yuji

    2003-07-01

    The antidiabetic agent troglitazone has two asymmetric carbons located at the chroman ring and the thiazolidine ring and is produced as a mixture of equal amounts of four optical isomers, 2R-5S, 2S-5R, 2R-5R, and 2S-5S. The crystalline powdered drug substance consists of two diastereomer pairs, 2R-5R/2S-5S and 2R-5S/2S-5R. There are many types of crystals obtained from various crystallization conditions. The X-ray structure analysis and the physicochemical analyses of troglitazone were performed. The solvated crystals of the 2R-5R/2S-5S pair were crystallized from several solutions: methanol, ethanol, acetonitrile, and dichloromethane. The ratio of solvent and troglitazone was 1 : 2 (L1/2-form). The monohydrate crystals were obtained from aqueous acetone solution (L1-form). On the other hand, only an anhydrate crystal of the 2R-5S/2S-5R pair was crystallized from various solutions (H0-form). The dihydrous mixed crystal (MA2-form) was obtained from a mixture of the two diastereomer pairs of 2R-5R/2S-5S and 2R-5S/2S-5R in equal amounts by the slow evaporation of aqueous acetone solution. The crystal structure of the MA2-form is similar to the H0-form. When the MA2 crystal was kept under low humidity, it was converted into the dehydrated form (MA0-form) with retention of the single crystal form. The structure of the MA0-form is isomorphous to the H0-form. The MA2-form was converted into the MA0-form and vice versa with retention of the single crystal under low and high humidity, respectively. The crystallization and storage conditions of the drug substances were successfully analyzed.

  14. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  15. Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prill, Dragica; Juhas, Pavol; Billinge, Simon J. L.

    2016-01-01

    In this study, a method towards the solution and refinement of organic crystal structures by fitting to the atomic pair distribution function (PDF) is developed. Approximate lattice parameters and molecular geometry must be given as input. The molecule is generally treated as a rigid body. The positions and orientations of the molecules inside the unit cell are optimized starting from random values. The PDF is obtained from carefully measured X-ray powder diffraction data. The method resembles `real-space' methods for structure solution from powder data, but works with PDF data instead of the diffraction pattern itself. As such it may bemore » used in situations where the organic compounds are not long-range-ordered, are poorly crystalline, or nanocrystalline. The procedure was applied to solve and refine the crystal structures of quinacridone (β phase), naphthalene and allopurinol. In the case of allopurinol it was even possible to successfully solve and refine the structure in P1 with four independent molecules. As an example of a flexible molecule, the crystal structure of paracetamol was refined using restraints for bond lengths, bond angles and selected torsion angles. In all cases, the resulting structures are in excellent agreement with structures from single-crystal data.« less

  16. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE PAGES

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...

    2016-01-14

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  17. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  18. X-ray structure investigation of some substituted indoles, and the x-ray crystal of 1,1'-bishomocubane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, William G.

    1970-05-01

    The crystal structures of 5-methoxytryptamine, melatonin, and the p-bromobenzoate of 1,1'-bishomocubane have been solved by x-ray diffraction methods. A computer program for the trial and error solution of crystal structures is also described here.

  19. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides.

    PubMed

    Cameron, Alan J; Squire, Christopher J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2017-12-14

    Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H 2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. WAXS studies of the structural diversity of hemoglobin in solution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makowski, L.; Bardhan, J.; Gore, D.

    2011-01-01

    Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobinmore » structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.« less

  1. An ultraviolet crosslink in the hammerhead ribozyme dependent on 2-thiocytidine or 4-thiouridine substitution.

    PubMed Central

    Wang, L; Ruffner, D E

    1997-01-01

    The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly. PMID:9336468

  2. Global Structure of HIV-1 Neutralizing Antibody IgG1 b12 is Asymmetric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish, F.; Solanki, A; Boone, C

    2010-01-01

    Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a 'snap-shot' of different conformations accessible to this antibody. To elucidate global structure of this unique antibody, we acquired small-angle X-ray scattering data from its dilute solution. Data analysis indicated that b12 adopts a bilobal globular structure in solution with a radius of gyrationmore » and a maximum linear dimension of {approx}54 and {approx}180 {angstrom}, respectively. Extreme similarity between its solution and crystal structure concludes that non-flexible, asymmetric shape is an inherent property of this rare antibody.« less

  3. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  4. The effect of Fe 3+ doping in Potassium Hydrogen Phthalate single crystals on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan

    2011-02-01

    This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.

  5. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  6. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  7. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    PubMed

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Co-crystallization of cholesterol and calcium phosphate as related to atherosclerosis

    NASA Astrophysics Data System (ADS)

    Hirsch, Danielle; Azoury, Reuven; Sarig, Sara

    1990-09-01

    Calcification of atherosclerotic plaques occurs very frequently and aggravates the disease. In biological systems, epitaxial relationships between crystal structures may be important in nucleating the deposit of a solid phase. The biologically preferred calcium phosphate species, apatite, and cholesterol crystal have structurally compatible crystallographic faces which allow epitaxial growth of one crystal upon another. The present study describes a new approach to explore, in vitro, the crystallization processes of calcium phosphate (CaP) with cholesterol (CS) and cholestanol (CN) which are related to atherosclerosis. Aqueous solutions containing calcium and phosphate ions or CaP crystals as hydroxyapatite were added into saturated ethanolic solutions of CS or CS and 10% CN. After precipitation, crystals were collected and analyzed by nuclear magnetic resonance (NMR), infra-red (IR), X-ray, scanning electron microscope (SEM-LINK), differential scanning calorimeter (DSC) and atomic absorption. The principal result is the well-formed crystals precipitation when an aqueous solution and CaP seed crystals were added to saturated solutions of CS and 10% CN. Cholesterol-cholestanol dihydrate (CC2W) crystals precipitated in the presence of CaP seeds were compared to the CC2W crystals obtained without the mineral compound. The results of this comparison indicate a special link between crystals of CaP and CC2W, and support the epitaxial relationship between the two kinds of crystals. The potential of CC2W crystals to be precipitated by CaP seed crystals prove likewise the possible significant role of the cholestanol metabolite in the process of cholesterol crystallization and calcification in the arteries.

  9. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  10. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  11. The perfection and defect structure of organic hourglass inclusion K 2SO 4 crystals

    NASA Astrophysics Data System (ADS)

    Vetter, William M.; Totsuka, Hirono; Dudley, Michael; Kahr, Bart

    2002-06-01

    Hourglass inclusion crystals of K 2SO 4 were grown from aqueous solutions containing the dye acid fuchsin, and studied by synchrotron white-beam X-ray topography and reciprocal space mapping. Both self-nucleated and larger, seeded dye-included crystals were prepared, as well as comparable undoped crystals. While the dye modified the crystals' habit strongly, X-ray topographs showed it had no influence on their dislocation configurations, which were typical for solution-grown crystals. No kinematical contrast arising from the presence of the dye was observed that indicated dye-induced strain in the crystal lattice. Growth sector boundaries were visible in the dyed crystals but not in undoped crystals, implying there was a slightly higher lattice mismatch across growth sector boundaries in the dye-included crystals. Reciprocal space maps of small areas on an hourglass inclusion crystal within either a dye-included growth sector or an undoped growth sector showed single peaks with the same perfect crystal rocking curve width and no dilatation or tilt of the host lattice resulting from the dye's presence. These results showed hourglass inclusion crystals can be grown in which the presence of the dye disturbs the crystalline structure of the host salt minimally, and that hourglass inclusions have the nature of a solid solution.

  12. Experimental evidence for a chiral symmetry-breaking mechanism in aspartic acid: Lattice and sub-lattice matching

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez

    2017-10-01

    A mother crystal formed from a transient molecular structure of (D+L) aspartic acid in solution is reported. Hexagonal structures with a lattice constant of 1.04 nm were crystallized from a solution in which three aspartic acid species coexist: right- and left-handed enantiomorphs, denoted D-aspartic and L-aspartic, respectively, and transitory (D+L) aspartic acid specie. Atomic force microscopy images of the crystalline deposits reveal domains of the transitory (D+L) aspartic acid crystal forming the substrate deposit on silicon wafers, and on top of this hexagonal lattice only L-aspartic acid is observed to conform and crystallize. A preferential crystallization mechanism is then observed for (D+L) aspartic acid crystals that seed only L-aspartic deposits by the geometrical matching of their multiple hexagonal lattice structures with periodicities of 1.04 nm and 0.52 nm, respectively.

  13. Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment.

    PubMed

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S; Weiss, Manfred S; Tucker, Paul A

    2005-04-01

    The EMBL-Hamburg Automated Crystal Structure Determination Platform is a system that combines a number of existing macromolecular crystallographic computer programs and several decision-makers into a software pipeline for automated and efficient crystal structure determination. The pipeline can be invoked as soon as X-ray data from derivatized protein crystals have been collected and processed. It is controlled by a web-based graphical user interface for data and parameter input, and for monitoring the progress of structure determination. A large number of possible structure-solution paths are encoded in the system and the optimal path is selected by the decision-makers as the structure solution evolves. The processes have been optimized for speed so that the pipeline can be used effectively for validating the X-ray experiment at a synchrotron beamline.

  14. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  15. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Generation of Protein Crystals Using a Solution-Stirring Technique

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-06-01

    Crystals of bovine adenosine deaminase (ADA) were grown over a two week period in the presence of an inhibitor, whereas ADA crystals did not form using conventional crystallization methods when the inhibitor was excluded. To obtain ADA crystals in the absence of the inhibitor, a solution-stirring technique was used. The crystals obtained using this technique were found to be of high quality and were shown to have high structural resolution for X-ray diffraction analysis. The results of this study indicate that the stirring technique is a useful method for obtaining crystals of proteins that do not crystallize using conventional techniques.

  17. Crystal packing modifies ligand binding affinity: the case of aldose reductase.

    PubMed

    Cousido-Siah, Alexandra; Petrova, Tatiana; Hazemann, Isabelle; Mitschler, André; Ruiz, Francesc X; Howard, Eduardo; Ginell, Stephan; Atmanene, Cédric; Van Dorsselaer, Alain; Sanglier-Cianférani, Sarah; Joachimiak, Andrzej; Podjarny, Alberto

    2012-11-01

    The relationship between the structures of protein-ligand complexes existing in the crystal and in solution, essential in the case of fragment-based screening by X-ray crystallography (FBS-X), has been often an object of controversy. To address this question, simultaneous co-crystallization and soaking of two inhibitors with different ratios, Fidarestat (FID; K(d) = 6.5 nM) and IDD594 (594; K(d) = 61 nM), which bind to h-aldose reductase (AR), have been performed. The subatomic resolution of the crystal structures allows the differentiation of both inhibitors, even when the structures are almost superposed. We have determined the occupation ratio in solution by mass spectrometry (MS) Occ(FID)/Occ(594) = 2.7 and by X-ray crystallography Occ(FID)/Occ(594) = 0.6. The occupancies in the crystal and in solution differ 4.6 times, implying that ligand binding potency is influenced by crystal contacts. A structural analysis shows that the Loop A (residues 122-130), which is exposed to the solvent, is flexible in solution, and is involved in packing contacts within the crystal. Furthermore, inhibitor 594 contacts the base of Loop A, stabilizing it, while inhibitor FID does not. This is shown by the difference in B-factors of the Loop A between the AR-594 and AR-FID complexes. A stable loop diminishes the entropic energy barrier to binding, favoring 594 versus FID. Therefore, the effect of the crystal environment should be taken into consideration in the X-ray diffraction analysis of ligand binding to proteins. This conclusion highlights the need for additional methodologies in the case of FBS-X to validate this powerful screening technique, which is widely used. Copyright © 2012 Wiley Periodicals, Inc.

  18. The Effect of Temperature and Solution pH on Tetragonal Lysozyme Nucleation Kinetics

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1998-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions, Duplicate experiments indicate the reproducibility of the technique, Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable however, was pH, where crystal numbers changed by two orders of magnitude over the pH range 4.0 to 5.2. Crystal size varied also with solution conditions, with the largest crystals being obtained at pH 5.2. Having optimized the crystallization conditions, a batch of crystals were prepared under exactly the same conditions and fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  19. Combining crystallography and EPR: crystal and solution structures of the multidomain cochaperone DnaJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barends, Thomas R. M., E-mail: thomas.barends@mpimf-heidelberg.mpg.de; Brosi, Richard W. W.; Steinmetz, Andrea

    2013-08-01

    The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein,more » but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.« less

  20. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  1. Unique Crystallization of Fullerenes: Fullerene Flowers

    PubMed Central

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-01-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446

  2. Stochastic and Deterministic Crystal Structure Solution Methods in GSAS-II: Monte Carlo/Simulated Annealing Versus Charge Flipping

    DOE PAGES

    Von Dreele, Robert

    2017-08-29

    One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less

  3. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-01-18

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of an unknown phase of glycine which was firstly reported by Pyne and Suryanarayanan in 2001. To date, the new phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing a first report on a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution, and the mechanisms of glycine crystallization. GDH may alsomore » be the form of glycine that comes to Earth from extraterrestrial sources.« less

  4. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions.

  5. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution.more » Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.« less

  7. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques, David A.; Streamer, Margaret; Rowland, Susan L.

    2009-06-01

    The crystal structure of Sda, a DNA-replication/damage checkpoint inhibitor of sporulation in B. subtilis, has been solved via the MAD method. The subunit arrangement in the crystal has enabled a reappraisal of previous biophysical data, resulting in a new model for the behaviour of the protein in solution. The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB.more » The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less

  8. The Structure of Glycine Dihydrate: Implications for the Crystallization of Glycine from Solution and Its Structure in Outer Space.

    PubMed

    Xu, Wenqian; Zhu, Qiang; Hu, Chunhua Tony

    2017-02-13

    Glycine, the simplest amino acid, is also the most polymorphous. Herein, we report the structure determination of a long unknown phase of glycine, which was first reported by Pyne and Suryanarayanan in 2001. To date, this phase has only been prepared at 208 K as nanocrystals within ice. Through computational crystal-structure prediction and powder X-ray diffraction methods, we identified this elusive phase as glycine dihydrate (GDH), representing the first report on the structure of a hydrated glycine structure. The structure of GDH has important implications for the state of glycine in aqueous solution and the mechanisms of glycine crystallization. GDH may also be the form of glycine that comes to Earth from extraterrestrial sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

    PubMed Central

    Dubey, Ritesh; Desiraju, Gautam R.

    2015-01-01

    The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900

  10. Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.

    2011-05-01

    In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.

  11. [Structure of crambin in solution, crystal and in the trajectories of molecular dynamics simulations].

    PubMed

    Abaturov, L V; Nosova, N G

    2013-01-01

    The mechanisms of the three-dimensional crambin structure alterations in the crystalline environments and in the trajectories of the molecular dynamics simulations in the vacuum and crystal surroundings have been analyzed. In the crystalline state and in the solution the partial regrouping of remote intramolecular packing contacts, involved in the formation and stabilization of the tertiary structure of the crambin molecule, occurs in NMR structures. In the crystalline state it is initiated by the formation of the intermolecular contacts, the conformational influence of its appearance is distributed over the structure. The changes of the conformations and positions of the residues of the loop segments, where the intermolecular contacts of the crystal surroundings are preferably concentrated, are most observable. Under the influence of these contacts the principal change of the regular secondary structure of crambin is taking place: extension of the two-strand beta structure to the three-strand structure with the participation of the single last residue N46 of the C-terminal loop. In comparison with the C-terminal loop the more profound changes are observed in the conformation and the atomic positions of the backbone atoms and in the solvent accessibility of the residues of the interhelical loop. In the solution of the ensemble of the 8 NMR structures relative accessibility to the solvent differs more noticeably also in the region of the loop segments and rather markedly in the interhelical loop. In the crambin cryogenic crystal structures the positions of the atoms of the backbone and/or side chain of 14-18 of 46 residues are discretely disordered. The disorganizations of at least 8 of 14 residues occur directly in the regions of the intermolecular contacts and another 5 residues are disordered indirectly through the intramolecular contacts with the residues of the intermolecular contacts. Upon the molecular dynamics simulation in the vacuum surrounding as in the solution of the crystalline structure of crambin the essential changes of the backbone conformation are caused by the intermolecular contacts absence, but partly masked by the structure changes owing to the nonpolar H atoms absence on the simulated structure. The intermolecular contact absence is partly manifested upon the molecular dynamics simulation of the crambin crystal with one protein molecule. Compared to the crystal structure the lengths of the interpeptide hydrogen bonds and other interresidue contacts in an average solution NMR structure are somewhat shorter and accordingly the energy of the interpeptide hydrogen bonds is better. This length shortening can occur at the stage of the refinement of the NMR structures of the crambin and other proteins by its energy minimizations in the vacuum surroundings and not exist in the solution protein structures.

  12. Crystal structure of [Eu(CyMe4-BTBP)2κ2O,O'-(NO3)](NO3)2·n-C8H17OH and its structure in 1-octanol solution.

    PubMed

    Lundberg, Daniel; Persson, Ingmar; Ekberg, Christian

    2013-03-21

    The structure of the [Eu(CyMe(4)-BTBP)(2)(NO(3))(n)]((3-n)+) complex in 1-octanol solution and solid state has been determined by EXAFS and X-ray crystallography. The crystal structure shows that 1-octanol binds only to the europium(III)-coordinated BTBP molecules through weak van der Waals forces, making it the first indication of the role of the extraction solvent.

  13. Synthesis, structure and properties of blödite-type solid solutions, Na2Co1-x Cu x (SO4)2·4H2O (0 < x ≤ 0.18), and crystal structure of synthetic kröhnkite, Na2Cu(SO4)2·2H2O

    NASA Astrophysics Data System (ADS)

    Marinova, Delyana; Wildner, Manfred; Bancheva, Tsvetelina; Stoyanova, Radostina; Georgiev, Mitko; Stoilova, Donka G.

    2018-03-01

    Based on different experimental methods—crystallization processes in aqueous solutions, infrared spectroscopy, single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) and TG-DTA-DSC measurements—it has been established that copper ions are included in sodium cobalt sulfate up to about 18 mol%, thus forming limited solid solutions Na2Co1-x Cu x (SO4)2·4H2O (0 < x ≤ 0.18) with a blödite-type structure. In contrast, cobalt ions are not able to accept the coordination environment of the copper ions in the strongly distorted Cu(H2O)2O4 octahedra, thus resulting in the crystallization of Co-free kröhnkite. The solid solutions were characterized by vibrational and EPR spectroscopy. DSC measurements reveal that the copper concentration increase leads to increasing values of the enthalpy of dehydration (ΔH deh) and decreasing values of the enthalpy of formation (ΔH f). The crystal structures of synthetic kröhnkite, Na2Cu(SO4)2·2H2O, as well as of three Cu2+-bearing mixed crystals of Co-blödite, Na2Co1-x Cu x (SO4)2·4H2O with x (Cu) ranging from 0.03 to 0.15, have been investigated from single-crystal X-ray diffraction data. The new data for the structure of synthetic kröhnkite facilitated to clarify structural discrepancies found in the literature for natural kröhnkite samples, traced back to a mix-up of lattice parameters. The crystal structures of Co-dominant Na2Co1-x Cu x (SO4)2·4H2O solid solutions reveal a comparatively weak influence of the Jahn-Teller-affected Cu2+ guest cations up to the maximum content of x (Cu) = 0.15. The response of the MO2(H2O)4 octahedral shape by increased bond-length distortion with Cu content is clear cut (but limited), mainly concerning the M-OH2 bond lengths, whereas other structural units are hardly affected. However, the specific type of imposed distortion seems to play an important role impeding higher Cu/Co replacement ratios.

  14. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.

    2006-04-01

    Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.

  15. Stability of Magnetically-Suppressed Solutal Convection In Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.

    2005-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, a theory is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The requirements for stability are developed and compared to experiments performed within the bore of a superconducting magnet. The theoretical predictions are in good agreement with the experiments and show solutal convection can be stabilized if the surrounding fluid has larger magnetic susceptibility and the magnetic field has a specific structure. Discussion on the application of the technique to protein crystallization is also provided.

  16. First Protein Crystallization Experiments on The International Space Station: Sweet Success in Space With Thaumatin

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Barnes, Cindy L.; Snell, Eddie H.; Achari, Aniruddha; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We determined the room temperature 1.2 A structure of thaumatin using a crystal grown in the first protein crystallization experiment conducted aboard the International Space Station (ISS). The crystals were grown in the Enhanced Gaseous Nitrogen Dewar (EGN) developed by Alexander McPherson and co-workers. EGN transports frozen solutions contained in tygon tubing in a liquid nitrogen Dewar to ISS where the tubes then thaw. Batch, free interface diffusion (FID), or vapor diffusion crystallization occurs after thawing. EGN was flown to the ISS on STS-106 on September 8, 2000. This was a "risk mitigation" flight that tested EGN performance and the process of conducting experiments on ISS. We focused on how to map a hanging drop crystallization recipe to the EGN FID method. Thaumatin was chosen as the test system. Three series of crystallization recipes were set-up. Each series tested different volume ratios of protein-rich solution to precipitant-rich solution. The series differed from each other by fixing either the protein concentration or the amount of protein in the solutions. Upon return of the samples to Earth on October 24 by STS-92, bubbles that spanned the diameter of the tubing were observed in all tubes. Such bubbles interrupt liquid-liquid diffusion and force vapor diffusion equilibration to occur instead. Nonetheless, crystals grew in 9 of 30 tubes. Many large crystals were grown, the largest being 2.0 x 1.1 x 1.0 cubic mm. The largest crystal was used to collect data at room temperature on beamline 7-1 of the Stanford Synchrotron Radiation Source to a maximum resolution of 1.2 A. The structure was refined anisotropically using SHELX with a data to parameter ratio of 4.5 to give an R(sub factor) of 15.8% (R(sub free) = 18.2%) for ail reflections without generated hydrogens. This refinement is proceeding. Comparisons of this 1.2 A microgravity structure to previous reports of the thaumatin structure at 1.75 A and to ground control crystals will be presented.

  17. Synthesis, structural, thermal and optical studies of 1-ethyl-2,6-dimethyl-4-hydroxy pyridinium halides.

    PubMed

    Dhanuskodi, S; Manivannan, S; Kirschbaum, K

    2006-05-15

    1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.

  18. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  19. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  20. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  1. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-01

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  2. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.

    PubMed

    Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio

    2012-12-07

    We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.

  3. Solubility prediction of naphthalene in carbon dioxide from crystal microstructure

    NASA Astrophysics Data System (ADS)

    Sang, Jiarong; Jin, Junsu; Mi, Jianguo

    2018-03-01

    Crystals dissolved in solvents are ubiquitous in both natural and artificial systems. Due to the complicated structures and asymmetric interactions between the crystal and solvent, it is difficult to interpret the dissolution mechanism and predict solubility using traditional theories and models. Here we use the classical density functional theory (DFT) to describe the crystal dissolution behavior. As an example, naphthalene dissolved in carbon dioxide (CO2) is considered within the DFT framework. The unit cell dimensions and microstructure of crystalline naphthalene are determined by minimizing the free-energy of the crystal. According to the microstructure, the solubilities of naphthalene in CO2 are predicted based on the equality of naphthalene's chemical potential in crystal and solution phases, and the interfacial structures and free-energies between different crystal planes and solution are determined to investigate the dissolution mechanism at the molecular level. The theoretical predictions are in general agreement with the available experimental data, implying that the present model is quantitatively reliable in describing crystal dissolution.

  4. Synthesis and crystal structure of the solid solution Co3(SeO3)3-x(PO3OH)x(H2O) involving crystallographic split positions of Se4+ and P5+.

    PubMed

    Zimmermann, Iwan; Johnsson, Mats

    2013-10-21

    Three new cobalt selenite hydroxo-phosphates laying in the solid solution Co3(SeO3)3-x(PO3OH)x(H2O), with x = 0.8, x = 1.0, and x = 1.2 are reported. Single crystals were obtained by hydrothermal synthesis and the crystal structure was determined by single crystal X-ray diffraction. The structure can be described as a 3D framework having selenite and hydroxo-phosphate groups protruding into channels in the crystal structure. Se(4+) and P(5+) share a split position in the structure so that either SeO3 groups having a stereochemically active lone pair or tetrahedrally coordinated PO3OH groups are present. The OH-group is thus only present when the split position is occupied by P(5+). The crystal water is coordinated to a cobalt atom and TG and IR measurements show that the water and hydroxyl groups leave the structure at unusually high temperatures (>450 °C). Magnetic susceptibility measurements show antiferromagnetic coupling below 16 K and a magnetic moment of 4.02(3) μB per Co atom was observed.

  5. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition

    NASA Astrophysics Data System (ADS)

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen

    2018-03-01

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.

  6. Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantanen, Mika K.; Lehtiö, Lari; Rajagopal, Lakshmi

    Two S. agalactiae proteins, the inorganic pyrophosphatase and the serine/threonine phosphatase, were crystallized and diffraction data were collected and processed from these crystals. The data from the two protein crystals extended to 2.80 and 2.65 Å, respectively. Streptococcus agalactiae, which infects human neonates and causes sepsis and meningitis, has recently been shown to possess a eukaryotic-like serine/threonine protein phosphorylation signalling cascade. Through their target proteins, the S. agalactiae Ser/Thr kinase and Ser/Thr phosphatase together control the growth as well as the morphology and virulence of this organism. One of the targets is the S. agalactiae family II inorganic pyrophosphatase. Themore » inorganic pyrophosphatase and the serine/threonine phosphatase have therefore been purified and crystallized and diffraction data have been collected from their crystals. The data were processed using XDS. The inorganic pyrosphosphatase crystals diffracted to 2.80 Å and the Ser/Thr phosphatase crystals to 2.65 Å. Initial structure-solution experiments indicate that structure solution will be successful in both cases. Solving the structure of the proteins involved in this cascade is the first step towards understanding this phenomenon in atomic detail.« less

  7. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.

    PubMed

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf

    2013-08-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  8. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    PubMed Central

    Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf

    2013-01-01

    The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484

  9. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  10. Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Omari, Kamel; Iourin, Oleg; Kadlec, Jan

    2014-08-01

    The sulfur SAD phasing method was successfully used to determine the structure of the N-terminal domain of HCV E1 from low-resolution diffracting crystals by combining data from 32 crystals. Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffractedmore » very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.« less

  11. Crystallization and preliminary crystallographic investigation of a low-pH native insulin monomer with flexible behaviour.

    PubMed

    Zhang, Youshang; Whittingham, Jean L; Turkenburg, Johan P; Dodson, Eleanor J; Brange, Jens; Dodson, G Guy

    2002-01-01

    Insulin naturally aggregates as dimers and hexamers, whose structures have been extensively analysed by X-ray crystallography. Structural determination of the physiologically relevant insulin monomer, however, is an unusual challenge owing to the difficulty in finding solution conditions in which the concentration of insulin is high enough for crystallization yet the molecule remains monomeric. By utilizing solution conditions known to inhibit insulin assembly, namely 20% acetic acid, crystals of insulin in the monomeric state have been obtained. The crystals are strongly diffracting and a data set extending to 1.6 A has recently been collected. The crystals nominally belong to the space group I422, with unit-cell parameters a = b = 57.80, c = 54.61 A, giving rise to one molecule in the asymmetric unit. Preliminary electron-density maps show that whilst most of the insulin monomer is well ordered and similar in conformation to other insulin structures, parts of the B-chain C-terminus main chain adopt more than one conformation.

  12. WinPSSP : a revamp of the computer program PSSP and its performance solving the crystal structures of small organic compounds and solids of biological and pharmaceutical interest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagola, Silvina; Polymeros, Alekos; Kourkoumelis, Nikolaos

    2017-02-01

    The direct-space methods softwarePowder Structure Solution Program(PSSP) [Pagola & Stephens (2010).J. Appl. Cryst.43, 370–376] has been migrated to the Windows OS and the code has been optimized for fast runs.WinPSSPis a user-friendly graphical user interface that allows the input of preliminary crystal structure information, integrated intensities of the reflections and FWHM, the definition of structural parameters and a simulated annealing schedule, and the visualization of the calculated and experimental diffraction data overlaid for each individual solution. The solutions are reported as filename.cif files, which can be used to analyze packing motifs and chemical bonding, and to input the atomic coordinatesmore » into the Rietveld analysis softwareGSAS. WinPSSPperformance in straightforward crystal structure determinations has been evaluated using 18 molecular solids with 6–20 degrees of freedom. The free-distribution program as well as multimedia tutorials can be accessed at http://users.uoi.gr/nkourkou/winpssp/.« less

  13. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yennawar, Hemant; Møller, Magda; University of Copenhagen, DK-2100 Copenhagen

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystalmore » symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.« less

  14. Improving the Quality of Protein Crystals Using Stirring Crystallization

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Matsumura, Hiroyoshi; Niino, Ai; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-04-01

    Recent reports state that a high magnetic field improves the crystal quality of bovine adenosine deaminase (ADA) with an inhibitor [Kinoshita et al.: Acta Cryst. D59 (2003) 1333]. In this paper, we examine the effect of stirring solution on ADA crystallization using a vapor-diffusion technique with rotary and figure-eight motion shakers. The probability of obtaining high-quality crystals is increased with stirring in a figure-eight pattern. Furthermore, rotary stirring greatly increased the probability of obtaining high-quality crystals, however, nucleation time was also increased. The crystal structure with the inhibitor was determined at a high resolution using a crystal obtained from a stirred solution. These results indicate that stirring with simple equipment is as useful as the high magnetic field technique for protein crystallization.

  15. Growth and characterization of hexamethylenetetramine crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  16. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  17. Crystallization and preliminary X-ray diffraction analysis of two extracytoplasmic solute receptors of the DctP family from Bordetella pertussis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucktooa, Prakash; Huvent, Isabelle; IFR 142, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59021 Lille CEDEX

    2006-10-01

    Sample preparation, crystallization and preliminary X-ray analysis are reported for two B. pertussis extracytoplasmic solute receptors. DctP6 and DctP7 are two Bordetella pertussis proteins which belong to the extracytoplasmic solute receptors (ESR) superfamily. ESRs are involved in the transport of substrates from the periplasm to the cytosol of Gram-negative bacteria. DctP6 and DctP7 have been crystallized and diffraction data were collected using a synchrotron-radiation source. DctP6 crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 108.39, b = 108.39, c = 63.09 Å, while selenomethionyl-derivatized DctP7 crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parametersmore » a = 64.87, b = 149.83, c = 170.65 Å. The three-dimensional structure of DctP7 will be determined by single-wavelength anomalous diffraction, while the DctP6 structure will be solved by molecular-replacement methods.« less

  18. Equilibrium state at supersaturated drug concentration achieved by hydroxypropyl methylcellulose acetate succinate: molecular characterization using (1)H NMR technique.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-04-06

    The maintenance mechanism of the supersaturated state of poorly water-soluble drugs, glibenclamide (GLB) and chlorthalidone (CLT), in hydroxypropyl methylcellulose acetate succinate (HPMC-AS) solution was investigated at a molecular level. HPMC-AS suppressed drug crystallization from supersaturated drug solution and maintained high supersaturated level of drugs with small amount of HPMC-AS for 24 h. However, the dissolution of crystalline GLB into HPMC-AS solution failed to produce supersaturated concentrations, although supersaturated concentrations were achieved by adding amorphous GLB to HPMC-AS solution. HPMC-AS did not improve drug dissolution and/or solubility but efficiently inhibited drug crystallization from supersaturated drug solutions. Such an inhibiting effect led to the long-term maintenance of the amorphous state of GLB in HPMC-AS solution. NMR measurements showed that HPMC-AS suppressed the molecular mobility of CLT depending on their supersaturation level. Highly supersaturated CLT in HPMC-AS solution formed a gel-like structure with HPMC-AS in which the molecular mobility of the CLT was strongly suppressed. The gel-like structure of HPMC-AS could inhibit the reorganization from drug prenuclear aggregates to the crystal nuclei and delay the formation of drug crystals. The prolongation subsequently led to the redissolution of the aggregated drugs in aqueous solution and formed the equilibrium state at the supersaturated drug concentration in HPMC-AS solution. The equilibrium state formation of supersaturated drugs by HPMC-AS should be an essential mechanism underlying the marked drug concentration improvement.

  19. High-temperature solution growth and characterization of (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 piezo-/ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2018-03-01

    Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.

  20. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  1. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedronmore » motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.« less

  2. Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.

    1996-01-01

    Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.

  3. Myelography Iodinated Contrast Media. 2. Conformational Versatility of Iopamidol in the Solid State.

    PubMed

    Bellich, Barbara; Di Fonzo, Silvia; Tavagnacco, Letizia; Paolantoni, Marco; Masciovecchio, Claudio; Bertolotti, Federica; Giannini, Giovanna; De Zorzi, Rita; Geremia, Silvano; Maiocchi, Alessandro; Uggeri, Fulvio; Masciocchi, Norberto; Cesàro, Attilio

    2017-02-06

    The phenomenon of polymorphism is of great relevance in pharmaceutics, since different polymorphs have different physicochemical properties, e.g., solubility, hence, bioavailability. Coupling diffractometric and spectroscopic experiments with thermodynamic analysis and computational work opens to a methodological approach which provides information on both structure and dynamics in the solid as well as in solution. The present work reports on the conformational changes in crystalline iopamidol, which is characterized by atropisomerism, a phenomenon that influences both the solution properties and the distinct crystal phases. The conformation of iopamidol is discussed for three different crystal phases. In the anhydrous and monohydrate crystal forms, iopamidol molecules display a syn conformation of the long branches stemming out from the triiodobenzene ring, while in the pentahydrate phase the anti conformation is found. IR and Raman spectroscopic studies carried out on the three crystal forms, jointly with quantum chemical computations, revealed that the markedly different spectral features can be specifically attributed to the different molecular conformations. Our results on the conformational versatility of iopamidol in different crystalline phases, linking structural and spectroscopic evidence for the solution state and the solid forms, provide a definite protocol for grasping the signals that can be taken as conformational markers. This is the first step for understanding the crystallization mechanism occurring in supersaturated solution of iopamidol molecules.

  4. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different morphology formation in comparison to that of the pristine (as-received) P3HT. As a result, single P3HT crystals with high surface energy chain folds were analyzed and determined. Previous reported results of infinite melting enthalpy of extended chain P3HT crystals are much higher than the result discovered in this study. The findings in this study revealed that the infinite melting enthalpy of chain-folded P3HT crystals is considerably decreased due to the presence of this P3HT chain-folded surface energy. In this study, the kinetics and mechanism of P3HT crystallization under shear-flow was thoroughly investigated as well. A homogeneous nucleation of P3HT was observed that allows one dimensional fibril crystal growth. The micrometer long P3HT crystals are formed and limited by the contact time between the P3HT molecules. Furthermore, it was found that phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles inhibit the crystallization of P3HT under shear. However, the shear-flow leads to nanophase agglomeration of PCBM and creates percolation of P3HT fibril crystal networks and the PCBM phase separated domains that apparently present better pathways for transporting electrons and holes. Interestingly, the structured liquid was simply applied onto substrates with a paintbrush resulting in similar device performance to those made with current techniques in which the morphology is commonly formed during application or post-processing steps. These detailed findings are given and discussed in the thesis.

  5. Crystal faces of anhydrite (CaSO 4) and their preferential dissolution in aqueous solutions studied with AFM

    NASA Astrophysics Data System (ADS)

    Shindo, H.; Kaise, M.; Kondoh, H.; Nishihara, C.; Nozoye, H.

    Structures of cleaved surfaces of anhydrite were studied with atomic force microscopy (AFM) before and after partial dissolution in aqueous solutions of NH 4Cl and NaHSO 4. Two crystal faces showed atom-resolved images just after cleavage, (100) and (010), of which the former was roughened by the dissolution, while step structures were developed on the latter. After dissolution, steplines ran along the a- and c-axes on the (010) face, while they ran in directions inclined to these axes before. It was revealed that the arrangement of dipoles is a key factor in determining stabilities of step structures on crystal faces. On the terraces, the arrangement of oxygen atoms of the sulfate groups and calcium ions were clearly observed.

  6. Tautomeric and ionisation forms of dopamine and tyramine in the solid state

    NASA Astrophysics Data System (ADS)

    Cruickshank, Laura; Kennedy, Alan R.; Shankland, Norman

    2013-11-01

    Crystallisation of the phenylethylamine neurotransmitter dopamine from basic aqueous solution yielded the 3-phenoxide Zwitterionic tautomer, despite this being a minority form in the solution state. In the crystal structure, dopamine has a dimeric [OCCOH]2 hydrogen bonded catechol motif that expands through Nsbnd H⋯O interactions to give a 2-dimensional sheet of classical hydrogen bonds. These sheets are further interconnected by Nsbnd H⋯π interactions. The structurally related base tyramine crystallises under similar conditions as a hemihydrate with all four possible species of tyramine present (cationic, anionic, Zwitterionic and neutral) in the crystal structure. Single crystal X-ray diffraction studies at 121 and 293 K showed dynamic hydrogen atom disorder for the phenol/phenoxide group, suggesting that the tyramine speciation observed arises from a solid-state process.

  7. Synthesis, growth, structural and optical studies of a novel organic Piperazine (bis) p-toluenesulfonate single crystal.

    PubMed

    Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R

    2015-03-15

    A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Structural, spectral and birefringence studies of semiorganic nonlinear optical single crystal: Calcium5-sulfosalicylate

    NASA Astrophysics Data System (ADS)

    Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.

    2017-11-01

    Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.

  9. A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.

    PubMed

    Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C Austen

    2018-03-09

    Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. A first principles prediction of the crystal structure of C6Br2ClFH2

    NASA Astrophysics Data System (ADS)

    Misquitta, Alston J.; Welch, Gareth W. A.; Stone, Anthony J.; Price, Sarah L.

    2008-04-01

    We have constructed an intermolecular potential for the 1,3-dibromo-2-chloro-5-fluorobenzene molecule from first principles using SAPT(DFT) interaction energy calculations and the Williams-Stone-Misquitta method for obtaining molecular properties in distributed form. This molecule was included in the fourth Blind Test of crystal structure prediction organised by the Cambridge Crystallographic Data Centre. Using our potential, we have predicted the crystal structure of CBrClFH and found the lowest energy solution to be in excellent agreement with the experimentally observed crystal when it was subsequently revealed.

  11. Computing approximate solutions of the protein structure determination problem using global constraints on discrete crystal lattices.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Pontelli, Enrico

    2010-01-01

    Crystal lattices are discrete models of the three-dimensional space that have been effectively employed to facilitate the task of determining proteins' natural conformation. This paper investigates alternative global constraints that can be introduced in a constraint solver over discrete crystal lattices. The objective is to enhance the efficiency of lattice solvers in dealing with the construction of approximate solutions of the protein structure determination problem. Some of them (e.g., self-avoiding-walk) have been explicitly or implicitly already used in previous approaches, while others (e.g., the density constraint) are new. The intrinsic complexities of all of them are studied and preliminary experimental results are discussed.

  12. Antisolvent membrane crystallization of pharmaceutical compounds.

    PubMed

    Di Profio, Gianluca; Stabile, Carmen; Caridi, Antonella; Curcio, Efrem; Drioli, Enrico

    2009-12-01

    This article describes a modification of the conventional membrane crystallization technique in which a membrane is used to dose the solvent/antisolvent composition to generate supersaturation and induce crystallization in a drug solution. Two operative configurations are proposed: (a) solvent/antisolvent demixing crystallization, where the solvent is removed in at higher flow rate than the antisolvent so that phase inversion promotes supersaturation and (b) antisolvent addition, in which the antisolvent is dosed into the crystallizing drug solution. In both cases, solvent/antisolvent migration occurs in vapor phase and it is controlled by the porous membrane structure, acting on the operative process parameters. This mechanism is different than that observed when forcing the liquid phases through the pores and the more finely controllable supersaturated environment would generate crystals with the desired characteristics. Two organic molecules of relevant industrial implication, like paracetamol and glycine, were used to test the new systems. Experiments demonstrated that, by using antisolvent membrane crystallization in both configurations, accurate control of solution composition at the crystallization point has been achieved with effects on crystals morphology. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.

    PubMed

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy

    2010-05-20

    Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.

  14. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  15. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.

    PubMed

    Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan

    2004-09-20

    A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society

  16. Method for determining the three-dimensional structure of a protein

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2004-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes/cm.sup.2 at the interface. By placing the microcapsules in a high osmotic dewatering solution, the protein solution is gradually made saturated and then supersaturated, and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged, protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D structure of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  17. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in; Baby, C.; Gopalakrishnan, R.

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra establishedmore » the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.« less

  18. Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2-xInxS2

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2015-09-01

    Single crystals of the shandite-type half metallic ferromagnet Co3Sn2S2, and its In-substituted compounds, Co3Sn2-xInxS2 (0

  19. Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Yasuhiro; Fukatsu, Akinobu; Wang, Yangyang

    2014-01-01

    Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remainedmore » until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.« less

  20. Structural incorporation of MgCl2 into ice VII at room temperature

    NASA Astrophysics Data System (ADS)

    Watanabe, Mao; Komatsu, Kazuki; Noritake, Fumiya; Kagi, Hiroyuki

    2017-05-01

    Raman spectra and X-ray diffraction patterns were obtained from 1:100 and 1:200 \\text{MgCl}2:\\text{H}2\\text{O} solutions (in molar ratio) at pressures up to 6 GPa using diamond anvil cells (DACs) and compared with those of pure water. The O-H stretching band from ice VII crystallized from the 1:200 solution was approximately 10 cm-1 higher than that of pure ice VII. The phase boundaries between ice VII and VIII crystallized from the MgCl2 solutions at 4 GPa were 2 K lower than those of pure ice VII and VIII. These observations indicate that ice VII incorporates MgCl2 into its structure. The unit cell volumes of ice VII crystallized from pure water and the two solutions coincided with each other within the experimental error, and salt incorporation was not detectable from the cell volume. Possible configurations of ion substitution and excess volume of ice VIII were simulated on the basis of density functional theory (DFT) calculations.

  1. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B]pyridine-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K.

    2016-05-01

    The novel organic material C20H21ClN2O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P21/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å3 and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. The structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.

  2. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,X.; Burger, C.; Fang, D.

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. Themore » crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.« less

  3. On the Relationship of the Fractal Dimension of Structure with the State of Drying Drops of Crystallizing Solutions (Thermodynamic and Experimental Modeling)

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Chikanova, E. S.; Fedoseev, V. B.

    2018-05-01

    The processes occurring in aqueous salt solutions have been investigated based on thermodynamic and experimental modeling. The self-organization in a drying drop of dehydrated liquids is analyzed using the fractal theory, due to which the quantitative characteristics of the crystallization processes in a small volume are obtained.

  4. Structural and Biochemical Studies of the Ovarian Tumor Domain

    DTIC Science & Technology

    2007-05-01

    solution containing Bis-Tris pH 5.5-6.5, 16-20% PEG 3350 , and 100-200 mM of a magnesium cation. These crystals belong to spacegroup P64 with unit...drop method using a reservoir solution containing Bis-Tris pH 5.5-6.5, 16-20% PEG 3350 , and 50-200 mM ammonium acetate . Orthorhombic crystals

  5. 1. Innovative Relaxor-Based PiezoCrystals: Phase Diagrams, Crystal Growth, Domain Structures and Electric Properties. 2. Piezo- and Ferroelectric Materials Based on Morphotropic Phase Boundary Synthesis, Characterization and Structure - Property Relations

    DTIC Science & Technology

    2006-03-31

    crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the

  6. A flow-free droplet-based device for high throughput polymorphic crystallization.

    PubMed

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.

  7. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure.

    PubMed

    Lu, J; Lin, C L; Tang, C; Ponder, J W; Kao, J L; Cistola, D P; Li, E

    1999-03-05

    The structure and dynamics of rat apo-cellular retinol binding protein II (apo-CRBP II) in solution has been determined by multidimensional NMR analysis of uniformly enriched recombinant rat 13C, 15N-apo-CRBP II and 15N-apo-CRBP II. The final ensemble of 24 NMR structures has been calculated from 3274 conformational restraints or 24.4 restraints/residue. The average root-mean-square deviation of the backbone atoms for the final 24 structures relative to their mean structure is 1.06 A. Although the average solution structure is very similar to the crystal structure, it differs at the putative entrance to the binding cavity, which is formed by the helix-turn-helix motif, the betaC-betaD turn and the betaE-betaF turn. The mean coordinates of the main-chain atoms of amino acid residues 28-38 are displaced in the solution structure relative to the crystal structure. The side-chain of F58, located on the betaC-betaD turn, is reoriented such that it interacts with L37 and no longer blocks entry into the ligand-binding pocket. Residues 28-35, which form the second helix of the helix-turn-helix motif in the crystal structure, do not exhibit a helical conformation in the solution structure. The solution structure of apo-CRBP II exhibits discrete regions of backbone disorder which are most pronounced at residues 28-32, 37-38 and 73-76 in the betaE-betaF turn as evaluated by the consensus chemical shift index, the root-mean-square deviation, amide 1H exchange rates and 15N relaxation studies. These studies indicate that fluctuations in protein conformation occur on the microseconds to ms time-scale in these regions of the protein. Some of these exchange processes can be directly observed in the three-dimensional 15N-resolved NOESY spectrum. These results suggest that in solution, apo-CRBP II undergoes conformational changes on the microseconds to ms time-scale which result in increased access to the binding cavity. Copyright 1999 Academic Press.

  8. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.

  9. Structural, thermal and optical properties of a semiorganic nonlinear optical single crystal: glycine zinc sulphate.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2007-10-01

    Glycine zinc sulphate salt was synthesized and the solubility and metastable zonewidth were estimated from the aqueous solution. Single crystals of glycine zinc sulphate were grown by solvent evaporation method from aqueous solution. Grown crystals were characterized by X-ray diffraction and FT-IR spectral analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties of the crystal were investigated by thermogravimetric analysis. Microhardness study was carried out on (01-1) face of the grown crystal. Its powder second harmonic generation efficiency was measured using Nd:YAG laser and the value was observed to be 0.7 times that of potassium dihydrogen orthophosphate.

  10. Synthesis of hexavalent molybdenum formo- and aceto-hydroxamates and deferoxamine via liquid-liquid metal partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira

    We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less

  11. A model for the solution structure of the rod arrestin tetramer.

    PubMed

    Hanson, Susan M; Dawson, Eric S; Francis, Derek J; Van Eps, Ned; Klug, Candice S; Hubbell, Wayne L; Meiler, Jens; Gurevich, Vsevolod V

    2008-06-01

    Visual rod arrestin has the ability to self-associate at physiological concentrations. We previously demonstrated that only monomeric arrestin can bind the receptor and that the arrestin tetramer in solution differs from that in the crystal. We employed the Rosetta docking software to generate molecular models of the physiologically relevant solution tetramer based on the monomeric arrestin crystal structure. The resulting models were filtered using the Rosetta energy function, experimental intersubunit distances measured with DEER spectroscopy, and intersubunit contact sites identified by mutagenesis and site-directed spin labeling. This resulted in a unique model for subsequent evaluation. The validity of the model is strongly supported by model-directed crosslinking and targeted mutagenesis that yields arrestin variants deficient in self-association. The structure of the solution tetramer explains its inability to bind rhodopsin and paves the way for experimental studies of the physiological role of rod arrestin self-association.

  12. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  13. Electrochemical deposition of silver crystals aboard Skylab 4

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.; Johnston, M. H.; Gates, D. W.

    1976-01-01

    Silver crystals were grown aboard Skylab 4 by an electro-chemical reaction and subsequently returned to earth for comparison with crystals grown at 1- and 5-g. Both the Skylab and earth-grown crystals show a variety of structures. Certain tendencies in structure dependency on gravity level, however, can be discerned. In addition, downward growing dendrite streamers; upward growing chunky crystal streamers; growth along an air/liquid interface; and ribbon, film, and fiber crystal habits were observed in experiments conducted on the ground with solutions of varying concentrations. It was also observed that the crystal structures of space and ground electro-deposited silver crystals were very similar to the structures of germanium selenide and germanium telluride crystals grown in space and on the ground by a vapor transport technique. Consideration of the data leads to the conclusions that: (1) the rate of electrochemical displacement of silver ions from a 5 percent aqueous solution by copper is predominantly diffussion controlled in space and kinetically controlled in 1- and higher-g because of augmentation of mass transport by convection; (2) downward and upward crystal streamers are the result of gravity-driven convection, the flow patterns of which can be delineated. Lateral growths along an air/liquid interface are the result of surface-tension-driven convection, the pattern of which also can be delineated; (3) electrolysis in space or low-g environments can produce either dendritic crystals with more perfect microcrystalline structures or massive, single crystals with fewer defects than those grown on ground or at higher g-levels. Ribbons or films of space-grown silicon crystals would find a ready market for electronic substrate and photocell applications. Space-grown dendritic, metal crystals present the possibility of unique catalysts. Large perfect crystals of various materials are desired for a number of electronic and optical applications; and (4) vapor transport growth of germanium selenide and germanium telluride is affected by convection mechanisms similar to the mechanisms hypothesized for the electrochemical deposition of silver crystals. Evidence and considerations leading to the preceding summaries and conclusions are presented. The implications of the findings and conclusions for technological applications are discussed, and recommendations for further experiments are presented.

  14. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole).

    PubMed

    Nomiya, K; Noguchi, R; Ohsawa, K; Tsuda, K; Oda, M

    2000-03-01

    Two isomeric gold(I)-triphenylphosphine complexes with nitrogen-containing heterocycles, [Au(L)(PPh3) (HL = pyrazole (1), imidazole (2)) were isolated as colorless cubic crystals for 1 and colorless plate crystals for 2, respectively. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. These complexes were also fully characterized by complete elemental analyses, thermogravimetric/differential thermal analyses (TG/DTA) and FT-IR in the solid state and by solution NMR (31P, 1H and 13C) spectroscopy and molecular weight measurements in acetone solution. These complexes consisted of a monomeric 2-coordinate AuNP core both in the solid state and in solution. The molecular structures of 1 and 2 were compared with those of related gold(I) complexes, [Au(1,2,3-triz)(PPh3)] (3, Htriz = triazole), [Au(1,2,4-triz)(PPh3)]2 (4) as a dimer through a gold(I)-gold(I) bond in the solid state, and [Au(tetz)(PPh3)] (5, Htetz = tetrazole). Selective and effective antimicrobial activities against two gram-positive bacteria (B. subtilis, S. aureus) and modest activities against one yeast (C. albicans) found in these gold(I) complexes 1-4 are noteworthy, in contrast to poor activities observed in the corresponding silver(I) complexes.

  15. Structural properties of a family of hydrogen-bonded co-crystals formed between gemfibrozil and hydroxy derivatives of t-butylamine, determined directly from powder X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Cheung, Eugene Y.; David, Sarah E.; Harris, Kenneth D. M.; Conway, Barbara R.; Timmins, Peter

    2007-03-01

    We report the formation and structural properties of co-crystals containing gemfibrozil and hydroxy derivatives of t-butylamine H 2NC(CH 3) 3-n(CH 2OH) n, with n=0, 1, 2 and 3. In each case, a 1:1 co-crystal is formed, with transfer of a proton from the carboxylic acid group of gemfibrozil to the amino group of the t-butylamine derivative. All of the co-crystal materials prepared are polycrystalline powders, and do not contain single crystals of suitable size and/or quality for single crystal X-ray diffraction studies. Structure determination of these materials has been carried out directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm technique for structure solution followed by Rietveld refinement. The structural chemistry of this series of co-crystal materials reveals well-defined structural trends within the first three members of the family ( n=0, 1, 2), but significantly contrasting structural properties for the member with n=3.

  16. Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Zhu; Sun, Li-Hua; Oberthuer, Dominik; Zhang, Chen-Yan; Shi, Jian-Yu; di, Jiang-Lei; Zhang, Bao-Liang; Cao, Hui-Ling; Liu, Yong-Ming; Li, Jian; Wang, Qian; Huang, Huan-Huan; Liu, Jun; Schulz, Jan-Mirco; Zhang, Qiu-Yu; Zhao, Jian-Lin; Betzel, Christian; He, Jian-Hua; Yin, Da-Chuan

    2014-12-01

    High-quality protein crystals of suitable size are an important prerequisite for applying X-ray crystallography to determine the 3-dimensional structure of proteins. However, it is often difficult to obtain protein crystals of appropriate size and quality because nucleation and growth processes can be unsuccessful. Here, we show that by adsorbing proteins onto porous polystyrene-divinylbenzene microspheres (SDB) floating on the surface of the crystallisation solution, a localised high supersaturation region at the surface of the microspheres and a low supersaturation region below the microspheres can coexist in a single solution. The crystals will easily nucleate in the region of high supersaturation, but when they grow to a certain size, they will sediment to the region of low supersaturation and continue to grow. In this way, the probability of crystallisation and crystal quality can be simultaneously increased in a single solution without changing other crystallisation parameters.

  17. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, 51%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear hits. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  18. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Minamitani, Elizabeth Forsythe; Pusey, Marc L.

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of a macromolecules purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals will show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "bits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  19. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth

    2004-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically can not reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1%, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. This presentation will focus on the methodology for fluorescent labeling, the crystallization results, and the effects of the trace labeling on the crystal quality.

  20. Transmission electron microscopy study of crystal growth, solid solution, and defect formation: Hollandite and synthetic tremolite

    NASA Astrophysics Data System (ADS)

    Bozhilov, Krassimir Nikolov

    Transmission electron microscopy was applied to study the crystal growth, origin of microstructures, and composition of hollandite and synthetic tremolite. The nonequilibrium shape of hollandite crystals, with reentrant angles between prismatic faces, is interpreted to be due to a multistage growth process and the development of lamellar defects that affect the growth rates of the F-faces. The process of crystal growth can be divided into three phases: (1) development of a core of intergrown romanechite and hollandite structures, (2) topotactic transformation of romanechite to hollandite and development of a lamellar microstructure, and (3) extensive overgrowth of hollandite with a high density of chain multiplicity faults, which alters the shapes of the crystals. The products from time-series of hydrothermal tremolite synthesis experiments from an oxide mixture and by recrystallization from diopside, enstatite, quartz, and water have been characterized. The crystallization starts with rapid, metastable formation of pyroxene and Mg-enriched amphibole. Chain multiplicity faults are low in density. The observed Mg enrichment is due primarily to solid solution involving the magnesio-cummingtonite component, which reaches up to 24 mol% in the initial, metastable growth stage. In products from the final stages of the experiments, the magnesio-cummingtonite component in tremolite varies between 7 and 13 mol%. Formation of monoclinic primitive tremolite is also observed. Experimental recrystallization of pyroxenes to amphibole takes place by a complex, multistage mechanism. The product amphibole crystals have low chain-multiplicity fault densities, which in general are not strongly correlated with variations in the Ca/Mg ratio. The yield of tremolitic amphibole is limited by the sluggishness of diopside hydration and dissolution and the formation of persistent, metastable solid solutions rich in the magnesio-cummingtonite component. Distance Least Squares refinements and lattice energy calculations for magnesio-cummingtonite/tremolite solid solutions reproduce the reduction of symmetry that occurs with reduction of the M4 cation size, as observed in natural amphiboles. Tremolitic amphibole with more than 20% magnesio-cummingtonite component in solid solution favors a primitive monoclinic structure. The intermediate compositions show significant structural distortions, which supports other observations suggesting that such intermediate compositions are unstable.

  1. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of themore » Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.« less

  2. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    NASA Astrophysics Data System (ADS)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  3. Structural characterization of polymorphs and molecular complexes of finasteride

    NASA Astrophysics Data System (ADS)

    Wawrzycka, Irena; Stȩpniak, Krystyna; Matyjaszczyk, Sławomir; Kozioł, Anna E.; Lis, Tadeusz; Abboud, Khalil A.

    1999-01-01

    The molecular structure of finasteride, 17 β-( N-tert-butylcarbamoyl)-4-aza-5 α-androst-1-en-3-one, and structures of three related crystalline forms have been determined by X-ray analysis. The rigid steroid skeleton of the molecule adopts a half-chair/chair/chair/half-chair conformation. Two peptide groups, one cyclic (lactam) in the ring A and a second being a part of the substituent at C17, are the main factors influencing intermolecular contacts. Different hydrogen-bond interactions of these hydrophilic groups are observed in the crystal structures. An infinite ribbon of finasteride molecules is formed between lactam groups in the orthorhombic homomolecular crystal ( 1) obtained from an ethanol solution. The linear molecular complex finasteride-acetic acid ( 1a) is connected by hydrogen bonds between the lactam of finasteride and the carboxyl group of acetic acid. The crystallization from an ethyl acetate solution gives a complex structure of bis-finasteride monohydrate ethyl acetate clathrate ( 1b) with guest molecule disordered in channels. Crystals of a second (monoclinic) finasteride polymorph ( 2) were obtained during thermal decomposition of 1a, and sublimation of 1, 1a and 1b. Two polymorphic forms show different IR spectra.

  4. SAXS-WAXS studies of the low-resolution structure in solution of xylose/glucose isomerase from Streptomyces rubiginosus

    NASA Astrophysics Data System (ADS)

    Kozak, Maciej; Taube, Michał

    2009-10-01

    The structure and conformation of molecule of xylose/glucose isomerase from Streptomyces rubiginosus in solution (at pH 6 and 7.6; with and without the substrate) has been studied by small- and wide-angle scattering of synchrotron radiation (SAXS-WAXS). On the basis of the SAXS-WAXS data, the low-resolution structure in solution has been reconstructed using ab inito methods. A comparison of the models of glucose isomerase shows only small differences between the model in solution and the crystal structure.

  5. Packing interface energetics in different crystal forms of the λ Cro dimer.

    PubMed

    Ahlstrom, Logan S; Miyashita, Osamu

    2014-07-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. © 2013 Wiley Periodicals, Inc.

  6. Packing Interface Energetics in Different Crystal Forms of the λ Cro Dimer

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2014-01-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them, in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. PMID:24218107

  7. The Cytoplasmic Permeation Pathway of Neurotransmitter Transporters†

    PubMed Central

    Rudnick, Gary

    2011-01-01

    Ion-coupled solute transporters are responsible for transporting nutrients, ions and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly-oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for substrate diffusion to the cytoplasm. From the difference between the model and the crystal structures, a simple “rocking bundle” mechanism was proposed, in which a 4-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport. PMID:21774491

  8. Synthesis, structural, optical, thermal and dielectric studies on new organic nonlinear optical crystal by solution growth technique.

    PubMed

    Prakash, M; Geetha, D; Lydia Caroline, M

    2013-04-15

    Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bulk growth of <001> organic nonlinear optical (NLO) L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals by SR method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Sivasubramani, V.; Ramasamy, P.

    2015-06-24

    A transparent uniaxial L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP) single crystal having dimension of 20 mm diameter and 45 mm length was grown by Sankaranarayanan-Ramasamy (SR) method with a growth rate of 1 mm per day. Using an identical solution the conventional crystal grown to a dimension of 8×5×5 mm{sup 3} was obtained over a period of 30 days. The crystal structure has been confirmed by single crystal X-ray diffraction measurement. The crystalline perfection of LAPP crystals grown by slow evaporation solution technique (SEST) and SR method were characterized using Vickers microhardness, UV-Vis NIR, chemical etching, dark and photo current measurements. The above study indicatesmore » that the crystal quality of the Sankaranarayanan-Ramasamy (SR) method grown LAPP is good compared to the conventional method grown crystal.« less

  10. Correlation of Intermolecular Acyl Transfer Reactivity with Noncovalent Lattice Interactions in Molecular Crystals: Toward Prediction of Reactivity of Organic Molecules in the Solid State.

    PubMed

    Krishnaswamy, Shobhana; Shashidhar, Mysore S

    2018-04-06

    Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.

  11. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  12. Crystal growth, structural, optical, spectral and thermal studies of tris( L-phenylalanine) L-phenylalaninium nitrate: A new organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.

    2011-10-01

    Tris( L-phenylalanine) L-phenylalaninium nitrate, C 9H 12NO 2+·NO 3-·3C 9H 11NO 2 (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG.

  13. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Treesearch

    Rongbo Zheng; Mandla A. Tshabalala; Qingyu Li; Hongyan Wang

    2015-01-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution.The morphology and the crystal structure of TiO2 coated on the wood surface were characterized...

  14. Solutal Convection Around Growing Protein Crystal and Diffusional Purification in Space

    NASA Technical Reports Server (NTRS)

    Lee, Chun P.; Chernov, Alexander A.

    2004-01-01

    At least some protein crystals were found to preferentially trap microheterogeneous impurities. The latter are, for example, dimmer molecules of the crystallizing proteines (e.g. ferritin, lysozyme), or the regular molecules on which surfaces small molecules or ions are adsorbed (e.g. acetilated lysozyme) and modi@ molecular charge. Impurities may induce lattice defects and deteriorate structural resolution. Distribution of impurities between mother solution and gorwing crystal is defined by two interrelated distribution coefficients: kappa = rho(sup c, sub 2) and K = (rho(sup c, sub 2)/rho(sup c, sub 1)/rho(sub 2)/rho(sub 1). Here, rho(sub 2), rho(sub 1) and rho(sup c, sub 2) are densities of impurity (2) and regular protein (1) in solution at the growing interface and within the crystal ("c"). For the microheterogeneous impurities studied, K approx. = 2 - 4, so that kappa approx. - 10(exp 2) - 10(exp 3), since K = kappa (rho(sub 1)/rho(sup c, sub 1) and protein solubility ratio rho(sub 1)/rho(sub=p c, sub 2) much less than 1. Therefore, a crystal growing in absence of convection purifies mother solution around itself, grows cleaner and, probably, more perfect. If convection is present, the solution flow permanently brings new impurities to the crystal. This work theoretically addressed two subjects: 1) onset of convection, 2) distribution of impurities.

  15. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface.

    PubMed

    Gao, Yun-Xiang; Yu, Shu-Hong; Guo, Xiao-Hui

    2006-07-04

    Double hydrophilic block copolymers PEG-b-PEI-linear with different PEI block lengths have been examined for CaCO3 mineralization at the air/water interface. The results demonstrated that either PEI length or the solution acidity had a significant influence on the morphogenesis of vaterite crystals at the air/water interface. A possible mechanism for the stratification of CaCO3 vaterite crystals has been proposed. Increasing either PEI length or the initial pH value of the solution will decrease the density of the PEG block anchored on the binding interface and result in exposing more space as binding interface to solution and favoring the subnucleation and stratification growth on the polymer-CaCO3 interface. In contrast, higher density of PEG blocks will stabilize the growing crystals more efficiently and inhibit subnucleation on the polymer-CaCO3 interface, and thus prevent the formation of stratified structures. This study provides an example that it is possible to access morphogenesis of calcium carbonate structures by a combination of a block copolymer with the air/water interface.

  16. Synthesis, crystal structure, and protonation behaviour in solution of the recently-discovered drug metabolite, N1,N10-diacetyltriethylenetetramine

    NASA Astrophysics Data System (ADS)

    Wichmann, Kathrin A.; Söhnel, Tilo; Cooper, Garth J. S.

    2012-03-01

    N1,N10-diacetyltriethylenetetramine (DAT) is a recently-discovered major in vivo metabolite of triethylenetetramine (TETA), a highly-selective CuII chelator currently under clinical development as a novel first-in-class therapeutic for the cardiovascular, renal and retinal complications of diabetes mellitus. Characterisation of DAT is an integral aspect of the pharmacological work-up required to support this clinical development programme and, to our knowledge, no previous synthesis for it has been published. Here we report the synthesis of DAT dihydrochloride (DAT·2 HCl); its crystal structure as determined by X-ray single-crystal (XRD) and powder diffraction (XRPD); and protonation constants and species distribution in aqueous solution, which represents the different protonation states of DAT at different pH values. The crystal structure of DAT·2 HCl reveals 3D-assemblies of alternating 2D-layers comprising di-protonated DAT strands and anionic species, which form an extensive hydrogen-bond network between amine groups, acetyl groups, and chloride anions. Potentiometric titrations show that HDAT+ is the physiologically relevant state of DAT in solution. These findings contribute to the understanding of TETA's pharmacology and to its development for the experimental therapeutics of the diabetic complications.

  17. Nanostructured Block Copolymer Solutions and Composites: Mechanical and Structural Properties

    NASA Astrophysics Data System (ADS)

    Walker, Lynn

    2015-03-01

    Self-assembled block copolymer templates are used to control the nanoscale structure of materials that would not otherwise order in solution. In this work, we have developed a technique to use close-packed cubic and cylindrical mesophases of a thermoreversible block copolymer (PEO-PPO-PEO) to impart spatial order on dispersed nanoparticles. The thermoreversible nature of the template allows for the dispersion of particles synthesized outside the template. This feature extends the applicability of this templating method to many particle-polymer systems, including proteins, and also permits a systematic evaluation of the impact of design parameters on the structure and mechanical properties of the nanocomposites. The criteria for forming co-crystals have been characterized using small-angle scatting and the mechanical properties of these soft crystals determined. Numerous crystal structures have been reported for the block copolymer system and we have taken advantage of several to generate soft co-crystals. The result of this templating is spatially ordered nanoparticle arrays embedded within the block copolymer nanostructure. These soft materials can be shear aligned into crystals with long range order and this shear alignment is discussed. Finally, the dynamics of nanoparticles within the nanostructured material are characterized with fluorescence recovery after photobleaching (FRAP). The applications and general behavior of these nanostructured hydrogels are outlined.

  18. Crystal Nucleation of Tolbutamide in Solution: Relationship to Solvent, Solute Conformation, and Solution Structure.

    PubMed

    Zeglinski, Jacek; Kuhs, Manuel; Khamar, Dikshitkumar; Hegarty, Avril C; Devi, Renuka K; Rasmuson, Åke C

    2018-04-03

    The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrile

  19. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  20. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  1. A comparative study of two polymorphs of L-aspartic acid hydrochloride.

    PubMed

    Benali-Cherif, Rim; Takouachet, Radhwane; Bendeif, El-Eulmi; Benali-Cherif, Nourredine

    2014-07-01

    Two polymorphs of L-aspartic acid hydrochloride, C4H8NO4(+)·Cl(-), were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N-H···Cl and O-H···Cl interactions and form alternating cation-anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.

  2. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape

    PubMed Central

    Sripathi, Kamali N.; Tay, Wendy W.; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G.

    2014-01-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. PMID:24854621

  3. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  4. Atomic density functional and diagram of structures in the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankudinov, V. E., E-mail: vladimir@ankudinov.org; Galenko, P. K.; Kropotin, N. V.

    2016-02-15

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindricalmore » tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.« less

  5. Synthesis and structural study of 4-(2-chlorophenyl)-2-ethoxy-5,6,7,8,9,10-hexahydrocycloocta[B] pyridine-3-carbonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathima, K. Saiadali; Vasumathi, M.; Anitha, K., E-mail: singlecrystalxrd@gmail.com

    2016-05-23

    The novel organic material C{sub 20}H{sub 21}ClN{sub 2}O was synthesized by One-Pot synthesis method and the single crystals were grown by slow evaporation solution growth technique. The crystal structure was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R=0.039 for 2746 reflections. Crystal system of the grown crystal was found to be monoclinic with the space group P2{sub 1}/a and a=9.196(4) Å, b=13.449(4) Å, c=14.818(4) Å, β= 101.542(3)°, V=1795.6(11) Å{sup 3} and Z=4. In this crystal structure, cyclooctanone prefers to reside in a chair-boat conformation. Themore » structure is stabilized by attractive molecular force such as CH/π interaction called hydrophobic interaction.« less

  6. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  7. Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a Green function approach

    NASA Astrophysics Data System (ADS)

    Trinkle, Dallas R.

    2017-10-01

    A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.

  8. X-ray transparent microfluidic chip for mesophase-based crystallization of membrane proteins and on-chip structure determination

    DOE PAGES

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; ...

    2014-08-21

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. In addition, we validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  9. X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khvostichenko, Daria S.; Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.

    2014-10-01

    Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach reported here, protein-loaded mesophases are formulated in an X-ray transparent microfluidic chip using only 60 nL of the protein solution per crystallization trial. The X-ray transparency of the chip enables diffraction data collection from multiple crystals residing in microfluidic wells, eliminating the normally required manual harvesting and mounting ofmore » individual crystals. We validated our approach by on-chip crystallization of photosynthetic reaction center, a membrane protein from Rhodobacter sphaeroides, followed by solving its structure to a resolution of 2.5 Å using X-ray diffraction data collected on-chip under ambient conditions. A moderate conformational change in hydrophilic chains of the protein was observed when comparing the on-chip, room temperature structure with known structures for which data were acquired under cryogenic conditions.« less

  10. Fluorescent Approaches to High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Amiruddha

    2005-01-01

    X-ray crystallography remains the primary method for determining the structure of macromolecules. The first requirement is to have crystals, and obtaining them is often the rate-limiting step. The numbers of crystallization trials that are set up for any one protein for structural genomics, and the rate at which they are being set up, now overwhelm the ability for strictly human analysis of the results. Automated analysis methods are now being implemented with varying degrees of success, but these typically cannot reliably extract intermediate results. By covalently modifying a subpopulation, less than or = 1 %, of a macromolecule solution with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination the crystals show up as bright objects against a dark background. As crystalline packing is more dense than amorphous precipitate, the fluorescence intensity can be used as a guide in distinguishing different types of precipitated phases, even in the absence of obvious crystalline features, widening the available potential lead conditions in the absence of clear "hits." Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Also, brightly fluorescent crystals are readily found against less fluorescent precipitated phases, which under white light illumination may serve to obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries and by having the protein or protein structures all that show up. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons. Preliminary experiments show that the presence of the fluorescent probe does not affect the nucleation process or the quality of the X-ray data obtained.

  11. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaby, Sterling; CHESS; Szebenyi, Doletha M. E.

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Lauemore » technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.« less

  12. Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles

    PubMed Central

    Schneidman-Duhovny, Dina; Hammel, Michal

    2018-01-01

    Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933

  13. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorelik, V. S.; Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru

    2016-09-15

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center ofmore » the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.« less

  14. Collection of X-ray diffraction data from macromolecular crystals

    PubMed Central

    Dauter, Zbigniew

    2017-01-01

    Diffraction data acquisition is the final experimental stage of the crystal structure analysis. All subsequent steps involve mainly computer calculations. Optimally measured and accurate data make the structure solution and refinement easier and lead to more faithful interpretation of the final models. Here, the important factors in data collection from macromolecular crystals are discussed and strategies appropriate for various applications, such as molecular replacement, anomalous phasing, atomic-resolution refinement etc., are presented. Criteria useful for judging the diffraction data quality are also discussed. PMID:28573573

  15. Fast iodide-SAD phasing for high-throughput membrane protein structure determination

    PubMed Central

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A.; Gordeliy, Valentin; Popov, Alexander

    2017-01-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques. PMID:28508075

  16. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  17. Crystal growth and optical properties of 4-aminobenzophenone (ABP)

    NASA Astrophysics Data System (ADS)

    Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan

    1997-02-01

    Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.

  18. Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank

    PubMed Central

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-01-01

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729

  19. Real-time molecular scale observation of crystal formation.

    PubMed

    Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny

    2017-04-01

    How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.

  20. Structural Studies of Bacterioferritin B (BfrB) from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center¥

    PubMed Central

    Weeratunga, Saroja K.; Lovell, Scott; Yao, Huili; Battaile, Kevin P.; Fischer, Christopher J.; Gee, Casey E.; Rivera, Mario

    2010-01-01

    The structure of recombinant P. aeruginosa bacterioferritin B (Pa BfrB) has been solved from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ~ 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after soaking them in FeSO4 solution (Fe soak) and in separate experiments after soaking them in FeSO4 solution followed by soaking in crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights: The ferroxidase center in the as-isolated, mineralized and double soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution display a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as an entry port for Fe2+ to the ferroxidase center. On its opposite end the pore is capped by the side chain of His130 when it adopts its “gate closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, non-coordinative conformation, creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with E. coli Bfr (Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808–6813) indicate that not all bacterioferritins operate in the same manner. PMID:20067302

  1. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ido, Shinichiro; Kimiya, Hirokazu; Kobayashi, Kei; Kominami, Hiroaki; Matsushige, Kazumi; Yamada, Hirofumi

    2014-03-01

    The conformational flexibility of antibodies in solution directly affects their immune function. Namely, the flexible hinge regions of immunoglobulin G (IgG) antibodies are essential in epitope-specific antigen recognition and biological effector function. The antibody structure, which is strongly related to its functions, has been partially revealed by electron microscopy and X-ray crystallography, but only under non-physiological conditions. Here we observed monoclonal IgG antibodies in aqueous solution by high-resolution frequency modulation atomic force microscopy (FM-AFM). We found that monoclonal antibodies self-assemble into hexamers, which form two-dimensional crystals in aqueous solution. Furthermore, by directly observing antibody-antigen interactions using FM-AFM, we revealed that IgG molecules in the crystal retain immunoactivity. As the self-assembled monolayer crystal of antibodies retains immunoactivity at a neutral pH and is functionally stable at a wide range of pH and temperature, the antibody crystal is applicable to new biotechnological platforms for biosensors or bioassays.

  2. Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy

    PubMed Central

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879

  3. Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy.

    PubMed

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called "crystallization bottleneck". Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals.

  4. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals. Electronic supplementary information (ESI) available: Schematic representation of PeryBPb1-fused DsRed-Monomer, fluorescence spectra of perylene crystals and DsRed-Monomer, and emission spectra of DsRed-Monomer at various excitation wavelengths. See DOI: 10.1039/c5nr06471f

  5. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.

    PubMed

    Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

    2015-06-15

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, structural, thermal and Hirshfeld surface analysis of novel [1,2,4]triazolo[3,4-b][1,3,4] thiadiazine carrying 1,4-benzothiazine-3-one moiety

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.

  7. The impact of fullerenes on the ordering of polyacrylonitrile during nanocomposites formation

    DOE PAGES

    Imel, Adam E.; Dadmun, Mark D.

    2015-08-18

    The production of polymer nanocomposites from solution consists of the mixing of the polymer and nanoparticle in solution and subsequent evaporation of the solvent. Here, we examine the formation of polyacrylonitrile and C60 fullerene nanocomposites, with a focus on monitoring these two steps.This study indicates that the nanoparticles are individually dispersed with the polymer chains in solution prior to deposition and in the final film. As the solution becomes more concentrated, the nanoparticles are sequestered to the outer edges of the polymer crystals, altering the detected crystal structure. The self-assembled structure of the crystalline polymer is directed by the additionmore » of C 60 and manifests itself as a peak in small-angle X-ray scattering on a length scale of ~150 . Moreover, our results suggest that the non-covalent molecular interactions between C60 and polyacrylonitrile matrix are sufficiently strong to alter the self-assembled morphology of the polymer and the meso- and nanoscale structures in the nanocomposite.« less

  8. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    NASA Technical Reports Server (NTRS)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  9. Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.

    2008-02-05

    Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less

  10. One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films.

    PubMed

    Giri, Gaurav; Li, Ruipeng; Smilgies, Detlef-M; Li, Er Qiang; Diao, Ying; Lenn, Kristina M; Chiu, Melanie; Lin, Debora W; Allen, Ranulfo; Reinspach, Julia; Mannsfeld, Stefan C B; Thoroddsen, Sigurdur T; Clancy, Paulette; Bao, Zhenan; Amassian, Aram

    2014-04-16

    A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.

  11. Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).

    PubMed

    Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu

    2017-08-30

    Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.

  12. Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O.

    PubMed

    Hennig, Christoph; Ikeda-Ohno, Atsushi; Emmerling, Fanziska; Kraus, Werner; Bernhard, Gert

    2010-04-21

    The limiting U(IV) carbonate species in aqueous solution was investigated by comparing its structure parameters with those of the complex preserved in a crystal structure. The solution species prevails in aqueous solution of 0.05 M U(IV) and 1 M NaHCO(3) at pH 8.3. Single crystals of Na(6)[U(CO(3))(5)].12H(2)O were obtained directly from this mother solution. The U(IV) carbonate complex in the crystal structure was identified as a monomeric [U(CO(3))(5)](6-) anionic complex. The interatomic distances around the U(IV) coordination polyhedron show average distances of U-O = 2.461(8) A, U-C = 2.912(4) A and U-O(dist) = 4.164(6) A. U L(3)-edge EXAFS spectra were collected from the solid Na(6)[U(CO(3))(5)].12H(2)O and the corresponding solution. The first shell of the Fourier transforms (FTs) revealed, in both samples, a coordination of ten oxygen atoms at an average U-O distance of 2.45 +/- 0.02 A, the second shell originates from five carbon atoms with a U-C distance of 2.91 +/- 0.02 A, and the third shell was fit with single and multiple scattering paths of the distal oxygen at 4.17 +/- 0.02 A. These data indicate the identity of the [U(CO(3))(5)](6-) complex in solid and solution state. The high negative charge of the [U(CO(3))(5)](6-) anion is compensated by Na(+) cations. In solid state the Na(+) cations form a bridging network between the [U(CO(3))(5)](6-) units, while in liquid state the Na(+) cations seem to be located close to the anionic complex. The average metal-oxygen distances of the coordination polyhedron show a linear correlation to the radius contraction of the neighbouring actinide(IV) ions and indicate the equivalence of the [An(CO(3))(5)](6-) coordination within the series of thorium, uranium, neptunium and plutonium.

  13. Changes in the quaternary structure of amelogenin when adsorbed onto surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William

    The amelogenin protein is involved in the formation of highly controlled and anisotropic hydroxyapatite crystals in tooth enamel. Amelogenin is unique in that it self assembles to form supramolecular quaternary structures called “nanospheres,” spherical aggregates of amelogenin monomers typically 20-60 nm in diameter. Although nanospheres have been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is not well known. A better understanding of the surface structure is of great importance, however, because the function of amelogenin depends on it. We report studies of the adsorption of amelogenin onto self-assembled monolayers (SAMs) containing COOH and CH3 end groupmore » functionality as well as single crystal fluoroapatite (FAP), a biologically relevant surface. The supramolecular structures of the protein in solution as determined by dynamic light scattering (DLS) were compared with the supramolecular structures of the protein physisorbed onto surfaces as studied by atomic force microscopy (AFM). We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as monomers and dimers were observed onto both hydrophilic and hydrophobic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that peel away or “shed” from the nanospheres that are present in solution.« less

  14. Cryo-TEM of morphology and kinetics of self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Dong, Jingshan

    Cryogenic Transmission Electron Microscopy (Cryo-TEM) is applied to study various structures in solutions and suspensions from micron to nanometer scale. By vitrifying the liquid samples at different moments, sequential stages of a dynamic process can be frozen and the structures occurring from about 30 sec to over 10 min can be imaged. Therefore a picture of how the structures evolve with time in the liquid systems can be established. This method has been proven to be a powerful technique in studying the morphology and kinetics of self-assembled nanostructures. Such a pseudo-in-situ technique is used to "watch" the crystallization process of silver stearate (AgSt) from sodium stearate (NaSt) dispersions. AgSt crystal is produced from a reaction of NaSt and silver nitrate. The reaction, as a AgSt crystallization process, starts from AgSt micelles, which aggregate and grow into hexagonal shaped crystals of about 10 microns. If silver bromide (AgBr) grains are present, the micelles do not prefer to aggregate, but rather deposit on the surface of the AgBr crystalline grains. Variation of the carboxylate chain length does not affect the crystallization process very much, although the morphology of both the reactant and the product is changed. Nanostructure transition in sodium lauryl ether sulfate (SLES) solutions is investigated as well. A micellar network structure can form if equal molar calcium chloride is added to 3 wt% SLES solution. The network can be broken into wormlike micelle segments such as spheres and rods by sonication. After about 10 min, these broken pieces can reassemble and reform the network through wormlike micelle growth and connection. Also by using Cryo-TEM, 100-200 nm casein micelles are observed at 1 wt% casein solution, but aggregated submicelles cannot be distinguished. However, individual submicelles of about 30 nm are indeed captured in a 0.03 wt% solution. By adding acid or EDTA, the casein micelles can be disrupted into small particles, the size of which is close to the estimated radius of gyration of single casein molecules.

  15. Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Pietraszko, A.

    2008-02-01

    The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯π type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

  16. Insights into water-mediated ion clustering in aqueous CaSO4 solutions: pre-nucleation cluster characteristics studied by ab initio calculations and molecular dynamics simulations.

    PubMed

    Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei

    2017-05-10

    The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.

  17. Likelihood-based molecular-replacement solution for a highly pathological crystal with tetartohedral twinning and sevenfold translational noncrystallographic symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sliwiak, Joanna; Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl; A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan

    With the implementation of a molecular-replacement likelihood target that accounts for translational noncrystallographic symmetry, it became possible to solve the crystal structure of a protein with seven tetrameric assemblies arrayed translationally along the c axis. The new algorithm found 56 protein molecules in reduced symmetry (P1), which was used to resolve space-group ambiguity caused by severe twinning. Translational noncrystallographic symmetry (tNCS) is a pathology of protein crystals in which multiple copies of a molecule or assembly are found in similar orientations. Structure solution is problematic because this breaks the assumptions used in current likelihood-based methods. To cope with such cases,more » new likelihood approaches have been developed and implemented in Phaser to account for the statistical effects of tNCS in molecular replacement. Using these new approaches, it was possible to solve the crystal structure of a protein exhibiting an extreme form of this pathology with seven tetrameric assemblies arrayed along the c axis. To resolve space-group ambiguities caused by tetartohedral twinning, the structure was initially solved by placing 56 copies of the monomer in space group P1 and using the symmetry of the solution to define the true space group, C2. The resulting structure of Hyp-1, a pathogenesis-related class 10 (PR-10) protein from the medicinal herb St John’s wort, reveals the binding modes of the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS), providing insight into the function of the protein in binding or storing hydrophobic ligands.« less

  18. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  19. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.

  20. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2003-01-01

    Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.

  1. Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7

    NASA Astrophysics Data System (ADS)

    Perry, R. S.; Kurebayashi, H.; Gibbs, A.; Gutmann, M. J.

    2018-05-01

    Magnetic materials are a cornerstone for developing spintronic devices for the transport of information via magnetic excitations. To date, relatively few materials have been investigated for the purpose of spin transport, mostly due to the paucity of suitable candidates as these materials are often chemically complex and difficult to synthesize. We present the crystal growth and a structure solution on the high-temperature crystal structure of the layered, polar ferrimagnet CaBaFe4O7 , which is a possible new contender for spintronics research. The space group is identified as P 3 by refinement of single crystal and powder neutron diffraction data. At 400 K, the trigonal lattice parameters are a =11.0114 (11 )Å and c =10.330 (3 )Å . The structure is similar to the low-temperature phase with alternating layers of triangular and Kagome-arranged Fe-O tetrahedra. We also present details of the crystal growth by traveling solvent method.

  2. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.

    PubMed

    Sripathi, Kamali N; Tay, Wendy W; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G

    2014-07-01

    The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. © 2014 Sripathi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  4. Crystal growth, structural, optical, spectral and thermal studies of tris(L-phenylalanine)L-phenylalaninium nitrate: a new organic nonlinear optical material.

    PubMed

    Prakash, M; Geetha, D; Lydia Caroline, M

    2011-10-15

    Tris(L-phenylalanine)L-phenylalaninium nitrate, C(9)H(12)NO(2)(+)·NO(3)(-)·3C(9)H(11)NO(2) (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  6. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  7. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  8. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lapidus; P Stephens; K Arora

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  9. Natural convection in melt crystal growth - The influence of flow pattern on solute segregation

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Yamaguchi, Y.; Chang, C. J.

    1982-01-01

    The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.

  10. A chiral self-assembled monolayer derived from a resolving agent and its performance as a crystallization template for an organic compound from organic solvents.

    PubMed

    Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B

    2012-12-07

    A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, K.; Thiyagarajan, P.; Tiede, D.

    1999-07-02

    In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.

  12. Synthesis, crystal structure and luminescent properties of a new pyrochlore type tungstate CsGa0.333W1.667O6

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhao, Ji; Fan, Yun-Chang; Ma, Zhao; Zhang, Rui-Juan; Liu, Bao-Zhong

    2018-06-01

    High temperature solution reaction leads to a new tungstate compound CsGa0.333W1.667O6, whose structure was determined by single-crystal X-ray diffraction analysis. The results show that it crystallizes in pyrochlore structure with cubic space group Fd-3m and a = 10.2529 (13) Å. In this structure, Ga and W atoms are in a statistical disorder manner. The self-activated luminescent properties CsGa0.333W1.667O6 were studied. Under the excitation of 323 nm, the emission spectrum exhibits a blue emission centered at 466 nm with the chromaticity coordinates (0.1838, 0.1814).

  13. Growth and structure of a new photonic crystal: Chlorine substituted chalcone

    NASA Astrophysics Data System (ADS)

    Sarveshwara, H. P.; Raghavendra, S.; A, Jayarama; Menezes, Anthoni Praveen; Dharmaprakash, S. M.

    2015-06-01

    A new organic photonic material 3-(2, 4-dichlorophenyl)-1-(2,5-dimethylthiophen-3-yl)propan-1-one(DMTP) has been synthesized and crystallised in acetone solution. The functional groups present in the new material were identified by FTIR spectroscopy. The material is optically transparent in the wavelength range of 400-1100 nm. The crystal structure of DMTP was determined by single crystal X-ray diffraction. The title compound crystallizes in monoclinic system with a centrosymmetric space group P21/c. The Z-scan study revealed that the optical limiting property exhibited by the DMTP molecule is based on the reverse saturable absorption phenomena.

  14. First X-ray crystal structure and internal reference diffusion-ordered NMR spectroscopy study of the prototypical Posner reagent, MeCu(SPh)Li(THF)3.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Heavey, Thomas J; Jones, Daniel S; Monroe, T Blake; Murphy, Michael D; Ogle, Craig A; Whaley, Tara N

    2013-07-29

    Grow slow: The usual direct treatment of MeLi and CuSPh did not yield X-ray quality crystals of MeCu(SPh)Li. An indirect method starting from Me2CuLi⋅LiSPh and chalcone afforded the desired crystals by the slow reaction of the intermediate π-complex (see scheme). This strategy produced the first X-ray crystal structure of a Posner cuprate. A complementary NMR study showed that the contact ion pair was also the main species in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.; Murashko, Mikhail N.

    2017-08-01

    Cr3+-rich ettringite with Cr3+→Al substitution and Cr/(Cr + Al) ratios up to 0.40-0.50 was found in mineral assemblages of the Ma'aleh Adumim area of Mottled Zone (Judean Desert). The Cr3+-rich compositions were the latest in the thaumasite → ettringite-thaumasite solid solution → ettringite → ettringite-bentorite solid solution series. The mineral-forming solution was enriched in Cr3+ and had a pH buffered by afwillite at 11-12. Chromium was inherited from larnite rocks produced by high-temperature combustion metamorphic alteration of bioproductive calcareous sediments. The Cr/(Cr + Al) ratios are within 0.10-0.15 in most of the analysed crystals. This degree of substitution imparts pink colouration to the crystals, but does not affect their habit (a combination of monohedra and a prism). The habit changes to pyramid faces in coarse and later Cr3+-bearing crystals as Cr/(Cr + Al) ratios increase abruptly to 0.40-0.50. Single-crystal XRD analysis of one Cr-free and two Cr3+-rich samples and their structure determination and refinement indicate that the Cr-rich crystals (with Cr/(Cr + Al) to 0.3) preserve the symmetry and metrics of ettringite. The Ca-O bonding network undergoes differentiation with increase of Cr3+ concentration at octahedral M sites. The compression of Ca2 and expansion of Ca1 polyhedra sub-networks correlates with the degree of Cr3+→Al substitution.

  16. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it will be oriented to some degree in a flowing boundary layer, even at the low flow velocities measured about macromolecule crystals. Flow-driven effects resulting in misorientation upon addition to and incorporation into the crystal need only be a small fraction of a percentage to significantly affect the resulting crystal. One Earth, concentration gradient driven flow will maintain a high interfacial concentration, i.e., a high level (essentially that of the bulk solution) of solute association at the interface and higher growth rate. Higher growth rates mean an increased probability that misaligned growth units are trapped by subsequent growth layers before they can be desorbed and try again, or that the desorbing species will be smaller than the adsorbing species. In microgravity the extended diffusive boundary layer will lower the interfacial concentration. This results in a net dissociation of aggregated species that diffuse in from the bulk solution, i.e., smaller associated species, which are more likely able to make multiple attempts to correctly bind, yielding higher quality crystals.

  17. Picosecond fluorescence of intact and dissolved PSI-LHCI crystals.

    PubMed

    van Oort, Bart; Amunts, Alexey; Borst, Jan Willem; van Hoek, Arie; Nelson, Nathan; van Amerongen, Herbert; Croce, Roberta

    2008-12-15

    Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 +/- 2.5 ps) and rates of excitation energy transfer from LHCI to core (k(LC)) and vice versa (k(CL)). The ratio between these rates, R = k(CL)/k(LC), appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. k(LC) depends slightly but nonsystematically on detection wavelength, averaging (9.4 +/- 4.9 ps)(-1). R ranges from 0.5 (<690 nm) to approximately 1.3 above 720 nm.

  18. Importance of the DNA “bond” in programmable nanoparticle crystallization

    PubMed Central

    Macfarlane, Robert J.; Thaner, Ryan V.; Brown, Keith A.; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.

    2014-01-01

    If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling’s rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner. PMID:25298535

  19. Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, Roisin M., E-mail: r.mcmahon1@uq.edu.au; Coinçon, Mathieu; Tay, Stephanie

    The crystal structure of a P. aeruginosa DsbA1 variant is more suitable for fragment-based lead discovery efforts to identify inhibitors of this antimicrobial drug target. In the reported structures the active site of the protein can simultaneously bind multiple ligands introduced in the crystallization solution or via soaking. Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discoverymore » approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface.« less

  20. A novel organic nonlinear optical crystal: Creatininium succinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance inmore » the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.« less

  1. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-05

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode

    NASA Astrophysics Data System (ADS)

    Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi

    2014-03-01

    The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.

  3. Flow-Directed Crystallization for Printed Electronics.

    PubMed

    Qu, Ge; Kwok, Justin J; Diao, Ying

    2016-12-20

    The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.

  4. Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel

    PubMed Central

    Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

    2014-01-01

    Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698

  5. Synthesis, characterization, crystal structure and solution studies of a novel proton transfer (charge transfer) complex of 2,2‧-dipyridylamine with 2,6-pyridine dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael

    2015-06-01

    Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.

  6. An atomistic simulation scheme for modeling crystal formation from solution.

    PubMed

    Kawska, Agnieszka; Brickmann, Jürgen; Kniep, Rüdiger; Hochrein, Oliver; Zahn, Dirk

    2006-01-14

    We present an atomistic simulation scheme for investigating crystal growth from solution. Molecular-dynamics simulation studies of such processes typically suffer from considerable limitations concerning both system size and simulation times. In our method this time-length scale problem is circumvented by an iterative scheme which combines a Monte Carlo-type approach for the identification of ion adsorption sites and, after each growth step, structural optimization of the ion cluster and the solvent by means of molecular-dynamics simulation runs. An important approximation of our method is based on assuming full structural relaxation of the aggregates between each of the growth steps. This concept only holds for compounds of low solubility. To illustrate our method we studied CaF2 aggregate growth from aqueous solution, which may be taken as prototypes for compounds of very low solubility. The limitations of our simulation scheme are illustrated by the example of NaCl aggregation from aqueous solution, which corresponds to a solute/solvent combination of very high salt solubility.

  7. Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2011-01-01

    The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Dreele, Robert

    One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less

  9. Light emission from organic single crystals operated by electrolyte doping

    NASA Astrophysics Data System (ADS)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  10. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  11. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  12. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  13. Workflow for Integrating Mesoscale Heterogeneities in Materials Structure with Process Simulation of Titanium Alloys (Postprint)

    DTIC Science & Technology

    2014-10-01

    offer a practical solution to calculating the grain -scale hetero- geneity present in the deformation field. Consequently, crystal plasticity models...process/performance simulation codes (e.g., crystal plasticity finite element method). 15. SUBJECT TERMS ICME; microstructure informatics; higher...iii) protocols for direct and efficient linking of materials models/databases into process/performance simulation codes (e.g., crystal plasticity

  14. Average and local crystal structures of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Neuefeind, Joerg C.; Tyson, Trevor A.; ...

    2015-11-06

    We report the comprehensive study of the crystal structure of (Ga 1–xZn x)(N 1–xO x) solid solution nanoparticles by means of neutron and synchrotron x-ray scattering. In our study we used four different types of (Ga 1–xZn x)(N 1–xO x) nanoparticles, with diameters of 10–27 nm and x = 0.075–0.51, which show the narrow energy-band gaps from 2.21 to 2.61 eV. The Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is the hexagonal wurtzite (space group P6 3mc), in agreement with previous reports on similar bulk materials. The pair-distribution function (PDF) analysis of the samemore » data found that the local structure is more disordered than the average one. It is best described by the model with a lower symmetry space group P1, where atoms are quasirandomly distorted from their nominal positions in the hexagonal wurtzite lattice.« less

  15. Brooker's merocyanine: Comparison of single crystal structures

    NASA Astrophysics Data System (ADS)

    Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.

    2018-06-01

    Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.

  16. Growth, structural, optical, piezoelectric and etching analysis of L-lysine p-nitrophenolate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Alexandar, A.; Lakshmanan, A.; Sakthy Priya, S.; Surendran, P.; Rameshkumar, P.

    2017-09-01

    Nonlinear optical single crystals of L-lysine p-nitrophenolate monohydrate (LLPNP) were grown in aqueous solution by the slow evaporation solution technique (SEST). The grown crystals were subjected to powder X-ray diffraction analysis, (PXRD) and it was found that the title compound was crystallized in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The vibrational frequencies of various functional groups present in the crystal were analyzed using the FTIR spectrum with a wavenumber range between 450 cm-1 and 4000 cm-1. The microhardness analysis of the sample revealed that the crystal belongs to the soft material category. Piezoelectric analysis was performed to measure the value of the piezoelectric (d33) coefficient. Blue light emission of the material was confirmed using the photoluminescence spectrum. Thermal stability of the grown crystal was analyzed using a melting point apparatus and it was found that the LLPNP is stable upto 175∘C. Etching analysis was performed at various durations, in order to identify the surface properties of the LLPNP crystal.

  17. Structure of bovine pancreatic ribonuclease complexed with uridine 5'-monophosphate at 1.60 A resolution.

    PubMed

    Larson, Steven B; Day, John S; Nguyen, Chieugiang; Cudney, Robert; McPherson, Alexander

    2010-02-01

    Bovine pancreatic ribonuclease A (RNase A) was crystallized from a mixture of small molecules containing basic fuchsin, tobramycin and uridine 5'-monophosphate (U5P). Solution of the crystal structure revealed that the enzyme was selectively bound to U5P, with the pyrimidine ring of U5P residing in the pyrimidine-binding site at Thr45. The structure was refined to an R factor of 0.197 and an R(free) of 0.253.

  18. Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.

    PubMed

    Hiraki, Masahiko; Kato, Ryuichi; Nagai, Minoru; Satoh, Tadashi; Hirano, Satoshi; Ihara, Kentaro; Kudo, Norio; Nagae, Masamichi; Kobayashi, Masanori; Inoue, Michio; Uejima, Tamami; Oda, Shunichiro; Chavas, Leonard M G; Akutsu, Masato; Yamada, Yusuke; Kawasaki, Masato; Matsugaki, Naohiro; Igarashi, Noriyuki; Suzuki, Mamoru; Wakatsuki, Soichi

    2006-09-01

    Protein crystallization remains one of the bottlenecks in crystallographic analysis of macromolecules. An automated large-scale protein-crystallization system named PXS has been developed consisting of the following subsystems, which proceed in parallel under unified control software: dispensing precipitants and protein solutions, sealing crystallization plates, carrying robot, incubators, observation system and image-storage server. A sitting-drop crystallization plate specialized for PXS has also been designed and developed. PXS can set up 7680 drops for vapour diffusion per hour, which includes time for replenishing supplies such as disposable tips and crystallization plates. Images of the crystallization drops are automatically recorded according to a preprogrammed schedule and can be viewed by users remotely using web-based browser software. A number of protein crystals were successfully produced and several protein structures could be determined directly from crystals grown by PXS. In other cases, X-ray quality crystals were obtained by further optimization by manual screening based on the conditions found by PXS.

  19. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechene, Michelle; Wink, Glenna; Smith, Mychal

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) andmore » with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.« less

  20. Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications

    NASA Astrophysics Data System (ADS)

    LeFevre, Scott W.; Bao, Zhenan; Ryu, Chang Y.; Siegel, Richard W.; Yang, Hoichang

    2007-09-01

    It has been shown that high charge mobility in solution-processible organic semiconductor-based field effect transistors is due in part to a highly parallel π-π stacking plane orientation of the semiconductors with respect to gate-dielectric. Fast solvent evaporation methods, generally, exacerbate kinetically random crystal orientations in the films deposited, specifically, from good solvents. We have investigated solubility-driven thin film structures of thiophene derivative polymers via spin- and drop-casting with volatile solvents of a low boiling point. Among volatile solvents examined, marginal solvents, which have temperature-dependent solubility for the semiconductors (e.g. methylene chloride for regioregular poly(3-alkylthiophene)s), can be used to direct the favorable crystal orientation regardless of solvent drying time, when the temperature of gate-dielectrics is held to relatively cooler than the warm solution. Grazing-incidence X-ray diffraction and atomic force microscopy strongly support that significant control of crystal orientation and mesoscale morphology using a "cold" substrate holds true for both drop and spin casting. The effects of physiochemical post-modificaiton on film crystal structures and morphologies of poly(9,9-dioctylfluorene-co-bithiophene) have also been investigated.

  1. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1-x)4 solid solutions

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.

    2012-06-01

    Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

  2. Automated MAD and MIR structure solution

    PubMed Central

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations. PMID:10089316

  3. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate.

    PubMed

    Suvitha, A; Murugakoothan, P

    2012-02-01

    The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  5. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis.

    PubMed

    Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin

    2013-01-01

    Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C222(1), with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data.

  6. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the phosphotriesterase from Mycobacterium tuberculosis

    PubMed Central

    Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin

    2013-01-01

    Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C2221, with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data. PMID:23295488

  7. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    PubMed

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  8. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?

    PubMed

    Ramírez, David; Caballero, Julio

    2018-04-28

    Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.

  9. Structure and crystallization of SiO2 and B2O3 doped lithium disilicate glasses from theory and experiment.

    PubMed

    Erlebach, Andreas; Thieme, Katrin; Sierka, Marek; Rüssel, Christian

    2017-09-27

    Solid solutions of SiO 2 and B 2 O 3 in Li 2 O·2SiO 2 are synthesized and characterized for the first time. Their structure and crystallization mechanisms are investigated employing a combination of simulations at the density functional theory level and experiments on the crystallization of SiO 2 and B 2 O 3 doped lithium disilicate glasses. The remarkable agreement of calculated and experimentally determined cell parameters reveals the preferential, kinetically controlled incorporation of [SiO 4 ] and [BO 4 ] at the Li + lattice sites of the Li 2 O·2SiO 2 crystal structure. While the addition of SiO 2 increases the glass viscosity resulting in lower crystal growth velocities, glasses containing B 2 O 3 show a reduction of both viscosities and crystal growth velocities. These observations could be rationalized by a change of the chemical composition of the glass matrix surrounding the precipitated crystal phase during the course of crystallization, which leads to a deceleration of the attachment of building units required for further crystal growth at the liquid-crystal interface.

  10. Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, Saroja K.; Lovell, Scott; Yao, Huili

    2010-03-16

    The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with {approx}600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO{sub 4} solution (Fe soak) and in separate experiments after they had been soaked in an FeSO{sub 4} solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules,more » comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO{sub 4} solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe{sub (in)}, and external, Fe{sub (out)}, surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe{sup 2+} to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its 'gate-closed' conformation that enables coordination to a ferroxidase iron. A change to its 'gate-open', noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner.« less

  11. Non-rigid molecule of copper(II) diiminate Cu[CF3C(NH)C(F)C(NH)CF3]2, its conformational polymorphism in crystal and structure in solutions (Raman, UV-vis and quantum chemistry study)

    NASA Astrophysics Data System (ADS)

    Bukalov, Sergey S.; Aysin, Rinat R.; Leites, Larissa A.; Kurykin, Mikhail A.; Khrustalev, Victor N.

    2015-10-01

    Calculation of potential energy surface (PES) of isolated molecule of copper(II) diiminate Cu[CF3С(NH)C(F)C(NH)CF3]2 (1) resulted a double-well curve with the minima corresponding to equivalent screwed conformations. The low barrier leads to molecular non-rigidity which seems to be the reason of conformational polymorphism in crystals, reported in [1]. For one of newly found polymorphs, the X-ray structure was determined. The differences in the Raman and UV-vis spectra between differently colored species and their solutions were revealed, they are determined by different geometries of Cu(II) coordination polyhedron and different systems of intermolecular interactions in crystals. Transformations of the polymorphs under thermal, mechanical and photo exposures were studied.

  12. Low cost solution-based materials processing methods for large area OLEDs and OFETs

    NASA Astrophysics Data System (ADS)

    Jeong, Jonghwa

    In Part 1, we demonstrate the fabrication of organic light-emitting devices (OLEDs) with precisely patterned pixels by the spin-casting of Alq3 and rubrene thin films with dimensions as small as 10 mum. The solution-based patterning technique produces pixels via the segregation of organic molecules into microfabricated channels or wells. Segregation is controlled by a combination of weak adsorbing characteristics of aliphatic terminated self-assembled monolayers (SAMs) and by centrifugal force, which directs the organic solution into the channel or well. This novel patterning technique may resolve the limitations of pixel resolution in the method of thermal evaporation using shadow masks, and is applicable to the fabrication of large area displays. Furthermore, the patterning technique has the potential to produce pixel sizes down to the limitation of photolithography and micromachining techniques, thereby enabling the fabrication of high-resolution microdisplays. The patterned OLEDs, based upon a confined structure with low refractive index of SiO2, exhibited higher current density than an unpatterned OLED, which results in higher electroluminescence intensity and eventually more efficient device operation at low applied voltages. We discuss the patterning method and device fabrication, and characterize the morphological, optical, and electrical properties of the organic pixels. In part 2, we demonstrate a new growth technique for organic single crystals based on solvent vapor assisted recrystallization. We show that, by controlling the polarity of the solvent vapor and the exposure time in a closed system, we obtain rubrene in orthorhombic to monoclinic crystal structures. This novel technique for growing single crystals can induce phase shifting and alteration of crystal structure and lattice parameters. The organic molecules showed structural change from orthorhombic to monoclinic, which also provided additional optical transition of hypsochromic shift from that of the orthorhombic form. An intermediate form of the crystal exhibits an optical transition to the lowest vibrational energy level that is otherwise disallowed in the single-crystal orthorhombic form. The monoclinic form exhibits entirely new optical transitions and showed a possible structural rearrangement for increasing charge carrier mobility, making it promising for organic devices. These phenomena can be explained and proved by the chemical structure and molecular packing of the monoclinic form, transformed from orthorhombic crystalline structure.

  13. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  15. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution.

    PubMed

    Hammel, Michal; Nemecek, Daniel; Keightley, J Andrew; Thomas, George J; Geisbrecht, Brian V

    2007-12-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein-protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein-protein interactions with its many ligands.

  17. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution

    PubMed Central

    Hammel, Michal; Němeček, Daniel; Keightley, J. Andrew; Thomas, George J.; Geisbrecht, Brian V.

    2007-01-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein–protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein–protein interactions with its many ligands. PMID:18029416

  18. Tris-amidoximate uranyl complexes via η2 binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods.

    PubMed

    Zhang, Linjuan; Qie, Meiying; Su, Jing; Zhang, Shuo; Zhou, Jing; Li, Jiong; Wang, Yu; Yang, Shitong; Wang, Shuao; Li, Jingye; Wu, Guozhong; Wang, Jian Qiang

    2018-03-01

    The present study sheds some light on the long-standing debate concerning the coordination properties between uranyl ions and the amidoxime ligand, which is a key ingredient for achieving efficient extraction of uranium. Using X-ray absorption fine structure combined with theoretical simulation methods, the binding mode and bonding nature of a uranyl-amidoxime complex in aqueous solution were determined for the first time. The results show that in a highly concentrated amidoxime solution the preferred binding mode between UO 2 2+ and the amidoxime ligand is η 2 coordination with tris-amidoximate species. In such a uranyl-amidoximate complex with η 2 binding motif, strong covalent interaction and orbital hybridization between U 5f/6d and (N, O) 2p should be responsible for the excellent binding ability of the amidoximate ligand to uranyl. The study was performed directly in aqueous solution to avoid the possible binding mode differences caused by crystallization of a single-crystal sample. This work also is an example of the simultaneous study of local structure and electronic structure in solution systems using combined diagnostic tools.

  19. Role of Polymorphism and Thin-Film Morphology in Organic Semiconductors Processed by Solution Shearing

    PubMed Central

    2018-01-01

    Organic semiconductors (OSCs) are promising materials for cost-effective production of electronic devices because they can be processed from solution employing high-throughput techniques. However, small-molecule OSCs are prone to structural modifications because of the presence of weak van der Waals intermolecular interactions. Hence, controlling the crystallization in these materials is pivotal to achieve high device reproducibility. In this perspective article, we focus on controlling polymorphism and morphology in small-molecule organic semiconducting thin films deposited by solution-shearing techniques compatible with roll-to-roll systems. Special attention is paid to the influence that the different experimental deposition parameters can have on thin films. Further, the main characterization techniques for thin-film structures are reviewed, highlighting the in situ characterization tools that can provide crucial insights into the crystallization mechanisms. PMID:29503976

  20. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    NASA Astrophysics Data System (ADS)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  1. L-Nitroargininium picrate

    NASA Astrophysics Data System (ADS)

    Apreyan, R. A.; Fleck, M.; Atanesyan, A. K.; Sukiasyan, R. P.; Petrosyan, A. M.

    2015-12-01

    L-Nitroargininium picrate has been obtained from an aqueous solution containing equimolar quantities of L-nitroarginine and picric acid by slow evaporation. Single crystal was grown by evaporation method. Crystal structure was determined at room temperature. The salt crystallizes in monoclinic crystal system (space group P21). Vibrational spectra and thermal properties were studied. Second harmonic generation efficiency measured by powder method is found to be four times higher than in L-nitroarginine, which in turn is ten times more efficient than KDP (KH2PO4).

  2. Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4

    NASA Astrophysics Data System (ADS)

    Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr

    2018-04-01

    The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.

  3. The influence of additives on the crystal habit of gibbsite

    NASA Astrophysics Data System (ADS)

    Seyssiecq, Isabelle; Veesler, Stéphane; Pèpe, Gérard; Boistelle, Roland

    1999-01-01

    Crystallization of gibbsite (Al(OH) 3) is an important stage of the Bayer process, production of alumina from bauxite ores. In both pure or industrial supersaturated sodium aluminate solutions, gibbsite crystals are always agglomerated. In the present paper, we present results of a study concerning the influence of different polycarboxylic acids as crystal habit modifier for gibbsite. In pure solution, agglomerated hexagonal plates are observed. Whereas acicular and tabular morphologies are found in the presence of different additives. These results are discussed referring to the crystallographic structure of gibbsite. It is found that only oxygen atoms are present on gibbsite surface. This observation leads us to propose an additive way of acting by formation of a molecular complex between the growth unit and the carboxylic groups of the additive.

  4. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.

    PubMed

    Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M

    1999-05-14

    The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.

  5. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.

  6. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    PubMed Central

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  7. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  8. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals.

    PubMed

    Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei

    2018-05-09

    Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

  9. A Rationale for System-Dependent Advantages and Disadvantages of Solution Crystal Growth at Low Gravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Vekilov, Peter G.; Lin, Hong; Alexander, J. Iwan D.

    1997-01-01

    Protein crystallization experiments at reduced gravity have yielded crystals that, depending on the specific material, are either superior or inferior in their structural perfection compared to counterparts grown at normal gravity. A reduction of the crystals' quality due to their growth at low gravity cannot be understood from existing models. Our experimental investigations of the ground-based crystallization of the protein lysozyme have revealed pronounced unsteady growth layer dynamics and associated defect formation under steady external conditions. Through scaling analysis and numerical simulations we show that the observed fluctuations originate from the coupling of bulk transport with non-linear interface kinetics under mixed kinetics-transport control of the growth rate. The amplitude of the fluctuations is smallest when either transport or interfacial kinetics dominate the control of the crystallization process. Thus, depending on the specific system, crystal quality may be improved by either enhancing or suppressing the transport in the solution. These considerations provide, for the first time, a material-dependent rationale for the advantages, as well as the disadvantages, of reduced gravity for (protein) crystallization.

  10. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  11. The n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside: Syntheses, crystal structure, physical properties and stability constants of their complexes with Cu(II), Ni(II) and VO(II)

    NASA Astrophysics Data System (ADS)

    Barabaś, Anna; Madura, Izabela D.; Marek, Paulina H.; Dąbrowska, Aleksandra M.

    2017-11-01

    The structure, conformation and configuration of the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) were determined by 1H NMR, 13C NMR, and IR spectroscopy, as well as by optical rotation. The crystal structure was confirmed by single-crystal X-ray diffraction studies at room temperature. The compound crystallizes in P21 space group symmetry of the monoclinic system. The molecule has a 4C1 chair conformation with azide group in the equatorial position both in a solution as well as in the crystal. The spatial arrangement of azide group is compared to other previously determined azidosugars. The hydrogen bonds between the hydroxyl group of sugar molecules lead to a ribbon structure observed also for the ethyl homolog. The packing of ribbons is dependent on the alkyl substituent length and with the elongation changes from pseudohexagonal to lamellar. Acidity constants for the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) in an aqueous solution were evaluated by the spectrophotometric and potentiometric titrations methods. Title compound exhibit blue absorption with the maximum wavelengths in the range of 266 nm and 306 nm. Based on these measurements we showed equilibria existing in a particular solution and a distribution of species which have formed during the titration. We also investigated interactions between Cu(II), Ni(II) and VO(II) and title compound (as ligand L) during complexometric titration. On these bases we identified that in [CuII-BAra-nPr]2+ the ratio of the ligand L to metal ion M(II) was 3:1, while in [NiII-BAra-nPr]2+ and [VOII-BAra-nPr]2+ complexes 2:1 ratios were found. The cumulative stability constants (as log β) occurring in an aqueous solution for the complexes of BAra-nPr with Cu(II), Ni(II) and VO(IV) were 14.57; 11.71 and 4.20, respectively.

  12. Carboxylic and Dicarboxylic Acids Extracted from Crushed Magnesium Oxide Single Crystals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Gupta, Alka D.; Kumar, Devendra; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THE) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and (sup 1)H-NMR (Nuclear Magnetic Resonance). The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS (Gas Chromatography - Mass Spectroscopy) analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P2(sub 1)/c with a(sub o) = 5.543 A, b(sub o) = 8.845 A, c(sub o) = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg/g MgO. The MgO crystals from which these organic acids were extracted grew from the 2360 C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H, and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)(sup n-). The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  13. Crystallization and preliminary X-ray analysis of a family 19 glycosyl hydrolase from Carica papaya latex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huet, Joëlle, E-mail: jhuet@ulb.ac.be; Azarkan, Mohamed; Looze, Yvan

    2008-05-01

    A chitinase isolated from the latex of the tropical species Carica papaya has been crystallized. The addition of N-acetyl-d-glucosamine to the crystallization solution has improved the diffraction quality resolution of the crystal to 1.8 Å resolution. A chitinase isolated from the latex of the tropical species Carica papaya has been purified to homogeneity and crystallized. This enzyme belongs to glycosyl hydrolase family 19 and exhibits exceptional resistance to proteolysis. The initially observed crystals, which diffracted to a resolution of 2.0 Å, were improved through modification of the crystallization protocol. Well ordered crystals were subsequently obtained using N-acetyl-d-glucosamine, the monomer resultingmore » from the hydrolysis of chitin, as an additive to the crystallization solution. Here, the characterization of a chitinase crystal that belongs to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 69.08, b = 44.79, c = 76.73 Å, β = 95.33° and two molecules per asymmetric unit, is reported. Diffraction data were collected to a resolution of 1.8 Å. Structure refinement is currently in progress.« less

  14. X-ray scattering data and structural genomics

    NASA Astrophysics Data System (ADS)

    Doniach, Sebastian

    2003-03-01

    High throughput structural genomics has the ambitious goal of determining the structure of all, or a very large number of protein folds using the high-resolution techniques of protein crystallography and NMR. However, the program is facing significant bottlenecks in reaching this goal, which include problems of protein expression and crystallization. In this talk, some preliminary results on how the low-resolution technique of small-angle X-ray solution scattering (SAXS) can help ameliorate some of these bottlenecks will be presented. One of the most significant bottlenecks arises from the difficulty of crystallizing integral membrane proteins, where only a handful of structures are available compared to thousands of structures for soluble proteins. By 3-dimensional reconstruction from SAXS data, the size and shape of detergent-solubilized integral membrane proteins can be characterized. This information can then be used to classify membrane proteins which constitute some 25% of all genomes. SAXS may also be used to study the dependence of interparticle interference scattering on solvent conditions so that regions of the protein solution phase diagram which favor crystallization can be elucidated. As a further application, SAXS may be used to provide physical constraints on computational methods for protein structure prediction based on primary sequence information. This in turn can help in identifying structural homologs of a given protein, which can then give clues to its function. D. Walther, F. Cohen and S. Doniach. "Reconstruction of low resolution three-dimensional density maps from one-dimensional small angle x-ray scattering data for biomolecules." J. Appl. Cryst. 33(2):350-363 (2000). Protein structure prediction constrained by solution X-ray scattering data and structural homology identification Zheng WJ, Doniach S JOURNAL OF MOLECULAR BIOLOGY , v. 316(#1) pp. 173-187 FEB 8, 2002

  15. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  16. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  17. Synthesis, crystal structure and ionic conductivity of the Ba3Mo1-xWxNbO8.5 solid solution

    NASA Astrophysics Data System (ADS)

    Bernasconi, Andrea; Tealdi, Cristina; Mühlbauer, Martin; Malavasi, Lorenzo

    2018-02-01

    Ba3MoNbO8.5 compound has been recently discovered as novel oxide ionic conductor with a structure that is a hybrid between 9R hexagonal perovskite and palmierite. In this work, the full substitution of Mo with W has been demonstrated as possible, without altering significantly the conductivity of the material. The crystal structure of the Ba3Mo1-xWxNbO8.5 solid solution (with x equals 0, 0.25, 0.5, 0.75 and 1) has been investigated by X-ray powder diffraction, showing a reduction of the unit cell by increasing the molybdenum content, despite the larger size of tungsten compared to molybdenum. Neutron powder diffraction measurements have been performed, indicating different levels of contribution of 9R polytype and of palmierite to the hybrid structure of the material as a function of the W-content.

  18. Generalization of the binary structural phase field crystal model

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Provatas, Nikolas

    2017-10-01

    Two improvements to the binary structural phase field crystal (XPFC) theory are presented. The first is an improvement to the phenomenology for modelling density-density correlation functions and the second extends the free energy of the mixing term in the binary XPFC model beyond ideal mixing to a regular solution model. These improvements are applied to study kinetics of precipitation from solution. We observe a two-step nucleation pathway similar to recent experimental work [N. D. Loh, S. Sen, M. Bosman, S. F. Tan, J. Zhong, C. A. Nijhuis, P. Král, P. Matsudaira, and U. Mirsaidov, Nat. Chem. 9, 77 (2017), 10.1038/nchem.2618; A. F. Wallace, L. O. Hedges, A. Fernandez-Martinez, P. Raiteri, J. D. Gale, G. A. Waychunas, S. Whitelam, J. F. Banfield, and J. J. De Yoreo, Science 341, 885 (2013), 10.1126/science.1230915] in which the liquid solution first decomposes into solute-poor and solute-rich regions, followed by precipitate nucleation of the solute-rich regions. Additionally, we find a phenomenon not previously described in the literature in which the growth of precipitates is accelerated in the presence of uncrystallized solute-rich liquid regions.

  19. Copper(II) ion catalytic oxidation of o-phenylenediamine and characterization, X-ray crystal structure and solution studies of the final product [DAPH][H3O][Cu(dipic)2]·3H2O

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Abdul Razak, Ibrahim; Refahi, Masoud; Moghimi, Abolghasem; Rosli, Mohd Mustaqim

    2015-09-01

    The complex [DAPH][H3O][Cu(dipic)2]·3H2O, (1) (dipicH2 = 2,6-pyridinedicarboxylic acid and DAP = 2,3-diaminophenazine) was prepared from the reaction of Cu(NO3)2·2H2O with mixture of o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid in water. The complex was characterized by FTIR, elemental analysis, UV-Vis and the single-crystal X-ray diffraction. The crystal system is monoclinic with the space group P21/c. This complex is stabilized in the solid state by an extensive network of hydrogen bonds between crystallized water, anionic and cationic fragments, which form a three-dimensional network. Furthermore, hydrogen bonds, π⋯π and Csbnd O⋯π stacking interactions seem to be effective in stabilizing the crystal structures. The protonation constants of dipic (L) and DAP (Q), the equilibrium constants for the dipic-DAP proton transfer system and the stoichiometry and stability constants of binary complexes including each of ligands (dipic, DAP) in presence Cu2+ ion, ternary complexes including, both of ligands (dipic-DAP) in presence of metal ion were calculated in aqueous solutions by potentiometric pH titration method using the Hyperquad2008 program. The stoichiometry of the most complexes species in solution was found to be very similar to the solid-state of cited metal ion complex.

  20. Ultrafast fluorescence upconversion technique and its applications to proteins.

    PubMed

    Chosrowjan, Haik; Taniguchi, Seiji; Tanaka, Fumio

    2015-08-01

    The basic principles and main characteristics of the ultrafast time-resolved fluorescence upconversion technique (conventional and space-resolved), including requirements for nonlinear crystals, mixing spectral bandwidth, acceptance angle, etc., are presented. Applications to flavoproteins [wild-type (WT) FMN-binding protein and its W32Y, W32A, E13R, E13K, E13Q and E13T mutants] and photoresponsive proteins [WT photoactive yellow protein and its R52Q mutant in solution and as single crystals] are demonstrated. For flavoproteins, investigations elucidating the effects of ionic charges on ultrafast electron transfer (ET) dynamics are summarized. It is shown that replacement of the ionic amino acid Glu13 and the resulting modification of the electrostatic charge distribution in the protein chromphore-binding pocket substantially alters the ultrafast fluorescence quenching dynamics and ET rate in FMN-binding protein. It is concluded that, together with donor-acceptor distances, electrostatic interactions between ionic photoproducts and other ionic groups in the proteins are important factors influencing the ET rates. In WT photoactive yellow protein and the R52Q mutant, ultrafast photoisomerization dynamics of the chromophore (deprotonated trans-p-coumaric acid) in liquid and crystal phases are investigated. It is shown that the primary dynamics in solution and single-crystal phases are quite similar; hence, the photocycle dynamics and structural differences observed at longer time scales arise mostly from the structural restraints imposed by the crystal lattice rigidity versus the flexibility in solution. © 2014 FEBS.

  1. Reconstruction of viruses from solution x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zheng, Yibin; Doerschuk, Peter C.; Johnson, John E.

    1995-08-01

    A model-based method for reconstructing the 3D structure of icosahedrally-symmetric viruses from solution x-ray scattering is presented. An example of the reconstruction, for data from cowpea mosaic virus, is described. The major opportunity provided by solution x-ray scattering is the ability to study the dynamics of virus particles in solution, information that is not accessible to crystal x-ray diffraction experiments.

  2. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    PubMed

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  3. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    PubMed Central

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211

  4. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  5. A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction

    PubMed Central

    Moon, Andrea F; Mueller, Geoffrey A; Zhong, Xuejun; Pedersen, Lars C

    2010-01-01

    Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail. PMID:20196072

  6. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.

    PubMed

    Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan

    2012-03-07

    Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.

  7. Using Strong Magnetic Fields to Control Solutal Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in microgravity , we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility force counteracts terrestrial gravity. The general objective is to test the hypothesis of convective control using a strong magnetic field and magnetic field gradient and to understand the nature of the various forces that come into play. Specifically we aim to delineate causative factors and to quantify them through experiments, analysis and numerical modeling. The paper will report on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions.

  8. Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Rosenberger, Franz

    1998-01-01

    Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.

  9. Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal.

    PubMed

    Balakrishnan, T; Bhagavannarayana, G; Ramamurthi, K

    2008-11-15

    Nonlinear optical single crystals of ammonium pentaborate (APB) were grown by the slow cooling method from aqueous solution. Grown crystal was characterized by powder X-ray diffraction (PXRD) and FT-IR spectral analysis. Perfection of the grown crystal was evaluated by high-resolution X-ray diffractometry (HRXRD). The effect of nylon threading on the perfection of the grown bigger crystal was also studied by HRXRD. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties were investigated by TG-DTA and DSC analyses. Its mechanical hardness was estimated by Vickers microhardness tester.

  10. Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaiselvi, D.; Mohan Kumar, R.; Jayavel, R.

    2008-07-01

    Single crystals of L-lysine hydrochloride dihydrate (LLHCD), a nonlinear optical material, have been grown by slow cooling technique from its aqueous solution. LLHCD was found to be highly soluble in water. The grown crystals have been subjected to single crystal X-ray diffraction to confirm the structure and to estimate the lattice parameters. The vibrational structure of the molecule is elucidated from FTIR spectra. Thermal analysis revealed the thermal stability of the grown crystals. The optical transmittance spectrum shows that the material possesses good optical transparency in the entire visible region with a UV cut-off wavelength at 228 nm. The mechanicalmore » properties of the grown crystal have been studied using Vicker's microhardness test. The laser damage threshold of 52.25 MW/cm{sup 2} has been measured by irradiating Q-switched Nd:YAG laser (1064 nm)« less

  11. Effects of impurities on crystal growth in fructose crystallization

    NASA Astrophysics Data System (ADS)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  12. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  13. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software.

    PubMed

    Mylona, Anastasia; Carr, Stephen; Aller, Pierre; Moraes, Isabel; Treisman, Richard; Evans, Gwyndaf; Foadi, James

    2017-08-04

    The present article describes how to use the computer program BLEND to help assemble complete datasets for the solution of macromolecular structures, starting from partial or complete datasets, derived from data collection from multiple crystals. The program is demonstrated on more than two hundred X-ray diffraction datasets obtained from 50 crystals of a complex formed between the SRF transcription factor, its cognate DNA, and a peptide from the SRF cofactor MRTF-A. This structure is currently in the process of being fully solved. While full details of the structure are not yet available, the repeated application of BLEND on data from this structure, as they have become available, has made it possible to produce electron density maps clear enough to visualise the potential location of MRTF sequences.

  14. A Novel Approach to Data Collection for Difficult Structures: Data Management for Large Numbers of Crystals with the BLEND Software

    PubMed Central

    Mylona, Anastasia; Carr, Stephen; Aller, Pierre; Moraes, Isabel; Treisman, Richard; Evans, Gwyndaf; Foadi, James

    2018-01-01

    The present article describes how to use the computer program BLEND to help assemble complete datasets for the solution of macromolecular structures, starting from partial or complete datasets, derived from data collection from multiple crystals. The program is demonstrated on more than two hundred X-ray diffraction datasets obtained from 50 crystals of a complex formed between the SRF transcription factor, its cognate DNA, and a peptide from the SRF cofactor MRTF-A. This structure is currently in the process of being fully solved. While full details of the structure are not yet available, the repeated application of BLEND on data from this structure, as they have become available, has made it possible to produce electron density maps clear enough to visualise the potential location of MRTF sequences. PMID:29456874

  15. Crystallization and preliminary X-ray diffraction analysis of three myotoxic phospholipases A2 from Bothrops brazili venom

    PubMed Central

    Fernandes, Carlos A. H.; Gartuzo, Elaine C. G.; Pagotto, Ivan; Comparetti, Edson J.; Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Costa, Tássia R.; Marangoni, Sergio; Soares, Andreimar M.; Fontes, Marcos R. M.

    2012-01-01

    Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.56–2.05 Å and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2. PMID:22869126

  16. Macromolecular Crystallization in Microfluidics for the International Space Station

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  17. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  18. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  19. Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions.

    PubMed

    Ishiguro, H; Koike, K

    1998-09-11

    Behavior of ice crystals and human red blood cells during extracellular-freezing was investigated in three-dimensions using a confocal laser scanning microscope(CLSM), which noninvasively produces tomograms of biological materials. Physiological saline and physiological saline with 2.4 M glycerol were used for suspension. Various cooling rates for directional solidification were used for distinctive morphology of the ice crystals. Addition of acridine orange as a fluorescent dye into the cell suspension enabled ice crystal, cells and unfrozen solution to be distinguished by different colors. The results indicate that the microscopic structure is three-dimensional for flat, cellular, and dendritic solid-liquid interfaces and that a CLSM is very effective in studying three-dimensional structure during the freezing of cell suspensions.

  20. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17

    PubMed Central

    Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.; Polikarpov, Igor

    2016-01-01

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17 (BbGal43A) are described. BbGal43A was successfully produced and showed activity towards synthetic galactosides. BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences between BbGal43A and its characterized homologues. PMID:27050262

  1. Synthesis, growth and characterization of L-Phenylalaninium methanesulfonate nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.

    2018-03-01

    The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.

  2. EXAFS characterisation of metal bonding in highly luminescent, UV stable, water-soluble and biocompatible lanthanide complexes

    NASA Astrophysics Data System (ADS)

    Kalyakina, A.; Utochnikova, V.; Trigub, A.; Zubavichus, Y.; Kuzmina, N.; Bräse, S.

    2016-05-01

    The combination of X-ray diffraction with EXAFS was employed to assess the coordination environment of lanthanide complexes in solutions. This method is based on the assumption that the local structure of lanthanide complexes in solution combines elements of the crystal structure of the complex in the solid state (single- or polycrystalline) and the elements of the local structure of a lanthanide salt, completely dissociated in the solvent (usually chlorides). The success of this approach is demonstrated with the lanthanide (III) 2,3,4,5,6-pentafluorobenzoate complexes, where the local structure in aqueous and methanol solutions were estimated. Moreover, the dissociation degree of the complexes in aqueous and methanol solutions was evaluated.

  3. Structure, optical and phonon properties of bulk and nanocrystalline Al2-xScx(WO4)3 solid solutions doped with Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, M.; Hermanowicz, K.; Pietraszko, A.; Yordanova, A.; Koseva, I.

    2014-01-01

    Pure and Cr3+ doped nanosized Al2-xScx(WO4)3 solid solutions were prepared by co-precipitation method as well as Al2-xScx(WO4)3 single crystals were grown by high-temperature flux method. The obtained samples were characterized by X-ray, Raman, IR, absorption and luminescence methods. Single crystal X-ray diffraction showed that AlSc(WO4)3 is orthorhombic at room temperature with space group Pnca and trivalent cations are statistically distributed. Raman and IR studies showed that Al2-xScx(WO4)3 solid solutions show "two mode" behavior. They also showed that vibrational properties of nanosized samples have been weakly modified in comparison with the bulk materials. The luminescence and absorption spectra revealed that chromium ions occupy two sites of weak and strong crystal field strength.

  4. Two tautomeric forms of 2-amino-5,6-dimethylpyrimidin-4-one.

    PubMed

    Hall, Victoria M; Bertke, Jeffery A; Swift, Jennifer A

    2016-06-01

    Derivatives of 4-hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto-enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H-keto tautomer in the solid state. Recrystallization of 2-amino-5,6-dimethyl-4-hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H-keto tautomer, denoted form (I). Though not apparent in the X-ray data, the IR spectrum suggests that small amounts of the 4-hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H-keto and the 3H-keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one-dimensional and three-dimensional hydrogen-bonding motifs, respectively.

  5. Crystal growth of cholesterol in hydrogels and its characterization

    NASA Astrophysics Data System (ADS)

    Manuel Bravo-Arredondo, J.; Moreno, A.; Mendoza, M. E.

    2014-09-01

    In this work, we report the crystallization of cholesterol in ethanol solution and in three different hydrogel media: tetramethyl orthosilane, sodium metasilicate, and poly(vinyl)alcohol, whose structures are similar to the gel-like polymer structure of mucin, which is found in the mucus present in bile stone formation. The monohydrated triclinic phase was identified in all the samples by means of X-ray powder diffraction. The characteristic polymorphic crystalline transition of the anhydrous cholesterol was detected by differential thermal analysis and modulated differential scanning calorimetry only in crystals grown in ethanol, sodium silicate, and tetramethyl orthosilane. Finally, hysteresis of the phase transition temperature was measured by modulated differential scanning calorimetry in crystals grown in ethanol. The biological implications of the crystallization of cholesterol for bile stones formation are discussed in the last part of this contribution.

  6. On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7

    PubMed Central

    Boer, D. Roeland; Müller, Axel; Fetzner, Susanne; Lowe, David J.; Romão, Maria João

    2005-01-01

    Isoquinoline 1-oxidoreductase (IOR) from Brevundimonas diminuta is a mononuclear molybdoenzyme of the xanthine-dehydrogenase family of proteins and catalyzes the conversion of isoquinoline to isoquinoline-1-one. Its primary sequence and behaviour, specifically in its substrate specificity and lipophilicity, differ from other members of the family. A crystal structure of the enzyme is expected to provide an explanation for these differences. This paper describes the crystallization and preliminary X-ray diffraction experiments as well as an optimized purification protocol for IOR. Crystallization of IOR was achieved using two different crystallization buffers. Streak-seeding and cross-linking were essential to obtain well diffracting crystals. Suitable cryo-conditions were found and a structure solution was obtained by molecular replacement. However, phases need to be improved in order to obtain a more interpretable electron-density map. PMID:16508115

  7. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  8. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Vergara, F., E-mail: fer_martina@u.uchile.cl; Galdamez, A., E-mail: agaldamez@uchile.cl; Manriquez, V.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4}more » were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.« less

  9. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization

    PubMed Central

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise

    2015-01-01

    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  10. Temperature-dependent dielectric functions and interband critical points of sulfur-rich TlIn(S1-xSex)2 layered solid solution crystals

    NASA Astrophysics Data System (ADS)

    Gomonnai, O. O.; Gordan, O.; Guranich, P. P.; Slivka, A. G.; Gomonnai, A. V.; Zahn, D. R. T.

    2017-12-01

    Real and imaginary parts of the dielectric function of TlIn(S1-xSex)2 (x = 0.05, 0.08, 0.25) single crystals were determined in the spectral range from 1 to 5 eV within a temperature interval 140-293 K from spectroscopic ellipsometry measurements. The energies of interband transitions (critical points) of the TlIn(S1-xSex)2 crystals were obtained from the second derivative of the real and imaginary parts of dielectric function. Structural phase transitions are behind the observed change of electronic band structure.

  11. Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector

    PubMed Central

    Stevenson, H. P.; DePonte, D. P.; Makhov, A. M.; Conway, James F.; Zeldin, O. B.; Boutet, S.; Calero, G.; Cohen, A. E.

    2014-01-01

    Recent advancements at the Linac Coherent Light Source X-ray free-electron laser (XFEL) enabling successful serial femtosecond diffraction experiments using nanometre-sized crystals (NCs) have opened up the possibility of X-ray structure determination of proteins that produce only submicrometre crystals such as many membrane proteins. Careful crystal pre-characterization including compatibility testing of the sample delivery method is essential to ensure efficient use of the limited beamtime available at XFEL sources. This work demonstrates the utility of transmission electron microscopy for detecting and evaluating NCs within the carrier solutions of liquid injectors. The diffraction quality of these crystals may be assessed by examining the crystal lattice and by calculating the fast Fourier transform of the image. Injector reservoir solutions, as well as solutions collected post-injection, were evaluated for three types of protein NCs (i) the membrane protein PTHR1, (ii) the multi-protein complex Pol II-GFP and (iii) the soluble protein lysozyme. Our results indicate that the concentration and diffraction quality of NCs, particularly those with high solvent content and sensitivity to mechanical manipulation may be affected by the delivery process. PMID:24914151

  12. Third Structure Determination by Powder Diffractometery Round Robin (SDPDRR-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bail, A.; Cranswick, L; Adil, K

    2009-01-01

    The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solvingmore » a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction experts.« less

  13. The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.

    PubMed

    Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele

    2013-01-01

    Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.

  14. Cubic-to-tetragonal structural phase transition in Rb1-xCsxCaF3 solid solutions: Thermal expansion and EPR studies

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.

    1997-04-01

    The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0=0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x>0.1, indicating a spatial distribution of the critical temperature in those crystals with high ionic substitution rate. In RbCaF3 , another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.

  15. The Crystal and Molecular Structure of an Asymmetric Diacetylene Monomer, 6-(2-methyl-4-nitroanilino)-2,4-hexadiyne-1-ol

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus; Paley, Mark S.

    1993-01-01

    The crystal and molecular structure of an asymmetric diacetylene monomer has been determined from x-ray diffraction data. The crystals, obtained from an acetone/pentane solution, are orthorhombic, Fdd2 with Z = 16 in a unit cell having dimensions of a = 42.815(6) A, b = 22.224(5) A, c = 4.996(l) A. The structure was solved by direct methods and refined by least- squares techniques to an R(sub F) of 6.4% for 988 reflections and 171 variables. The diacetylene chains are disposed in the unit cell in a complex manner in order to satisfy the hydrogen- bonding, crystal packing, and symmetry requirements of the system. The solid state polymerization mechanism is discussed with respect to the geometric disposition of the diacetylene chains. These chains are far apart and incorrectly oriented with respect to each other to permit polymerization in the crystal by means of 1,4-addition, consistent with the Baughman mechanistic model.

  16. (NZ)CH...O contacts assist crystallization of a ParB-like nuclease.

    PubMed

    Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie

    2007-07-07

    The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.

  17. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  18. Low-temperature nanodoping of protonated LiNbO3 crystals by univalent ions

    NASA Astrophysics Data System (ADS)

    Borodin, Yu. V.

    2015-01-01

    In the nanocomposite model developed here, crystals are treated as subordinate aggregate of pro- ton-selected structural elements, their blocks, and proton-containing quantum sublattices with preferred transport effects separating them. The formation of stratified reversible hexagonal structures is accompanied with protonation and formation of a dense network of H-bonds ensuring the nanocomposite properties. Nanodoping with H+ ions occurs during processing of crystals and glasses in melts as well as in aqueous solutions of Ag, Tl, Rb, and Cs salts. The isotope exchange H+ ↔ D+ and ion exchange H+ ↔ M+ lead to nanodoping of protonated materials with D+ and M+ ions. This is manifested especially clearly in Li-depleted nonequilibrium LiNbO3 and LiTaO3 crystals. Low-temperature proton-ion nanodoping over superlattices is a basically new approach to analysis of the structure and properties of extremely nonequilibrium materials.

  19. Polyethylene nano crystalsomes formed at a curved liquid/liquid interface.

    PubMed

    Wang, Wenda; Staub, Mark C; Zhou, Tian; Smith, Derrick M; Qi, Hao; Laird, Eric D; Cheng, Shan; Li, Christopher Y

    2017-12-21

    Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.

  20. Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors

    DOE PAGES

    Schuster, P.; Brubaker, E.

    2016-11-23

    This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less

  1. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  2. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang

    2012-06-26

    A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.

  3. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-phenylalanine L-phenylalaninium malonate.

    PubMed

    Prakash, M; Geetha, D; Caroline, M Lydia; Ramesh, P S

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180°C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Supercrystallization of KCl from solution irradiated by soft X-rays

    NASA Astrophysics Data System (ADS)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  5. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  6. Self-assembled novel multi-porphyrin micro-crystals as a photocatalyst for 2,4,6-trinitrotoluene degradation

    NASA Astrophysics Data System (ADS)

    Hikal, Walid M.

    In this thesis I have presented the findings of my research pursued during my Ph.D. study. Following the findings that 2,4,6-trinitrotoluene binds to porphyrins at room temperature and could be photoctalytically degraded using porphyrin solutions and visible light, the purpose of this work was to determine the nature of the binding between the two species and develop a solid porphyrin-based photocatalyst for TNT degradation. C1TPP porphyrin is found to be able to bind to TNT via 1.94 kcal/mole hydrogen bonds at room temperature and hydrophobic bonds at higher temperatures. Photocatalytic solid porphyrin crystalline structures have been developed using two oppositely charged, commercially available, and low cost porphyrins in presence and absence of PAMAM generation 4 (G4) dendrimer, by self-assembly at room temperature without acidification. Solid porphyrin crystals were characterized by means of optical microscopy, UV-visible spectroscopy, fluorescence spectroscopy, and powder X-ray diffraction. A hypothetical model for the structure of the crystals is proposed. The porphyrin crystals show photocatalytic capabilities; illumination of the crystals in a 2,4,6-trinitrotoluene solution by visible light results in degradation of TNT and the intermediates have been determined using high pressure liquid chromatography (HPLC) and gas chromatography (GC).

  7. Crystallographic Phasing from Weak Anomalous Signals

    PubMed Central

    Liu, Qun; Hendrickson, Wayne A.

    2015-01-01

    The exploitation of anomalous signals for biological structural solution is maturing. Single-wavelength anomalous diffraction (SAD) is dominant in de novo structure analysis. Nevertheless, for challenging structures where the resolution is low (dmin ≥ 3.5 Å) or where only lighter atoms (Z ≤ 20) are present, as for native macromolecules, solved SAD structures are still scarce. With the recent rapid development in crystal handling, beamline instrumentation, optimization of data collection strategies, use of multiple crystals and structure determination technologies, the weak anomalous diffraction signals are now robustly measured and should be used for routine SAD structure determination. The review covers these recent advances on weak anomalous signals measurement, analysis and utilization. PMID:26432413

  8. Crystallographic phasing from weak anomalous signals.

    PubMed

    Liu, Qun; Hendrickson, Wayne A

    2015-10-01

    The exploitation of anomalous signals for biological structural solution is maturing. Single-wavelength anomalous diffraction (SAD) is dominant in de novo structure analysis. Nevertheless, for challenging structures where the resolution is low (dmin≥3.5Å) or where only lighter atoms (Z≤20) are present, as for native macromolecules, solved SAD structures are still scarce. With the recent rapid development in crystal handling, beamline instrumentation, optimization of data collection strategies, use of multiple crystals and structure determination technologies, the weak anomalous diffraction signals are now robustly measured and should be used for routine SAD structure determination. The review covers these recent advances on weak anomalous signals measurement, analysis and utilization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  10. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  11. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".

    PubMed

    Sugiura, Yuki; Tsuru, Kanji; Ishikawa, Kunio

    2017-08-01

    Carbonate apatite (CO 3 Ap) foam with an interconnected porous structure is highly attractive as a scaffold for bone replacement. In this study, arbitrarily shaped CO 3 Ap foam was formed from α-tricalcium phosphate (α-TCP) foam granules via a two-step process involving treatment with acidic calcium phosphate solution followed by hydrothermal treatment with NaHCO 3 . The treatment with acidic calcium phosphate solution, which is key to fabricating arbitrarily shaped CO 3 Ap foam, enables dicalcium hydrogen phosphate dihydrate (DCPD) crystals to form on the α-TCP foam granules. The generated DCPD crystals cause the α-TCP granules to interlock with each other, inducing an α-TCP/DCPD foam. The interlocking structure containing DCPD crystals can survive hydrothermal treatment with NaHCO 3 . The arbitrarily shaped CO 3 Ap foam was fabricated from the α-TCP/DCPD foam via hydrothermal treatment at 200 °C for 24 h in the presence of a large amount of NaHCO 3 .

  12. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  13. Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.

    2016-07-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.

  14. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  15. Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions.

    PubMed

    Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M

    2006-05-05

    The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.

  16. Structural, thermal and optical characterization of a Schiff base as a new organic material for nonlinear optical crystals and films with reversible noncentrosymmetry.

    PubMed

    Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro

    2011-09-01

    Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  18. Crystalline structures, thermal properties and crystallizing mechanism of polyamide 6 nanotubes in confined space

    NASA Astrophysics Data System (ADS)

    Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang

    2016-09-01

    The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.

  19. Spatial Phase Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.

  20. Structure, function and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding.

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret

    2010-10-01

    We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.

  1. Three-dimensional structure of Erwinia carotovora L-asparaginase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kislitsyn, Yu. A.; Kravchenko, O. V.; Nikonov, S. V.

    2006-10-15

    Three-dimensional structure of Erwinia carotovora L-asparaginase, which has antitumor activity and is used for the treatment of acute lymphoblastic leukemia, was solved at 3 A resolution and refined to R{sub cryst} = 20% and R{sub free} = 28%. Crystals of recombinant Erwinia carotovora L-asparaginase were grown by the hanging-drop vapor-diffusion method from protein solutions in a HEPES buffer (pH 6.5) and PEG MME 5000 solutions in a cacodylate buffer (pH 6.5) as the precipitant. Three-dimensional X-ray diffraction data were collected up to 3 A resolution from one crystal at room temperature. The structure was solved by the molecular replacement methodmore » using the coordinates of Erwinia chrysanthemi L-asparaginase as the starting model. The coordinates refined with the use of the CNS program package were deposited in the Protein Data Bank (PDB code 1ZCF)« less

  2. The High Resolution Powder Diffraction Beam Line at ESRF.

    PubMed

    Fitch, A N

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.

  3. The three-dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation.

    PubMed

    Weyand, Simone; Kefala, Georgia; Svergun, Dmitri I; Weiss, Manfred S

    2009-09-01

    The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 A. The monoclinic crystals contain one tetramer exhibiting D(2)-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer-tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.

  4. Towards predictive molecular dynamics simulations of DNA: electrostatics and solution/crystal environments

    NASA Astrophysics Data System (ADS)

    Babin, Volodymr; Baucom, Jason; Darden, Thomas; Sagui, Celeste

    2006-03-01

    We have investigated to what extend molecular dynamics (MD) simulatons can reproduce DNA sequence-specific features, given different electrostatic descriptions and different cell environments. For this purpose, we have carried out multiple unrestrained MD simulations of the duplex d(CCAACGTTGG)2. With respect to the electrostatic descriptions, two different force fields were studied: a traditional description based on atomic point charges and a polarizable force field. With respect to the cell environment, the difference between crystal and solution environments is emphasized, as well as the structural importance of divalent ions. By imposing the correct experimental unit cell environment, an initial configuration with two ideal B-DNA duplexes in the unit cell is shown to converge to the crystallographic structure. To the best of our knowledge, this provides the first example of a multiple nanosecond MD trajectory that shows and ideal structure converging to an experimental one, with a significant decay of the RMSD.

  5. Crystalline perfection and optical studies of L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.

    2015-10-01

    Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.

  6. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  7. The Crystal Structures of Potentially Tautomeric Compounds

    NASA Astrophysics Data System (ADS)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  8. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.

    PubMed

    Ragoonanan, Vishard; Suryanarayanan, Raj

    2014-06-01

    We hypothesize that ultrasonication can accelerate solute crystallization in freeze-concentrates. Our objective is to demonstrate ultrasonication as a potential predictive tool for evaluating physical stability of excipients in frozen solutions. The crystallization tendencies of lyoprotectants (trehalose, sucrose), carboxylic acid buffers (citric, tartaric, malic, and acetic) and an amino acid buffer (histidine HCl) were studied. Aqueous solutions of buffers, lyoprotectants and mixtures of the two were cooled from room temperature to -20°C and sonicated to induce solute crystallization. The crystallized phases were identified by X-ray diffractometry (laboratory or synchrotron source). Sonication accelerated crystallization of trehalose dihydrate in frozen trehalose solutions. Sonication also enhanced solute crystallization in tartaric (200 mM; pH 5), citric (200 mM pH 4) and malic (200 mM; pH 4) acid buffers. At lower buffer concentrations, longer annealing times following sonication were required to facilitate solute crystallization. The time for crystallization of histidine HCl progressively increased as a function of sucrose concentration. The insonation period required to effect crystallization also increased with sucrose concentration. Sonication can substantially accelerate solute crystallization in the freeze-concentrate. Ultrasonication may be useful in assessing the crystallization tendency of formulation constituents used in long term frozen storage and freeze-drying.

  9. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations.

    PubMed

    Lukasheva, N V; Tolmachev, D A

    2016-01-12

    Molecular dynamics (MD) simulation of a nanofibril of native bacterial cellulose (BC) in solutions of mineral ions is presented. The supersaturated calcium-phosphate (CP) solution with the ionic composition of hydroxyapatite and CaCl2 solutions with the concentrations below, equal to, and above the solubility limits are simulated. The influence of solvation models (TIP3P and TIP4P-ew water models) on structural characteristics of the simulated nanofibril and on the crystal nucleation process is assessed. The structural characteristics of cellulose nanofibrils (in particular, of the surface layer) are found to be nearly independent of the solvation models used in the simulation and on the presence of ions in the solutions. It is shown that ionic clusters are formed in the solution rather than on the fibril surface. The cluster sizes are slightly different for the two water models. The effect of the ion-ion interaction parameters on the results is discussed. The main conclusion is that the activity of hydroxyl groups on the BC fibril surface is not high enough to cause adsorption of Ca(2+) ions from the solution. Therefore, the nucleation of CP crystals takes place initially in solution, and then the crystallites formed can be adsorbed on BC nanofibril surfaces.

  10. Purification, crystallization and initial crystallographic characterization of the Ginkgo biloba 11S seed globulin ginnacin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tengchuan; Chen, Yu-Wei; Howard, Andrew

    2008-07-01

    The crystallization of ginnacin, the 11S seed storage protein from G. biloba, is reported. Ginkgo biloba, a well known ‘living fossil’ native to China, is grown worldwide as an ornamental shade plant. Medicinal and nutritional uses of G. biloba in Asia have a long history. However, ginkgo seed proteins have not been well studied at the biochemical and molecular level. In this study, the G. biloba 11S seed storage protein ginnacin was purified by sequential anion-exchange and gel-filtration chromatography. A crystallization screen was performed and well diffracting single crystals were obtained by the vapor-diffusion method. A molecular-replacement structural solution hasmore » been obtained. There are six protomers in an asymmetric unit. Structure refinement is currently in progress.« less

  11. Effects of Catalytic Action and Ligand Binding on Conformational Ensembles of Adenylate Kinase.

    PubMed

    Onuk, Emre; Badger, John; Wang, Yu Jing; Bardhan, Jaydeep; Chishti, Yasmin; Akcakaya, Murat; Brooks, Dana H; Erdogmus, Deniz; Minh, David D L; Makowski, Lee

    2017-08-29

    Crystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands. Scattering data from apo AdK are consistent with scattering predicted from the crystal structure of AdK in the open conformation. In contrast, data from AdK samples saturated with Ap5A do not agree with that calculated from AdK in the closed conformation. Using cluster analysis of available structures, we selected representative structures in five conformational states: open, partially open, intermediate, partially closed, and closed. We used these structures to estimate the relative abundances of these states for each experimental condition. X-ray solution scattering data obtained from AdK with AMP are dominated by scattering from AdK in the open conformation. For AdK in the presence of high concentrations of ATP and ADP, the conformational ensemble shifts to a mixture of partially open and closed states. Even when AdK is saturated with Ap5A, a significant proportion of AdK remains in a partially open conformation. These results are consistent with an induced-fit model in which the transition of AdK from an open state to a closed state is initiated by ATP binding.

  12. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.

  13. Growth and characterization of metal halide perovskite crystals: Benzyltributyl ammonium tetrachloro manganate(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Dhandapani, M.; Sugandhi, K.; Nithya, S.; Muthuraja, P.; Balachandar, S.; Aranganayagam, K. R.

    2018-05-01

    The perovskite type organic-inorganic hybrid benzyltributyl ammoniumtetrachloro manganate (II) monohydrates (BTBA-Mn) are synthesized and the single crystals are grown by slow evaporation solution growth technique. The structure of the grown crystals are confirmed by using X-ray diffraction (XRD), unit cell parameter analysis, Fourier transform Infrared (FTIR), elemental analysis and 13C-NMR spectral studies. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning colorimetric (DSC) analysis were carried out to understand thermal stability and occurrence of phase transition.

  14. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  15. Anharmonic vibrational spectroscopy, NBO charges and global chemical reactivity studies on the charge transfer PDCA-.AHMP+ single crystal using DFT calculations

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Bhat, Sheeraz Ahmad; Alam, Mohamad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    The charge transfer (CT) complex of the 2-amino-4-hydroxy-6-methylpyrimidine and 2,3 pyrazinedicarboxylic acid (PDCA-.AHMP+) was synthesized and its single crystal was grown by solution method. The structure of the crystalline complex has been investigated by single crystal X-ray diffraction (SCXRD). The vibrational features of the complex have been studied with the help of FTIR spectra and DFT computation. The anharmonic corrections in vibrational frequencies are made using the GVPT2 method at B3LYP/6-311++G(d,p) level of theory. The frontier molecular orbitals and global chemical reactivity have been calculated to understand the pharmacological aspect of the synthesized crystal. Furthermore, Hirshfeld electrostatic potential (ESP) surface, void space in the crystal structure and natural as well as Mulliken atomic charges are studied.

  16. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Chen, Zhenhang; Fu, Yanjun; He, Qingzhong; Jiang, Lun; Zheng, Jiangge; Gao, Yina; Mei, Pinchao; Chen, Zhongzhou; Ren, Xueqin

    2015-03-01

    Flexibility is an intrinsic property of proteins and essential for their biological functions. However, because of structural flexibility, obtaining high-quality crystals of proteins with heterogeneous conformations remain challenging. Here, we show a novel approach to immobilize traditional precipitants onto molecularly imprinted polymers (MIPs) to facilitate protein crystallization, especially for flexible proteins. By applying this method, high-quality crystals of the flexible N-terminus of human fragile X mental retardation protein are obtained, whose absence causes the most common inherited mental retardation. A novel KH domain and an intermolecular disulfide bond are discovered, and several types of dimers are found in solution, thus providing insights into the function of this protein. Furthermore, the precipitant-immobilized MIPs (piMIPs) successfully facilitate flexible protein crystal formation for five model proteins with increased diffraction resolution. This highlights the potential of piMIPs for the crystallization of flexible proteins.

  17. A critical analysis of calcium carbonate mesocrystals

    PubMed Central

    Kim, Yi-Yeoun; Schenk, Anna S.; Ihli, Johannes; Kulak, Alex N.; Hetherington, Nicola B. J.; Tang, Chiu C.; Schmahl, Wolfgang W.; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C.

    2014-01-01

    The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required. PMID:25014563

  18. Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.

    PubMed

    Corbett, Michael S P; Mark, Alan E; Poger, David

    2017-02-28

    Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  20. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  1. Increasing dissolution of trospium chloride by co-crystallization with urea

    NASA Astrophysics Data System (ADS)

    Skořepová, Eliška; Hušák, Michal; Čejka, Jan; Zámostný, Petr; Kratochvíl, Bohumil

    2014-08-01

    The search for various solid forms of an active pharmaceutical ingredient (API) is an important step in drug development. Our aim was to prepare co-crystals of trospium chloride, an anticholinergic drug used for the treatment of incontinence, and to investigate if they have advantageous properties for drug formulation. Phase identification was done by powder X-ray diffraction and single-crystal X-ray diffraction. The chemical composition was verified by solution NMR and the dissolution rate of the prepared phases was studied by IDR (intrinsic dissolution rate). For further analysis of phase stability and transitions, combined thermal analysis and temperature-resolved X-ray powder diffraction were used. Urea was selected as a co-crystallization partner. Trospium chloride urea (1:1) co-crystal was prepared by a solvent evaporation. From single-crystal data, the co-crystal structure was solved in a space group P21/c and compared to previously published structures of trospium chloride. Intrinsic dissolution rate revealed that the co-crystal dissolves 32% faster than pure API. However, its low thermal and pressure stability makes it a challenging choice for the final drug formulation.

  2. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

    PubMed

    Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune

    2008-07-18

    The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.

  3. A Raman scattering study of the structural ordering in Bi1- x La x FeO3 ceramic ferroelectromagnetics

    NASA Astrophysics Data System (ADS)

    Teplyakova, N. A.; Titov, S. V.; Verbenko, I. A.; Sidorov, N. V.; Reznichenko, L. A.

    2015-09-01

    Based on Raman spectra, we have studied structural ordering processes in ceramics of ferroelectromagnetics Bi1- x La x FeO3 ( x = 0.075-0.20). It has been found that the structure of Bi1- x La x FeO3 is close to the structure of the crystal BiFeO3. However, lines in Raman spectra of Bi1- x La x FeO3 are considerably broadened compared to lines in the Raman spectrum of the BiFeO3 single crystal, which indicates that the structure of solid solutions is much more disordered. In Raman spectra of Bi1- x La x FeO3, in the range of librational vibrations of octahedra as a whole (50-90 cm-1), several groups of lines are observed in frequency ranges 59-69, 72-77, and 86-92 cm-1 (depending on the composition of solid solution). This confirms X-ray data that examined solid solutions are not single-phase. At a La content x = 0.120, Raman lines in the low-frequency spectral range narrow, which indicates that the ordering of structural units in cationic sublattices somewhat increases. Upon an increase in the content of La in the Bi1- x La x FeO3 structure, no unambiguous dependence of parameters of spectral lines is observed. It is likely that this is explained by the fact that, as the value of x increases, the character of the incorporation of La into the structure of the solid solution changes.

  4. Note on the coupled oscillator model solutions in crystalline optical activity

    NASA Astrophysics Data System (ADS)

    Vyšín, I.; Ríha, J.; Svácková, K.

    2006-06-01

    Many methods have been used in the crystalline optical activity solution, among them the traditional method of coupled oscillators. The two coupled oscillator model was first solved by Chandrasekhar, and the most general dispersion relations for the crystalline optical activity can be obtained from its next extensions. However, the Chandrasekhar solution method seems to be based on a mistake in the computations. For this reason, the solution of a more complicated model of coupled oscillators which better corresponds to the structure of real crystals using the Condon relations is presented. This solution leads to the conclusion that, although it is possible to object to the Chandrasekhar solution method, the form of his final dispersion relations is correct. On the other hand, the dispersion relations following from the solution of more complicated coupled oscillator models are more convenient for the interpretation of the crystalline optical activity experimental data, which is demonstrated in examples of crystals of tellurium and benzil.

  5. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Shyju, T. S.; Indirajith, R.; Gopalakrishnan, R.

    2012-02-01

    Good quality <1 0 0> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal.

  6. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    NASA Astrophysics Data System (ADS)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  7. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  8. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  9. Spirocyclic character of ixazomib citrate revealed by comprehensive XRD, NMR and DFT study

    NASA Astrophysics Data System (ADS)

    Skorepova, Eliska; Čerňa, Igor; Vlasáková, Růžena; Zvoníček, Vít; Tkadlecová, Marcela; Dušek, Michal

    2017-11-01

    Ixazomib citrate is a very recently approved anti-cancer drug. Until now, to the best of our knowledge, no one has been able to solve any crystal structures of this compound. In this work, we present the crystal structures of two isostructural solvates of ixazomib citrate. In all currently available literature, the molecule is characterized as containing a single optically active carbon atom and a borate cycle formed when ixazomib is reacted with citric acid to form a stabilized ixazomib citrate that can be administered orally. However, the crystal structures revealed that none of the up-to-date presented structural formulas of ixazomib citrate are fully accurate. In addition to the citrate ring, another 5-membered ring is formed. These two rings are connected by the boron atom, making this compound a spirocyclic borate. By spirocyclization, the boron atom becomes tetrahedral and therefore optically active. In the crystal structures, ixazomib citrate was found to be in forms of two RR and RS stereoisomers. The results are supported by solid-state and solution NMR and DFT quantum mechanical calculations.

  10. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation.

    PubMed

    Raina, Shweta A; Van Eerdenbrugh, Bernard; Alonzo, David E; Mo, Huaping; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2015-06-01

    Amorphous materials are high-energy solids that can potentially enhance the bioavailability of poorly soluble compounds. A major impediment to their widespread use as a formulation platform is the tendency of amorphous materials to crystallize. The aim of this study was to evaluate the relative crystallization tendency of six structural analogues belonging to the dihydropyridine class, in an aqueous environment in the absence and presence of polymers, using wide-angle X-ray scattering synchrotron radiation and polarized light microscopy. The crystallization behavior of precipitates generated from supersaturated solutions of the active pharmaceutical ingredients was found to be highly variable ranging from immediate to several hours in the absence of polymers. Polymers with intermediate hydrophilicity/hydrophobicity were found to substantially delay crystallization, whereas strongly hydrophilic or hydrophobic polymers were largely ineffective. Nuclear magnetic resonance spectroscopy experiments supported the supposition that polymers need to have affinity for both the drug-rich precipitate and the aqueous phase in order to be effective crystallization inhibitors. This study highlights the variability in the crystallization tendency of different compounds and provides insight into the mechanism of inhibition by polymeric additives. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Crystal structure, spectral and thermal properties of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane and luminescent properties of its complexes with Al(III) and Eu(III)

    NASA Astrophysics Data System (ADS)

    Khamidullina, Liliya A.; Obydennov, Konstantin L.; Slepukhin, Pavel A.; Puzyrev, Igor S.

    2016-12-01

    Describing the crystal structure, packing, FT-IR, UV-Vis and NMR spectra and thermal properties of new polydentate O-ligand based on aryl-β-diketone moieties connected by ethylene glycol spacer is the subject of this article. The results of IR, UV-Vis and 1H NMR spectroscopy as well X-ray crystallography of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane (BTFPE) indicate that the compound exists in solution and in solid as enol. The crystal structure analysis shows that BTFPE has C2/c group of the monoclinic system. Typical S(6) intramolecular hydrogen bond occurs in each 1,3-diketo moiety. This bond is asymmetric and the H atom is closest to the O atom adjacent to the phenyl ring. The packing of the crystal is sustained by numerous Csbnd H⋯O, Osbnd H⋯F, Csbnd H⋯F interactions. In the crystal, supramolecular zig-zag chains are formed along the c-axis. Short contacts interconnect the molecules into a two-dimensional layered structure wherein each molecule is node between chains. According to the thermal investigation this compound is stable up to 200 °C in air atmosphere, above this temperature it decomposes. Photoluminescent properties of aluminum(III) and europium(III) complexes of BTFPE were evaluated in chloroform solution and in the solid state. Aluminum complex of BTFPE shows blue luminescence with maximum at 445 nm. Europium complex exhibits intense red color luminescence at 613 nm from central Eu(III) ion through the excitation of the ligand.

  12. Band Structure Engineering by Substitutional Doping in Solid-State Solutions of [5-Me-PLY(O,O)]2B(1-x)Be(x) Radical Crystals.

    PubMed

    Bag, Pradip; Itkis, Mikhail E; Stekovic, Dejan; Pal, Sushanta K; Tham, Fook S; Haddon, Robert C

    2015-08-12

    We report the substitutional doping of solid-state spiro-bis(5-methyl-1,9-oxido-phenalenyl)boron radical ([2]2B) by co-crystallization of this radical with the corresponding spiro-bis(5-methyl-1,9-oxido-phenalenyl)beryllium compound ([2]2Be). The pure compounds crystallize in different space groups ([2]2B, P1̅, Z = 2; [2]2Be, P2₁/c, Z = 4) with distinct packing arrangements, yet we are able to isolate crystals of composition [2]2B(1-x)Be(x), where x = 0-0.59. The phase transition from the P1̅ to the P2₁/c space group occurs at x = 0.1, but the conductivities of the solid solutions are enhanced and the activation energies reduced for values of x = 0-0.25. The molecular packing is driven by the relative concentration of the spin-bearing ([2]2B) and spin-free ([2]2Be) molecules in the crystals, and the extended Hückel theory band structures show that the progressive incorporation of spin-free [2]2Be in the lattice of the [2]2B radical (overall bandwidth, W = 1.4 eV, in the pure compound) leads to very strong narrowing of the bandwidth, which reaches a minimum at [2]2Be (W = 0.3 eV). The results provide a graphic picture of the structural transformations undergone by the lattice, and at certain compositions we are able to identify distinct structures for the [2]2B and [2]2Be molecules in a single crystalline phase.

  13. The Crystal Structure of Oxaliplatin: A Case of Overlooked Pseudo Symmetry.

    PubMed

    Johnstone, Timothy C

    2014-01-08

    The crystal structure of the anticancer drug oxaliplatin, [Pt( R,R- DACH)(oxalate)] (DACH = diaminocyclohexane), was first reported in the non-centrosymmetric space group P2 1 , confirming the sole presence of the R , R enantiomer of the DACH ligand [M. A. Bruck et al. , Inorg. Chim. Acta , 92 (1984) 279-284]. It was later proposed that the crystal structure is better described in the centrosymmetric space group P2 1 /m, signifying the presence of the compound as a racemic mixture [A. S. Abu-Surrah et al. , Polyhedron , 22 (2003) 1529-1534]. Herein is presented a reinvestigation of this crystal structure, which shows that the discrepancy between the two proposed space group assignments arises from overlooked pseudo symmetry. The crystal structures of the synthetic precursor to oxaliplatin, Pt( R , R -DACH)I 2 , and a platinum(IV) derivative, trans -[Pt( R , R -DACH)(oxalate)(OH) 2 ], were also determined, and the absolute configuration of the DACH ligand in each was confirmed to be R , R . A spectroscopic investigation of the optical rotatory dispersion (ORD) of the oxaliplatin crystals was carried out to further confirm the lack of the true crystallographic mirror plane required for a P2 1 /m solution. The ORD was theoretically simulated, in one instance, by applying the Kramers-Kronig transform to the computed circular dichroism spectrum and was found to corroborate the spectroscopic and crystallographic findings. Finally, a brief discussion is given of the importance of discussing the details of nuanced crystal structures and of providing evidence in addition to X-ray structure determination if chemically unexpected results are obtained.

  14. The Crystal Structure of Oxaliplatin: A Case of Overlooked Pseudo Symmetry

    PubMed Central

    Johnstone, Timothy C.

    2013-01-01

    The crystal structure of the anticancer drug oxaliplatin, [Pt(R,R-DACH)(oxalate)] (DACH = diaminocyclohexane), was first reported in the non-centrosymmetric space group P21, confirming the sole presence of the R,R enantiomer of the DACH ligand [M. A. Bruck et al., Inorg. Chim. Acta, 92 (1984) 279–284]. It was later proposed that the crystal structure is better described in the centrosymmetric space group P21/m, signifying the presence of the compound as a racemic mixture [A. S. Abu-Surrah et al., Polyhedron, 22 (2003) 1529–1534]. Herein is presented a reinvestigation of this crystal structure, which shows that the discrepancy between the two proposed space group assignments arises from overlooked pseudo symmetry. The crystal structures of the synthetic precursor to oxaliplatin, Pt(R,R-DACH)I2, and a platinum(IV) derivative, trans-[Pt(R,R-DACH)(oxalate)(OH)2], were also determined, and the absolute configuration of the DACH ligand in each was confirmed to be R,R. A spectroscopic investigation of the optical rotatory dispersion (ORD) of the oxaliplatin crystals was carried out to further confirm the lack of the true crystallographic mirror plane required for a P21/m solution. The ORD was theoretically simulated, in one instance, by applying the Kramers-Kronig transform to the computed circular dichroism spectrum and was found to corroborate the spectroscopic and crystallographic findings. Finally, a brief discussion is given of the importance of discussing the details of nuanced crystal structures and of providing evidence in addition to X-ray structure determination if chemically unexpected results are obtained. PMID:24415827

  15. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.

    PubMed

    Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong

    2008-12-01

    We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).

  16. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.

    2016-03-16

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase fromBifidobacterium bifidumS17 (BbGal43A) are described.BbGal43A was successfully produced and showed activitymore » towards synthetic galactosides.BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences betweenBbGal43A and its characterized homologues.« less

  17. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance.

    PubMed

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien

    2017-03-15

    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  18. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  19. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  20. Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    2011-01-01

    The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.

  1. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  2. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    DOEpatents

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  3. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  4. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms.

    PubMed

    Yoshida, Hisashi; Kawai, Fumihiro; Obayashi, Eiji; Akashi, Satoko; Roper, David I; Tame, Jeremy R H; Park, Sam-Yong

    2012-10-26

    Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The growth rates of KDP crystals in solutions with potassium permanganate additives

    NASA Astrophysics Data System (ADS)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  6. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  7. Use of dye to distinguish salt and protein crystals under microcrystallization conditions

    NASA Technical Reports Server (NTRS)

    Cosenza, Larry (Inventor); Gester, Thomas E. (Inventor); Bray, Terry L. (Inventor); DeLucas, Lawrence J. (Inventor); Hamrick, David T. (Inventor)

    2007-01-01

    An improved method of screening crystal growth conditions is provided wherein molecules are crystallized from solutions containing dyes. These dyes are selectively incorporated or associated with crystals of particular character thereby rendering crystals of particular character colored and improving detection of the dyed crystals. A preferred method involves use of dyes in protein solutions overlayed by oil. Use of oil allows the use of small volumes of solution and facilitates the screening of large numbers of crystallization conditions in arrays using automated devices that dispense appropriate solutions to generate crystallization trials, overlay crystallization trials with an oil, provide appropriate conditions conducive to crystallization and enhance detection of dyed (colored) or undyed (uncolored) crystals that result.

  8. Connectivity of glass structure. Oxygen number

    NASA Astrophysics Data System (ADS)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  9. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization.

    PubMed

    Rajalakshmi, M; Shyju, T S; Indirajith, R; Gopalakrishnan, R

    2012-02-01

    Good quality <100> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Phase diagrams and crystal growth

    NASA Astrophysics Data System (ADS)

    Venkrbec, Jan

    1980-04-01

    Phase diagrams are briefly treated as generalized property-composition relationships, with respect to crystal technology optimization. The treatment is based on mutual interaction of three systems related to semiconductors: (a) the semiconducting material systems, (b0 the data bank, (c) the system of crystallization methods. A model is proposed enabling optimatization on the path from application requirements to the desired material. Further, several examples of the selection as to the composition of LED and laser diode material are given. Some of molten-solution-zone methods are being successfully introduced for this purpose. Common features of these methods, the application of phase diagrams, and their pecularities compared with other crystallization methods are illustrated by schematic diagrams and by examples. LPE methods, particularly the steady-state LPE methods such as Woodall's ISM and Nishizawa's TDM-CVP, and the CAM-S (Crystallization Method Providing Composition Autocontrol in Situ) have been chosen as examples. Another approach of exploiting phase diagrams for optimal material selection and for determination of growth condition before experimentation through a simple calculation is presented on InP-GaP solid solutions. Ternary phase diagrams are visualized in space through calculation and constructions based on the corresponding thermodynamic models and anaglyphs. These make it easy to observe and qualitatively analyze the crystallization of every composition. Phase diagrams can be also used as a powerful tool for the deduction of new crystallization methods. Eutectic crystallization is an example of such an approach where a modified molten-solution-zone method can give a sandwich structure with an abrupt concentration change. The concentration of a component can range from 0 to 100% in the different solid phases.

  11. Preparation of optically active (2RS,3SR)-2-amino-3-hydroxy-3-phenylpropanoic acid (threo-beta-phenylserine) via optical resolutions by replacing and preferential crystallization.

    PubMed

    Shiraiwa, Tadashi; Kawashima, Yuka; Ikaritani, Atsushi; Suganuma, Yumiko; Saijoh, Reiichi

    2006-08-01

    To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1) via optical resolutions by replacing and preferential crystallization, the racemic structure of (2RS,3SR)-1 hydrochloride [(2RS,3SR)-1.HCl] was examined based on the melting point, solubility, and infrared spectrum. (2RS,3SR)-1.HCl was indicated to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. When, in optical resolution by replacing crystallization, L-phenylalanine methyl ester hydrochloride (L-2) was used as the optically active co-solute, (2R,3S)-1.HCl was preferentially crystallized from the supersaturated racemic solution; the use of D-2 as the co-solute afforded (2S,3R)-1.HCl with an optical purity of 95%. In addition, optical resolution by preferential crystallization was successfully achieved to give successively (2R,3S)- and (2S,3R)-1.HCl with optical purities of 90-92%. The (2R,3S)- and (2S,3R)-1.HCl purified by recrystallization from 1-propanol were treated with triethylamine in methanol to give optically pure (2R,3S)- and (2S,3R)-1.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegde, Raghurama P.; Fedorov, Alexander A.; Sauder, J. Michael

    Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms withZ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drivede novostructure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74more » Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ~1.0 Å wavelength, where thef'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed thatSHELXDwas capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mnetc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structurede novoor in accurately assigning surface-bound atoms.« less

  13. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  14. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel† †Electronic supplementary information (ESI) available: Synthetic and crystallographic experimental details, rheology, full crystallization and calculation details. See DOI: 10.1039/c6sc04126d Click here for additional data file.

    PubMed Central

    Foster, Jonathan A.; Damodaran, Krishna K.; Maurin, Antoine; Thompson, Hugh P. G.; Cameron, Gary J.; Bernal, Jenifer Cuesta

    2017-01-01

    We report the synthesis of a bis(urea) gelator designed to specifically mimic the chemical structure of the highly polymorphic drug substance ROY. Crystallization of ROY from toluene gels of this gelator results in the formation of the metastable red form instead of the thermodynamic yellow polymorph. In contrast, all other gels and solution control experiments give the yellow form. Conformational and crystal structure prediction methods have been used to propose the structure of the gel and show that the templation of the red form by the targeted gel results from conformational matching of the gelator to the ROY substrate coupled with overgrowth of ROY onto the local periodic structure of the gel fibres. PMID:28451150

  15. Superconductivity at 5 K in quasi-one-dimensional Cr-based KCr3As3 single crystals

    NASA Astrophysics Data System (ADS)

    Mu, Qing-Ge; Ruan, Bin-Bin; Pan, Bo-Jin; Liu, Tong; Yu, Jia; Zhao, Kang; Chen, Gen-Fu; Ren, Zhi-An

    2017-10-01

    Recently a new family of Cr-based A2Cr3As3 (A =K , Rb, Cs) superconductors was reported, which own a rare quasi-one-dimensional (Q1D) crystal structure with infinite (Cr3As3) 2 - chains and exhibit intriguing superconducting characteristics possibly derived from spin-triplet electron pairing. The crystal structure of A2Cr3As3 is actually a slight variation of the hexagonal TlFe3Te3 prototype, although they have different lattice symmetry. Here we report superconductivity in a 133-type KCr3As3 compound that belongs to the latter structure. The single crystals of KCr3As3 were prepared by the deintercalation of K ions from K2Cr3As3 crystals which were grown from a high-temperature solution growth method, and it owns a centrosymmetric lattice in contrast to the noncentrosymmetric K2Cr3As3 . After annealing at a moderate temperature, the KCr3As3 crystals show superconductivity at 5 K revealed by electrical resistivity, magnetic susceptibility, and heat capacity measurements. The discovery of this KCr3As3 superconductor provides a different structural instance to study the exotic superconductivity in these Q1D Cr-based superconductors.

  16. Influence of lignin on morphology, structure and thermal behavior of polylactic acid-based biocomposites

    NASA Astrophysics Data System (ADS)

    Canetti, Maurizio; Cacciamani, Adriana; Bertini, Fabio

    2016-05-01

    Polylactic acid (PLA) is a thermoplastic biodegradable polymer that can be made from annually renewable resources. Lignin is a natural amorphous polyphenolic macromolecule inexpensive and easily available. In the present study PLA and acetylated lignin biocomposites were prepared by casting from chloroform solution. PLA can crystallize from the melt in the α and α' forms, depending on the adopted crystallization conditions. The presence of the lignin in the biocomposites can interfere with the crystal formation process. Isothermal crystallizations were performed at different temperatures, the presence of lignin causes an increase of the time of crystallization, while the overall crystallization rate and the spherulite radial growth rate decrease with enhancing the lignin content in the biocomposites.

  17. Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: L-valine hydrochloride.

    PubMed

    Kirubavathi, K; Selvaraju, K; Valluvan, R; Vijayan, N; Kumararaman, S

    2008-04-01

    Single crystals of a new semiorganic nonlinear optical (NLO) material, L-valine hydrochloride (LVHCl), having dimensions up to 20 mm x 6 mm x 4 mm have been grown by slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to the monoclinic system. The functional groups presented in the crystal were confirmed by Fourier transform infrared (FTIR) technique. Optical transmission spectrum shows very low absorption in the entire visible region. Differential thermal and thermogravimetric analyses confirmed that the crystal is stable up to 211 degrees C. The powder second harmonic generation (SHG) efficiency of LVHCl is 1.7 times efficient as potassium dihydrogen phosphate (KDP).

  18. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  19. Analysis of crystallization data in the Protein Data Bank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein wasmore » investigated and the possibility of predicting whether a protein will crystallize was explored.« less

  20. Growth, piezoelectric study and particle size dependent SHG of an 80 mm long SR grown imidazolium l-tartrate single crystals

    NASA Astrophysics Data System (ADS)

    Jauhar, RO MU; Era, Paavai; Murugakoothan, P.

    2018-05-01

    Single crystal of imidazolium l-tartrate (IMLT), an organic nonlinear optical material, was successfully grown by slow evaporation solution growth technique (SEST) and Sankaranarayanan - Ramasamy (SR) method. The crystal structure and its lattice parameters were confirmed by single crystal X-ray diffraction study. The IMLT crystal belongs to monoclinic crystal system having a = 7.579(6) Å, b = 6.911(4) Å, c = 8.9281(5) Å, β = 101.45(8)°, volume, V = 458.33 Å3. The d33 coefficient found from the the piezoelectric study is 23 pC/N. The relative second harmonic generation efficiency of IMLT was found to be 3.16 times that of reference KDP material.

  1. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  2. A glycoprotein from mammary gland secreted during involution promotes apoptosis: Structural and biological studies.

    PubMed

    Chaudhary, Anshul; Kumar, Vinod; Singh, Prashant K; Sharma, Pradeep; Bairagya, Hridoy R; Kaur, Punit; Sharma, Sujata; Chauhan, Shyam S; Singh, Tej P

    2018-04-15

    Secretory signalling glycoprotein (SPX-40) from mammary gland is highly expressed during involution. This protein is involved in a programmed cell death during tissue remodelling which occurs at the end of lactation. SPX-40 was isolated and purified from buffalo (SPB-40) from the samples obtained during involution. One solution of SPB-40 was made by dissolving it in buffer containing 25 mM Tris-HCl and 50 mM NaCl at pH 8.0. Another solution was made by adding 25% ethanol to the above solution. The biological effects of SPB-40 dissolved in above two solutions were evaluated on MCF-7 breast cancer cell lines. Free SPB-40 indicated significant pro-apoptotic effects while ethanol exposed SPB-40 showed considerably reduced effects on the apoptosis. SPB-40 was crystallized in the native state. The crystals of SPB-40 were soaked in four separate solutions containing 25% acetone, 25% ethanol, 25% butanol and 25% MPD. Four separate data sets were collected and their structures were determined at high resolutions. In all the four structures, the molecules of acetone, ethanol, butanol and MPD respectively were observed in the hydrophobic binding pocket of SPB-40. As a result of which, the conformation of Trp78 was altered thus blocking the binding site in SPB-40 leading to the loss of activity. Copyright © 2018. Published by Elsevier Inc.

  3. Study of structural and optical properties of YAG and Nd:YAG single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  4. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  5. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less

  6. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.

    2014-01-01

    The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.

  7. Solution-mediated growth of NBA-ZSM-5 crystals retarded by gel entrapment

    NASA Astrophysics Data System (ADS)

    Aguilar-Mamani, Wilson; Akhtar, Farid; Hedlund, Jonas; Mouzon, Johanne

    2018-04-01

    The synthesis of flat tablet-shaped ZSM-5 crystals from a gel using metakaolin as aluminosilicate source and n-butyl amine as structure directing agent was investigated. The evolution inside the solid phase was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry and mass spectrometry. A kinetic study indicated that the nucleation of the majority crystals occurred concurrently with the formation of the gel upon heating the starting liquid suspension. Microstructural evidences undeniably showed that the gel precipitated on ZSM-5 crystals and mineral impurities originating from kaolin. As a result, crystal growth was retarded by gel entrapment, as indicated by the configuration and morphology of the embedded crystals. The results presented herein are harmonized with a solution-mediated nucleation and growth mechanism. Our observations differ from the autocatalytic model that suggests that the nuclei rest inside the gel until released when the gel is consumed. Our results show instead that it is crystals that formed in an early stage before entrapment inside the gel that rest inside the gel until exposed at the gel surface. These results illustrate the limitation of the classical method used in the field to determine nucleation profiles when the crystals become trapped inside the gel.

  8. Efficient modeling of photonic crystals with local Hermite polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, C. R.; Li, Zehao; Albrecht, J. D.

    2014-04-21

    Developing compact algorithms for accurate electrodynamic calculations with minimal computational cost is an active area of research given the increasing complexity in the design of electromagnetic composite structures such as photonic crystals, metamaterials, optical interconnects, and on-chip routing. We show that electric and magnetic (EM) fields can be calculated using scalar Hermite interpolation polynomials as the numerical basis functions without having to invoke edge-based vector finite elements to suppress spurious solutions or to satisfy boundary conditions. This approach offers several fundamental advantages as evidenced through band structure solutions for periodic systems and through waveguide analysis. Compared with reciprocal space (planemore » wave expansion) methods for periodic systems, advantages are shown in computational costs, the ability to capture spatial complexity in the dielectric distributions, the demonstration of numerical convergence with scaling, and variational eigenfunctions free of numerical artifacts that arise from mixed-order real space basis sets or the inherent aberrations from transforming reciprocal space solutions of finite expansions. The photonic band structure of a simple crystal is used as a benchmark comparison and the ability to capture the effects of spatially complex dielectric distributions is treated using a complex pattern with highly irregular features that would stress spatial transform limits. This general method is applicable to a broad class of physical systems, e.g., to semiconducting lasers which require simultaneous modeling of transitions in quantum wells or dots together with EM cavity calculations, to modeling plasmonic structures in the presence of EM field emissions, and to on-chip propagation within monolithic integrated circuits.« less

  9. Tetravalent Ce in the Nitrate-Decorated Hexanuclear Cluster [Ce 6 (μ 3 -O) 4 (μ 3 -OH) 4 ] 12+ : A Structural End Point for Ceria Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, Shanna L.; Antonio, Mark R.; Soderholm, L.

    2016-03-17

    We describe the synthesis and characterization of three glycine-stabilized hexanuclear Cely cluster compounds, each containing the [Ce-6(mu(3)-O)(4)(mu(3)-OH)(4)](12+) core structure. Crystallized from aqueous nitrate solutions with pH < 0, the core cluster structures exhibit variable decoration by nitrate, glycine, and water ligands depending on solution conditions, where increased nitrate and glycine decoration of the cluster core was observed for crystals synthesized at high Ce and nitrate concentrations. No other crystalline products were observed using this synthetic route. In addition to confirming the tetravalent oxidation state of cerium in one of the reported clusters, cyclic voltammetry also indicates that Ce-IV is reducedmore » at similar to+0.60 V vs Ag/AgCl (3 M NaCl), which is significantly less than the standard electrode potential. This large decrease in the Ce-IV/Ce-III reduction potential suggests that Ce-IV is significantly stabilized relative to Ce-III within the examined cluster. These compounds are discussed in terms of their importance as small, end member, ceric oxide nanoparticles. Single-crystal structural solutions, together with voltammetry and electrolysis data, permit the decoupling of Ce-III defects and substoichiometry. In addition, Ce-Ce distances can be used to determine an "effective" CeO2-x lattice constant, providing a simple method for comparing literature descriptions. The results are discussed in terms of their potential implications for the mechanisms by which nanoparticle ceria serve as catalysts and oxygen-storage materials.« less

  10. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    PubMed

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  11. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth" is often historically used to describe these microgravity experiments. This is somewhat inaccurate as the field involves the study of many varied biological molecules including viruses, proteins, DNA, RNA and complexes of those structures. For this reason we use the term macromolecular crystal growth. In this chapter we review a series of diagnostic microgravity crystal growth experiments carried out principally using the European Space Agency (ESA) Advanced Protein Crystallization Facility (APCF). We also review related research, both experimental and theoretical, on the aspects of microgravity fluid physics that affect microgravity protein crystal growth. Our experiments have revealed some surprises that were not initially expected. We discuss them here in the context of practical lessons learnt and how to maximize the limited microgravity opportunities available.

  12. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    PubMed Central

    Dumée, Ludovic F.; Lemoine, Jean-Baptiste; Ancel, Alice; Hameed, Nishar; He, Li; Kong, Lingxue

    2015-01-01

    The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation. PMID:28347094

  13. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    PubMed

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  15. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fei; Zhang, Shujun; Yang, Tiannan

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less

  16. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    DOE PAGES

    Li, Fei; Zhang, Shujun; Yang, Tiannan; ...

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less

  17. In Situ TEM and AFM Investigation of Morphological Controls during the Growth of Single Crystal BaWO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lili; Zhang, Shuai; Bowden, Mark E.

    Barium tungstate (BaWO 4) is a widely investigated inorganic optical material due to its attractive emission properties. Because those properties strongly depend on crystal structure and morphology, numerous approaches to controlling growth have been pursued. However, an understanding of the growth mechanisms that lead to the wide range of morphologies obtained to date is largely lacking, and most attempts to develop that understanding have been based on post-growth analyses. Significantly, such analyses have led to the conclusion that certain BaWO 4 crystal morphologies result from a nonclassical growth process of oriented attachment. In this work, we systematically varied the morphologymore » of BaWO 4 crystals by adjusting the relative concentrations of solute, water, and ethanol. We then explored the growth mechanism leading to the observed range of morphologies through in situ TEM and in situ AFM. We find that even the most complex BaWO 4 morphologies occur through purely classical growth mechanisms largely controlled by the content of solute and ethanol. The latter acts as an impurity to poison growth at low concentrations and low solute levels, but leads to development of growth instabilities and eventual dendritic growth at high alcohol and moderate solute concentrations by driving up the supersaturation. These findings also highlight the necessity of in situ experiments to interpret ex situ observations of crystal growth and decipher the controlling mechanisms.« less

  18. Crystal structure of YbCu6In6 and mixed valence behavior of Yb in YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution.

    PubMed

    Subbarao, Udumula; Peter, Sebastian C

    2012-06-04

    High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, P., E-mail: pbaraho@ucm.cl; Galdámez, A., E-mail: agaldamez@uchile.cl; López-Vergara, F.

    CuTi{sub 2−x}M{sub x}S{sub 4} (M=Fe, Mn, Co; x=0.3, 0.5) and CuCr{sub 2−x}Ti{sub x}Se{sub 4} (x=0.3, 0.5, 0.7) chalcospinels were synthesized by conventional solid-state reactions. Their crystal structures were determined by single-crystal X-ray diffraction. All of the phases crystallized in cubic spinel-type structures (space group, Fd3{sup ¯}m). For all of the chalcospinel compounds, the edge-length distortion parameter (ELD) indicated that the most distorted polyhedron was Q[(Ti,M){sub 3}Cu], which displayed an ∼8% distortion from an ideal tetrahedron structure (Q=S or Se). The Mn-based thiospinel CuMn{sub 0.3}Ti{sub 1.7}S{sub 4} is paramagnetic, whereas the Fe-based thiospinels (CuTi{sub 2−x}Fe{sub x}S{sub 4}; x=0.3 and 0.7) aremore » strongly antiferromagnetic due to their spin-glass states. The magnetic susceptibility measurements indicated ferromagnetic behavior for the selenospinels (CuCr{sub 2−x}Ti{sub x}Se{sub 4}; x=0.3, 0.5 and 0.7). - Graphical abstract: View along [1 0 0] of CuCr{sub 2−x}Ti{sub x}Se{sub 4} crystal structure showing tetrahedral and octahedral units. To the right, experimental X-ray powder diffraction pattern of CuCr{sub 1.7}Ti{sub 0.3}Se{sub 4} (top) in compared (in a like-mirror representation) to a simulated X-ray pattern from single-crystal data (bottom). - Highlights: • Chalcogenides belong to the family of compounds spinel-type. • Resolved single crystals of the solid solutions have space group Fd-3m. • The distortion of the tetrahedral and octahedral volume were calculated. • These solid solutions shows a ferromagnetic or spin-glass behavior.« less

  20. Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering.

    PubMed

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-02-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 A, a long axis of 110 A, and a short axis of 85 A. After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 A, a long axis of 80 A, and a short axis of 55 A. In contrast to the cylindrical crystal structure with a height of 40 A and a diameter of 68 A, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59-consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules.

  1. Determination of the Topological Shape of Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacteria in the Detergent Solution by Small-Angle X-Ray Scattering

    PubMed Central

    Hong, Xinguo; Weng, Yu-Xiang; Li, Ming

    2004-01-01

    The topological shape of the integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria Rhodobacter spheroides 2.4.1 in detergent solution has been determined from synchrotron small-angle X-ray scattering data using direct curve-fitting by the ellipsoid, ab initio shape determination methods of simulated annealing algorithm and multipole expansion, respectively. The results indicate that the LH2 protein in aqueous solution is encapsulated by a monolayered detergent shell. The detergent-stabilized structure has the shape of an oblate plate, with a thickness of 40 Å, a long axis of 110 Å, and a short axis of 85 Å . After correction for the detergent shell, the shape of the LH2 core is also an oblate plate with a height of 40 Å, a long axis of 80 Å, and a short axis of 55 Å. In contrast to the cylindrical crystal structure with a height of 40 Å and a diameter of 68 Å, the molecular shape of the LH2 complex in detergent solution clearly deviates from the ringlike crystal structure, with an eccentricity found to be 0.59—consistent with the result of single molecular spectroscopy study of the isolated single LH2 molecules. PMID:14747343

  2. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    NASA Astrophysics Data System (ADS)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  3. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    PubMed

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate anion is bound tightly between the two domains of the protein and interacts with conserved residues and a number of helix dipoles.

  4. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement

    PubMed Central

    Cantaert, Bram; Beniash, Elia

    2013-01-01

    Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP. PMID:24409343

  5. The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement.

    PubMed

    Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C

    2013-12-28

    Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.

  6. The VCD pattern of the ν(C=O) bands in isoindolinones.

    PubMed

    Rode, Joanna Ewa; Lyczko, Krzysztof; Jawiczuk, Magdalena; Kawęcki, Robert; Stańczyk, Wojciech; Jaglińska, Agnieszka; Dobrowolski, Jan Cz

    2018-05-18

    The IR and VCD spectra of both enantiomers of Me, iPr, nBu, Ph and CH2Ph substituted isoindolinones in solution and KBr pellets were measured and interpreted with DFT calculations. The spectra in solution revealed no important differences in the C=O stretching vibration region while the interpretation of very distinct spectra taken in pellets required determining the crystal structures. The studied compounds crystallized in the P212121 (Me, iPr, CH2Ph), P31 (nBu), and P21 (Ph) space groups. We found that the quality of simulated spectra strongly depends on the substituent, the structure of the molecular cluster assumed, basis set, and use of the dispersion correction. The IR spectra can be reproduced well based on the simplest linear arrangement of hydrogen-bonded chains mimicking the molecular arrangement in the crystals. We found no common approach to reproduce all the registered VCD spectra in the crystal phase. For the Me and nBu isoindolinones, the VCD pattern was the best reproduced by full optimization of the selected large molecular clusters. For iPr, Ph and CH2Ph derivatives optimizing only the position of H-atoms in a fragment frozen as in the crystal provides the best results. Such an approach can reduce the computation time from months to one week. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New Form Discovery for the Analgesics Flurbiprofen and Sulindac Facilitated by Polymer-Induced Heteronucleation

    PubMed Central

    GRZESIAK, ADAM L.; MATZGER, ADAM J.

    2008-01-01

    The selection and discovery of new crystalline forms is a longstanding issue in solid-state chemistry of critical importance because of the effect molecular packing arrangement exerts on materials properties. Polymer-induced heteronucleation has recently been developed as a powerful approach to discover and control the production of crystal modifications based on the insoluble polymer heteronucleant added to the crystallization solution. The selective nucleation and discovery of new crystal forms of the well-studied pharmaceuticals flurbiprofen (FBP) and sulindac (SUL) has been achieved utilizing this approach. For the first time, FBP form III was produced in bulk quantities and its crystal structure was also determined. Furthermore, a novel 3:2 FBP:H2O phase was discovered that nucleates selectively from only a few polymers. Crystallization of SUL in the presence of insoluble polymers facilitated the growth of form I single crystals suitable for structure determination. Additionally, a new SUL polymorph (form IV) was discovered by this method. The crystal forms of FBP and SUL are characterized by Raman and FTIR spectroscopies, X-ray diffraction, and differential scanning calorimetry. PMID:17567888

  8. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  9. Polymorphs and polymorphic cocrystals of temozolomide.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  10. Solution structure of the isolated Pelle death domain.

    PubMed

    Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J

    2005-07-18

    The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.

  11. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    NASA Technical Reports Server (NTRS)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin microfilament system to be restructured in a controlled manner via polymerization, depolymerization, severing, cross-linking, and anchorage. The structure the semicrystalline state of profilin:actin will challenge and validate current models of muscle contraction and cell motility. The methodology and theory under development will be easily extendable to other systems.

  12. Structure modeling and manufacturing PCFs for the range of 2-25 μm

    NASA Astrophysics Data System (ADS)

    Lvov, Alexandr; Salimgareev, Dmitrii; Korsakov, Michail; Korsakov, Alexandr; Zhukova, Liya

    2017-11-01

    Photostable and flexible materials transparent at the wide spectral range are necessary for the development of optical fiber units. Solid solutions of silver and monadic thallium halides are the most suitable crystal media for this purpose. The goal of our research was the search of optimum structure for the fibers with a single mode operation and a rather large core diameter. We modelled fiber structures (solid-core, hollow-core, active-core PCF) with various ratio of inserts diameters and increments between the inserts, basing on two crystal systems: AgCl-AgBr and AgBr-TlI. Then we chose the single mode fiber structure and manufactured it by means of extrusion.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  14. Crystal structure of Escherichia coli L-arabinose isomerase (ECAI), the putative target of biological tagatose production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R

    2006-07-07

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  15. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  16. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less

  17. Crystal pathologies in macromolecular crystallography.

    PubMed

    Dauter, Zbigniew; Jaskólski, Mariusz

    Macromolecules, such as proteins or nucleic acids, form crystals with a large volume fraction of water, ~50% on average. Apart from typical physical defects and rather trivial poor quality problems, macromolecular crystals, as essentially any crystals, can also suffer from several kinds of pathologies, in which everything seems to be perfect, except that from the structural point of view the interpretation may be very difficult, sometimes even impossible. A frequent nuisance is pseudosymmetry, or non-crystallographic symmetry (NCS), which is particularly nasty when it has translational character. Lattice-translocation defects, also called order-disorder twinning (OD-twinning), occur when molecules are packed regularly in layers but the layers are stacked (without rotation) in two (or more) discrete modes, with a unique translocation vector. Crystal twinning arises when twin domains have different orientations, incompatible with the symmetry of the crystal structure. There are also crystals in which the periodic (lattice) order is broken or absent altogether. When the strict short-range translational order from one unit cell to the next is lost but the long-range order is restored by a periodic modulation, we have a modulated crystal structure. In quasicrystals (not observed for macromolecules yet), the periodic order (in 3D space) is lost completely and the diffraction pattern (which is still discrete) cannot be even indexed using three hkl indices. In addition, there are other physical defects and phenomena (such as high mosaicity, diffraction anisotropy, diffuse scattering, etc.) which make diffraction data processing and structure solution difficult or even impossible.

  18. Functionalized coronenes: synthesis, solid structure, and properties.

    PubMed

    Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun

    2012-12-21

    The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.

  19. RBAP, a rhodamine B-based derivative: synthesis, crystal structure analysis, molecular simulation, and its application as a selective fluorescent chemical sensor for Sn2+.

    PubMed

    Bao, Xiaofeng; Cao, Xiaowei; Nie, Xuemei; Jin, Yanyan; Zhou, Baojing

    2014-06-11

    A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job's plot suggested the RBAP formed a 1:1 complex with Sn2+.

  20. Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.

    2016-05-23

    2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less

  1. Solid-state reaction kinetics and optical studies of cadmium doped magnesium hydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Verma, Madhu; Gupta, Rashmi; Singh, Harjinder; Bamzai, K. K.

    2018-04-01

    The growth of cadmium doped magnesium hydrogen phosphate was successfully carried out by using room temperature solution technique i.e., gel encapsulation technique. Grown crystals were confirmed by single crystal X-ray diffraction (XRD). The structure of the grown crystal belongs to orthorhombic crystal system and crystallizes in centrosymmetric space group. Kinetics of the decomposition of the grown crystals were studied by non-isothermal analysis. Thermo gravimetric / differential thermo analytical (TG/DTA) studies revealed that the grown crystal is stable upto 119 °C. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters. The optical studies shows that the grown crystals possess wide transmittance in the visible region and significant optical band gap of 5.5ev with cut off wavelength of 260 nm.

  2. A solid solution series of atacamite type Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bette, Sebastian; Dinnebier, Robert E.; Röder, Christian

    2015-08-15

    For the first time a complete solid solution series Ni{sub 2x}Mg{sub 2−2x}Cl(OH){sub 3} of an atacamite type alkaline main group metal chloride, Mg{sub 2}Cl(OH){sub 3}, and a transition group metal chloride, Ni{sub 2}Cl(OH){sub 3}, was prepared and characterized by chemical and thermal analysis as well as by Raman and IR spectroscopy, and high resolution laboratory X-ray powder diffraction. All members of the solid solution series crystallize in space group Pnam (62). The main building units of these crystal structures are distorted, edge-linked Ni/MgO{sub 4}Cl{sub 2} and Ni/MgO{sub 5}Cl octahedra. The distribution of Ni{sup 2+}- and Mg{sup 2+}-ions among these twomore » metal-sites within the solid solution series is discussed in detail. The crystallization of the solid solution phases occurs via an intermediate solid solution series, (Ni/Mg)Cl{sub 2x}(OH){sub 2−2x}, with variable Cl: OH ratio up to the 1:3 ratio according to the formula Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}. For one isolated intermediate solid solution member, Ni{sub 0.70}Mg{sub 0.30}Cl{sub 0.58}(OH){sub 1.42}, the formation and crystal structure is presented as well. - Graphical abstract: For the first time a complete solid solution series, Ni{sub 2x}Mg{sub 2−2x} Cl(OH){sub 3}, was synthesized and characterized. Structure solution by revealed that Ni{sup 2+} prefers to occupy the Jahn–Teller-like distorted hole, out of two available cation sites. Substitution of Ni{sup 2+} by Mg{sup 2+} in atacamite type Ni{sub 2}Cl(OH){sub 3} results in systematic band shifts in Raman and IR spectra as well as in systematic changes in thermal properties. The α-polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+} and other divalent transition metal ions, as described in literature, were identified as separate compounds. - Highlights: • First synthesis of solid solution series between main and transition metal chloride. • Ni{sup 2+} prefers to occupy Jahn–Teller-like distorted octahedral holes. • Substitution of Ni{sup 2+} by Mg{sup 2+} results in systematic Raman and IR band shifts. • α-Polymorphs M{sub 2}Cl(OH){sub 3} with M=Mg{sup 2+}, Ni{sup 2+}, … as described in literature do not exist.« less

  3. Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures

    NASA Astrophysics Data System (ADS)

    Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.

  4. Human immunoglobulin E flexes between acutely bent and extended conformations

    PubMed Central

    Keeble, Anthony H; Wright, Michael; Cain, Katharine; Hailu, Hanna; Oxbrow, Amanda; Delgado, Jean; Shuttleworth, Lindsay K; Kao, Michael W-P; McDonnell, James M; Beavil, Andrew J; Henry, Alistair J; Sutton, Brian J

    2014-01-01

    Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cε2 domain pair folded back onto the Cε3-Cε4 domains, but is the molecule exclusively bent or can the Cε2 domains adopt extended conformations and even “flip” from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, SPR and FRET analyses, that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B cell receptor and as a therapeutic target in allergic disease. PMID:24632569

  5. Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

    DOE PAGES

    Huo, Lu; Davis, Ian; Liu, Fange; ...

    2015-01-07

    Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less

  6. Determining crystal structures through crowdsourcing and coursework

    NASA Astrophysics Data System (ADS)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  7. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-09-16

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  8. Synthesis and crystal structure analysis of uranyl triple acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepov, Vladislav V., E-mail: vladislavklepov@gmail.com; Department of Chemistry, Samara National Research University, 443086 Samara; Serezhkina, Larisa B.

    2016-12-15

    Single crystals of triple acetates NaR[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O (R=Mg, Co, Ni, Zn), well-known for their use as reagents for sodium determination, were grown from aqueous solutions and their structural and spectroscopic properties were studied. Crystal structures of the mentioned phases are based upon (Na[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}){sup 2–} clusters and [R(H{sub 2}O){sub 6}]{sup 2+} aqua-complexes. The cooling of a single crystal of NaMg[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 3}·6H{sub 2}O from 300 to 100 K leads to a phase transition from trigonal to monoclinic crystal system. Intermolecular interactions between the structural units and their mutual packing were studiedmore » and compared from the point of view of the stereoatomic model of crystal structures based on Voronoi-Dirichlet tessellation. Using this method we compared the crystal structures of the triple acetates with Na[UO{sub 2}(CH{sub 3}COO){sub 3}] and [R(H{sub 2}O){sub 6}][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} and proposed reasons of triple acetates stability. Infrared and Raman spectra were collected and their bands were assigned. - Graphical abstract: Single crystals of uranium based triple acetates, analytical reagents for sodium determination, were synthesized and structurally, spectroscopically and topologically characterized. The structures were compared with the structures of compounds from preceding families [M(H{sub 2}O){sub 6})][UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2} (M = Mg, Co, Ni, Zn) and Na[UO{sub 2}(CH{sub 3}COO){sub 3}]. Analysis was performed with the method of molecular Voronoi-Dirichlet polyhedra to reveal a large contribution of the hydrogen bonds into intermolecular interactions which can be a reason of low solubility of studied complexes.« less

  9. Effect of cationic substitution on the double-well hydrogen-bond potential in [K1-x(NH4)x]3H(SO4)2 proton conductors: a single-crystal neutron diffraction study.

    PubMed

    Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P

    2017-10-01

    The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.

  10. The growth and perfection of β-cyclotetramethylene-tetranitramine (HMX) studied by laboratory and synchrotron X-ray topography

    NASA Astrophysics Data System (ADS)

    Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.

    2017-10-01

    An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.

  11. The statistical kinematical theory of X-ray diffraction as applied to reciprocal-space mapping

    PubMed

    Nesterets; Punegov

    2000-11-01

    The statistical kinematical X-ray diffraction theory is developed to describe reciprocal-space maps (RSMs) from deformed crystals with defects of the structure. The general solutions for coherent and diffuse components of the scattered intensity in reciprocal space are derived. As an example, the explicit expressions for intensity distributions in the case of spherical defects and of a mosaic crystal were obtained. The theory takes into account the instrumental function of the triple-crystal diffractometer and can therefore be used for experimental data analysis.

  12. Solution structure of the chick TGFbeta type II receptor ligand-binding domain.

    PubMed

    Marlow, Michael S; Brown, Christopher B; Barnett, Joey V; Krezel, Andrzej M

    2003-02-28

    The transforming growth factor beta (TGFbeta) signaling pathway influences cell proliferation, immune responses, and extracellular matrix reorganization throughout the vertebrate life cycle. The signaling cascade is initiated by ligand-binding to its cognate type II receptor. Here, we present the structure of the chick type II TGFbeta receptor determined by solution NMR methods. Distance and angular constraints were derived from 15N and 13C edited NMR experiments. Torsion angle dynamics was used throughout the structure calculations and refinement. The 20 final structures were energy minimized using the generalized Born solvent model. For these 20 structures, the average backbone root-mean-square distance from the average structure is below 0.6A. The overall fold of this 109-residue domain is conserved within the superfamily of these receptors. Chick receptors fully recognize and respond to human TGFbeta ligands despite only 60% identity at the sequence level. Comparison with the human TGFbeta receptor determined by X-ray crystallography reveals different conformations in several regions. Sequence divergence and crystal packing interactions under low pH conditions are likely causes. This solution structure identifies regions were structural changes, however subtle, may occur upon ligand-binding. We also identified two very well conserved molecular surfaces. One was found to bind ligand in the crystallized human TGFbeta3:TGFbeta type II receptor complex. The other, newly identified area can be the interaction site with type I and/or type III receptors of the TGFbeta signaling complex.

  13. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS2) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS2 crystals using tungsten hexachloride (WCl6) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl6 in ethanol was drop-casted on SiO2/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS2 crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS2 single crystalline monolayer can be grown using the WCl6 precursor. Our finding shows an easier and effective approach to grow WS2 monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  14. How to assign a (3 + 1)-dimensional superspace group to an incommensurately modulated biological macromolecular crystal

    PubMed Central

    2017-01-01

    Periodic crystal diffraction is described using a three-dimensional (3D) unit cell and 3D space-group symmetry. Incommensurately modulated crystals are a subset of aperiodic crystals that need four to six dimensions to describe the observed diffraction pattern, and they have characteristic satellite reflections that are offset from the main reflections. These satellites have a non-integral relationship to the primary lattice and require q vectors for processing. Incommensurately modulated biological macromolecular crystals have been frequently observed but so far have not been solved. The authors of this article have been spearheading an initiative to determine this type of crystal structure. The first step toward structure solution is to collect the diffraction data making sure that the satellite reflections are well separated from the main reflections. Once collected they can be integrated and then scaled with appropriate software. Then the assignment of the superspace group is needed. The most common form of modulation is in only one extra direction and can be described with a (3 + 1)D superspace group. The (3 + 1)D superspace groups for chemical crystallographers are fully described in Volume C of International Tables for Crystallography. This text includes all types of crystallographic symmetry elements found in small-molecule crystals and can be difficult for structural biologists to understand and apply to their crystals. This article provides an explanation for structural biologists that includes only the subset of biological symmetry elements and demonstrates the application to a real-life example of an incommensurately modulated protein crystal. PMID:28808437

  15. Synthesis, fluorescence, TGA and crystal structure of thiazolyl-pyrazolines derived from chalcones

    NASA Astrophysics Data System (ADS)

    Suwunwong, T.; Chantrapromma, S.; Fun, H.-K.

    2015-04-01

    Thiazolyl-pyrazolines 3a-3d were synthesized in a three step procedure using chalcones as starting materials and characterized by FT-IR, UV-Vis, and 1H NMR techniques. The crystal structure of compound 3a was also determined by X-ray diffraction analysis. Compound 3a crystallized out in the orthorhombic P212121 space group with the unit cell dimensions: a = 5.2106(2) Å, b = 12.4341(5) Å, c = 33.3254(13) Å, α = β = γ = 90°, V = 2159.12(15) Å3, Z = 4, D cald = 1.372 M gm-3 and F(000) = 928. Fluorescence of 3a-3d were studied in solid state and acetonitrile solution. It was found that, these compounds exhibit the green fluorescence light (506-508 nm) in both solid and solution states. The pH stability on fluorescence property and the thermal gravimetric analysis of compound 3a were specifically carried out. It was revealed that 3a shows high thermal stability up to around 250°C and presenting high stability in various pH ranges in the acetonitrilewater matrix.

  16. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  17. Transfiguring structural, optical and dielectric properties of cadmium thiourea acetate crystal by the addition of L-threonine for laser assisted device applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rupali B.; Anis, Mohd; Hussaini, S. S.; Shirsat, Mahendra D.

    2018-03-01

    Present investigation reports the growth of pure and L-threonine (LT) doped cadmium thiourea acetate (CTA) crystals by slow solution evaporation technique followed by structural, optical and dielectric characterization studies. A bulk single crystal of LT-CTA has been grown at temperature 38 °C. The single crystal x-ray diffraction technique has been employed to confirm the structural parameters of pure and LT doped CTA crystals. The increase in optical transparency of LT-CTA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The widened optical band gap of the LT-CTA crystal is found to be 4.7 eV. Pure and doped crystals are subjected to FT-IR analysis to indicate the presence of functional groups quantitatively. Appreciable enhancement in second harmonic generation (SHG) efficiency of LT-CTA crystal with reference to parent CTA was confirmed from Kurtz-Perry SHG test (1.31 times of CTA crystal). The assertive influence of LT on electrical properties of grown crystals has been investigated in the temperature range 35 °C-120 °C. Electronic purity and the color centered photoluminescence emission nature of pure and IA-CTA crystals were justified by luminescence analysis. With the aid of single beam Z-scan analysis, the Kerr lensing nonlinearity was identified and the magnitude of TONLO parameters has been determined. The cubic susceptibility (χ3) and figure of merit (FOM) was found to be 4.81 × 10-4esu and 978.35. Results vitalize LT-CTA for laser stabilization systems.

  18. Crystal structure of cbbF from Zymomonas mobilis and its functional implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hyo-Jeong; Park, Suk-Youl; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr

    2014-02-28

    Highlights: • The crystal structure of one cbbF from Zymomonas mobilis was revealed. • Scores of residues form two secondary structures with a non-polar protruded residue. • It exists as a dimeric form in solution. - Abstract: A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the β1- and β2-strands and one mobile loop. However, FBP has another phosphate andmore » FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a β-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two β-strands of β1 and β2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.« less

  19. Electrocrystallization and Properties of Supersaturated Solid Solutions of Copper

    NASA Astrophysics Data System (ADS)

    Povetkin, V. V.; Ivanova, T. E.; Ismagilova, A. V.

    2018-03-01

    The role of the alloying element in the formation of the structure and properties of electrolytic copper alloys has been determined. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) have shown that electrochemical alloying of copper with low-melting metals leads to the formation of supersaturated solid solutions (SSS) on the cathode, crushing of the crystal structure, smoothing of the surface relief, hardening of the deposits obtained, increasing their solderability and corrosive resistance to acidic media.

  20. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  1. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    DOE PAGES

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2014-12-29

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe 3+ to activate O 2 and catecholic substrates for reaction. The inability of Fe 3+ to directly bind O 2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated in this paper using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surroundingmore » solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe 3+ species, and the anhydride-Fe 3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe 2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe 2+ intermediate that could bind O 2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Finally, structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.« less

  2. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    PubMed Central

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-01-01

    Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes. PMID:18607083

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Biralo, G. V.; Dimitrova, O. V.

    The crystal structure of the (Al,V){sub 4}(P{sub 4}O{sub 12}){sub 3} solid solution, obtained in the single-crystal form by hydrothermal synthesis in the Al(OH){sub 3}-VO{sub 2}-NaCl-H{sub 3}PO{sub 4}-H{sub 2}O system, has been solved by X-ray diffraction analysis (Xcalibur-S-CCD diffractometer, R = 0.0257): a = 13.7477(2) Angstrom-Sign , sp. gr. I 4 bar 3d, Z = 4, and {rho}{sub calcd} = 2.736 g/cm{sup 3}. It is shown that the crystal structure of the parent cubic Al{sub 4}(P{sub 4}O{sub 12}){sub 3} modification can formally be considered an archetype for the formation of double isosymmetric tetraphosphates on its basis.

  4. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochervinskii, V. V., E-mail: kochval@mail.ru; Kiselev, D. A.; Malinkovich, M. D.

    2017-03-15

    The crystallization of a copolymer from a solution at room temperature is found to lead to the formation of a metastable structure, characterized by the coexistence of ferroelectric and paraelectric phases. The fraction of the latter decreases after annealing above the Curie point. Atomic force microscopy (AFM) has revealed a difference in the surface topographies between the films contacting with air and the films contacting with a glass substrate. The microstructure of copolymer chains has been investigated by {sup 19}F NMR spectroscopy. The chain fragments with “defect” attached monomeric units are ejected to the surface. The character of the ferroelectricmore » domains formed during crystallization and their size distribution are analyzed.« less

  5. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  7. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  8. Optical study of Tm-doped solid solution (Sc0.5Y0.5)2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Shi, Jiaojiao; Liu, Bin; Zheng, Lihe; Wang, Qingguo; Tang, Huili; Liu, Junfang; Su, Liangbi; Wu, Feng; Zhao, Hengyu; He, Nuotian; Li, Na; Li, Qiu; Guo, Chao; Xu, Jun; Yang, Kejian; Xu, Xiaodong; Ryba-Romanowski, Witold; Lisiecki, Radosław; Solarz, Piotr

    2018-04-01

    Tm-doped (Sc0.5Y0.5)2SiO5 (SYSO) crystals were grown by Czochralski method. The UV-VIR-NIR absorption spectra and the near-infrared emission spectra were measured and analysed by the Judd-Ofelt approach. Temperature influence on both absorption and emission spectra has been determined from the data recorded at room temperature and 10 K. It has been found that the structural disorder resulting from dissimilar ionic radii of Sc3+ and Y3+ in the solid solution (Sc0.5Y0.5)2SiO5 crystal brings about a strong inhomogeneous broadening of Tm3+ ions spectra. However, it affects the excited state relaxation dynamics inherent to thulium-doped Y2SiO5 and Sc2SiO5 hosts weakly.

  9. Growth, structural, optical, mechanical and quantum chemical analysis of unidirectional grown bis(guanidinium) 5-sulfosalicylate (BGSSA) single crystal

    NASA Astrophysics Data System (ADS)

    Sreedevi, R.; Saravana Kumar, G.; Amarsingh Bhabu, K.; Balu, T.; Murugakoothan, P.; Rajasekaran, T. R.

    2018-02-01

    Bis(guanidinium) 5-sulfosalicylate single crystal was grown by using Sankaranarayanan-Ramasamy (SR) method from the solution of methanol and water in equimolar ratio. Good quality crystal with 50 mm length and 10 mm in diameter was grown. The grown crystal was subjected to single crystal X-ray diffraction analysis to confirm the crystal structure and it was found to be orthorhombic. UV-Vis-NIR spectroscopic study revealed that the SR method grown crystal had good optical transparency with wide optical band gap of 4.4 eV. The presence of the functional groups and modes of vibrations were identified by FTIR spectroscopy recorded in the range 4000-400 cm-1. The mechanical strength of the grown crystal was confirmed using Vickers microhardness tester by applying load from 25 g to 100 g. Density functional theory (DFT) method with B3LYP/6-31-G (d,p) level basis set was employed and hence the optimized molecular geometry, first order hyperpolarizability, dipole moment, thermodynamic functions, molecular electrostatic potential and frontier molecular orbital analysis of the grown BGSSA sample was computed and analysed.

  10. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  11. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody.

    PubMed

    Brandt, J Paul; Patapoff, Thomas W; Aragon, Sergio R

    2010-08-04

    At 150 kDa, antibodies of the IgG class are too large for their structure to be determined with current NMR methodologies. Because of hinge-region flexibility, it is difficult to obtain atomic-level structural information from the crystal, and questions regarding antibody structure and dynamics in solution remain unaddressed. Here we describe the construction of a model of a human IgG1 monoclonal antibody (trastuzumab) from the crystal structures of fragments. We use a combination of molecular-dynamics (MD) simulation, continuum hydrodynamics modeling, and experimental diffusion measurements to explore antibody behavior in aqueous solution. Hydrodynamic modeling provides a link between the atomic-level details of MD simulation and the size- and shape-dependent data provided by hydrodynamic measurements. Eight independent 40 ns MD trajectories were obtained with the AMBER program suite. The ensemble average of the computed transport properties over all of the MD trajectories agrees remarkably well with the value of the translational diffusion coefficient obtained with dynamic light scattering at 20 degrees C and 27 degrees C, and the intrinsic viscosity measured at 20 degrees C. Therefore, our MD results likely represent a realistic sampling of the conformational space that an antibody explores in aqueous solution. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Purification, crystallization and preliminary X-ray crystallographic analysis of the archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokanath, Neratur K.; Kunishima, Naoki, E-mail: kunisima@spring8.or.jp

    2006-08-01

    The archaeal phosphoglycerate mutase PH0037 from P. horikoshii OT3 has been crystallized in space group R32, with unit-cell parameters a = 155.62, c = 230.35 Å. A 2.2 Å resolution data was collected at SPring-8 beamline BL26B1. Phosphoglycerate mutases catalyze the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways. The archaeal phosphoglycerate mutase PH0037 from Pyrococcus horikoshii OT3 has been overexpressed in Escherichia coli and purified. Crystals were obtained using the oil-microbatch method at 291 K. A native data set extending to a resolution of 2.2 Å has been collected and processed in space group R32. Assuming themore » presence of a dimer in the asymmetric unit, the V{sub M} value is calculated to be 3.0 Å{sup 3} Da{sup −1}, consistent with the dynamic light-scattering experiment result, which shows a dimeric state of the protein in solution. Molecular-replacement trials using the crystal structure of Bacilllus stearothermophilus phosphoglycerate mutase as a search model did not provide a satisfactory solution, indicating substantially different structures of these two phophoglycerate mutases.« less

  13. Crystal Structure and Crystal Chemistry of Some Common REE Minerals and Nanpingite

    NASA Astrophysics Data System (ADS)

    Ni, Yunxiang

    1995-01-01

    Part I. Crystal structure and crystal chemistry of fluorocarbonate minerals. The crystal structure of bastnasite-(Ce) have been solved in P-62c and refined to R = 0.018. The structure is composed of (001) (CeF) layers interspersed with (CO_3) layers in a 1:1 ratio. The Ce atom is coordinated in rm CeO_6F_3 polyhedra. The atomic arrangement of synchysite-(Ce) has been solved and refined to R = 0.036 with a monoclinic space group C2/c. It possesses a (001) layer structure, with layers of (Ca) and (CeF) separated by layers of carbonate groups. The layers stack in a manner analogous to C2/c muscovite. Polytypism similar to the micas may exist in synchysite. The crystal structures of cordylite-(Ce) have been solved in P6 _3/mmc and refined to R = 0.023. The structure and chemical formula are different from those deduced by Oftedal. The formula is rm MBaCe_2(CO _3)_4F, where M is rm Na^+, Ca^{2+}_{1/2 }+ O_{1/2}, or any solution. The presence of (NaF) layer in the structure is the key difference from the Oftedal's structure. This redefinition of the chemical formula and crystal structure of cordylite will be proposed to IMA-CNMMN. Part II. Crystal structure and crystal chemistry of monazite-xenotime series. Monazite is monoclinic, P2 _1/n, and xenotime is isostructural with zircon (I4_1/amd). Both atomic arrangements are based on (001) chains of intervening phosphate tetrahedra and RE polyhedra, with a REO_8 polyhedron in xenotime that accommodates HRE (Tb - Lu) and a REO_9 polyhedron in monazite that preferentially incorporates LRE (La - Gd). As the structure "transforms" from xenotime to monazite, the crystallographic properties are comparable along the (001) chains, with structural adjustments of 2.2 A along (010) to accommodate the different size RE atoms. Part III. Crystal structure of nanpingite-2M _2, the Cs end-member of muscovite. The crystal structure of nanpingite has been refined to R = 0.058. Compared to K^+ in muscovite, the largest interlayer Cs^+ in nanpingite increases (001) separation between adjacent 2:1 layers, but has little effect on the dimensions in (001). The existence of rare 2M_2 polytype in nanpingite is attributed to this large layer separation, which minimizes the repulsion of the superimposed (along (001)) basal oxygens in neighboring tetrahedral layers.

  14. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  15. A computational investigation of the thermodynamics and structure in colloid and polymer mixtures

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan Alexander

    In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.

  16. SHOP: a method for structure-based fragment and scaffold hopping.

    PubMed

    Fontaine, Fabien; Cross, Simon; Plasencia, Guillem; Pastor, Manuel; Zamora, Ismael

    2009-03-01

    A new method for fragment and scaffold replacement is presented that generates new families of compounds with biological activity, using GRID molecular interaction fields (MIFs) and the crystal structure of the targets. In contrast to virtual screening strategies, this methodology aims only to replace a fragment of the original molecule, maintaining the other structural elements that are known or suspected to have a critical role in ligand binding. First, we report a validation of the method, recovering up to 95% of the original fragments searched among the top-five proposed solutions, using 164 fragment queries from 11 diverse targets. Second, six key customizable parameters are investigated, concluding that filtering the receptor MIF using the co-crystallized ligand atom type has the greatest impact on the ranking of the proposed solutions. Finally, 11 examples using more realistic scenarios have been performed; diverse chemotypes are returned, including some that are similar to compounds that are known to bind to similar targets.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callear, Samantha K.; Imberti, Silvia; Johnston, Andrew

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, andmore » chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.« less

  18. Crystallization, X-ray diffraction analysis and preliminary structure determination of the polygalacturonase PehA from Agrobacterium vitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vordtriede, Paul B.; Yoder, Marilyn D., E-mail: yoderm@umkc.edu

    2008-07-01

    The acidic polygalacturonase PehA from A. vitis has been crystallized. A molecular-replacement solution indicated a right-handed parallel β-helix fold. Polygalacturonases are pectate-degrading enzymes that belong to glycoside hydrolase family 28 and hydrolyze the α-1,4 glycosidic bond between neighboring galacturonasyl residues of the homogalacturonan substrate. The acidic polygalacturonase PehA from Agrobacterium vitis was overexpressed in Escherichia coli, where it accumulated in the periplasmic fraction. It was purified to homogeneity via a two-step chromatography procedure and crystallized using the hanging-drop vapour-diffusion technique. PehA crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 52.387, b = 62.738, c = 149.165more » Å, β = 89.98°. Crystals diffracted to 1.59 Å resolution and contained two molecules per asymmetric unit. An initial structure determination by molecular replacement indicated a right-handed parallel β-helix fold.« less

  19. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-12-01

    Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis, growth, structure and nonlinear optical properties of a semiorganic 2-carboxy pyridinium dihydrogen phosphate single crystal

    NASA Astrophysics Data System (ADS)

    Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.

    2015-09-01

    A new semiorganic compound namely, 2-carboxy pyridinium dihydrogen phosphate (2CPDP) was synthesised and grown as single crystals by slow evaporation solution growth technique. Single crystal XRD showed that 2CPDP belongs to monoclinic crystal system with space group P21/n. The molecular structure was further confirmed by modern spectroscopic techniques like FT-NMR (1H, 13C &31P), FT-IR, UV-Vis-NIR and Fluorescence. The UV-Vis-NIR analysis revealed suitability of the crystal for nonlinear optical applications. The photo active nature of the material is established from fluorescence studies. TG-DSC analysis showed that 2CPDP was thermally stable up to 170 °C. The dependence of dielectric properties on frequency and temperature were also studied. Nonlinear optical absorption determined from open aperture Z-Scan analysis by employing picosecond Nd-YAG laser, revealed that 2CPDP can serve as a promising candidate for optical limiting applications.

  1. Synthesis, crystal structure, and properties of new lead barium borate with B3O6 plane hexagonal rings

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwu

    2017-08-01

    A new lead barium borate Ba8.02Pb0.98(B3O6)6 with B3O6 plane hexagonal rings was synthesized through spontaneous nucleation from a high-temperature solution utilizing PbO, H3BO3, and BaF2 as reagents. Its crystal structure was determined from single-crystal X-ray diffraction data and further characterized by FT-IR. It crystallizes in space group R32 and the crystallographic structure of Ba8.02Pb0.98(B3O6)6 can be described as a layer-like structure, there is stacking along the c-axis of B3O6 plane hexagonal rings with the Ba2 and Pb/Ba1 atoms alternately occupying sites between the B3O6 sheets. A comparison of the structures of Ba8.02Pb0.98(B3O6)6, PbBa2(B3O6)2 and α-BaB2O4 is presented. UV-Vis-NIR diffuse-reflectance spectrum indicates that the absorption edge of Ba8.02Pb0.98(B3O6)6 is about 399 nm.

  2. Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabafi, Ilham; Selisko, Barbara; Coutard, Bruno

    2007-06-01

    The first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited tomore » X-ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination.« less

  3. Discovery of novel solid solution Ca3Si3-x O3+x N4-2x : Eu2+ phosphors: structural evolution and photoluminescence tuning.

    PubMed

    Wang, Baochen; Liu, Yan-Gai; Huang, Zhaohui; Fang, Minghao; Wu, Xiaowen

    2017-12-22

    Discovery of novel phosphors is one of the main issues for improving the color rendering index (CRI) and correlated color temperature (CCT) of white light-emitting diodes (w-LEDs). This study mainly presents a systematic research on the synthesis, crystal structure variation and photoluminescence tuning of novel (oxy)nitride solid solution Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphors. XRD refinements show that lattice distortion occurs when x value diverges the optimum one (x = 1). The lattice distortion causes a widening of emission spectrum and an increase of Stokes shift (ΔSS), which leads to a bigger thermal quenching. With decrease of x value, the emission spectrum shows an obvious red-shift from 505.2 to 540.8 nm, which is attributed to the crystal field splitting. The enhanced crystal field splitting also broadens the excitation spectrum, making it possible to serve as the phosphor for near ultraviolet (n-UV) LEDs. A 3-phosphor-conversion w-LED lamp was fabricated with the as-prepared phosphor, which exhibits high CRI (Ra = 85.29) and suitable CCT (4903.35 K). All these results indicate that the Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphor can serve as the green phosphor for n-UV w-LEDs, with a tunable spectrum by controlling the crystal structure and morphology.

  4. A crystallographic study of human NONO (p54nrb): overcoming pathological problems with purification, data collection and noncrystallographic symmetry

    PubMed Central

    Knott, Gavin J.; Panjikar, Santosh; Thorn, Andrea; Fox, Archa H.; Conte, Maria R.; Lee, Mihwa; Bond, Charles S.

    2016-01-01

    Non-POU domain-containing octamer-binding protein (NONO, a.k.a. p54nrb) is a central player in nuclear gene regulation with rapidly emerging medical significance. NONO is a member of the highly conserved Drosophila behaviour/human splicing (DBHS) protein family, a dynamic family of obligatory dimeric nuclear regulatory mediators. However, work with the NONO homodimer has been limited by rapid irreversible sample aggregation. Here, it is reported that l-proline stabilizes purified NONO homodimers, enabling good-quality solution small-angle X-ray structure determination and crystallization. NONO crystallized in the apparent space group P21 with a unique axis (b) of 408.9 Å and with evidence of twinning, as indicated by the cumulative intensity distribution L statistic, suggesting the possibility of space group P1. Structure solution by molecular replacement shows a superhelical arrangement of six NONO homodimers (or 12 in P1) oriented parallel to the long axis, resulting in extensive noncrystallographic symmetry. Further analysis revealed that the crystal was not twinned, but the collected data suffered from highly overlapping reflections that obscured the L-test. Optimized data collection on a new crystal using higher energy X-rays, a smaller beam width and an increased sample-to-detector distance produced non-overlapping reflections to 2.6 Å resolution. The steps taken to analyse and overcome this series of practical difficulties and to produce a biologically informative structure are discussed. PMID:27303796

  5. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    PubMed

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  6. Detergent-associated Solution Conformations of Helical and Beta-barrel Membrane Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John Francis

    2008-01-01

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), themore » Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the ?-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.« less

  7. Evaluation of the effect of roasting process on the energy transition and the crystalline structures of Arabica, Robusta, and Liberica coffee from Jambi Indonesia

    NASA Astrophysics Data System (ADS)

    Perdana, B. M.; Manihuruk, R.; Ashyar, R.; Heriyanti; Sutrisno

    2018-04-01

    The effect of the roasting process has been evaluated to determine of the energy transition and the crystalline structure of three types of coffee, Arabica, Robusta, and Liberica coffee both green and roasted coffee with the roasted temperature at 200°C and 230°C. The crystalline structure of the coffee was evaluated with X-ray powder diffraction (XRD). The result exposes that the three types of green coffee showed that an amorphous structure whereas the roasted coffee denotes a crystal structure of sucrose. The varied temperature in the roasting process leads to changes in the crystal structure shown by the peak shift of 2θ for all types of coffee. The added cations, such as Fe2+, Ca2+, and Mg2+ ions on Liberica coffee induced of changes in the crystal structures, which are assigned by the peak shift, that imply of metal ions of the sucrose complexes happened in the solution, except for the addition of Mg2+ ion.

  8. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    PubMed

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  9. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  10. Linear and nonlinear properties of photonic crystal fibers filled with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Brzdąkiewicz, K. A.; Laudyn, U. A.; Karpierz, M. A.; Woliński, T. R.; Wójcik, J.

    2006-12-01

    We investigate linear and nonlinear light propagation in the photonic crystal fibers infiltrated with nematic liquid crystals. Such a photonic structure, with periodic modulation of refractive index, which could be additionally controlled by the temperature and by the optical power, allows for the study of discrete optical phenomena. Our theoretical investigations, carried out with the near infrared wavelength of 830 nm, for both focusing and defocusing Kerr-type nonlinearity, show the possibility of the transverse light localization, which can result in the discrete soliton generation. In addition, we present the preliminary experimental results on the linear light propagation in the photonic crystal fiber with the glycerin-water solution and 6CHBT nematics, as the guest materials.

  11. Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.

    PubMed

    Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M

    2015-12-14

    Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.

  12. Arginine Kinase. Joint Crystallographic & NMR RDC Analyses link Substrate-Associated Motions to Intrinsic Flexibility

    PubMed Central

    Niu, Xiaogang; Brüschweiler-Li, Lei; Davulcu, Omar; Skalicky, Jack J.; Brüschweiler, Rafael; Chapman, Michael S.

    2010-01-01

    The phosphagen kinase family, including creatine and arginine kinases, catalyze the reversible transfer of a “high energy” phosphate between ATP and a phospho-guanidino substrate. They have become a model for the study of both substrate-induced conformational change and intrinsic protein dynamics. Prior crystallographic studies indicated large substrate-induced domain rotations, but differences among a recent set of arginine kinase structures was interpreted as a plastic deformation. Here, the structure of Limulus substrate-free arginine kinase is refined against high resolution crystallographic data and compared quantitatively with NMR chemical shifts and residual dipolar couplings (RDCs). This demonstrates the feasibility of this type of RDC analysis of proteins that are large by NMR standards (42 kDa), and illuminates the solution structure, free from crystal-packing constraints. Detailed comparison of the 1.7 Å resolution substrate-free crystal structure against the 1.2 Å transition state analog complex shows large substrate-induced domain motions which can be broken down into movements of smaller quasi-rigid bodies. The solution state structure of substrate-free arginine kinase is most consistent with an equilibrium of substrate-free and –bound structures, with the substrate-free form dominating, but with varying displacements of the quasi-rigid groups. Rigid-group rotations evident from the crystal structures are about axes previously associated with intrinsic millisecond dynamics using NMR relaxation dispersion. Thus, “substrate-induced” motions are along modes that are intrinsically flexible in the substrate-free enzyme, and likely involve some degree of conformational selection. PMID:21075117

  13. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    NASA Astrophysics Data System (ADS)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-06-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  14. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    NASA Astrophysics Data System (ADS)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  15. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    To effectively inhibit succinate buffer crystallization and the consequent pH changes in frozen solutions. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of succinate buffer in the presence of either (i) a crystallizing (glycine, mannitol, trehalose) or (ii) a non-crystallizing cosolute (sucrose) was evaluated. Aqueous succinate buffer solutions, 50 or 200 mM, at pH values 4.0 or 6.0 were cooled from room temperature to -25 C at 0.5 C/min. The pH of the solution was measured as a function of temperature using a probe designed to function at low temperatures. The final lyophiles prepared from thesemore » solutions were characterized using synchrotron radiation. When the succinic acid solution buffered to pH 4.0, in the absence of a cosolute, was cooled, there was a pronounced shift in the freeze-concentrate pH. Glycine and mannitol, which have a tendency to crystallize in frozen solutions, remained amorphous when the initial pH was 6.0. Under this condition, they also inhibited buffer crystallization and prevented pH change. At pH 4.0 (50 mM initial concentration), glycine and mannitol crystallized and did not prevent pH change in frozen solutions. While sucrose, a non-crystallizing cosolute, did not completely prevent buffer crystallization, the extent of crystallization was reduced. Sucrose decomposition, based on XRD peaks attributable to {beta}-D-glucose, was observed in frozen buffer solutions with an initial pH of 4.0. Trehalose completely inhibited crystallization of the buffer components when the initial pH was 6.0 but not at pH 4.0. At the lower pH, the crystallization of both trehalose dihydrate and buffer components was evident. When retained amorphous, sucrose and trehalose effectively inhibited succinate buffer component crystallization and the consequent pH shift. However, when trehalose crystallized or sucrose degraded to yield a crystalline decomposition product, crystallization of buffer was observed. Similarly, glycine and mannitol, two widely used bulking agents, inhibited buffer component crystallization only when retained amorphous. In addition to stabilizing the active pharmaceutical ingredient, lyoprotectants may prevent solution pH shift by inhibiting buffer crystallization.« less

  17. Porous silicon photonic crystals as hosts for polymers, biopolymers, and magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yang Yang

    This thesis describes the construction of one-dimensional photonic crystals of porous silicon by electrochemically etching and the use of these materials as hosts for polymers, biopolymers, and magnetic nanoparticles. The spectral features of the photonic crystals derive from a porosity gradient that is determined by the electrochemical etching parameters. Since the photonic crystals are constructed of a porous material, they can serve as hosts for other materials. The first chapter of the thesis provides an introduction to porous Si, templating techniques and the use of porous materials for controlled release of drugs. This latter section is added because much of the thesis work addresses the application of porous Si hosts for controlled release of drugs. In the second chapter, it is shown that the spectral properties of the porous Si photonic crystal template can be transferred to a variety of organic and biopolymers. It is demonstrated that these castings can be used as vapor sensors and as self-reporting, bioresorbable materials. If the template is not removed, porous Si polymer composites are formed. The third chapter discussed that by spray-coating a fine mist of polymer solution onto the porous Si film, robust and smooth micron-sized cylindrical photonic crystals suitable for bioassays can be prepared. The fourth chapter focuses on using porous Si photonic crystals as a host for magnetic nanoparticles. The magnetic nanoparticles in this work are found to adhere to the surface of the porous Si film as well to infiltrate the pore structure. In a demonstration of optical switching that may be useful for information display applications, flipping between the colored to dark sides by application of a magnetic field is found to occur at rates of as large as 175 Hz. As the host for soluble molecular species, porous Si photonic crystals can be impregnated from solution. The aggregates that form upon evaporation of solvent are found to scatter light from the resonant optical structure over a large solid angle. The spectrum of the scattered light provides a convenient means of monitoring the temporal release characteristics of the guest material. An application of the phenomenon is demonstrated for release of a drug (caffeine) into aqueous solution from a porous Si photonic crystal.

  18. Growth, structural, thermal, dielectric and nonlinear optical properties of potassium hexachloro cadmate (IV) a novel single crystal

    NASA Astrophysics Data System (ADS)

    Umarani, P.; Jagannathan, K.

    2018-02-01

    The Potassium hexachloro cadmate (IV) (PHC) single crystal was grown from the aqueous of the solution by a controlled evaporation method. Single crystal XRD solved the structure. FTIR is used to identify the functional groups of grown crystal. The UV-Vis-NIR spectrometer was used to find out the UV cut off region and to calculate the optical band gap of the Potassium hexachloro cadmate (IV) single crystal. The EDAX spectrum has been used to identify the compounds present in title compound. The TG-DTA profile shows the thermal stability of the grown crystal of Potassium hexachloro cadmate (IV). The Vicker's hardness measurement was used to calculate the material hardness of the title compound. The dielectric loss and constant varied with frequencies and activation energy is also calculated. The solid state parameters like plasma energy, Penn gap, Fermi energy, electronic polarizability using Penn analysis and Clausius-Mossotti equation were also calculated for the title compound. The Z-scan technique is used to calculate the third order nonlinear susceptibility of a real and imaginary part.

  19. Crystal structure and habit of dirithromycin acetone solvate: A combined experimental and simulative study

    NASA Astrophysics Data System (ADS)

    Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong

    2013-06-01

    Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.

  20. Crystal structures of different substrates of bacteriorhodopsin's M intermediate at various pH levels.

    PubMed

    Yamamoto, Masataka; Hayakawa, Naoki; Murakami, Midori; Kouyama, Tsutomu

    2009-10-30

    The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.

Top