Science.gov

Sample records for crystal structure

  1. Vaterite Crystals Contain Two Interspersed Crystal Structures

    NASA Astrophysics Data System (ADS)

    Kabalah-Amitai, Lee; Mayzel, Boaz; Kauffmann, Yaron; Fitch, Andrew N.; Bloch, Leonid; Gilbert, Pupa U. P. A.; Pokroy, Boaz

    2013-04-01

    Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.

  2. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  3. Crystal structure of propaquizafop

    PubMed Central

    Jeon, Youngeun; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

    2014-01-01

    The title compound, C22H22ClN3O5 {systematic name: 2-(propan-2-yl­idene­amino­oxy)ethyl (R)-2-[4-(6-chloro­quin­oxalin-2-yl­oxy)phen­oxy]propionate}, is a herbicide. The asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the phenyl ring and the quinoxaline ring plane are 75.93 (7) and 82.77 (8)°. The crystal structure features C—H⋯O, C—H⋯N, and C—H⋯Cl hydrogen bonds, as well as weak π–π inter­actions [ring-centroid separation = 3.782 (2) and 3.5952 (19) Å], resulting in a three-dimensional architecture. PMID:25553037

  4. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  5. Crystal structure determination of Efavirenz

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria; Dumitru, Ristoiu

    2015-12-01

    Needle-shaped single crystals of the title compound, C14H9ClF3NO2, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  6. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  7. Crystal structure of cyproconazole

    PubMed Central

    Kang, Gihaeng; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound [systematic name: 2-(4-chloro­phen­yl)-3-cyclo­propyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol], C15H18ClN3O, is a conazole fungicide. The asymmetric unit comprises two enanti­omeric pairs (mol­ecules A and B) in which the dihedral angles between the chloro­phenyl and triazole rings are 46.54 (9) (mol­ecule A) and 67.03 (8)° (mol­ecule B). In the crystal, C—H⋯O, O—H⋯N and C—H⋯Cl hydrogen bonds and weak C—H⋯π inter­actions [3.473 (2) Å] link adjacent mol­ecules, forming columns along the a axis. PMID:26870467

  8. Crystal structure of flumioxazin

    PubMed Central

    Park, Hyunjin; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound {systematic name: 2-[7-fluoro-3,4-di­hydro-3-oxo-4-(prop-2-yn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetra­hydro-1H-iso­indole-1,3(2H)-dione}, C19H15FN2O4, is a dicarboximide herbicide. The dihedral angle between the male­imide and benzene ring planes is 66.13 (5)°. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds and weak C—H⋯π inter­actions [3.5601 (19) Å] link adjacent mol­ecules, forming two-dimensional networks extending parallel to the (110) plane. PMID:26594468

  9. Crystal structure determination of Efavirenz

    SciTech Connect

    Popeneciu, Horea Dumitru, Ristoiu; Tripon, Carmen Borodi, Gheorghe Pop, Mihaela Maria

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  10. Crystal structure refinement with SHELXL

    SciTech Connect

    Sheldrick, George M.

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  11. Crystal chemistry and real structure of crystals

    NASA Astrophysics Data System (ADS)

    Bartl, H.; Bats, J. W.; Dyck, W.; Fuess, H.; Gregory, A.; Joswig, W.; Lottermoser, W.; Koerfer, M.; Mueller, R.; Schweiss, B. P.

    1984-03-01

    Elastic and inelastic scattering, X-ray diffraction and spectroscopy were combined to obtain a comprehensive picture of the properties of crystals. The electron density distribution allows one to verify the models of the theoretical chemistry. Systematic investigations of chemically similar anions (ClO3 and ClO4; S2O3, SO3 and SO4) show differences in bonding and reaction capability. The X-ray-neutron method applied to these anions shows maxima between 0.2 and 0.4 eXA to the power-3 in the bondings of the unbound electrons on S and D. For the SO3-group good agreement is found with theoretical calculations. The effect of the Mg (two times ionized) cation on the density is demonstrated on the water molecules of MgS2O3.6H2O and MgSO3.6H2O. Magnetic structure and magnetization density were investigated on CO3V2O8, Fe2SiO4 and Mn2SiO4 with polarized neutrons. The differences in magnetic moments of both cation states is also demonstrated for Fe2SiO4 with complementary Mossbauer measurements. Inelastic time of flight experiments allow predictions concerning the motion of the NH3-group in aniliniumbromide and of the water molecule in natural zeolites. The theoretical model to calculate the photon dispersion on CaSO4 shows good agreement with the measured dispersion curves.

  12. Crystal Structure of Bi

    SciTech Connect

    Borg, Stefan; Svensson, Goeran

    2001-02-15

    The room temperature structures of the two-layer Aurivillius phases Bi{sub 2.5}Me{sub 0.5}Nb{sub 2}O{sub 9} (Me=Na, K) have been refined with the Rietveld method from powder neutron diffraction data ({lambda}=1.470 {angstrom}). They consist of (Bi{sub 2}O{sub 2}){sup 2+} layers interleaved with perovskite (Bi{sub 0.5}Me{sub 0.5}Nb{sub 2}O{sub 7}){sup 2-} (Me=Na, K) slabs. The structures were refined in the orthorhombic space group A2{sub 1}am, Z=4, and the unit cell parameters of the two oxides are a= 5.4937(3), b=5.4571(4), c=24.9169(14) {angstrom} and a=5.5005(8), b=5.4958(8), c=25.2524(16) {angstrom}, respectively. The orthorhombic distortion increases with decreasing Me+ cation size in the perovskite layer (Bi/Me){sup 2+} site and the lone pair electrons from the Bi{sup 3+} cation are influencing the site distortion. This is in agreement with other two-layer Aurivillius phases and originates from bonding requirements depending on size and electronic environment.

  13. Crystal structure of guggulsterone Z

    SciTech Connect

    Gupta, V. K. Bandhoria, P.; Gupta, B. D.; Gupta, K. K.

    2006-03-15

    The crystal structure of the title compound (4,17(20)-trans-pregnadiene-3,16-dione, C{sub 21}H{sub 28}O{sub 2}) has been determined by direct methods using single-crystal X-ray diffraction data. The compound crystallizes into the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with the unit cell parameters a = 7.908(2) A, b = 13.611(3) A, c = 16.309(4) A, and Z = 4. The structure has been refined to R = 0.058 for 3667 observed reflections. The bond distances and angles are in good agreement with guggulsterone E and other related steroid molecules. Ring A exists in the distorted sofa conformation, while rings B and C adopt the distorted chair conformation. Five-membered ring D is intermediate between the half-chair and envelope conformations. The A/B ring junction is quasi-trans, while ring systems B/C and C/D are trans fused about the C(8)-C(9) and C(13)-C(14) bonds, respectively. The steroid nucleus has a small twist, as shown by the C(19)-C(10)...C(13)-C(18) pseudo-torsion angle of 7.2{sup o}. The crystal structure is stabilized by intra-and intermolecular C-H...O hydrogen bonds.

  14. The crystal structure of waxes.

    PubMed

    Dorset, D L

    1995-12-01

    Quantitative electron crystallographic studies have been carried out on epitaxially oriented multi-component waxes. Intensities from two paraffin-based samples, an artificial six-component medium wax (equimolar distribution of chain lengths) and a petroleum-based wax (Gaussian distribution of chain lengths) have been used to determine their crystal structures. As found earlier for binary paraffin solid solutions, differences in molecular volume are compensated by longitudinal molecular shifts within individual lamellae. Nevertheless, each lamellar surface must remain flat enough, and with enough crystallographic order intact, to nucleate the next lamella, thus accounting for the observed long-range correlation in these crystals. Recrystallized beeswax also has a layer packing somewhat similar to the paraffin waxes. However, in this case, the lamellar order is 'frustrated' so that a certain amount of 'nematically' ordered material must be present, spanning the nascent lamellar interfaces. PMID:8554724

  15. Checking nucleic acid crystal structures.

    PubMed

    Das, U; Chen, S; Fuxreiter, M; Vaguine, A A; Richelle, J; Berman, H M; Wodak, S J

    2001-06-01

    The program SFCHECK [Vaguine et al. (1999), Acta Cryst. D55, 191-205] is used to survey the quality of the structure-factor data and the agreement of those data with the atomic coordinates in 105 nucleic acid crystal structures for which structure-factor amplitudes have been deposited in the Nucleic Acid Database [NDB; Berman et al. (1992), Biophys. J. 63, 751-759]. Nucleic acid structures present a particular challenge for structure-quality evaluations. The majority of these structures, and DNA molecules in particular, have been solved by molecular replacement of the double-helical motif, whose high degree of symmetry can lead to problems in positioning the molecule in the unit cell. In this paper, the overall quality of each structure was evaluated using parameters such as the R factor, the correlation coefficient and various atomic error estimates. In addition, each structure is characterized by the average values of several local quality indicators, which include the atomic displacement, the density correlation, the B factor and the density index. The latter parameter measures the relative electron-density level at the atomic position. In order to assess the quality of the model in specific regions, the same local quality indicators are also surveyed for individual groups of atoms in each structure. Several of the global quality indicators are found to vary linearly with resolution and less than a dozen structures are found to exhibit values significantly different from the mean for these indicators, showing that the quality of the nucleic acid structures tends to be rather uniform. Analysis of the mutual dependence of the values of different local quality indicators, computed for individual residues and atom groups, reveals that these indicators essentially complement each other and are not redundant with the B factor. Using several of these indicators, it was found that the atomic coordinates of the nucleic acid bases tend to be better defined than those of

  16. Septin crystallization for structural analysis.

    PubMed

    Valadares, N F; Garratt, R C

    2016-01-01

    Septins are filament-forming proteins found in many eukaryotes. Despite being important components of the cytoskeleton, only recently details of their macromolecular assemblies and crystal structures have started to appear in the literature. These are of fundamental importance to the understanding of cytoskeleton dynamics, membrane barrier formation, and bacterial caging, as well as essential cellular processes such as cell division, exocytosis, and vesicle trafficking. However, obtaining this data is frequently hindered by several experimental difficulties common to the majority of septin samples. Here we provide an overview of the current approaches to circumvent or minimize the experimental complications observed in septin crystallography focusing mainly, but not exclusively, on the choice of the septin construct and how to best prepare the sample itself. PMID:27473918

  17. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  18. Theoretical prediction of crystal structures of rubrene

    NASA Astrophysics Data System (ADS)

    Obata, Shigeaki; Miura, Toshiaki; Shimoi, Yukihiro

    2014-01-01

    We theoretically predict crystal structures and molecular arrangements for rubrene molecule using CONFLEX program and compare them with the experimental ones. The most, second-most, and fourth-most stable predicted crystal structures show good agreement with the triclinic, orthorhombic, and monoclinic polymorphs of rubrene, respectively. The change in molecular conformation is also predicted between crystalline and gas phases: the tetracene backbone takes flat conformation in crystalline phase as in the observed structure. Meanwhile, it is twisted in gas phase. The theoretical prediction method used in this work provides the successful results on the determination of the three kinds of crystal structures and molecular arrangements for rubrene molecule.

  19. Structural characterization of thin film photonic crystals

    SciTech Connect

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  20. Pattern information extraction from crystal structures

    NASA Astrophysics Data System (ADS)

    Okuyan, Erhan; Güdükbay, Uğur; Gülseren, Oğuz

    2007-04-01

    Determining the crystal structure parameters of a material is an important issue in crystallography and material science. Knowing the crystal structure parameters helps in understanding the physical behavior of material. It can be difficult to obtain crystal parameters for complex structures, particularly those materials that show local symmetry as well as global symmetry. This work provides a tool that extracts crystal parameters such as primitive vectors, basis vectors and space groups from the atomic coordinates of crystal structures. A visualization tool for examining crystals is also provided. Accordingly, this work could help crystallographers, chemists and material scientists to analyze crystal structures efficiently. Program summaryTitle of program: BilKristal Catalogue identifier: ADYU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYU_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Programming language used: C, C++, Microsoft .NET Framework 1.1 and OpenGL Libraries Computer: Personal Computers with Windows operating system Operating system: Windows XP Professional RAM: 20-60 MB No. of lines in distributed program, including test data, etc.:899 779 No. of bytes in distributed program, including test date, etc.:9 271 521 Distribution format:tar.gz External routines/libraries: Microsoft .NET Framework 1.1. For visualization tool, graphics card driver should also support OpenGL Nature of problem: Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly, for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. Solution method: The tool extracts crystal parameters such as primitive vectors, basis vectors and identify the space group from

  1. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  2. Crystal engineering: From design of crystal structures to fabrication of composite crystals

    NASA Astrophysics Data System (ADS)

    Luo, Tzy-Jiun Mark

    This thesis reports how to design and control co-crystal structures from a kinetic point of view, and demonstrates the control of crystal morphology through understanding the kinetics and crystal structures. In chapter one, the in-situ atomic force microscope (AFM) was utilized to investigate how side chain on a glycine 2,5-diketopiperazine (GLYDKP) backbone can affect the assembly of GLYDKP, and showed that methyl groups cause larger energy barrier for crystallization. Because the introduction of functional group on the side chain could inevitably slow down the assembly process, a different approach should be considered. Chapter two shows that formic acid at low concentration can accelerate the assembly process without incorporating into the crystal structure. Because formic acid only crystallizes with GLYDKP in concentrated solution, these results prove that co-crystallization is a better method for incorporating functionalized molecules into a solid than direct modification of molecule itself. Chapter three focuses on the rational design of GLYDKP cocrystals by utilizing the observation found in chapter two. Structure of GLYDKP and formic acid crystal was analyzed to search possible guest molecules for cocrystal studies. This method successfully identified eleven molecules that crystallize with GLYDKP, and proved that crystal structure can be controlled through weak interactions such as C-H•••O=C and C-H•••Cl interactions. Chapter four and chapter five explore the possibility of using self-assembled process to control morphology of crystals and surface epitaxy. Metal(II) bis(imidazolium 2,b-pyridinedicarboxylate) complexes were chosen and two morphologies associated with different metal ions were found: rhombohedral (Type I) and rectangular (Type II) crystals. In this study, an additive was found to change the morphology of crystal from type I to type II, and then methods of producing various shapes of composite crystals were also established. These

  3. Crystallization and Structure Analysis of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Newman, Richard

    In recent years, there has been great progress in the determination of high-resolution three-dimensional (3D) structures of membrane proteins. The first major breakthrough came with the crystallization (1) and X-ray crystallography (2,3) of the bacterial photosynthetic reaction center (see refs. 4 and 5 for reviews). The structure of another, entirely different membrane protein, the bacterial outer membrane porin from Rhodobacter capsulatus, has now been determined by X-ray crystallography (6). Recent results by electron crystallography of two-dimensional (2D) crystals have been most encouraging. The high-resolution 3D structure of bacteriorhodopsin (7) plant light-harvesting complex (8) and projection maps of several other membrane proteins at similar resolutions (9-11) have been obtained by this technique. Electron crystallography seems particularly appropriate for membrane proteins that are prone to form 2D crystals, and it is hoped that many more structures will be determined in this way.

  4. Crystal structure of levomepromazine maleate.

    PubMed

    Gál, Gyula Tamás; May, Nóra Veronika; Bombicz, Petra

    2016-05-01

    The asymmetric unit of the title salt, C19H25N2OS(+)·C4H3O4 (-) [systematic name: (S)-3-(2-meth-oxy-pheno-thia-zin-10-yl)-N,N,2-tri-methyl-propanaminium hydrogen maleate], comprises two (S)-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the meth-oxy substituent at the pheno-thia-zine ring system. The crystal components form a three-dimensional supra-molecular network via N-H⋯O, C-H⋯O and C-H⋯π inter-actions. A comparison of the conformations of the levomepromazine cations with those of the neutral mol-ecule and similar protonated mol-ecules reveals significant conformational flexibility of the pheno-thia-zine ring system and the substituent at the pheno-thia-zine N atom. PMID:27308001

  5. Nucleation and structural growth of cluster crystals

    NASA Astrophysics Data System (ADS)

    Leitold, Christian; Dellago, Christoph

    2016-08-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  6. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  7. The crystal structure and crystal chemistry of fernandinite and corvusite

    USGS Publications Warehouse

    Evans, H.T.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  8. Crystal structure of potassium sodium tartrate trihydrate

    SciTech Connect

    Egorova, A. E. Ivanov, V. A.; Somov, N. V.; Portnov, V. N.; Chuprunov, E. V.

    2011-11-15

    Crystals of potassium sodium tartrate trihydrate (dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 3H{sub 2}O) were obtained from an aqueous solution. The crystal shape was described. The atomic structure of the compound was determined and compared with the known structures of dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O and l-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O.

  9. Crystal structure of canagliflozin hemihydrate

    PubMed Central

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-01-01

    There are two canagliflozin mol­ecules (A and B) and one water mol­ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro­phen­yl)thio­phen-2-yl]meth­yl}-4-methylphen­yl)-6-(hy­droxy­meth­yl)-3,4,5,6-tetra­hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl­benzene and thio­phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro­benzene and thio­phene rings are 24.2 (6) and 20.5 (9)° in mol­ecules A and B, respectively. The hydro­pyran ring exhibits a chair conformation in both canagliflozin mol­ecules. In the crystal, the canagliflozin mol­ecules and lattice water mol­ecules are connected via O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture. PMID:27308030

  10. Crystal structure of canagliflozin hemihydrate.

    PubMed

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-05-01

    There are two canagliflozin mol-ecules (A and B) and one water mol-ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro-phen-yl)thio-phen-2-yl]meth-yl}-4-methylphen-yl)-6-(hy-droxy-meth-yl)-3,4,5,6-tetra-hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl-benzene and thio-phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro-benzene and thio-phene rings are 24.2 (6) and 20.5 (9)° in mol-ecules A and B, respectively. The hydro-pyran ring exhibits a chair conformation in both canagliflozin mol-ecules. In the crystal, the canagliflozin mol-ecules and lattice water mol-ecules are connected via O-H⋯O hydrogen bonds into a three-dimensional supra-molecular architecture. PMID:27308030

  11. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okulič-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  12. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  13. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  14. Crystal structure of the eukaryotic ribosome.

    PubMed

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  15. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  16. Crystal structure of monobasic sodium tartrate monohydrate

    SciTech Connect

    Titaeva, E. K. Somov, N. V.; Portnov, V. N.; Titaev, D. N.

    2015-01-15

    Crystals of a new polymorphic modification of monobasic sodium tartrate monohydrate NaHC{sub 4}H{sub 4}O{sub 6} · H{sub 2}O have been grown in a metasilicate gel. Their atomic structure is solved by X-ray diffraction.

  17. Crystal structure of methane oxidation enzyme determined

    SciTech Connect

    Baum, R.

    1994-01-10

    A team of chemists has determined to 2.2-[angstrom] resolution the crystal structure of the hydroxylase protein of methane monooxygenase, the enzyme system responsible for the biological oxidation of methane. The hydroxylase, at a molecular weight of 251,000 daltons, if by far the largest component of methane monooxygenase. Although the crystal structure of the hydroxylase did not reveal any startling surprises about the enzyme-many features of the hydroxylase had been inferred previously from modeling and spectroscopic studies -- obtaining it is a significant achievement. For one thing, the crystal structure unambiguously confirms aspects of the enzyme structure that been at least somewhat speculative. The three-dimensional structure of the enzyme, the chemist say, also provides important insight into biological methane oxidation, including how methane, a relatively inert gas, might diffuse to and bind near the active site of the enzyme. The structure points to particular amino acid residues that are likely to participate in catalysis, and clarifies the structure of the dinuclear iron core of the enzyme.

  18. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  19. Crystal structure of a plectonemic RNA supercoil

    SciTech Connect

    Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua

    2012-12-14

    Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

  20. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  1. Crystal Structure of Human Enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  3. Crystal structure refinement from electron diffraction data

    SciTech Connect

    Dudka, A. P. Avilov, A. S.; Lepeshov, G. G.

    2008-05-15

    A procedure of crystal structure refinement from electron diffraction data is described. The electron diffraction data on polycrystalline films are processed taking into account possible overlap of reflections and two-beam interaction. The diffraction from individual single crystals in an electron microscope equipped with a precession attachment is described using the Bloch-wave method, which takes into account multibeam scattering, and a special approach taking into consideration the specific features of the diffraction geometry in the precession technique. Investigations were performed on LiF, NaF, CaF{sub 2}, and Si crystals. A method for reducing experimental data, which allows joint electron and X-ray diffraction study, is proposed.

  4. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  5. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  6. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability. PMID:19155561

  7. The crystal structure of methane phase III

    NASA Astrophysics Data System (ADS)

    Neumann, Marcus A.; Press, Werner; Nöldeke, Christian; Asmussen, Bernd; Prager, Michael; Ibberson, Richard M.

    2003-07-01

    Methane is the simplest organic molecule, and like many supposedly simple molecular materials it has a rich phase diagram. While crystal structures could be determined for two of the solid phases, that of the low temperature phase III remained unsolved. Using high-resolution neutron powder diffraction and a direct-space Monte Carlo simulated annealing approach, this fundamental structure has now finally been solved. It is orthorhombic with space group Cmca, and 16 molecules in the unit cell. The structure is closely related to that of phase II, yet is no subgroup of it.

  8. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  9. Novel Approach for Clustering Zeolite Crystal Structures.

    PubMed

    Lach-Hab, M; Yang, S; Vaisman, I I; Blaisten-Barojas, E

    2010-04-12

    Informatics approaches play an increasingly important role in the design of new materials. In this work we apply unsupervised statistical learning for identifying four framework-type attractors of zeolite crystals in which several of the zeolite framework types are grouped together. Zeolites belonging to these super-classes manifest important topological, chemical and physical similarities. The zeolites form clusters located around four core framework types: LTA, FAU, MFI and the combination of EDI, HEU, LTL and LAU. Clustering is performed in a 9-dimensional space of attributes that reflect topological, chemical and physical properties for each individual zeolite crystalline structure. The implemented machine learning approach relies on hierarchical top-down clustering approach and the expectation maximization method. The model is trained and tested on ten partially independent data sets from the FIZ/NIST Inorganic Crystal Structure Database.

  10. Crystal structure of an archaeal actin homolog.

    PubMed

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  11. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  12. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  13. Determining crystal structures through crowdsourcing and coursework

    NASA Astrophysics Data System (ADS)

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  14. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-09-16

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  15. Determining crystal structures through crowdsourcing and coursework.

    PubMed

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  16. Determining crystal structures through crowdsourcing and coursework

    PubMed Central

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  17. Crystal structure of MboIIA methyltransferase.

    SciTech Connect

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.; Biosciences Division; Univ. of Gdansk; Medical Research Council France

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  18. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination

    SciTech Connect

    Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2009-10-07

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  19. Crystal structure prediction from first principles: The crystal structures of glycine

    NASA Astrophysics Data System (ADS)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  20. Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine

    PubMed Central

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-01-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the Genetic Algorithms search implemented in Modified Genetic Algorithm for Crystals coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable. PMID:25843964

  1. Flowing crystals: nonequilibrium structure of foam.

    PubMed

    Garstecki, Piotr; Whitesides, George M

    2006-07-14

    Bubbles pushed through a quasi-two-dimensional channel self-organize into a variety of periodic lattices. The structures of these lattices correspond to local minima of the interfacial energy. The "flowing crystals" are long-lived metastable states, a small subset of possible local minima of confined quasi-two-dimensional foams [P. Garstecki and G. M. Whitesides, Phys. Rev. E 73, 031603 (2006)10.1103/PhysRevE.73.031603]. Experimental results suggest that the choice of the structures that we observe is dictated by the dynamic stability of the cyclic processes of their formation. Thus, the dynamic system that we report provides a unique example of nonequilibrium self-organization that results in structures that correspond to local minima of the relevant energy functional. PMID:16907453

  2. Crystal structure of plant photosystem I

    NASA Astrophysics Data System (ADS)

    Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

    2003-12-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

  3. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms. PMID:26735012

  4. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms.

  5. Crystal structure of 2,2-dimethyl succinic acid.

    PubMed

    Ozcan, Yusuf; Osmanoğlu, Semsettin; Ide, Semra

    2003-08-01

    The title compound crystallizes triclinically in space group of P1. The C2-COOH and C3-COOH molecular groups are planar. The crystal structure is stabilized by the formation of intermolecular (O-HO) hydrogen bonds. PMID:12945684

  6. Crystal structure of yeast Sco1

    SciTech Connect

    Abajian, Carnie; Rosenzweig, Amy C.

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  7. Crystal Structure of Human DNA Methyltransferase 1.

    PubMed

    Zhang, Zhi-Min; Liu, Shuo; Lin, Krystal; Luo, Youfu; Perry, John Jefferson; Wang, Yinsheng; Song, Jikui

    2015-07-31

    DNMT1 (DNA methyltransferase 1) is responsible for propagating the DNA methylation patterns during DNA replication. DNMT1 contains, in addition to a C-terminal methyltransferase domain, a large N-terminal regulatory region that is composed of an RFTS (replication foci targeting sequence) domain, a CXXC zinc finger domain and a pair of BAH (bromo adjacent homology) domains. The regulatory domains of DNMT1 mediate a network of protein-protein and protein-DNA interactions to control the recruitment and enzymatic activity of DNMT1. Here we report the crystal structure of human DNMT1 with all the structural domains (hDNMT1, residues 351-1600) in complex with S-adenosyl-l-homocysteine at 2.62Å resolution. The RFTS domain directly associates with the methyltransferase domain, thereby inhibiting the substrate binding of hDNMT1. Through structural analysis, mutational, biochemical and enzymatic studies, we further identify that a linker sequence between the CXXC and BAH1 domains, aside from its role in the CXXC domain-mediated DNMT1 autoinhibition, serves as an important regulatory element in the RFTS domain-mediated autoinhibition. In comparison with the previously determined structure of mouse DNMT1, this study also reveals a number of distinct structural features that may underlie subtle functional diversity observed for the two orthologues. In addition, this structure provides a framework for understanding the functional consequence of disease-related hDNMT1 mutations.

  8. The crystal structure of vyuntspakhite: A redetermination

    NASA Astrophysics Data System (ADS)

    Yakubovich, O. V.; Steele, I. M.

    2009-09-01

    The crystal structure of the mineral vyuntspakhite (Y, TR)6{Al2(OH)3[H1.48Si1.88O7][SiO4][SiO3(OH)]}2( a = 5.7551(11) Å, b = 14.752(3) Å, c = 15.906(4) Å, β = 96.046(4)°, sp. gr. P21/ n, Z = 2), which had been established earlier in the pseudo-unit cell, is redetermined by X-ray diffraction ( R = 0.040, T = 100 K). The redetermination of the structure shows that pronounced pseudotranslation along the axis c' = c/3 is associated with the fact that Y( TR) atoms are related by a 1/3 translation along the [001] direction. Most of the hydrogen atoms are located. The crystal-chemical function of hydrogen bonds is analyzed. In the unit cell of vyuntspakhite, the cationic layers consisting of edge-sharing (Y, TR) eight-vertex polyhedra alternate along the b axis with mixed anionic layers composed of isolated Si tetrahedra (orthotetrahedra), Si2O7 double-tetrahedra (diortho) groups, Al five-vertex polyhedra, and Al2O8 double-tetrahedra groups linked by shared vertices and through hydrogen bonding.

  9. Fine crystal structure of porous corundum ceramics

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. V.; Kulkov, S. N.

    2011-05-01

    The microstructure of corundum ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in a high-frequency discharge plasma were used. An increase in the plasma-chemical Al2O3 powder content in the sample was found to change the pore structure of the corundum ceramics from a high-porosity ceramic skeleton with a well-developed system of channel-forming pores to ceramics with isolated pores. The change in the pore structure was observed for 50% porosity and caused an increase in the level of crystal lattice microdistortions. An increase in the sintering temperature from 1200 to 1650°C is shown to be responsible for a two-fold increase in the average crystallite size and for annealing of lattice defects along grain boundaries.

  10. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  11. Crystal structure of mammalian acid sphingomyelinase.

    PubMed

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann-Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann-Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  12. The Crystal Structure of Human Argonaute2

    SciTech Connect

    Schirle, Nicole T.; MacRae, Ian J.

    2012-07-18

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

  13. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  14. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations. PMID:17698003

  15. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  16. Near Surface Structure of Organic Semiconductor Tetracene Single Crystal

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Yusuke; Morisaki, Hazuki; Kimura, Tsuyoshi; Miwa, Kazumoto; Koretsune, Takashi; Takeya, Jun

    2014-03-01

    Electric conduction in organic crystals is highly anisotropic because of the anisotropic molecular orbitals. Crystal structure governs the transfer through the overlap integral among the highest occupied (or lowest unoccupied) molecular orbitals. In case of organic devices, the place where electrons conduct is the interface. Therefore, the surface structure of organic single crystals is relevant. Surface relaxation of the structure of rubrene single crystal was firstly observed by means of surface x-ray diffraction a few years ago. This time we performed similar measurement on tetracene single crystal, whose molecular shape has large similarity with rubrene while the crystal structure is very different. Tetracene single crystal was grown by the physical vapor transport method, and the surface x-ray diffraction experiments were performed at BL-3A and 4C of the Photon Factory, KEK, Japan. Obtained electron density profile shows a large structural deformation at the surface layer of tetracene.

  17. Prediction of binary hard-sphere crystal structures.

    PubMed

    Filion, Laura; Dijkstra, Marjolein

    2009-04-01

    We present a method based on a combination of a genetic algorithm and Monte Carlo simulations to predict close-packed crystal structures in hard-core systems. We employ this method to predict the binary crystal structures in a mixture of large and small hard spheres with various stoichiometries and diameter ratios between 0.4 and 0.84. In addition to known binary hard-sphere crystal structures similar to NaCl and AlB2, we predict additional crystal structures with the symmetry of CrB, gammaCuTi, alphaIrV, HgBr2, AuTe2, Ag2Se, and various structures for which an atomic analog was not found. In order to determine the crystal structures at infinite pressures, we calculate the maximum packing density as a function of size ratio for the crystal structures predicted by our GA using a simulated annealing approach. PMID:19518387

  18. Structural Transitions in Cholesteric Liquid Crystal Droplets.

    PubMed

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A; Rahimi, Mohammad; Roberts, Tyler F; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L; de Pablo, Juan J

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  19. Crystal structures of five 6-mercaptopurine derivatives.

    PubMed

    Gomes, Lígia R; Low, John Nicolson; Magalhães E Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-03-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  20. Crystal structure of strontium dinickel iron orthophosphate

    PubMed Central

    Ouaatta, Said; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The title compound, SrNi2Fe(PO4)3, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2), Fe is on 4b (2/m), Ni and the other P atom are on 8g (2), one O atom is on 8h (m) and the other on 8i (m). The three-dimensional framework of the crystal structure is built up by [PO4] tetra­hedra, [FeO6] octa­hedra and [Ni2O10] dimers of edge-sharing octa­hedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octa­hedra ([Ni2O10] dimer) linked to [PO4] tetra­hedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetra­hedra and FeO6 octa­hedra sharing apices. The layers are held together through vertices of [PO4] tetra­hedra and [FeO6] octa­hedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms. PMID:26594419

  1. Crystal Structures of Respiratory Pathogen Neuraminidases

    SciTech Connect

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  2. Crystal structures of the human adiponectin receptors.

    PubMed

    Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-04-16

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  3. The crystal structure Escherichia coli Spy.

    PubMed

    Kwon, Eunju; Kim, Dong Young; Gross, Carol A; Gross, John D; Kim, Kyeong Kyu

    2010-11-01

    Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress response. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stabilizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.

  4. Crystal Structure of the VS ribozyme

    PubMed Central

    Suslov, Nikolai B.; DasGupta, Saurja; Huang, Hao; Fuller, James R.; Lilley, David M.J.; Rice, Phoebe A.; Piccirilli, Joseph A.

    2015-01-01

    Varkud Satellite (VS) ribozyme mediates rolling circle replication of a plasmid found in the Neurospora mitochondria. We report crystal structures of this ribozyme at 3.1Å resolution, revealing an intertwined dimer formed by an exchange of substrate helices. Within each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional significance of active site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution. PMID:26414446

  5. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  6. Crystal structure of a snake venom cardiotoxin

    SciTech Connect

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-05-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

  7. Crystal Structure of Amylomaltase from Corynebacterium glutamicum.

    PubMed

    Joo, Seongjoon; Kim, Sangwoo; Seo, Hogyun; Kim, Kyung-Jin

    2016-07-20

    Amylomaltase is an essential enzyme in maltose utilization and maltodextrin metabolism, and it has been industrially used for the production of cyclodextrin and modification of starch. We determined the crystal structure of amylomaltase from Corynebacterium glutamicum (CgAM) at a resolution of 1.7 Å. Although CgAM forms a dimer without NaCl, it exists as a monomer in physiological concentration of NaCl. CgAM is composed of N- and C-terminal domains, which can be further divided into two and four subdomains, respectively. It exhibits a unique structural feature at the functionally unknown N-domain and also shows two striking differences at the C-domain compared to other amylomaltases. These differences at extended edge of the substrate-binding site might affect substrate specificity for large cyclodextrin formation. The bis-tris methane and sulfate molecules bound at the substrate-binding site of our current structure mimic the binding of the hydroxyl groups of glucose bound at subsites -1 and -2, respectively. PMID:27366969

  8. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  9. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.

  10. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  11. Crystal structures of Bacillus subtilis Lon protease.

    PubMed

    Duman, Ramona E; Löwe, Jan

    2010-08-27

    Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into the protease chamber, and the protease domain in the hydrolysis of polypeptides into small peptide fragments. Like other AAA+ ATPases and self-compartmentalising proteases, Lon functions as an oligomeric complex, although the subunit stoichiometry is currently unclear. Here, we present crystal structures of truncated versions of Lon protease from Bacillus subtilis (BsLon), which reveal previously unknown architectural features of Lon complexes. Our analytical ultracentrifugation and electron microscopy show different oligomerisation of Lon proteases from two different bacterial species, Aquifex aeolicus and B. subtilis. The structure of BsLon-AP shows a hexameric complex consisting of a small part of the N-terminal domain, the ATPase, and protease domains. The structure shows the approximate arrangement of the three functional domains of Lon. It also reveals a resemblance between the architecture of Lon proteases and the bacterial proteasome-like protease HslUV. Our second structure, BsLon-N, represents the first 209 amino acids of the N-terminal domain of BsLon and consists of a globular domain, similar in structure to the E. coli Lon N-terminal domain, and an additional four-helix bundle, which is part of a predicted coiled-coil region. An unexpected dimeric interaction between BsLon-N monomers reveals the possibility that Lon complexes may be stabilised by coiled-coil interactions between neighbouring N-terminal domains. Together, BsLon-N and BsLon-AP are 36 amino acids short of offering a complete picture of a full-length Lon protease.

  12. Crystal structure of human nicotinic acid phosphoribosyltransferase.

    PubMed

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss-Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  13. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    PubMed

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.

  14. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  15. Predicting crystal structure by merging data mining with quantum mechanics.

    PubMed

    Fischer, Christopher C; Tibbetts, Kevin J; Morgan, Dane; Ceder, Gerbrand

    2006-08-01

    Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted effectively with quantum mechanics if an algorithm to direct the search through the large space of possible structures is found. We present a new approach to the prediction of structure that rigorously mines correlations embodied within experimental data and uses them to direct quantum mechanical techniques efficiently towards the stable crystal structure of materials.

  16. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  17. Crystal structure of Clostridium difficile toxin A.

    PubMed

    Chumbler, Nicole M; Rutherford, Stacey A; Zhang, Zhifen; Farrow, Melissa A; Lisher, John P; Farquhar, Erik; Giedroc, David P; Spiller, Benjamin W; Melnyk, Roman A; Lacy, D Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon(1,2). The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host(3,4). The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  18. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  19. Anisotropic domain structure of KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Urenski, P.; Lesnykh, M.; Rosenwaks, Y.; Rosenman, G.; Molotskii, M.

    2001-08-01

    Highly anisotropic ferroelectric domain structure is observed in KTiOPO4 (KTP) crystals reversed by low electric field. The applied Miller-Weinreich model for sidewise motion of domain walls indicates that this anisotropy results from the peculiarities of KTP crystal lattice. The domain nuclei of dozen nanometer size, imaged by atomic force microscopy method, demonstrate regular hexagonal forms. The orientation of domain walls of the elementary nuclei coincides with the orientation of the facets of macroscopic KTP crystals. The observed strong domain elongation along one principal crystal axis allows us to improve tailoring of ferroelectric domain engineered structures for nonlinear optical converters.

  20. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely. PMID:23938656

  1. Photonic crystal channel drop filters based on fractal structures

    NASA Astrophysics Data System (ADS)

    Dideban, Ali; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2014-09-01

    In this paper we introduce new configurations of channel drop filters based on two-dimensional photonic crystals. Structures consist of two photonic crystal waveguides and a fractal-shaped resonator between them. The effect of structural parameters on resonance frequency and drop efficiency is investigated. Calculations of band structure and propagation of electromagnetic field through devices are done by plane wave expansion (PWE) and finite difference time domain (FDTD) methods, respectively. In our designs more than 95% drop efficiency with quality factor of ~1150 is achievable at wavelength near 1540 nm, which in comparison with other photonic crystal resonator structures is a very satisfactory and acceptable result.

  2. Novel photonic crystal cavities and related structures.

    SciTech Connect

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  3. A Dominant Factor for Structural Classification of Protein Crystals.

    PubMed

    Qi, Fei; Fudo, Satoshi; Neya, Saburo; Hoshino, Tyuji

    2015-08-24

    With the increasing number of solved protein crystal structures, much information on protein shape and atom geometry has become available. It is of great interest to know the structural diversity for a single kind of protein. Our preliminary study suggested that multiple crystal structures of a single kind of protein can be classified into several groups from the viewpoint of structural similarity. In order to broadly examine this finding, cluster analysis was applied to the crystal structures of hemoglobin (Hb), myoglobin (Mb), human serum albumin (HSA), hen egg-white lysozyme (HEWL), and human immunodeficiency virus type 1 protease (HIV-1 PR), downloaded from the Protein Data Bank (PDB). As a result of classification by cluster analysis, 146 crystal structures of Hb were separated into five groups. The crystal structures of Mb (n = 284), HEWL (n = 336), HSA (n = 63), and HIV-1 PR (n = 488) were separated into six, five, three, and six groups, respectively. It was found that a major factor causing these structural separations is the space group of crystals and that crystallizing agents have an influence on the crystal structures. Amino acid mutation is a minor factor for the separation because no obvious point mutation making a specific cluster group was observed for the five kinds of proteins. In the classification of Hb and Mb, the species of protein source such as humans, rabbits, and mice is another significant factor. When the difference in amino sequence is large among species, the species of protein source is the primary factor causing cluster separation in the classification of crystal structures. PMID:26230289

  4. In vivo protein crystallization opens new routes in structural biology.

    PubMed

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; Deponte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-03-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.

  5. In vivo protein crystallization opens new routes in structural biology

    PubMed Central

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; DePonte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-01-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. PMID:22286384

  6. In vivo protein crystallization opens new routes in structural biology.

    PubMed

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; Deponte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-03-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. PMID:22286384

  7. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    PubMed Central

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  8. Isomorph invariance of the structure and dynamics of classical crystals

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2014-09-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

  9. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    NASA Astrophysics Data System (ADS)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  10. Molecular structures and crystal packings of 2-styrylquinoxaline derivatives

    NASA Astrophysics Data System (ADS)

    Kuz'mina, L. G.; Sitin, A. G.; Gulakova, E. N.; Fedorova, O. A.; Lermontova, E. Kh.; Churakov, A. V.

    2012-01-01

    The crystal and molecular structures of 2-styrylquinoxaline derivatives with different substituents in the styryl fragment are determined. The degree of planarity of the molecules studied varies in a very wide range, from 1.7° to 33.5°. In the ethylene fragment, the double bond is essentially localized. The bicycle-pedal disordering of the ethylene fragment is found in the crystals of the methoxy and oxyacetyl derivatives of 2-styrylquinoxaline. None of the packings contains packing motifs favorable for the photocycloaddition (PCA) reaction with single crystal retention. The crystal packings of these compounds and that of 2-(4-methylstyryl)quinoxaline are characterized by a stacking motif of the head-to-head type, which eliminates the possibility of PCA taking place with single crystal retention but is suitable for this reaction in polycrystalline films. The crystal packing of 2-(3,4-dimethoxystyryl)quinoxaline does not contain elements with stacking interactions.

  11. Crystal structure of a methimazole-based ionic liquid.

    PubMed

    Gaitor, Jamie C; Zayas, Manuel Sanchez; Myrthil, Darrel J; White, Frankie; Hendrich, Jeffrey M; Sykora, Richard E; O'Brien, Richard A; Reilly, John T; Mirjafari, Arsalan

    2015-12-01

    The structure of 1-methyl-2-(prop-2-en-1-ylsulfan-yl)-1H-imidazol-3-ium bromide, C7H11N2S(+)·Br(-), has monoclinic (P21/c) symmetry. In the crystal, the components are linked by N-H⋯Br and C-H⋯Br hydrogen bonds. The crystal structure of the title compound undeniably proves that methimazole reacts through the thione tautomer, rather than the thiol tautomer in this system. PMID:26870468

  12. The Crystal and Molecular Structure of Dianhydrogossypol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dianhydrogossypol (4,4'-dihydroxy-5,5'-diisopropyl-7,7'-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR confirmed that complete conversion was achieved over several hours. Single crystals were obtained by slow evaporation of the product from dichl...

  13. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  14. Crystal structure of actinide metals at high compression

    SciTech Connect

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure.

  15. Growth, characterization, and crystal structure of a new chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Shettigar, Venkataraya; Dharmaprakash, S. M.

    2006-09-01

    A new organic nonlinear optical (NLO) chalcone derivative viz.1- ( 4- methoxyphenyl )-3- (3,4 - dimethoxy phenyl ) - 2 - propene-1-one, has been synthesized by Claisen-Schmidt condensation method. The synthesized compound was purified by repeated recrystallization process. To confirm the identity of the synthesized compound, FTIR spectra was recorded and various functional groups present were identified. NMR spectra were recorded for structural identity and purity confirmation of the synthesized compound. Good quality single crystals were grown by solvent evaporation and slow cooling technique using acetone as solvent. The grown crystals were characterized by UV-Visible , differential thermal analysis and linear refractive index measurement. The hardness of the crystal was determined using Vicker's indentation method. The single crystal structure analysis of the crystal was performed and it is found that the crystal belongs to monoclinic system with space group P2 I. The powder second harmonic generation(SHG)frequency conversion efficiency of the crystal was determined using Nd: YAG laser(λ = 1064nm)and it is 15 times that of Urea.

  16. Crystal structure of the co-crystal butyl-paraben-isonicotinamide (1/1).

    PubMed

    Bhardwaj, Rajni M; Yang, Huaiyu; Florence, Alastair J

    2016-01-01

    The title 1:1 co-crystal, C11H14O3·C6H6N2O [systematic name: butyl 4-hy-droxy-benzoate-isonicotinamide (1/1)], crystallizes with one mol-ecule of butyl-paraben (BPN) and one mol-ecule of isonicotinamide (ISN) in the asymmetric unit. In the crystal, BPN and ISN mol-ecules form hydrogen-bonded (O-H⋯N and N-H⋯O) dimers of paired BPN and ISN mol-ecules. These dimers are further connected to each other via N-H⋯O=C hydrogen bonds, creating ribbons in [011] which further stack along the a axis to form a layered structure with short C⋯C contacts of 3.285 (3) Å. Packing inter-actions within the crystal structure were assessed using PIXEL calculations. PMID:26870584

  17. Crystal structure of the co-crystal butyl­paraben–isonicotinamide (1/1)

    PubMed Central

    Bhardwaj, Rajni M.; Yang, Huaiyu; Florence, Alastair J.

    2016-01-01

    The title 1:1 co-crystal, C11H14O3·C6H6N2O [systematic name: butyl 4-hy­droxy­benzoate–isonicotinamide (1/1)], crystallizes with one mol­ecule of butyl­paraben (BPN) and one mol­ecule of isonicotinamide (ISN) in the asymmetric unit. In the crystal, BPN and ISN mol­ecules form hydrogen-bonded (O—H⋯N and N—H⋯O) dimers of paired BPN and ISN mol­ecules. These dimers are further connected to each other via N—H⋯O=C hydrogen bonds, creating ribbons in [011] which further stack along the a axis to form a layered structure with short C⋯C contacts of 3.285 (3) Å. Packing inter­actions within the crystal structure were assessed using PIXEL calculations. PMID:26870584

  18. Crystal structure of the co-crystal butyl-paraben-isonicotinamide (1/1).

    PubMed

    Bhardwaj, Rajni M; Yang, Huaiyu; Florence, Alastair J

    2016-01-01

    The title 1:1 co-crystal, C11H14O3·C6H6N2O [systematic name: butyl 4-hy-droxy-benzoate-isonicotinamide (1/1)], crystallizes with one mol-ecule of butyl-paraben (BPN) and one mol-ecule of isonicotinamide (ISN) in the asymmetric unit. In the crystal, BPN and ISN mol-ecules form hydrogen-bonded (O-H⋯N and N-H⋯O) dimers of paired BPN and ISN mol-ecules. These dimers are further connected to each other via N-H⋯O=C hydrogen bonds, creating ribbons in [011] which further stack along the a axis to form a layered structure with short C⋯C contacts of 3.285 (3) Å. Packing inter-actions within the crystal structure were assessed using PIXEL calculations.

  19. Predicting inclusion behaviour and framework structures in organic crystals.

    PubMed

    Cruz-Cabeza, Aurora J; Day, Graeme M; Jones, William

    2009-12-01

    We have used well-established computational methods to generate and explore the crystal structure landscapes of four organic molecules of well-known inclusion behaviour. Using these methods, we are able to generate both close-packed crystal structures and high-energy open frameworks containing voids of molecular dimensions. Some of these high-energy open frameworks correspond to real structures observed experimentally when the appropriate guest molecules are present during crystallisation. We propose a combination of crystal structure prediction methodologies with structure rankings based on relative lattice energy and solvent-accessible volume as a way of selecting likely inclusion frameworks completely ab initio. This methodology can be used as part of a rational strategy in the design of inclusion compounds, and also for the anticipation of inclusion behaviour in organic molecules. PMID:19876969

  20. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  1. Optical and structural properties of chalcone NLO single crystals

    NASA Astrophysics Data System (ADS)

    Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Manjunath, H. R.; Karegouda, Prakash; Crasta, Vincent; Sridhar, M. A.

    2011-11-01

    Organic compound (E)-1-(4-methoxyphenyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one [MPTCPP] with molecular formula C 16H 11Cl 3O 2 was synthesized using Claisen-Schmidt condensation reaction method. 1H NMR spectra was recorded to identify the various functional groups present in the compound and confirm the chemical structure. The single crystals were grown using slow evaporation solution growth technique. The UV-Visible spectrum study reveals that the crystal is transparent in the entire visible region and the absorption is observed at 364 nm. The Kurtz powder second harmonic generation (SHG) test shows that the MPTCPP is NLO active and its SHG efficiency is three times that of urea. Single crystal XRD study shows that the compound crystallizes in the monoclinic system with a space group Cc. The corresponding lattice parameters of the crystal are a = 28.215(5) Å, b = 3.9740(4) Å, c = 16.178(3) Å and V = 1503.0(4) Å 3. The micro hardness test was carried out and the work hardening coefficient value ( n) of the crystal was found to be 1.48. This indicates that the crystal is hard and is suitable for device application. The thermal study reveals that the thermal stability of the crystal is good.

  2. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  3. The different conformations and crystal structures of dihydroergocristine

    NASA Astrophysics Data System (ADS)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  4. Observation and Analysis of Polymer Crystal Structures at the Stem Level. Implications Regarding Polymer Crystallization Processes.

    NASA Astrophysics Data System (ADS)

    Lotz, Bernard

    2003-03-01

    The building element of chain folded polymer crystals is the individual stem that spans the lamellar thickness. For chiral but racemic helical polymers such as polyolefins (e.g. isotactic and syndiotactic polypropylene and poly(1-butene)), stems can be right- or left-handed helices. These polymers can exist in various crystal polymorphs that are either "racemic" or "chiral" (made of both, or of only one helical hand). Upon crystallization, each stem has a conformational "choice", but must adapt to the crystal structure and, once crystallized, is characterized by a "conformational tag" (right or left hand). Various means exist to determine or observe helical hands in polyolefin lamellae: Atomic Force Microscopy on epitaxially crystallized samples, or, for the alpha phase of isotactic polypropylene, analysis of its specific lamellar branching. These observations and analyses indicate that the helical hand of stems is tightly determined by the substrate or growth face topography, i.e. indicate that the depositing stem probes and adapts to the surface structure prior to successful attachment. This "post-mortem" analysis of the crystal structure and stem chirality emphasizes the "sequential" nature of the growth process (successive attachment of individual stems). It is in line with early views on polymer crystallization. It is at variance with recently introduced models or scenarios that assume either some pre-ordering of the polymer melt as a result of spinodal decomposition and/or accretion of polymer chains in pseudo-crystalline bundles followed by (solid state) reorganization of the bundles to generate fully grown lamellae.

  5. Boron-oxygen polyanion in the crystal structure of tunellite

    USGS Publications Warehouse

    Clark, J.R.

    1963-01-01

    The crystal structure of tunellite, SrO??3B2O 3??4H2O, with infinite sheets of composition n[B6O9(OH)2]2-, has cations and water molecules in the spaces within the sheets. Adjacent sheets are held together by hydrogen bonding through the water molecules. The boron-oxygen polyanions provide the first example in hydrated borate crystals of one oxygen linked to three borons.

  6. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  7. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds.

    PubMed

    Jungblut, Swetlana; Dellago, Christoph

    2016-09-01

    Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure. PMID:27479875

  8. Heterogeneous Crystallization on Pairs of Pre-Structured Seeds

    PubMed Central

    2016-01-01

    Studying the effects of small pre-structured seeds on the crystallization transition in an undercooled monodisperse Lennard-Jones fluid with transition interface path sampling combined with molecular dynamics simulations, we analyze the impact of the simultaneous presence of two seeds with various structures. In the presence of seeds with face- and body-centered cubic structures, we find that decreasing the seed-to-seed distance enhances the probability of the crystalline clusters formed on one of the seeds to grow beyond the critical size, thus, increasing the crystal nucleation rates. In contrast, when seeds have an icosahedral structure, the crystalline clusters form mostly in the bulk. The crystal nucleation rate, however, is also determined by the distance between the seeds with regular structure in which the lattice spacing is equal to the bulk lattice constant, pointing to a heterogeneous crystal nucleation that occurs away from the icosahedrally structured seeds. For slightly squeezed seeds, the effects of the presence of seeds with face- and body-centered cubic structures are reduced in comparison to the regular seeds, and we do not see any effect of the presence of the second seed for seeds with squeezed icosahedral structure. PMID:27479875

  9. Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate

    SciTech Connect

    Dhanaraj, P.V.; Rajesh, N.P.; Vinitha, G.; Bhagavannarayana, G.

    2011-05-15

    Research highlights: {yields} Good quality crystals of 2-aminopyridinium trichloroacetate were grown for first time. {yields} 2-Aminopyridinium trichloroacetate crystal belongs to monoclinic crystal system with space group P21/c. {yields} 2-Aminopyridinium trichloroacetate crystal exhibits third order nonlinear optical properties. {yields} 2-Aminopyridinium trichloroacetate is a low dielectric constant material. -- Abstract: 2-Aminopyridinium trichloroacetate, a novel organic optical material has been synthesized and crystals were grown from aqueous solution employing the technique of controlled evaporation. 2-Aminopyridinium trichloroacetate crystallizes in monoclinic system with space group P2{sub 1}/c and the lattice parameters are a = 8.598(5) A, b = 11.336(2) A, c = 11.023(2) A, {beta} = 102.83(1){sup o} and volume = 1047.5(3) A{sup 3}. High-resolution X-ray diffraction measurements were performed to analyze the structural perfection of the grown crystals. Thermal analysis shows a sharp endothermic peak at 124 {sup o}C due to melting reaction of 2-aminopyridinium trichloroacetate. UV-vis-NIR studies reveal that 2-aminopyridinium trichloroacetate has UV cutoff wavelength at 354 nm. Dielectric studies show that dielectric constant and dielectric loss decreases with increasing frequency and finally it becomes almost a constant at higher frequencies for all temperatures. The negative nonlinear optical parameters of 2-aminopyridinium trichloroacetate were derived by the Z-scan technique.

  10. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    PubMed

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions. PMID:27050261

  11. Structural effects of monovalent anions on polymorphic lysozyme crystals.

    PubMed

    Vaney, M C; Broutin, I; Retailleau, P; Douangamath, A; Lafont, S; Hamiaux, C; Prangé, T; Ducruix, A; Riès-Kautt, M

    2001-07-01

    Understanding direct salt effects on protein crystal polymorphism is addressed by comparing different crystal forms (triclinic, monoclinic, tetragonal and orthorhombic) for hen, turkey, bob white quail and human lysozymes. Four new structures of hen egg-white lysozyme are reported: crystals grown in the presence of NapTS diffracted to 1.85 A, of NaI to 1.6 A, of NaNO(3) to 1.45 A and of KSCN to 1.63 A. These new structures are compared with previously published structures in order to draw a mapping of the surface of different lysozymes interacting with monovalent anions, such as nitrate, chloride, iodide, bromide and thiocyanate. An analysis of the structural sites of these anions in the various lysozyme structures is presented. This study shows common anion sites whatever the crystal form and the chemical nature of anions, while others seem specific to a given geometry and a particular charge environment induced by the crystal packing.

  12. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

    1994-08-23

    Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

  13. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  14. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-07-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib.

  15. Modulated crystal structure of InMo4O6.

    PubMed

    Schultz, Peter; Simon, Arndt; Oeckler, Oliver

    2016-08-01

    The (3 + 1)-dimensional modulated crystal structure of the metal-rich cluster compound InMo4O6 was solved and refined from single-crystal data in the superspace group P4/mbm(00γ)00ss [q = 0, 0, 0.1536 (4); a = 9.6664 (9), c = 2.8645 (3) Å; R1(all) = 0.046, wR(all) = 0.076]. The crystal structure is closely related to the NaMo4O6 structure type. It is built from rods of Mo6 clusters condensed via trans edges. These form channels parallel to [001], in which In6 and In7 oligomers alternate. Weak diffuse planes parallel to (001)* interconnect the satellite reflections; they occur due to two-dimensional rod disorder of the In oligomer chains. PMID:27484384

  16. The high-resolution crystal structure of human LCAT.

    PubMed

    Piper, Derek E; Romanow, William G; Gunawardane, Ruwanthi N; Fordstrom, Preston; Masterman, Stephanie; Pan, Oscar; Thibault, Stephen T; Zhang, Richard; Meininger, David; Schwarz, Margrit; Wang, Zhulun; King, Chadwick; Zhou, Mingyue; Walker, Nigel P C

    2015-09-01

    LCAT is intimately involved in HDL maturation and is a key component of the reverse cholesterol transport (RCT) pathway which removes excess cholesterol molecules from the peripheral tissues to the liver for excretion. Patients with loss-of-function LCAT mutations exhibit low levels of HDL cholesterol and corneal opacity. Here we report the 2.65 Å crystal structure of the human LCAT protein. Crystallization required enzymatic removal of N-linked glycans and complex formation with a Fab fragment from a tool antibody. The crystal structure reveals that LCAT has an α/β hydrolase core with two additional subdomains that play important roles in LCAT function. Subdomain 1 contains the region of LCAT shown to be required for interfacial activation, while subdomain 2 contains the lid and amino acids that shape the substrate binding pocket. Mapping the naturally occurring mutations onto the structure provides insight into how they may affect LCAT enzymatic activity. PMID:26195816

  17. Microscopic characterization of defect structure in RDX crystals.

    PubMed

    Bouma, R H B; Duvalois, W; Van der Heijden, A E D M

    2013-12-01

    Three batches of the commercial energetic material RDX, as received from various production locations and differing in sensitivity towards shock initiation, have been characterized with different microscopic techniques in order to visualize the defect content in these crystals. The RDX crystals are embedded in an epoxy matrix and cross-sectioned. By a treatment of grinding and polishing of the crystals, the internal defect structure of a multitude of energetic crystals can be visualized using optical microscopy, scanning electron microscopy and confocal scanning laser microscopy. Earlier optical micrographs of the same crystals immersed in a refractive index matched liquid could visualize internal defects, only not in the required detail. The combination of different microscopic techniques allows for a better characterization of the internal defects, down to inclusions of approximately 0.5 μm in size. The defect structure can be correlated to the sensitivity towards a high-amplitude shock wave of the RDX crystals embedded in a polymer bonded explosive. The obtained experimental results comprise details on the size, type and quantity of the defects. These details should provide modellers with relevant and realistic information for modelling defects in energetic materials and their effect on the initiation and propagation of shock waves in PBX formulations.

  18. Electronic structure of the CuBS2 crystal

    NASA Astrophysics Data System (ADS)

    Basalaev, Yu. M.; Gordienko, A. B.; Filippov, S. I.

    2012-09-01

    The band structure and spectra of the total and projected densities of states of a new crystal of the chalcopyrite family, namely, CuBS2, have been calculated in terms of the density functional theory. It has been found that the crystal is a pseudo-direct-band-gap semiconductor, and the best theoretical estimate of the optical band gap is 3.44 eV. The upper valence band of the CuBS2 crystal basically consists of the contributions from the p states of S atoms and the d states of Cu atoms. The crystal splitting is 0.2 eV. The bottom of the conduction band is basically formed by the sp states of boron and sulfur atoms with an admixture of the s states of copper atoms.

  19. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  20. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  1. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  2. Crystal chemistry and structure refinement of five hydrated calcium borates

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Christ, C.L.

    1964-01-01

    The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

  3. Utilization of Protein Crystal Structures in Industry

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kohki

    In industry, protein crystallography is used in mainly two technologies. One is structure-based drug design, and the other is structure-based enzyme engineering. Some successful cases together with recent advances are presented in this article. The cases include the development of an anti-influenza drug, and the introduction of engineered acid phosphatase to the manufacturing process of nucleotides used as umami seasoning.

  4. Synthesis, crystal structure, crystal growth and physical properties of N,N-diethyl anilinium picrate

    NASA Astrophysics Data System (ADS)

    Subramaniyan @ Raja, R.; Anandha Babu, G.; Ramasamy, P.

    2011-11-01

    Crystalline substance of N,N-diethyl anilinium picrate (NNDEAP) has been synthesized and single crystals of NNDEAP were successfully grown for the first time by the slow evaporation solution growth technique at room temperature with dimensions 14×10×10 mm3. The formation of the new crystal has been confirmed by single crystal X-ray diffraction studies. The structural perfection of the grown crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups of NNDEAP have been identified by Fourier transform infrared spectral studies. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have also been carried out and the thermal behavior of NNDEAP has been studied. The UV-vis-NIR studies have been carried out to identify the optical transmittance and the cut off wavelength of NNDEAP is identified. The dielectric loss and the dielectric constant as a function of frequency and temperature were measured for the grown crystal and the nature of variation of dielectric constant εr and dielectric losses (tan δ) were studied. Vicker's hardness test has been carried out on NNDEAP to measure the load dependent hardness. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser.

  5. Structure of self - assembled two-dimensional spherical crystals

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas R.

    2004-03-01

    Dense spherical particles on a flat surface usually pack into a simple triangular lattice, similar to billiard balls at the start of a game. The minimum energy configuration for interacting particles on the curved surface of a sphere, however, presents special difficulties, as recognized already by J.J. Thomson. We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries or "scars" not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. First experiments where the melting of the crystal structure was observable will be discussed. Dynamic triangulation methods allow the analysis of the dynamics of the defects. Possible modifications towards mechanically stabilized self assembly structures result in so called Colloidosomes, which are promising for many different encapsulation purposes.

  6. Photonics of liquid-crystal structures: A review

    SciTech Connect

    Palto, S. P. Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M.

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  7. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    SciTech Connect

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  8. The crystal structure of samarosporin I at atomic resolution.

    PubMed

    Gessmann, Renate; Axford, Danny; Evans, Gwyndaf; Brückner, Hans; Petratos, Kyriacos

    2012-11-01

    The atomic resolution structures of samarosporin I have been determined at 100 and 293 K. This is the first crystal structure of a natural 15-residue peptaibol. The amino acid sequence in samarosporin I is identical to emerimicin IV and stilbellin I. Samarosporin is a peptide antibiotic produced by the ascomycetous fungus Samarospora rostrup and belongs to peptaibol subfamily 2. The structures at both temperatures are very similar to each other adopting mainly a 3₁₀-helical and a minor fraction of α-helical conformation. The helices are significantly bent and packed in an antiparallel fashion in the centered monoclinic lattice leaving among them an approximately 10-Å channel extending along the crystallographic twofold axis. Only two ordered water molecules per peptide molecule were located in the channel. Comparisons have been carried out with crystal structures of subfamily 2 16-residue peptaibols antiamoebin and cephaibols. The repercussion of the structural analysis of samarosporin on membrane function is discussed.

  9. Crystal structure of HINT from Helicobacter pylori.

    PubMed

    Tarique, K F; Devi, S; Abdul Rehman, S A; Gourinath, S

    2016-01-01

    Proteins belonging to the histidine triad (HIT) superfamily bind nucleotides and use the histidine triad motif to carry out dinucleotidyl hydrolase, nucleotidyltransferase and phosphoramidite hydrolase activities. Five different branches of this superfamily are known to exist. Defects in these proteins in humans are linked to many diseases such as ataxia, diseases of RNA metabolism and cell-cycle regulation, and various types of cancer. The histidine triad nucleotide protein (HINT) is nearly identical to proteins that have been classified as protein kinase C-interacting proteins (PKCIs), which also have the ability to bind and inhibit protein kinase C. The structure of HINT, which exists as a homodimer, is highly conserved from humans to bacteria and shares homology with the product of fragile histidine triad protein (FHit), a tumour suppressor gene of this superfamily. Here, the structure of HINT from Helicobacter pylori (HpHINT) in complex with AMP is reported at a resolution of 3 Å. The final model has R and Rfree values of 26 and 28%, respectively, with good electron density. Structural comparison with previously reported homologues and phylogenetic analysis shows H. pylori HINT to be the smallest among them, and suggests that it branched out separately during the course of evolution. Overall, this structure has contributed to a better understanding of this protein across the animal kingdom. PMID:26750483

  10. Crystallization of interleukin-18 for structure-based inhibitor design

    PubMed Central

    Krumm, Brian; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2015-01-01

    Interleukin-18 (IL-18) is a pleiotropic pro-inflammatory cytokine belonging to the IL-1 superfamily. IL-18 plays an important role in host innate and acquired immune defense, with its activity being modulated in vivo by its naturally occurring antagonist IL-18 binding protein (IL-18BP). Recent crystal structures of human IL-18 (hIL-18) in complex with its antagonist or cognate receptor(s) have revealed a conserved binding interface on hIL-18 representing a promising drug target. An important step in this process is obtaining crystals of apo hIL-18 or hIL-18 in complex with small-molecule inhibitors, preferably under low ionic strength conditions. In this study, surface-entropy reduction (SER) and rational protein design were employed to facilitate the crystallization of hIL-18. The results provide an excellent platform for structure-based drug design. PMID:26057800

  11. Interleukin-22 and its crystal structure.

    PubMed

    Nagem, Ronaldo Alves Pinto; Ferreira Júnior, José Ribamar; Dumoutier, Laure; Renauld, Jean-Christophe; Polikarpov, Igor

    2006-01-01

    Interleukin-22 (IL-22) is a cytokine that regulates the production of acute phase proteins of the immunological response. On binding to its cognate receptor (IL-22R1), which is associated to the interleukin-10 receptor 2 (IL-10R2), IL-22 promotes activation of signal transducer and activator of transcription (STAT) pathway and several other cellular responses. A soluble receptor termed interleukin-22 binding protein (IL-22BP) is also able to bind to IL-22 as a natural protein antagonist, and probably provides systemic regulation of IL-22 activity. This inflammatory response system is analyzed here in terms of its molecular physiology and structural assembly. Three-dimensional (3D) model of IL-22 and structural basis of its interactions with the cognate receptors are discussed.

  12. Structural and optical properties of a new chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh Kumar, P. C.; Ravindrachary, V.; Janardhana, K.; Poojary, Boja

    2012-09-01

    A new nonlinear optical material 1-(4-methylthiophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one with molecular formula C17H16O2S was synthesized by using the Claisen-Schmidt condensation reaction method. The Various functional groups present in the compound were identified using recorded FT-IR spectrum. The crystal growth parameters have been studied using solubility test and acetone is found to be a very good solvent for the crystal growth at an ambient temperature. The transparent high quality single crystals up to a size of 26×2×2 mm3 were grown using the slow evaporation solution growth technique. UV-visible study was carried out and the spectrum reveals that the crystal is transparent in the entire visible region and absorptive in the UV region. The refractive index is determined using Brewster's angle method. The optical energy band gap of the material is measured using Tauc's plot and the direct method. The single crystal XRD of MMPP crystal shows the following cell parameters: a=5.9626(2) Å, b=15.3022(6) Å, c=16.0385(7) Å, α=β=γ=90°, volume=1463.37(10) Å3 with a space group of Pna21. The compound MMPP exhibits optical nonlinearity (NLO) and its second order NLO efficiency is 3.15 times to that of urea. The effect of functional groups OCH3 and SCH3 on the non-linearity as well as the structural property of the compound has been discussed. The crystal is thermally stable. High NLO efficiency, good thermal stability, good transparency and ability to grow as a high quality single crystal make this material very attractive for opto-electronic applications.

  13. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  14. Crystal structures and morphologies of fractionated milk fat in nanoemulsions.

    PubMed

    Truong, Tuyen; Morgan, Garry P; Bansal, Nidhi; Palmer, Martin; Bhandari, Bhesh

    2015-03-15

    The triacylglycerol (TAG) crystal structures and morphologies of fractionated milk lipids in nanoemulsions were investigated at 4°C. Droplet size (0.17 versus 1.20 μm), lipid composition (stearin versus olein) and cooling rate (1 versus 10°C min(-1)) had an influence on the structural properties. Five crystal polymorphs (α, β'1, β'2, β1, and β2) were formed with either triple and/or double chain length structures in the solid phases of the emulsified systems. X-ray scattering peak intensities were reduced with the nanoemulsion particles. The internal structure of TAG exhibited stacking of individual lamellar layers (3.8-4.2 nm). Various anisometric shapes of fat nanoparticles were formed due to a highly sharp curvature of the nano-size droplets. The shape of olein nanoparticles was more polyhedral compared to the stearin. TAG crystals arranged in a planar-layered organisation at the slower cooling rate. These differences imply that the nanometric confinement of oil droplets modifies the fat crystal habit.

  15. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  16. Redetermination of the crystal structure of NbF4.

    PubMed

    Bandemehr, Jascha; Conrad, Matthias; Kraus, Florian

    2016-08-01

    Single crystals of NbF4, niobium(IV) tetra-fluoride, were synthesized by disproportionation of Nb2F5 at 1273 K in a sealed niobium tube, extracted and studied by single-crystal X-ray diffraction. Previous reports on the crystal structure of NbF4 were based on X-ray powder diffraction data and the observed isotypicity to SnF4 [Gortsema & Didchenko (1965 ▸). Inorg. Chem. 4, 182-186; Schäfer et al. (1965 ▸). J. Less Common Met. 9, 95-104]. The data obtained from a single-crystal X-ray diffraction study meant the atomic coordinates could now be refined as well as their anisotropic displacement parameters, leading to a significant improvement of the structural model of NbF4. In the structure, the Nb atom is octahedron-like surrounded by six F atoms of which four are bridging to other NbF6 octa-hedra, leading to a layer structure extending parallel to the ab plane. PMID:27536416

  17. Redetermination of the crystal structure of NbF4

    PubMed Central

    Bandemehr, Jascha; Conrad, Matthias; Kraus, Florian

    2016-01-01

    Single crystals of NbF4, niobium(IV) tetra­fluoride, were synthesized by disproportionation of Nb2F5 at 1273 K in a sealed niobium tube, extracted and studied by single-crystal X-ray diffraction. Previous reports on the crystal structure of NbF4 were based on X-ray powder diffraction data and the observed isotypicity to SnF4 [Gortsema & Didchenko (1965 ▸). Inorg. Chem. 4, 182–186; Schäfer et al. (1965 ▸). J. Less Common Met. 9, 95–104]. The data obtained from a single-crystal X-ray diffraction study meant the atomic coordinates could now be refined as well as their anisotropic displacement parameters, leading to a significant improvement of the structural model of NbF4. In the structure, the Nb atom is octahedron-like surrounded by six F atoms of which four are bridging to other NbF6 octa­hedra, leading to a layer structure extending parallel to the ab plane. PMID:27536416

  18. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  19. The diammoniate of diborane: Crystal structure and hydrogen release

    SciTech Connect

    Bowden, Mark E.; Heldebrant, David J.; Karkamkar, Abhijeet J.; Proffen, Thomas E.; Schenter, Gregory K.; Autrey, Thomas

    2010-10-12

    [(NH3)2BH2]+[BH4]- is formed from the room temperature decomposition of NH4+BH4-, via a NH3BH3 intermediate. Its crystal structure has been determined and contains disordered BH4- ions in 2 distinct sites. Hydrogen release is similar to that from NH3BH3 but with faster kinetics.

  20. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    PubMed

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  1. Analysis of voids in crystal structures: the methods of 'dual' crystal chemistry.

    PubMed

    Blatov, V A; Shevchenko, A P

    2003-01-01

    The theoretical basics of the analysis of voids in crystal structures by means of Voronoi-Dirichlet polyhedra (VDP) and of the graph theory are stated. Topological relations are considered between VDPs and atomic domains in a crystal field. These relations allow the separation of two non-intersecting topological subspaces in a crystal structure, whose connectednesses are defined by two finite 'reduced' graphs. The first, 'direct', subspace includes the atoms (VDP centres) and the network of interatomic bonds (VDP faces), the second, 'dual', one comprises the void centres (VDP vertices) and the system of channels (VDP edges) between them. Computer methods of geometrical-topological analysis of the 'dual' subspace are developed and implemented within the program package TOPOS. They are designed for automatically restoring the system of channels, visualizing and sizing voids and void conglomerates, dimensional analysis of continuous void systems, and comparative topological analysis of 'dual' subspaces for various substances. The methods of analysis of 'dual' and 'direct' subspaces are noted to differ from each other only in some details that allows the term 'dual' crystal chemistry to be introduced. The efficiency of the methods is shown with the analysis of compounds of different chemical nature: simple substances, ionic structures, superionic conductors, zeolites, clathrates, organic supramolecular complexes. PMID:12496460

  2. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  3. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-01

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. PMID:24531108

  4. Band structures in Sierpinski triangle fractal porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  5. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  6. Crystal Structure of the Bacillus subtilis Superoxide Dismutase

    SciTech Connect

    Liu, Ping; Ewis, H.E.; Huang, Y.-J; Lu, C.-D.; Tai, P.C.; Weber, Irene T.

    2008-06-01

    The sodA gene of Bacillus subtilis was expressed in Escherichia coli, purified and crystallized. The crystal structure of MnSOD was solved by molecular replacement with four dimers per asymmetric unit and refined to an R factor of 21.1% at 1.8 {angstrom} resolution. The dimer structure is very similar to that of the related enzyme from B. anthracis. Larger structural differences were observed with the human MnSOD, which has one less helix in the helical domain and a longer loop between two -strands and also showed differences in three amino acids at the intersubunit interface in the dimer compared with the two bacterial MnSODs. These structural differences can be exploited in the design of drugs that selectively target the Bacillus enzymes.

  7. Crystal structure and stereochemistry study of 2-substituted benzoxazole derivatives.

    PubMed

    Mabied, Ahmed F; Shalaby, Elsayed M; Zayed, Hamdia A; El-Kholy, Esmat; Farag, Ibrahim S A; Ahmed, Naima A

    2014-01-01

    The structure of 2-[(4-chlorophenylazo) cyanomethyl] benzoxazole, C15H9ClN4O (I), has triclinic ([Formula: see text]) symmetry. The structure displays N-H ⋯ N hydrogen bonding. The structure of 2-[(arylidene) cyanomethyl] benzoxazoles, C17H10N2O3 (II), has triclinic ([Formula: see text]) symmetry. The structure displays C-H ⋯ N, C-H ⋯ C hydrogen bonding. In (I), the chlorophenyl and benzoxazole groups adopt a trans configuration with respect to the central cyanomethyle hydrazone moiety. Compound (II) crystallized with two molecules in the asymmetric unit shows cisoid conformation between cyano group and benzoxazole nitrogen, contrary to (I). In (II) the benzodioxole has an envelope conformation (the C17 atom is the flap atom). The molecular geometry obtained using molecular mechanics (MM) calculations has been discussed along with the results of single crystal analysis.

  8. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  9. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  10. Crystallization studies of lunar igneous rocks: crystal structure of synthetic armalcolite.

    PubMed

    Lind, M D; Housley, R M

    1972-02-01

    Crystals of armalcolite, Mg(0.5)Fe(0.5)Ti(2)O(5), up to several millimeters in length have been grown from a glass initially having the composition of lunar rock 10017. A single-crystal x-ray study has confirmed that the crystals are isomorphous with pseudobrookite and has shown that the cations are strongly ordered, with the Ti(4+) ions occupying the 8f sites and the Fe(2+) and Mg(2+) ions randomly distributed over the 4c sites. An examination of karrooite, MgTi(2)O(5), has revealed a similar distribution of Mg(2+) and Ti(4+) ions. A reexamination of earlier x-ray and Mössbauer data for pseudobrookite, Fe(2)TiO(5), has shown that it is more consistent with this type of ordering than with the inverse structure that has been generally assumed.

  11. Serendibite, a Complicated, New, Inorganic Crystal Structure

    PubMed Central

    Buerger, Martin J.; Venkatakrishnan, V.

    1974-01-01

    Serendibite with very similar analyses is known from Ceylon and New York. The triclinic cell of symmetry P[unk] and volume 670.9 Å3 contains 2Ca1.64Mg2.64Fe0.27IIAl4.64B1.66Si3O20, with 14 metal atoms and 20 oxygen atoms in the asymmetric unit. It was solved by the “direct” method of transforming the ordinary three-dimensional Patterson function into an approximation of the electron density by using conjugate peaks and minimum functions, followed by successive Fourier syntheses and least-squares refinement to R = 7.1%. This new structure is composed of interrupted brucite-type layers which form an octahedral framework, and winged single chains of tetrahedra. The structure has units of similar, but not identical, geometry to those of the minerals sapphirine and aenigmatite, and these similar units are assembled in a different way. PMID:16592193

  12. Single Crystal Structure Determination of Alumina to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  13. Crystal structure of new AsS2 compound

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS2 single crystals have been obtained for the first time from an As2S3 melt at pressures above 6 GPa and temperatures above 800 K in the As2S3 → AsS + AsS2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  14. Structural evolution in the crystallization of rapid cooling silver melt

    SciTech Connect

    Tian, Z.A.; Dong, K.J.; Yu, A.B.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  15. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  16. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  17. Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers: (+)- and (+/-)-ibuprofen.

    PubMed

    Perlovich, German L; Kurkov, Sergey V; Hansen, Lars Kr; Bauer-Brandl, Annette

    2004-03-01

    Thermodynamic differences between ibuprofen (IBP) racemate and the (+)-enantiomer were studied by X-ray diffraction, thermoanalysis, and crystal energy calculations. The thermodynamic functions of sublimation (as a measure of crystal lattice energy) were obtained by the transpiration method. The sublimation enthalpies (DeltaH(sub)) of (+/-)-IBP and (+)-IBP are 115.8 +/- 0.6 and 107.4 +/- 0.5 kJ. mol(-1), respectively. Using the temperature dependency of the saturated vapor pressure, the relative fractions of enthalpy and entropy of the sublimation process were calculated, and the sublimation process for both the racemate and the enantiomer was found to be enthalpy driven (62%). Two different force fields, Mayo et al. (M) and Gavezzotti (G), were used for comparative analysis of crystal lattice energies. Both force fields revealed that the van der Waals term contributes more to the packing energy in (+)-IBP than in (+/-)-IBP. The hydrogen bonding energy, however, contributes at 29.7 and 32.3% to the total crystal lattice energy in (+)-IBP and (+/-)-IBP (M), respectively. Furthermore, different structure fragments of the IBP molecule were analyzed with respect to their contribution to nonbonded van der Waals interactions. The effect of the C-H distance on the van der Waals term of the crystal lattice energy was also studied.

  18. Crystal structure of 4-carbamoylpyridinium chloride.

    PubMed

    Fellows, Simon M; Prior, Timothy J

    2016-04-01

    The hydro-chloride salt of isonicotinamide, C6H7N2O(+)·Cl(-), has been synthesized from a dilute solution of hydro-chloric acid in aceto-nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro-chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol-ecule and a chloride anion. An array of hydrogen-bonding inter-actions, including a peculiar bifurcated pyridinium-chloride inter-action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  19. Crystal structure of 4-carbamoylpyridinium chloride

    PubMed Central

    Fellows, Simon M.; Prior, Timothy J.

    2016-01-01

    The hydro­chloride salt of isonicotinamide, C6H7N2O+·Cl−, has been synthesized from a dilute solution of hydro­chloric acid in aceto­nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro­chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol­ecule and a chloride anion. An array of hydrogen-bonding inter­actions, including a peculiar bifurcated pyridinium–chloride inter­action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  20. Crystal structures of Ziegler-Natta catalyst supports.

    PubMed

    Malizia, Federica; Fait, Anna; Cruciani, Giuseppe

    2011-12-01

    The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice. PMID:22052708

  1. On calculating the equilibrium structure of molecular crystals.

    SciTech Connect

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.

  2. Structural, magnetic and optical properties of two concomitant molecular crystals

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Milne, Bruce; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Pereira da Silva, Pedro S.; Martín-Gil, Jesús

    2016-03-01

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Cu(II) ions assemble in alternating chains with Cu … Cu distances of 2.5685(4) and 3.1760(4) Å. The temperature dependence of the magnetic susceptibility reveals an antiferromagnetic interaction between the paddle-wheel copper centers with an exchange of -300 cm-1. The exchange integral was also determined by quantum chemical ab-initio calculations, using polarised and unpolarised basis sets reproducing well the experimental value. The second harmonic generation efficiency of a concomitantly crystallized material was evaluated and was found to be comparable to urea.

  3. Modeling liquid crystal bilayer structures with minimal surfaces.

    PubMed

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W

    2004-01-22

    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  4. Can antimonide-based nanowires form wurtzite crystal structure?

    PubMed

    Gorji Ghalamestani, Sepideh; Lehmann, Sebastian; Dick, Kimberly A

    2016-02-01

    The epitaxial growth of antimonide-based nanowires has become an attractive subject due to their interesting properties required for various applications such as long-wavelength IR detectors. The studies conducted on antimonide-based nanowires indicate that they preferentially crystallize in the zinc blende (ZB) crystal structure rather than wurtzite (WZ), which is common in other III-V nanowire materials. Also, with the addition of small amounts of antimony to arsenide- and phosphide-based nanowires grown under conditions otherwise leading to WZ structure, the crystal structure of the resulting ternary nanowires favors the ZB phase. Therefore, the formation of antimonide-based nanowires with the WZ phase presents fundamental challenges and is yet to be explored, but is particularly interesting for understanding the nanowire crystal phase in general. In this study, we examine the formation of Au-seeded InSb and GaSb nanowires under various growth conditions using metalorganic vapor phase epitaxy. We address the possibility of forming other phases than ZB such as WZ and 4H in binary nanowires and demonstrate the controlled formation of WZ InSb nanowires. We further discuss the fundamental aspects of WZ growth in Au-seeded antimonide-based nanowires. PMID:26763161

  5. Projection structure of frog rhodopsin in two crystal forms.

    PubMed Central

    Schertler, G F; Hargrave, P A

    1995-01-01

    Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved. Images Fig. 1 Fig. 2 Fig. 6 PMID:8524807

  6. Band structure and optical properties of diglycine nitrate crystal

    NASA Astrophysics Data System (ADS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskólski, Marcin

    2005-07-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN), (NH 2CH 2COOH) 2·HNO 3, in the paraelectric phase ( T=295 K) are presented. Spectral dispersion of light reflection R( E) have been measured in the range of 3-22 eV and the optical functions n( E) and k( E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3. Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal.

  7. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  8. Structure and melting behavior of classical bilayer crystals of dipoles

    SciTech Connect

    Lu Xin; Wu Changqin; Micheli, Andrea; Pupillo, Guido

    2008-07-01

    We study the structure and melting of a classical bilayer system of dipoles in a setup where the dipoles are oriented perpendicular to the planes of the layers and the density of dipoles is the same in each layer. Due to the anisotropic character of the dipole-dipole interactions, we find that the ground-state configuration is given by two hexagonal crystals positioned on top of each other, independent of the interlayer spacing and dipolar density. For large interlayer distances these crystals are independent, while in the opposite limit of small interlayer distances the system behaves as a two-dimensional crystal of paired dipoles. Within the harmonic approximation for the phonon excitations, the melting temperature of these crystalline configurations displays a nonmonotonic dependence on the interlayer distance, which is associated with a re-entrant melting behavior in the form of solid-liquid-solid-liquid transitions at fixed temperature.

  9. Use of Pom Pons To Illustrate Cubic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Cady, Susan G.

    1997-07-01

    In general chemistry classes, students are introduced to the ways in which atoms are arranged in cubic crystal structures. Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons. Different sized pom pons can be used to demonstrate how the atomic radius will vary when comparing the different types of cubic crystal unit cells. Being made of a coarse material, pom pons can be stacked to illustrate different packing arrangements such as hexagonal close-packed and cubic close-packed structures. Pom pons make great atoms.

  10. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor.

    PubMed

    Zheng, Huirong; Lou, Benyong

    2016-05-01

    In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R)-4-ethyl-amino-2-(3-meth-oxy-prop-yl)-3,4-di-hydro-2H-thieno[3,2-e][1,2]thia-zine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding inter-actions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the meth-oxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N-H⋯O hydrogen bond involving a sulfonamide O atom as acceptor and the secondary amine H atom as donor, which gives rise to the formation of a unique bilayer structure. The absolute structure of the mol-ecule in the crystal was determined by resonant scattering [Flack parameter = 0.01 (4)]. PMID:27308020

  11. First principles investigation of the structure of a bacteriochlorophyll crystal

    SciTech Connect

    Marchi, M. |; Hutter, J.; Parrinello, M.

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  12. Myelin structures formed by thermotropic smectic liquid crystals.

    PubMed

    Peddireddy, Karthik; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2013-12-17

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tubelike structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities to and differences from the classical lyotropic myelin figures.

  13. Thermally triggered solid-state single-crystal-to-single-crystal structural transformation accompanies property changes.

    PubMed

    Li, Quan-Quan; Ren, Chun-Yan; Huang, Yang-Yang; Li, Jian-Li; Liu, Ping; Liu, Bin; Liu, Yang; Wang, Yao-Yu

    2015-03-16

    The 1D complex [(CuL0.5H2O)⋅H2O]n (1) (H4L = 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid) undergoes an irreversible thermally triggered single-crystal-to-single-crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n (2). This SCSC structural transformation was confirmed by single-crystal X-ray diffraction analysis, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD) patterns, variable-temperature powder X-ray diffraction (VT-PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2, though the initial 1D chain is still retained as in complex 1, accompanied with the Cu-bound H2O removed and new O(carboxyl)-Cu bond forming, the coordination geometries around the Cu(II) ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1-O-C-O-Cu4 bridge. The catalytic results demonstrate that, even though both solid-state materials present high catalytic activity for the synthesis of 2-imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2. In addition, a possible pathway for the SCSC structural transformations is proposed.

  14. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  15. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide.

  16. Rigidity analysis of protein biological assemblies and periodic crystal structures

    PubMed Central

    2013-01-01

    Background We initiate in silico rigidity-theoretical studies of biological assemblies and small crystals for protein structures. The goal is to determine if, and how, the interactions among neighboring cells and subchains affect the flexibility of a molecule in its crystallized state. We use experimental X-ray crystallography data from the Protein Data Bank (PDB). The analysis relies on an effcient graph-based algorithm. Computational experiments were performed using new protein rigidity analysis tools available in the new release of our KINARI-Web server http://kinari.cs.umass.edu. Results We provide two types of results: on biological assemblies and on crystals. We found that when only isolated subchains are considered, structural and functional information may be missed. Indeed, the rigidity of biological assemblies is sometimes dependent on the count and placement of hydrogen bonds and other interactions among the individual subchains of the biological unit. Similarly, the rigidity of small crystals may be affected by the interactions between atoms belonging to different unit cells. We have analyzed a dataset of approximately 300 proteins, from which we generated 982 crystals (some of which are biological assemblies). We identified two types of behaviors. (a) Some crystals and/or biological assemblies will aggregate into rigid bodies that span multiple unit cells/asymmetric units. Some of them create substantially larger rigid cluster in the crystal/biological assembly form, while in other cases, the aggregation has a smaller effect just at the interface between the units. (b) In other cases, the rigidity properties of the asymmetric units are retained, because the rigid bodies did not combine. We also identified two interesting cases where rigidity analysis may be correlated with the functional behavior of the protein. This type of information, identified here for the first time, depends critically on the ability to create crystals and biological assemblies

  17. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  18. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  19. Lattice dynamics of crystals having R2MX6 structure

    NASA Astrophysics Data System (ADS)

    Torres, D. I.; Freire, J. D.; Katiyar, R. S.

    1997-10-01

    The theory of lattice dynamics in the harmonic approximation using a rigid-ion model due to Born and Huang [Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954)], is applied to ionic crystals of the R2MX6 type with antifluorite structure namely, K2SnCl6, K2PtBr6, Cs2SnBr6, and Rb2SnBr6 in the cubic phase. The model expresses the potential energy as the sum of long-range Coulomb interactions and repulsive short-range interactions between ions in the primitive cell. A function of axially symmetric type is used to approximate the short-range part, and the number of force constant parameters were reduced utilizing stability conditions in the manner described by Katiyar [J. Phys. C 3, 1087 (1970)]. The remaining constants were determined by a nonlinear least-squares analysis of some experimental frequencies at the critical point Γ. The long-range contributions were calculated using the Ewald transformation as described by Cowley [Acta Crystallogr. 15, 687 (1962)]. Phonon frequencies and the normal modes of vibrations at the zone center were obtained; of particular interest is the resulting lowest librational frequency for each crystal. We obtained excellent agreement between the calculated and the observed frequencies. The resulting effective charge parameters indicated that these crystals are partially ionic. In general, the results offered a better vision of the structural phase transition mechanism involving the rotational mode T1g.

  20. The Rapid Crystallization Strategy for Structure-Based Inhibitor Design

    NASA Astrophysics Data System (ADS)

    Bergfors, Terese

    RAPID (Rapid Approaches to Pathogen Inhibitor Discovery) is an integrated center for structural biology, computational chemistry, and medicinal chemistry at Uppsala University, Sweden. The main target of the structural biology section is Mycobacterium tuberculosis. Key concepts in the crystallization strategy include minimal screening and buffer optimization. Examples are presented showing how these concepts have been successful in RAPID projects. Three screening methods are used: vapor-diffusion, micro-batch, and microfluidics. Our experiences may be relevant for other small, academic laboratories involved in structure-based inhibitor design.

  1. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-06-28

    Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 {angstrom} resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  2. Crystal structure of four-stranded Oxytricha telomeric DNA

    NASA Technical Reports Server (NTRS)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  3. Crystal structure optimisation using an auxiliary equation of state

    SciTech Connect

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  4. Crystal structure optimisation using an auxiliary equation of state.

    PubMed

    Jackson, Adam J; Skelton, Jonathan M; Hendon, Christopher H; Butler, Keith T; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  5. EVO—Evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Bahmann, Silvia; Kortus, Jens

    2013-06-01

    We present EVO—an evolution strategy designed for crystal structure search and prediction. The concept and main features of biological evolution such as creation of diversity and survival of the fittest have been transferred to crystal structure prediction. EVO successfully demonstrates its applicability to find crystal structures of the elements of the 3rd main group with their different spacegroups. For this we used the number of atoms in the conventional cell and multiples of it. Running EVO with different numbers of carbon atoms per unit cell yields graphite as the lowest energy structure as well as a diamond-like structure, both in one run. Our implementation also supports the search for 2D structures and was able to find a boron sheet with structural features so far not considered in literature. Program summaryProgram title: EVO Catalogue identifier: AEOZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 23488 No. of bytes in distributed program, including test data, etc.: 1830122 Distribution format: tar.gz Programming language: Python. Computer: No limitations known. Operating system: Linux. RAM: Negligible compared to the requirements of the electronic structure programs used Classification: 7.8. External routines: Quantum ESPRESSO (http://www.quantum-espresso.org/), GULP (https://projects.ivec.org/gulp/) Nature of problem: Crystal structure search is a global optimisation problem in 3N+3 dimensions where N is the number of atoms in the unit cell. The high dimensional search space is accompanied by an unknown energy landscape. Solution method: Evolutionary algorithms transfer the main features of biological evolution to use them in global searches. The combination of the "survival of the fittest" (deterministic) and the

  6. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    PubMed Central

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib. PMID:26198974

  7. How evolutionary crystal structure prediction works--and why.

    PubMed

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an

  8. Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals.

    PubMed

    Vimal, G; Mani, Kamal P; Biju, P R; Joseph, Cyriac; Unnikrishnan, N V; Ittyachen, M A

    2014-03-25

    Nanostructured samarium oxalate crystals were prepared via microwave assisted co-precipitation method. The crystal structure and morphology of the sample were analyzed using X-ray powder diffraction, Scanning electron microscopy and Transmission electron microscopy. The presence of functional groups is ascertained by Fourier transform infrared spectroscopy. Samarium oxalate nanocrystals of average size 20 nm were aggregated together to form nano-plate structure in sub-microrange. Detailed spectroscopic investigation of the prepared phosphor material was carried out by Judd-Ofelt analysis based on the UV-Visible-NIR absorption spectra and photoluminescence emission spectra. The analysis reveals that the transition from energy level (4)G5/2 to (6)H7/2 of Sm(3+) ion has maximum branching ratio and the corresponding orange emission can be used for display applications.

  9. The crystal structure of ice under mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G.

    2015-05-01

    Ice clouds form in the summer high latitude mesopause region, which is the coldest part of the Earth's atmosphere. At these very low temperatures (<150 K) ice can exist in metastable forms, but the nature of these ices remains poorly understood. In this paper we show that ice which is grown at mesospherically relevant temperatures does not have a structure corresponding to the well-known hexagonal form or the metastable cubic form. Instead, the ice which forms under mesospheric conditions is a material in which cubic and hexagonal sequences of ice are randomly arranged to produce stacking disordered ice (ice Isd). The structure of this ice is in the trigonal crystal system, rather than the cubic or hexagonal systems, and is expected to produce crystals with aspect ratios consistent with lidar observations.

  10. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  11. Crystal structure of tris­(hydroxyl­ammonium) orthophosphate

    PubMed Central

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Näther, Christian

    2015-01-01

    The crystal structure of the title salt, ([H3NOH]+)3·[PO4]3−, consists of discrete hydroxyl­ammonium cations and ortho­phos­phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho­rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H⋯O, two N—H⋯O hydrogen bonds of medium strength and two weaker bifurcated N—H⋯O inter­actions are observed. PMID:26594525

  12. Synthesis and crystal structure of EuBi{sub 2}

    SciTech Connect

    Sun Zhongming; Mao Jianggao . E-mail: mjg@ms.fjirsm.ac.cn

    2004-10-01

    The new hypervalent binary phase EuBi{sub 2} was obtained from high temperature solid-state reactions of the pure metal elements in welded Ta tubes under argon atmosphere. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the tetragonal space group I4{sub 1}/amd (No. 141) with cell parameters of a=4.726(1),c=34.221(9)A,V=764.3(3)A3, and Z=8. The structure of EuBi{sub 2} is isotypic with HfGa{sub 2} and features 1D Bi{sup -} zigzag anionic chains along both a- and b-axes and 2D Bi{sup -} square sheets normal to c-axis. It can be formulated as Eu{sup 2+}(Bi){sub chain}{sup -}(Bi){sub square}{sup -}.

  13. Crystal structures and properties of nylon polymers from theory

    SciTech Connect

    Dasgupta, S.; Goddard, W.A. III; Hammond, W.B.

    1996-12-11

    A complete force field (MSXX) for simulation of all nylon polymers is derived from ab initio quantum calculations. Special emphasis is given to the accuracy of the hydrogen bond potential for the amide unit and the torsional potential between the peptide and alkane fragments. The MSXX force field was used to predict the structures, moduli, and detailed geometries of all nine nylons for which there are experimental crystal data plus one other. For nylon-(2n) with 2n = 6, the {alpha} crystal structure (with all-trans CH{sub 2} chains nearly coplanar with the hydrogen bonding plane) is more stable, while for 2n > 6, {gamma} (with the alkane plane twisted by 70{degree}) is more stable. This change results from the increased importance of methylene packing interactions over H bonds for larger 2n. We find the highest Young`s modulus for nylon-7. 51 refs., 6 figs., 7 tabs.

  14. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    SciTech Connect

    Boal, Amie K.; Rosenzweig, Amy C.

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

  15. Crystal Structure of the Human Laminin Receptor Precursor

    SciTech Connect

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  16. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  17. Structural considerations on acridine/acridinium derivatives: Synthesis, crystal structure, Hirshfeld surface analysis and computational studies

    NASA Astrophysics Data System (ADS)

    Wera, Michał; Storoniak, Piotr; Serdiuk, Illia E.; Zadykowicz, Beata

    2016-02-01

    This article describes a detailed study of the molecular packing and intermolecular interactions in crystals of four derivatives of acridine, i.e. 9-methyl-, 9-ethyl, 9-bromomethyl- and 9-piperidineacridine (1, 2, 3 and 4, respectively) and three 10-methylacridinium salts containing the trifluoromethanesulphonate anion and 9-vinyl-, 9-bromomethyl, and 9-phenyl-10-methylacridinium cations (5, 6 and 7, respectively). The crystal structures of all of the compounds are stabilized by long-range electrostatic interactions, as well as by a network of short-range C-HṡṡṡO (in hydrates and salts 3 and 5-7, respectively), C-Hṡṡṡπ, π-π, C-Fṡṡṡπ and S-Oṡṡṡπ (in salts 5-7) interactions. Hirshfeld surface analysis shows that various intermolecular contacts play an important role in the crystal packing, graphically exhibiting the differences in spatial arrangements of the acridine/acridinium derivatives under scrutiny here. Additionally, computational methods have been used to compare the intermolecular interactions in the crystal structures of the investigated compounds. Computations have confirmed the great contribution of dispersive interactions for crystal lattice stability in the case of 9-substituted acridine and electrostatic interactions for the crystal lattice stability in the case of 9-substituted 10-methylacridinium trifluoromethanesulphonates. The value of crystal lattice energy and the electrostatic contribution in the crystal lattice energy of monohydrated acridine derivatives have confirmed that these compounds have behave as acridinium derivatives.

  18. Crystal structure of lead(II) tartrate: a redetermination.

    PubMed

    Weil, Matthias

    2015-01-01

    Single crystals of poly[μ4-tartrato-κ(6) O (1),O (3):O (1'):O (2),O (4):O (4')-lead], [Pb(C4H4O6)] n , were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002 ▶). Acta Cryst. C58, m596-m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb(2+) cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb(2+) cations. The resulting three-dimensional framework is stabilized by O-H⋯O hydrogen bonds between the OH groups of one tartrate anion and the carboxyl-ate O atoms of adjacent anions.

  19. Nanoconfinement-Induced Structures in Chiral Liquid Crystals

    PubMed Central

    Melle, Michael; Theile, Madlona; Hall, Carol K.; Schoen, Martin

    2013-01-01

    We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase. PMID:23989605

  20. Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures

    NASA Astrophysics Data System (ADS)

    Nakagawa, Junki; Kage, Yuta; Hori, Takuma; Shiomi, Junichiro; Nomura, Masahiro

    2015-07-01

    Thermal phonon transport in square- and triangular-lattice Si phononic crystal (PnC) nanostructures with a period of 300 nm was investigated by measuring the thermal conductivity using micrometer-scale time-domain thermoreflectance. The placement of circular nanoholes has a strong influence on thermal conductivity when the periodicity is within the range of the thermal phonon mean free path. A staggered hole structure, i.e., a triangular lattice, has lower thermal conductivity, where the difference in thermal conductivity depends on the porosity of the structure. The largest difference in conductivity of approximately 20% was observed at a porosity of around 30%. This crystal structure dependent thermal conductivity can be understood by considering the local heat flux disorder created by a staggered hole structure. Numerical simulation using the Monte Carlo technique was also employed and also showed the lower thermal conductivity for a triangular lattice structure. Besides gaining a deeper understanding of nanoscale thermal phonon transport, this information would be useful in the design of highly efficient thermoelectric materials created by nanopatterning.

  1. The crystal structure of aluminum doped {beta}-rhombohedral boron

    SciTech Connect

    Bykova, Elena; Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid

    2012-10-15

    A crystal structure of aluminum doped {beta}-rhombohedral boron was studied by single-crystal X-ray diffraction at 80 K. The crystals were synthesized using high-pressure high temperature technique at 3 GPa and 2100 K. The structure is based on three-dimensional framework made of B{sub 12} icosahedra with voids occupied by the B{sub 28}-B-B{sub 28} units, it has the R-3m space group with a=10.9014(3), c=23.7225(7) A lattice dimensions in hexagonal setting. Aluminum atoms are located in A1 and D special positions of the {beta}-B structure with occupancies of 82.7(6)% and 11.3(4)%, respectively. Additional boron atoms are located near the D-site. Their possible distribution is discussed. Finally we have found two appropriate structural models whose refinement suggests two possible chemical compositions, AlB{sub 44.8(5)} and AlB{sub 37.8(5)}, which are in a good agreement with the chemical analysis data obtained from EDX. The crystal structure of AlB{sub 44.8(5)} is described in detail. - Graphical abstract: The atomic distribution near the B(15) atom (non-labeled atom in the center of the picture) shown along the c axis. Anisotropic displacement ellipses for Al(2) (D-site) and B(15) are shown with 50 % probability level. The mirror plane with Miller indices (1 1 0) and related to it (-1 2 0) and (-2 1 0) generated by the 3-fold rotation-inversion axis parallel to the c axis splits the position of B(16) over two sites. Highlights: Black-Right-Pointing-Pointer The crystal structure of the AlB{sub 44.8(5)} has been refined. Black-Right-Pointing-Pointer Aluminum atoms partially fill certain types of voids (the A1- and D-sites). Black-Right-Pointing-Pointer We have got two possible models of atomic distribution near the D-site.

  2. Crystal structures of two (±)-exo-N-isobornyl-acetamides.

    PubMed

    Stepanovs, Dmitrijs; Posevins, Daniels; Turks, Maris

    2015-10-01

    The title compounds consist of a bornane skeleton with attached acetamide, C12H21NO (±)-(1) {systematic name: (±)-N-[(1RS,2RS,4RS)-1,7,7-tri-methylbi-cyclo-[2.2.1]heptan-2-yl]acetamide}, and chloro-acetamide, C12H20ClNO (±)-(2) {systematic name: (±)-2-chloro-N-[(1RS,2RS,4RS)-1,7,7-tri-methylbi-cyclo-[2.2.1]heptan-2-yl]-acetamide}, functionalities to the 2-exo-position. The crystal structure of the first monoclinic polymorph of (±)-(1) has been reported previously [Ung et al. (2014 ▸). Monatsh. Chem. 145, 983-992]. Compound (±)-(1) crystallizes in the space group P21/n with two independent mol-ecules in the asymmetric unit, in contrast to the above-mentioned polymorph which crystallized in the space group C2/c with one mol-ecule in the asymmetric unit. In the title compounds, the bicyclic bornane moieties have normal geometries. In the crystals of both compounds, mol-ecules are linked by N-H⋯O hydrogen bonds, reinforced by C-H⋯O contacts, forming trans-amide chains propagating along the a-axis direction. In the case of compound (±)-(1), neighbouring chains are linked by further C-H⋯O contacts, forming double-chain ribbons along [100].

  3. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer This is the first structural information of human Rab3B. Black-Right-Pointing-Pointer To provides a structural basis for the GDP/GTP switch in controlling the activity of Rab3. Black-Right-Pointing-Pointer The charge distribution of Rab3B indicates its unique roles in vesicular trafficking. -- Abstract: Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 A resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  4. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  5. Crystal structures explain functional properties of two E. coli porins

    NASA Astrophysics Data System (ADS)

    Cowan, S. W.; Schirmer, T.; Rummel, G.; Steiert, M.; Ghosh, R.; Pauptit, R. A.; Jansonius, J. N.; Rosenbusch, J. P.

    1992-08-01

    Porins form aqueous channels that aid the diffusion of small hydrophilic molecules across the outer membrane of Gram-negative bacteria. The crystal structures of matrix porin and phosphoporin both reveal trimers of identical subunits, each subunit consisting of a 16-stranded anti-parallel β-barrel containing a pore. A long loop inside the barrel contributes to a constriction of the channel where the charge distribution affects ion selectivity. The structures explain at the molecular level functional characteristics and their alterations by known mutations.

  6. Crystal structure of new AsS{sub 2} compound

    SciTech Connect

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-15

    AsS{sub 2} single crystals have been obtained for the first time from an As{sub 2}S{sub 3} melt at pressures above 6 GPa and temperatures above 800 K in the As{sub 2}S{sub 3} {yields} AsS + AsS{sub 2} reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  7. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  8. Defect structure around two colloids in a liquid crystal.

    PubMed

    Guzmán, O; Kim, E B; Grollau, S; Abbott, N L; de Pablo, J J

    2003-12-01

    This Letter investigates the defect structures that arise between two colloidal spheres immersed in a nematic liquid crystal. Molecular simulations and a dynamic field theory are employed to arrive at molecular-level and mesoscopic descriptions of the systems of interest. At large separations, each sphere is surrounded by a Saturn ring defect. However, at short separations both theory and simulation predict that a third disclination ring appears in between the spheres, in a plane normal to the Saturn rings. This feature gives rise to an effective binding of the particles. The structures predicted by field theory and molecular simulations are consistent with each other.

  9. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically. PMID:26977643

  10. The Cambridge Structural Database: a quarter of a million crystal structures and rising.

    PubMed

    Allen, Frank H

    2002-06-01

    The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73,000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.

  11. Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.

    USGS Publications Warehouse

    Konnert, J.A.; Evans, H.T.

    1987-01-01

    The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.

  12. Internal stresses and dislocation structure of large single crystals of germanium for IR optics

    NASA Astrophysics Data System (ADS)

    Kaplunov, I. A.

    2006-02-01

    The thermoelastic stresses that appear during crystallization have been theoretically estimated for single crystals of germanium grown in the shape of a disk. It is shown that there is a correlation between the stress distribution and the dislocation structure of large single crystals of germanium obtained by the Stepanov method and by directed crystallization.

  13. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  14. Crystal structure of the 80S yeast ribosome.

    PubMed

    Jenner, Lasse; Melnikov, Sergey; Garreau de Loubresse, Nicolas; Ben-Shem, Adam; Iskakova, Madina; Urzhumtsev, Alexandre; Meskauskas, Arturas; Dinman, Jonathan; Yusupova, Gulnara; Yusupov, Marat

    2012-12-01

    The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.

  15. The crystal structure of human GDP-L-fucose synthase.

    PubMed

    Zhou, Huan; Sun, Lihua; Li, Jian; Xu, Chunyan; Yu, Feng; Liu, Yahui; Ji, Chaoneng; He, Jianhua

    2013-09-01

    Human GDP-l-fucose synthase, also known as FX protein, synthesizes GDP-l-fucose from its substrate GDP-4-keto-6-deoxy-d-mannose. The reaction involves epimerization at both C-3 and C-5 followed by an NADPH-dependent reduction of the carbonyl at C-4. In this paper, the first crystal structure of human FX protein was determined at 2.37 Å resolution. The asymmetric unit of the crystal structure contains four molecules which form two homodimers. Each molecule consists of two domains, a Rossmann-fold NADPH-binding motif and a carboxyl terminal domain. Compared with the Escherichia coli GDP-l-fucose synthase, the overall structures of these two enzymes have four major differences. There are four loops in the structure of human FX protein corresponding to two α-helices and two β-sheets in that of the E. coli enzyme. Besides, there are seven different amino acid residues binding with NAPDH comparing human FX protein with that from E. coli. The structure of human FX reveals the key catalytic residues and could be useful for the design of drugs for the treatment of inflammation, auto-immune diseases, and possibly certain types of cancer.

  16. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  17. Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction

    SciTech Connect

    Heroux, A.; Bozinovski, D; Valley, M; Fitzpatrick, P; Orville, A

    2009-01-01

    The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 {angstrom} resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped (Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066). The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle.

  18. Crystal structures of three (trichloromethyl)(carbamoyl)disulfanes

    PubMed Central

    Goldenberg, Barbara L.; Young Jr, Victor G.; Barany, George

    2015-01-01

    The present paper reports crystallographic studies on three related compounds that were of inter­est as precursors for synthetic and mechanistic work in organosulfur chemistry, as well as to model nitro­gen-protecting groups: (N-methyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C3H4Cl3NOS2, (1), (N-benzyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C9H8Cl3NOS2, (2), and (N-methyl-N-phenyl­carbamo­yl)(tri­chloro­meth­yl)disulfane, C9H8Cl3NOS2, (3). Their mol­ecular structures, with similar bond lengths and angles for the CCl3SS(C=O)N moieties, are confirmed. Compounds (1) and (3) both crystallized with two independent mol­ecules in the asymmetric unit. Classical hydrogen bonding, as well as chlorine-dense regions, are evident in the crystal packing for (1) and (2). In the crystal of (1), mol­ecules are linked via N—H⋯O hydrogen bonds forming chains along [110], which are linked by short Cl⋯Cl and S⋯O contacts forming sheets parallel to (001). In the crystal of (2), mol­ecules are linked via N—H⋯O hydrogen bonds forming chains along [001], which in turn are linked by pairs of short O⋯Cl contacts forming ribbons along the c-axis direction. In the crystal of (3), there are no classical hydrogen bonds present and the chlorine-dense regions observed in (1) and (2) are lacking. PMID:26594398

  19. Crystal structure of the Fe-member of usovite

    PubMed Central

    Weil, Matthias

    2015-01-01

    Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra­deca­fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe2+ cations replacing the Mg2+ cations. The principal building units are distorted [CaF8] square-anti­prisms (point group symmetry 2), [FeF6] octa­hedra (point group symmetry -1) and [AlF6] octa­hedra that are condensed into undulating 2 ∞[CaFeAl2F14]4− layers parallel (100). The Ba2+ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)]. PMID:26090139

  20. Nonlinear optical diglycine hydrochloride: Synthesis, crystal growth and structural characteristics

    NASA Astrophysics Data System (ADS)

    Narayana Moolya, B.; Darmaprakash, S. M.

    2006-07-01

    Diglycine hydrochloride (DGHCl), a new semiorganic nonlinear optical material with the molecular formula C 4H 11O 4Cl, was synthesized at ambient temperature. The solubility of DGHCl in water at varying temperatures was determined. Bulk single crystals were grown by the slow evaporation method at constant temperature. Powder X-ray diffraction patterns of the grown DGHCl were recorded and indexed. Functional groups present in the sample crystals were identified by FTIR spectral analysis. The chemical composition of the synthesized material was confirmed by CHN analysis. Thermal characteristics of DGHCl were determined from the TGA/DTA response curve. The Kurtz powder second harmonic generation (SHG) test showed potential for optical SHG. The UV cut-off of transmission was identified from the UV-VIS absorption spectra. The SHG of DGHCl is discussed on the basis of structural characteristics of the title compound.

  1. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults.

  2. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults. PMID:16907485

  3. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  4. Crystal Structure of a Fructokinase Homolog from Halothermothrix orenii

    SciTech Connect

    Khiang, C.; Seetharaman, J; Kasprzak, J; Cherlyn, N; Patel, B; Love, C; Bujnicki, J; Sivaraman, J

    2010-01-01

    Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of D-fructose to D-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrix orenii (Hore{_}18220 in sequence databases). The structure of the Hore{_}18220 protein reveals a catalytic domain with a Rossmann-like fold and a b-sheet 'lid' for dimerization. Based on comparison of Hore{_}18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore{_}18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.

  5. Single crystal growth and X-ray structure analysis of non-peripheral octahexyl phthalocyanine

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Nakano, Chika; Higashi, Takuya; Miyano, Tetsuya; Tohnai, Norimitsu; Fujii, Akihiko; Ozaki, Masanori

    2016-07-01

    The single-crystal structure of metal-free non-peripheral octahexyl-substituted phthalocyanine (C6PcH2) has been investigated by single-crystal X-ray structure analysis. Two types of C6PcH2 single crystal, bulk and needle crystals, were separately grown by controlling the recrystallization conditions. The structures of the two types of crystal were determined, and were found to be completely different, that is, C6PcH2 exhibits structural polymorphism. It has been clarified that the C6PcH2 microcrystals in thin films used in previously reported electronic devices have the needle structure.

  6. Crystal structure and characterization of a novel organic crystal: 4-Dimethylaminobenzophenone

    SciTech Connect

    Anandha babu, G.; Ramasamy, P.; Ravikumar, K.; Sridhar, B.

    2009-06-03

    Single crystals of a novel organic material, dimethylaminobenzophenone were grown from aqueous solution employing the technique of controlled evaporation. Dimethylaminobenzophenone belongs to the monoclinic system, with a = 12.5755(7) A, b = 7.9749(4) A, c = 13.0946(7) A, {alpha} = 90{sup o}, {beta} = 111.6380(10){sup o} and {gamma} = 90{sup o}. Fourier transform infrared study has been performed to identify the functional groups. The transmittance of dimethylaminobenzophenone has been used to calculate the refractive index n; the extinction coefficient K and both the real {epsilon}{sub r} and imaginary {epsilon}{sub i} components of the dielectric constant as functions of photon energy. The optical band gap of dimethylaminobenzophenone is 2.9 eV. The structural prefection of the grown crystals has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Thermo gravimetric analysis and differential thermal analysis have also been carried out, and the thermal behavior of dimethylaminobenzophenone crystal has been studied. The dielectric properties and mechanical properties have been investigated.

  7. Crystal Structure of Rat Carnitine Palmitoyltransferase II (CPT-II)

    SciTech Connect

    Hsiao,Y.; Jogl, G.; Esser, V.; Tong, L.

    2006-01-01

    Carnitine palmitoyltransferase II (CPT-II) has a crucial role in the {beta}-oxidation of long-chain fatty acids in mitochondria. We report here the crystal structure of rat CPT-II at 1.9 Angstroms resolution. The overall structure shares strong similarity to those of short- and medium-chain carnitine acyltransferases, although detailed structural differences in the active site region have a significant impact on the substrate selectivity of CPT-II. Three aliphatic chains, possibly from a detergent that is used for the crystallization, were found in the structure. Two of them are located in the carnitine and CoA binding sites, respectively. The third aliphatic chain may mimic the long-chain acyl group in the substrate of CPT-II. The binding site for this aliphatic chain does not exist in the short- and medium-chain carnitine acyltransferases, due to conformational differences among the enzymes. A unique insert in CPT-II is positioned on the surface of the enzyme, with a highly hydrophobic surface. It is likely that this surface patch mediates the association of CPT-II with the inner membrane of the mitochondria.

  8. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    SciTech Connect

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.; Fremont, Daved H.

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  9. Crystal structure of the major peanut allergen Ara h 1.

    PubMed

    Cabanos, Cerrone; Urabe, Hiroyuki; Tandang-Silvas, Mary Rose; Utsumi, Shigeru; Mikami, Bunzo; Maruyama, Nobuyuki

    2011-10-01

    Ara h 1, a 7S globulin, is one of the three major peanut allergens. We previously reported the crystallization of the core region of recombinant Ara h 1. Here, we present the crystal structure of the Ara h 1 core at a resolution of 2.43 Å. We also assayed the Ara h 1 core thermal stability and compared its final structure against other 7S globulins. The Ara h 1 core has a thermal denaturation temperature of 88.3°C and a structure that is very similar to other 7S globulins. Previously identified linear IgE epitopes were also mapped on the three-dimensional structure. Most linear epitopes were found in the extended loop domains and the coils between the N- and C-terminal modules, while others were found in the less accessible β-sheets of the C-terminal core β-barrel domain of each monomer. Most of these epitopes become either slightly or significantly buried upon trimer formation, implying that allergen digestion in the gut is required for these epitopes to be accessible to immunoglobulins. Our findings also suggest that both intact and partially degraded allergens should be employed in future diagnostic and immunotherapeutic strategies. PMID:21903274

  10. Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate

    SciTech Connect

    Changela, Anita; Martin, Alexandra; Shuman, Stewart; Mondragon, Alfonso

    2010-03-05

    Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 {angstrom} resolution. BVP adopts the characteristic cysteine-phosphatase {alpha}/{beta} fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif {sup 118}HCTHGXNRT{sup 126} in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.

  11. Crystal Structure of Cruxrhodopsin-3 from Haloarcula vallismortis

    PubMed Central

    Chan, Siu Kit; Kitajima-Ihara, Tomomi; Fujii, Ryudoh; Gotoh, Toshiaki; Murakami, Midori; Ihara, Kunio; Kouyama, Tsutomu

    2014-01-01

    Cruxrhodopsin-3 (cR3), a retinylidene protein found in the claret membrane of Haloarcula vallismortis, functions as a light-driven proton pump. In this study, the membrane fusion method was applied to crystallize cR3 into a crystal belonging to space group P321. Diffraction data at 2.1 Å resolution show that cR3 forms a trimeric assembly with bacterioruberin bound to the crevice between neighboring subunits. Although the structure of the proton-release pathway is conserved among proton-pumping archaeal rhodopsins, cR3 possesses the following peculiar structural features: 1) The DE loop is long enough to interact with a neighboring subunit, strengthening the trimeric assembly; 2) Three positive charges are distributed at the cytoplasmic end of helix F, affecting the higher order structure of cR3; 3) The cytoplasmic vicinity of retinal is more rigid in cR3 than in bacteriorhodopsin, affecting the early reaction step in the proton-pumping cycle; 4) the cytoplasmic part of helix E is greatly bent, influencing the proton uptake process. Meanwhile, it was observed that the photobleaching of retinal, which scarcely occurred in the membrane state, became significant when the trimeric assembly of cR3 was dissociated into monomers in the presence of an excess amount of detergent. On the basis of these observations, we discuss structural factors affecting the photostabilities of ion-pumping rhodopsins. PMID:25268964

  12. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis

    SciTech Connect

    Li Mei; Chen Zhiwei; Zhang Pingfeng; Pan Xiaowei; Jiang Chengying; An Xiaomin; Liu Shuangjiang; Chang Wenrui

    2008-05-09

    Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.

  13. Crystal Structure of a Ube2S-Ubiquitin Conjugate

    PubMed Central

    Lorenz, Sonja; Bhattacharyya, Moitrayee; Feiler, Christian; Rape, Michael; Kuriyan, John

    2016-01-01

    Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a “donor” ubiquitin and a primary amino group of an “acceptor” ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. PMID:26828794

  14. Crystal and molecular structure of perindopril erbumine salt

    NASA Astrophysics Data System (ADS)

    Remko, M.; Bojarska, J.; Ježko, P.; Sieroń, L.; Olczak, A.; Maniukiewicz, W.

    2011-06-01

    The crystal structure of perindopril (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-ethoxy-1-oxopentan-2-yl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid) erbumine salt C 23H 43N 3O 5, angiotensin-converting enzyme inhibitor, was determined from single-crystal X-ray diffraction data. The compound crystallizes in the triclinic, non-centrosymetric space group P1, with unit cell dimensions a = 6.575(3), b = 12.165(5), c = 16.988(8) Å and α = 97.153(4), β = 94.417(4), γ = 90.349(4)°, Z = 2. The structure was refined by full matrix least squares methods to R = 0.037. In the solid state ionized molecules of perindopril and erbumine are linked together forming a complex via O⋯HN + hydrogen bonds between the positively charged amino groups of the erbuminium cations and oxygen atoms of the perindopril carboxylate groups. Intermolecular N sbnd H⋯O and C sbnd H⋯O contacts seem to be effective in the stabilization of the structure, resulting in the formation of a three-dimensional network. The gas-phase structure of perindopril-erbumine complex was optimized by the HF/6-31G(d) and Becke3LYP/6-31G(d) methods. The conformational behavior of this salt in water was examined using the CPCM and Onsager models. In both the gas phase and water solution the perindopril erbumine will exist in prevailing triclinic form.

  15. Structural chemistry and number theory amalgamized: crystal structure of Na11Hg52.

    PubMed

    Hornfeck, Wolfgang; Hoch, Constantin

    2015-12-01

    The recently elucidated crystal structure of the technologically important amalgam Na11Hg52 is described by means of a method employing some fundamental concept of number theory, namely modular arithmetical (congruence) relations observed between a slightly idealized set of atomic coordinates. In combination with well known ideas from group theory, regarding lattice-sublattice transformations, these allow for a deeper mutual understanding of both and provide the structural chemist with a slightly different kind of spectacles, thus enabling a distinct viw on complex crystal structures in general.

  16. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  17. Crystal structure, defects and plasticity in pentacene thin films

    NASA Astrophysics Data System (ADS)

    Drummy, Lawrence Fisher, Jr.

    Pentacene is a crystalline organic molecular material currently under investigation for use as the active layer in all-organic flexible electronic devices. For pentacene and materials like it to be developed and integrated into useful devices, a greater understanding of their growth, crystal structure, defects and mechanical behavior in the thin film form must be obtained. Low-dose High Resolution Electron Microscopy (HREM) was used to image pentacene structure and defects with lattice resolution. A new technique, Low Voltage Electron Microscopy (LVEM), was used to characterize pentacene and other organic thin films with high contrast. Pentacene thin films were produced by vacuum sublimation onto various crystalline and amorphous substrates. The crystal structure and morphology of the films were characterized using microscopy and diffraction techniques, and a new orthorhombic crystal structure was found in very thin films. Although the bulk energy of this orthorhombic phase is higher than the pentacene triclinic phase, it is thermodynamically stable at low film thickness because of its low (001) surface energy. Single crystal growth of the triclinic phase was studied by complementing molecular mechanics simulations of surface energies with experimental images of pentacene films. Details of the structural relaxations near defects in pentacene thin films were investigated using HREM and Electron Diffraction (ED). Characteristic streaking in ED patterns gave evidence for anisotropic relaxations near molecular vacancies. Direct images of grain boundaries in the as-grown films gave insight into molecular reorganization under internal strain. Finally, the plasticity of pentacene was investigated by rubbing, scratching and nanoindentation. Alignment of the thermally evaporated films was achieved under a controlled load scratch. Evidence for single crystalline texturing inside the scratched region was seen using HREM, with the contact plane being {110} type

  18. Three new crystal structures in the Na-Pb system: solving structures without additional experimental input.

    PubMed

    Ward, Logan; Michel, Kyle; Wolverton, Chris

    2015-09-01

    The structures of three Na-Pb compounds, γ, δ and δ', have remained incompletely solved for nearly 60 years. The space group, lattice parameters and positions of the Pb atoms of these three structures have been determined, but the positions of the Na atoms are still unknown. In this work, the First-Principles Assisted Structure Solution (FPASS) method [Meredig & Wolverton (2013). Nat. Mater. 12, 123-127] has been used to complete the description of these three structures using only experimental information available from the literature as input. The paper also discusses the relative advantages of constrained crystal structure prediction tools, like FPASS, in comparison to conventional crystal structure prediction methods in reference to their abilities to complete the solution of other unsolved structures. PMID:26317197

  19. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  20. Supressed Water Crystallization in Nano-Structured Physical Hydrogel

    NASA Astrophysics Data System (ADS)

    Wiener, Clinton; Vogt, Bryan; Weiss, Robert

    2015-03-01

    Suppressed water crystallization occurs in some organisms, such as the common wood frog, which allows it to hibernate in a frozen state without damage to its cells. Knowledge of the behavior of supercooled water and alternate ice forms may have many implications to many fields of science. Supercooling of water by several degrees below the normal freezing point is often observed in hydrogels that have attractive interactions with water, e.g., hydrogen bonding. Repulsive confinement, such as in hydrophobic porous carbon, can have even more significant effects on the supercooling of the entrapped water. This talk describes the freezing behavior in nano-structured, hydrophobically modified poly(dimethyl acrylamide) hydrogels that possess attractive and repulsive interactions with water and are physically crosslinked by hydrophobic nanodomains. Three distinct water freezing regimes were observed in the hydrogel swollen to about 50% water by weight. Differential scanning calorimetry detected three crystallization exotherms at 254K, 244K, and 227K. Quasi-elastic neutron scattering experiments have shown that although the water mobility was suppressed at room temperature, the water remained significantly mobile below the normal freezing point of water. The talk will discuss how tuning the concentration of the hydrophobic composition of the hydrogel affects the porous length scales in the hydrogel, which may alter the state of water and the crystal form produced by supercooling.

  1. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions. PMID:21517507

  2. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.

    2012-03-01

    Pseudowollastonite, an extremely rare constituent of ultrahigh-temperature combustion metamorphic and igneous rocks, has been found as a rock-forming mineral in Ca-rich paralava veins of Nabi Musa fossil mud volcano (Dead Sea area). Pseudowollastonite-bearing paralavas are the products of combustion metamorphism associated with spontaneous burning of methane. The melt began to crystallize at 1480-1500 °C about the ambient pressure. Pseudowollastonite enters two mineral assemblages: (1) rankinite, larnite, nagelschmidtite, wollastonite (1T), gehlenite-rich melilite, Ti-rich andradite, cuspidine, and fluorapatite; (2) parawollastonite (2M), wollastonite (1T), gehlenite-rich melilite, Ti-rich andradite, fluorellestadite. In this study we present the first single-crystal structure determination of natural pseudowollastonite. Pseudowollastonite from Nabi Musa dome is stoichiometric CaSiO3 and belongs to the most widespread four-layer polytype: a = 6.83556(10) Å, b = 11.86962(18) Å, c = 19.6255(3) Å, β = 90.6805(13)°, V = 1592.21(4) Å3, space group C2/c. We argue that pseudowollastonite is so scarce in nature because its formation requires joint action of several uncommon factors: availability of hot melts of T > 1200 °C that bear free calcium but are poor in Mg and Fe (mostly as Fe3 +) and their crystallization in the shallow crust followed by quenching.

  3. Crystal structure and conformation of polypeptides: L-leucylglycylglycylglycine.

    PubMed

    Srikrishnan, T; Parthasarathy, R

    1987-10-01

    Crystals of L-leucylglycylglycylglycine, LGGG (C12H22N4O5), grown from an ethanol-water solution, are orthorhombic, space groups P2(1)2(1)2(1), with unit cell dimensions (at 22 +/- 3 degrees) a = 9.337(1), b = 10.995(1), c = 15.235(1)A, v = 1563.4 A3, Z = 4 with a density of Dobs = 1.29 g.cm-3 and Dcalc = 1.279 g.cm-3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.029 for 1018 reflections with I greater than or equal to 2 sigma. The molecule exists as a zwitterion in the crystal. The trans peptide backbone takes up a folded conformation at the middle glycylglycyl link accompanied by a significant nonplanarity up to delta omega of 8 degrees at the middle peptide and is relatively more extended at the two ends. The molecules are linked together intermolecularly in an infinite sequence of head to tail 1-4' hydrogen bonds, as is typical of charged peptides. It is interesting to note that while glycylglycylglycine takes up an extended beta-sheet conformation, addition of Leu to the N-terminal results in a bent conformation.

  4. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  5. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  6. Low Temperature Crystal Structure and Magnetic Properties of RAl2

    SciTech Connect

    Pathak, Arjun K.; Paudyal, Durga; Gschneidner, Karl A.; Pecharsky, Vitalij K.

    2014-01-08

    Low temperature crystal structure and magnetic properties of RAl2 (R = Pr and Nd) have been studied using temperature dependent powder x-ray diffraction, magnetization, and heat capacity measurements. Unlike PrAl2, NdAl2 retains cubic MgCu2-type structure from room temperature down to 5 K, which is also confirmed from first principles electronic structure calculations. The magnetization measurements show both PrAl2 and NdAl2 order ferromagnetically at TC = 32 K and 77 K, respectively. However, the magnetization measurements show the former is a hard ferromagnet compared to the latter which is a soft ferromagnetic material. The magnetic entropy change obtained from heat capacity measurements at ΔH = 30 kOe for PrAl2 and NdAl2 are 3.15 J mol-1 K-1 and 1.18 J mol-1 K-1, respectively.

  7. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  8. Crystal structure of Homo sapiens protein LOC79017

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N.

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  9. Crystal structure of the superantigen staphylococcal enterotoxin type A.

    PubMed Central

    Schad, E M; Zaitseva, I; Zaitsev, V N; Dohlsten, M; Kalland, T; Schlievert, P M; Ohlendorf, D H; Svensson, L A

    1995-01-01

    Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined. Images PMID:7628431

  10. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  11. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    PubMed

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.

  12. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    PubMed

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase. PMID:27050689

  13. Crystal Structure of the Monomeric Porin OmpG

    SciTech Connect

    Subbarao,G.; van den Berg, B.

    2006-01-01

    The outer membrane (OM) of Gram-negative bacteria contains a large number of channel proteins that mediate the uptake of ions and nutrients necessary for growth and functioning of the cell. An important group of OM channel proteins are the porins, which mediate the non-specific, diffusion-based passage of small (<600 Da) polar molecules. All porins of Gram-negative bacteria that have been crystallized to date form stable trimers, with each monomer composed of a 16-stranded {beta}-barrel with a relatively narrow central pore. In contrast, the OmpG porin is unique, as it appears to function as a monomer. We have determined the X-ray crystal structure of OmpG from Escherichia coli to a resolution of 2.3 Angstroms. The structure shows a 14-stranded {beta}{beta}-barrel with a relatively simple architecture. Due to the absence of loops that fold back into the channel, OmpG has a large ({approx}13 Angstroms) central pore that is considerably wider than those of other E. coli porins, and very similar in size to that of the toxin a-hemolysin. The architecture of the channel, together with previous biochemical and other data, suggests that OmpG may form a non-specific channel for the transport of larger oligosaccharides. The structure of OmpG provides the starting point for engineering studies aiming to generate selective channels and for the development of biosensors.

  14. Crystal structure of a Baeyer-Villiger monooxygenase.

    PubMed

    Malito, Enrico; Alfieri, Andrea; Fraaije, Marco W; Mattevi, Andrea

    2004-09-01

    Flavin-containing Baeyer-Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon-carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer-Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the formation of two crucial intermediates: a flavin peroxide generated by the reaction of the reduced flavin with molecular oxygen and the "Criegee" intermediate resulting from the attack of the flavin peroxide onto the substrate that is being oxygenated. The crystal structure of phenylacetone monooxygenase, a Baeyer-Villiger monooxygenase from the thermophilic bacterium Thermobifida fusca, exhibits a two-domain architecture resembling that of the disulfide oxidoreductases. The active site is located in a cleft at the domain interface. An arginine residue lays above the flavin ring in a position suited to stabilize the negatively charged flavin-peroxide and Criegee intermediates. This amino acid residue is predicted to exist in two positions; the "IN" position found in the crystal structure and an "OUT" position that allows NADPH to approach the flavin to reduce the cofactor. Domain rotations are proposed to bring about the conformational changes involved in catalysis. The structural studies highlight the functional complexity of this class of flavoenzymes, which coordinate the binding of three substrates (molecular oxygen, NADPH, and phenylacetone) in proximity of the flavin cofactor with formation of two distinct catalytic intermediates.

  15. Refinement of the crystal structure of lithium-bearing uvite

    SciTech Connect

    Rozhdestvenskaya, I. V. Frank-Kamenetskaya, O. V.; Kuznetsova, L. G.; Bannova, I. I.; Bronzova, Yu. M.

    2007-03-15

    The crystal structure of a natural calcium tourmaline, i.e., uvite with a high lithium content (0.51 au per formula (aupf) at the Y site, is refined to R = 0.019, R{sub w} = 0.020, and S = 1.11. It is shown that, in nature, there exist uvites in which the charge balance in the case where the Z site is occupied by trivalent cations is provided by the replacement of part of the divalent magnesium cations at the Y site by univalent cations, divalent calcium cations at the X site by sodium cations, and univalent anions at the W site by oxygen anions. The W site is found to be split into two sites, namely, the W1 and W11 sites (the W1-W11 distance is 0.14 A), which are partially occupied by the fluorine and oxygen anions, respectively. An analysis of the results obtained in this study and the data available in the literature on the crystal structure of uvites allows the conclusion that uvite can be considered a superspecies and that the nomenclature of this mineral group needs refinement with the use of structural data.

  16. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    SciTech Connect

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  17. Structural phase transitions in low-dimensional ion crystals

    SciTech Connect

    Fishman, Shmuel; Chiara, Gabriele de; Calarco, Tommaso; Morigi, Giovanna

    2008-02-01

    A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente et al. [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

  18. Crystal structure of human tooth enamel studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  19. Study of the crystal structure of silicon nanoislands on sapphire

    SciTech Connect

    Krivulin, N. O. Pirogov, A. V.; Pavlov, D. A.; Bobrov, A. I.

    2015-02-15

    The results of studies of the crystal structure of silicon nanoislands on sapphire are reported. It is shown that the principal defects in silicon nanoislands on sapphire are twinning defects. As a result of the formation of such defects, different crystallographic orientations are formed in silicon nanoislands on sapphire. In the initial stages of the molecular-beam epitaxy of silicon on sapphire, there are two basic orientations: the (001) orientation parallel to the surface and the (001) orientation at an angle of 70° to the surface.

  20. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  1. Crystal structure determination of anti-DNA Fab A52.

    PubMed

    Stanfield, Robyn L; Eilat, Dan

    2014-08-01

    A52 is a murine monoclonal antibody isolated from autoimmune New Zealand Black/New Zealand White F1 mice that recognizes single and double stranded DNA. This mouse strain spontaneously develops systemic lupus erythematosus-like symptoms and has served as a model for that disease for many years. The 1.62 Å crystal structure of the A52 Fab fragment reveals an H3 complementarity determining region with four closely spaced arginine residues, creating a positively charged surface to accommodate bound DNA.

  2. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.

    1984-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependancy on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  3. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    SciTech Connect

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  4. Probing the molecular structure of interfacial films and crystals

    NASA Astrophysics Data System (ADS)

    Wang, Anfeng

    The properties of outside surfaces were found to play an important role in the nucleation and crystallization processes. Thus controlling the surface properties would provide an effective means for crystal engineering. Hydrophobic surface is prepared by self-assembled monolayer (SAM) formation of octadecyltrichlorosilane (OTS) on silicon surface, with the hydrophobicity adjusted by the monolayer coverage. Silicon wafer treated by RCA method is hydrophilic, so are SAMs formed by two amine-terminated organosilanes on silicon. However these three hydrophilic surfaces are unstable, due to contamination of the amine-terminated SAMs and hydrolysis of RCA treated silicon. Polymethine dyes, BDH+Cl- and BDH +ClO4-, are synthesized and characterized by UV spectra and crystal morphology. They have identical UV spectrum in dilute solutions due to the same chromophore, and J-aggregation happens at much higher concentrations. IR spectra are analyzed to monitor the crystallization process of BDH+Cl- OTS SAM surface and the crystallization process of BDH+Cl- on substrates with varying hydrophobicity was monitored by optical microscopy and compared. Due to the extreme flexibility of polysiloxane, silicone surfactants can arrange themselves at the interfaces quickly to adopt configurations with minimum free energy. Polysiloxane is hydrophobic but not oleophilic, which makes them effective emulsifiers and stabilizers in aqueous and nonaqueous media. The interaction between an AFM Si3N4 tip and a hydrophobic surface in silicone polyether (SPE) solution in the presence of ethanol was investigated by Atomic Force Microscopy (AFM) force measurement. ABA triblock type and comb-type SPE surfactants, adsorbed at the liquid-solid interface, provide steric barriers, even with significant addition of ethanol. On the contrary, conventional low-molecular weight and polymeric alkyl surfactants display no steric barrier even in the presence of moderate amount of ethanol. This unique property makes

  5. Structure and Dynamics of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2004-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1 D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline or quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enables the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new LC physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase

  6. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  7. Magnetic and Crystal Structure of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Sears, Jennifer

    The layered honeycomb material α-RuCl3 has been proposed as a candidate material to show significant bond-dependent Kitaev type interactions. This has prompted several recent studies of magnetism in this material that have found evidence for multiple magnetic transitions in the temperature range of 8-14 K. We will present elastic neutron scattering measurements collected using a co-aligned array of α-RuCl3 crystals, identifying zigzag magnetic order within the honeycomb planes with an ordering temperature of ~8 K. It has been reported that the ordering temperature depends on the c axis periodicity of the layered structure, with ordering temperatures of 8 and 14 K for three and two-layer periodicity respectively. While the in-plane magnetic order has been identified, it is clear that a complete understanding of magnetic ordering and interactions will depend on the three dimensional structure of the crystal. Evidence of a structural transition at ~150 K has been reported and questions remain about the structural details, in particular the stacking of the honeycomb layers. We will present x-ray diffraction measurements investigating the low and high temperature structures and stacking disorder in α-RuCl3. Finally, we will present inelastic neutron scattering measurements of magnetic excitations in this material. Work done in collaboration with K. W. Plumb (Johns Hopkins University), J. P. Clancy, Young-June Kim (University of Toronto), J. Britten (McMaster University), Yu-Sheng Chen (Argonne National Laboratory), Y. Qiu, Y. Zhao, D. Parshall, and J. W. Lynn (NCNR).

  8. Combined Crystal Structure of a Type I Cohesin

    PubMed Central

    Cameron, Kate; Weinstein, Jonathan Y.; Zhivin, Olga; Bule, Pedro; Fleishman, Sarel J.; Alves, Victor D.; Gilbert, Harry J.; Ferreira, Luís M. A.; Fontes, Carlos M. G. A.; Bayer, Edward A.; Najmudin, Shabir

    2015-01-01

    Cohesin-dockerin interactions orchestrate the assembly of one of nature's most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at β-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure. PMID:25934389

  9. Are the Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics or Thermodynamics?

    PubMed

    Hylton, Rebecca K; Tizzard, Graham J; Threlfall, Terence L; Ellis, Amy L; Coles, Simon J; Seaton, Colin C; Schulze, Eric; Lorenz, Heike; Seidel-Morgenstern, Andreas; Stein, Matthias; Price, Sarah L

    2015-09-01

    Mandelic acids are prototypic chiral molecules where the sensitivity of crystallized forms (enantiopure/racemic compound/polymorphs) to both conditions and substituents provides a new insight into the factors that may allow chiral separation by crystallization. The determination of a significant number of single crystal structures allows the analysis of 13 enantiopure and 30 racemic crystal structures of 21 (F/Cl/Br/CH3/CH3O) substituted mandelic acid derivatives. There are some common phenyl packing motifs between some groups of racemic and enantiopure structures, although they show very different hydrogen-bonding motifs. The computed crystal energy landscape of 3-chloromandelic acid, which has at least two enantiopure and three racemic crystal polymorphs, reveals that there are many more possible structures, some of which are predicted to be thermodynamically more favorable as well as slightly denser than the known forms. Simulations of mandelic acid dimers in isolation, water, and toluene do not differentiate between racemic and enantiopure dimers and also suggest that the phenyl ring interactions play a major role in the crystallization mechanism. The observed crystallization behavior of mandelic acids does not correspond to any simple "crystal engineering rules" as there is a range of thermodynamically feasible structures with no distinction between the enantiopure and racemic forms. Nucleation and crystallization appear to be determined by the kinetics of crystal growth with a statistical bias, but the diversity of the mandelic acid crystallization behavior demonstrates that the factors that influence the kinetics of crystal nucleation and growth are not yet adequately understood.

  10. Single crystal structures of thallium (I) thorium fluorides and crystal chemistry of monovalent tetravalent cation pentafluorides

    NASA Astrophysics Data System (ADS)

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Jouffret, Laurent; Avignant, Daniel

    2015-12-01

    Two thallium (I) thorium (IV) fluorides, TlTh3F13 and TlThF5 were obtained by solid state synthesis and their crystal structures determined from single crystal X-ray diffraction data recorded at room temperature with an APEX-II CCD diffractometer. TlTh3F13 is orthorhombic, space group Pmc21, with a=8.1801(2) Å, b=7.4479(2) Å, c=8.6375(2) Å, V=526.24(2) Å3, Z=2 and TlThF5 is monoclinic, space group P21/n, with a=8.1128(5) Å, b=7.2250(4) Å, c=8.8493(6) Å, β=116.683(3)°, V=463.46(5) Å3, Z=4. The structure of TlTh3F13 comprises layers of corner and edge-sharing ThF9 polyhedra further linked by chains of trans connected tricapped trigonal prisms ThF9 through corners and edges. The three dimensional thorium frameworks delimits channels parallel to [0 0 1] where the 11-coordinated Tl+ ions are arranged into double columns located in mirror planes of the structure. TlTh3F13 is isotypic with RbTh3F13, RbU3F13 and with one of the two polymorphs of CsTh3F13. The structure of TlThF5 may be regarded as a layer structure built up from the regular succession of 2∞[ M ‧F5 ] - corrugated layers further held by the Tl+ ions along the [1 0 1 ̅] direction. The layers are built up from edge and corner-sharing thorium polyhedra where each (ThF9)5- monocapped square antiprism is connected to five others by sharing three edges and two corners. TlThF5 is isostructural with β-NH4UF5 and with one of the polymorphs of CsThF5. A comparison of the different structural types of MM‧F5 pentafluorides is presented and a diagram of repartition of their structures is given. From the comparison of the Tl structures with their Rb or Cs homologs, where very similar monovalent cation environments are observed it should be concluded to a stereochemically inactivity of the 6s2 lone pair of Tl(I) in both TlTh3F13 and TlThF5, contrary to what is observed in richer Tl(I) content Tl3ThF7 fluorothorate.

  11. Crystal structures of 11β-hydroxysteroid dehydrogenase type 1 and their use in drug discovery

    PubMed Central

    Thomas, Mark P; Potter, Barry VL

    2014-01-01

    Cortisol is synthesized by 11β-hydroxysteroid dehydrogenase type 1, inhibitors of which may treat disease associated with excessive cortisol levels. The crystal structures of 11β-hydroxysteroid dehydrogenase type 1 that have been released may aid drug discovery. The crystal structures have been analyzed in terms of the interactions between the protein and the ligands. Despite a variety of structurally different inhibitors the crystal structures of the proteins are quite similar. However, the differences are significant for drug discovery. The crystal structures can be of use in drug discovery, but care needs to be taken when selecting structures for use in virtual screening and ligand docking. PMID:21446847

  12. Crystal structure of the petal death protein from carnation flower.

    PubMed

    Teplyakov, Alexey; Liu, Sijiu; Lu, Zhibing; Howard, Andrew; Dunaway-Mariano, Debra; Herzberg, Osnat

    2005-12-20

    Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.

  13. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  14. Crystal structures of vortioxetine and its methanol monosolvate

    PubMed Central

    Zhou, Xin-Bo; Gu, Jian-Ming; Sun, Meng-ying; Hu, Xiu-Rong; Wu, Su-Xiang

    2015-01-01

    Vortioxetine, C18H22N2S, (1), systematic name 1-{2-[(2,4-di­methyl­phen­yl)sulfan­yl]phen­yl}piperazine, a new drug used to treat patients with major depressive disorder, has been crystallized as the free base and its methanol monosolvate, C18H22N2S·CH3OH, (2). In both structures, the vortioxetine mol­ecules have similar conformations: in (1), the dihedral angle between the aromatic rings is 80.04 (16)° and in (2) it is 84.94 (13)°. The C—S—C bond angle in (1) is 102.76 (14)° and the corresponding angle in (2) is 103.41 (11)°. The piperazine ring adopts a chair conformation with the exocyclic N—C bond in a pseudo-equatorial orientation in both structures. No directional inter­actions beyond normal van der Waals contacts could be identified in the crystal of (1), whereas in (2), the vortioxetine and methanol mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, generating [001] chains. PMID:26396746

  15. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  16. Crystal structures of human peroxiredoxin 6 in different oxidation states.

    PubMed

    Kim, Kyung Hee; Lee, Weontae; Kim, Eunice EunKyeong

    2016-09-01

    Peroxiredoxins (Prxs) are a family of antioxidant enzymes found ubiquitously. Prxs function not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Since reactive oxygen species are involved in many cellular metabolic and signaling processes, Prxs play important roles in various diseases. Prxs can be hyperoxidized to the sulfinic acid (SO2H) or sulfonic acid (SO3H) forms in the presence of high concentrations of H2O2. It is known that oligomerization of Prx is changed accompanying oxidation states, and linked to the function. Among the six Prxs in mammals, Prx6 is the only 1-Cys Prx. It is found in all organs in humans, unlike some 2-Cys Prxs, and is present in all species from bacteria to humans. In addition, Prx6 has Ca(2+)-independent phospholipase A2 (PLA2) activity. Thus far only the crystal structure of Prx in the oxidized state has been reported. In this study, we present the crystal structures of human Prx6 in the reduced (SH) and the sulfinic acid (SO2H) forms. PMID:27353378

  17. Crystal structure of K[Hg(SCN)3] - a redetermination.

    PubMed

    Weil, Matthias; Häusler, Thomas

    2014-09-01

    The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium tri-thio-cyanato-mercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952 ▶). Zh. Fiz. Khim. 26, 469-478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg-S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg(2+) cation is surrounded by four S atoms in a seesaw shape [S-Hg-S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4 polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting (1) ∞[HgS2/1S2/2] chains are also part of SCN(-) anions that link these chains with the K(+) cations into a three-dimensional network. The K-N bond lengths of the distorted KN7 polyhedra lie between 2.926 (2) and 3.051 (3) Å.

  18. Structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  19. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium Trichloroacetate single crystals

    NASA Astrophysics Data System (ADS)

    Renuka, N.; Ramesh Babu, R.; Vijayan, N.; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K.

    2015-02-01

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni2+ and Co2+ doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  20. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed.

  1. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGES

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  2. Crystal structure of the superconducting phase of sulfur hydride

    NASA Astrophysics Data System (ADS)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  3. Crystal structure of Hg2SO4 – a redetermination

    PubMed Central

    Weil, Matthias

    2014-01-01

    The crystal structure of mercury(I) sulfate (or mercurous sulfate), Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969 ▶). Acta Chem. Scand. 23, 1607–1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg—Hg = 2.5031 (7) compared to 2.500 (3)Å]. The structure consists of alternating rows along [001] of Hg2 2+ dumbbells (generated by inversion symmetry) and SO4 2− tetra­hedra (symmetry 2). The dumbbells are linked via short O—Hg—Hg—O bonds to the sulfate tetra­hedra into chains extending parallel to [20-1]. More remote O—Hg—Hg—O bonds connect these chains into a three-dimensional framework. PMID:25309168

  4. The first crystal structure of an archaeal helical repeat protein

    PubMed Central

    Yoneda, Kazunari; Sakuraba, Haruhiko; Tsuge, Hideaki; Katunuma, Nobuhiko; Kuramitsu, Seiki; Kawabata, Takeshi; Ohshima, Toshihisa

    2005-01-01

    The crystal structure of ST1625p, a protein encoded by a hypothetical open reading frame ST1625 in the genome of the hyperthermophilic archaeon Sulfolobus tokodaii, was determined at 2.2 Å resolution. The only sequence similarity exhibited by the amino-acid sequence of ST1625p was a 33% identity with the sequence of SSO0983p from S. solfataricus. The 19 kDa monomeric protein was observed to consist of a right-handed superhelix assembled from a tandem repeat of ten α-­helices. A structural homology search using the DALI and MATRAS algorithms indicates that this protein can be classified as a helical repeat protein. PMID:16511116

  5. Crystal structure of χ-AlPdRe

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Simura, Rayko; Sugiyama, Kazumasa

    2011-07-01

    The structure of the χ-AlPdRe phase was determined by single crystal X-ray diffraction: space group P31c (No.159), a = 1.23744(4) nm, c = 2.7489(1) nm, V = 3.6453(2) nm3, atoms/cell = 230, F(000) = 5138, µ = 20.199 cm-1, Dcalc = 5.29 Mg m-3, R(F) = 0.068 for 2894 observed reflections measured by Mo Kα radiation (λ = 0.071073 nm). The structure of χ-AlPdRe is similar to that of Ir9Al28 and typical i3-clusters and pseudo-Mackay type icosahedra are well reproduced by the ordered distribution of Pd and Re.

  6. Crystal Structure of a Phosphorylation-coupled Saccharide Transporter

    SciTech Connect

    Y Cao; X Jin; E Levin; H Huang; Y Zong; W Hendrickson; J Javitch; K Rajashankar; M Zhou; et al.

    2011-12-31

    Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His250 and Glu334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.

  7. Crystal structure of Hg2SO4 - a redetermination.

    PubMed

    Weil, Matthias

    2014-09-01

    The crystal structure of mercury(I) sulfate (or mercurous sulfate), Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969 ▶). Acta Chem. Scand. 23, 1607-1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg-Hg = 2.5031 (7) compared to 2.500 (3)Å]. The structure consists of alternating rows along [001] of Hg2 (2+) dumbbells (generated by inversion symmetry) and SO4 (2-) tetra-hedra (symmetry 2). The dumbbells are linked via short O-Hg-Hg-O bonds to the sulfate tetra-hedra into chains extending parallel to [20-1]. More remote O-Hg-Hg-O bonds connect these chains into a three-dimensional framework.

  8. The crystal structure of {pi}-ErBO{sub 3}: New single-crystal data for an old problem

    SciTech Connect

    Pitscheider, Almut; Kaindl, Reinhard; Oeckler, Oliver; Huppertz, Hubert

    2011-01-15

    Single crystals of the orthoborate {pi}-ErBO{sub 3} were synthesized from Er{sub 2}O{sub 3} and B{sub 2}O{sub 3} under high-pressure/high-temperature conditions of 2 GPa and 800 {sup o}C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the monoclinic pseudowollastonite-type structure, space group C2/c, with the lattice parameters a=1128.4(2) pm, b=652.6(2) pm, c=954.0(2) pm, and {beta}=112.8(1){sup o} (R{sub 1}=0.0124 and wR{sub 2}=0.0404 for all data). -- graphical abstract: The first satisfying single-crystal structure determination of {pi}-ErBO{sub 3} sheds light on the extensively discussed structure of {pi}-orthoborates. The application of light pressure during the solid state synthesis yielded in high-quality crystals, due to pressure-induced crystallization. Research highlights: {yields} High-quality single crystals of {pi}-ErBO{sub 3} were prepared via high-pressure-induced crystallization. {yields} At least five different space groups for the rare-earth {pi}-orthoborates are reported. {yields} {pi}-ErBO{sub 3} is isotypic to the pseudowollastonite-type CaSiO{sub 3}. {yields} Remaining ambiguities regarding the structure of the rare-earth {pi}-orthoborates are resolved.

  9. High-Throughput Identification of Unique Structure Prototypes in the Inorganic Crystal Structure Database

    NASA Astrophysics Data System (ADS)

    Hicks, David; Toher, Cormac; Levy, Ohad; Curtarolo, Stefano

    High-throughput computational assessment of materials properties is currently a major component of the effort to develop new useful materials by uncovering trends and correlations between structures, compositions, and functionalities. Efficient implementation of this approach thus requires a systematic identification of distinct material structure prototypes. We have developed a robust algorithm that calculates the level of similarity between crystal structures independent of the unit cell representation, using the comparison method proposed by Burzlaff. This algorithm has been implemented in the high-throughput framework, Automatic Flow (AFLOW), and applied to the Inorganic Crystal Structure Database (ICSD) entries in the AFLOWLIB.org online repository. We have determined the uniqueness statistics for the ICSD and have created a comprehensive set of the unique structural prototypes represented in it.

  10. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure.

    PubMed

    Kang, Boyoung; Woo, J H; Choi, E; Lee, Hyun-Hee; Kim, E S; Kim, J; Hwang, Tae-Jong; Park, Young-Soon; Kim, D H; Wu, J W

    2010-08-01

    A metamaterial-liquid crystal cell structure is fabricated with the metamaterial as one of the liquid crystal alignment layers. Nano-sized double-split ring resonator in the metamaterial accommodates two distinct resonances in the near infrared regime. By adopting an azo-nematic liquid crystal in a twisted nematic liquid crystal cell structure, a photo-isomerization process is utilized to achieve an optical switching of light transmissions between two resonances. A single device of the metamaterial-liquid crystal cell structure has a potential application in the photonic switching in optical fiber telecommunications.

  11. Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure.

    PubMed

    Kang, Boyoung; Woo, J H; Choi, E; Lee, Hyun-Hee; Kim, E S; Kim, J; Hwang, Tae-Jong; Park, Young-Soon; Kim, D H; Wu, J W

    2010-08-01

    A metamaterial-liquid crystal cell structure is fabricated with the metamaterial as one of the liquid crystal alignment layers. Nano-sized double-split ring resonator in the metamaterial accommodates two distinct resonances in the near infrared regime. By adopting an azo-nematic liquid crystal in a twisted nematic liquid crystal cell structure, a photo-isomerization process is utilized to achieve an optical switching of light transmissions between two resonances. A single device of the metamaterial-liquid crystal cell structure has a potential application in the photonic switching in optical fiber telecommunications. PMID:20721037

  12. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    PubMed

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  13. The crystal structures of potassium and cesium trivanadates

    USGS Publications Warehouse

    Evans, H.T.; Block, S.

    1966-01-01

    Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

  14. A computational tool to design and generate crystal structures

    NASA Astrophysics Data System (ADS)

    Ferreira, R. C.; Vieira, M. B.; Dantas, S. O.; Lobosco, M.

    2014-03-01

    The evolution of computers, more specifically regarding the increased storage and data processing capacity, allowed the construction of computational tools for the simulation of physical and chemical phenomena. Thus, practical experiments are being replaced, in some cases, by computational ones. In this context, we can highlight models used to simulate different phenomena on atomic scale. The construction of these simulators requires, by developers, the study and definition of accurate and reliable models. This complexity is often reflected in the construction of complex simulators, which simulate a limited group of structures. Such structures are sometimes expressed in a fixed manner using a limited set of geometric shapes. This work proposes a computational tool that aims to generate a set of crystal structures. The proposed tool consists of a) a programming language, which is used to describe the structures using for this purpose their characteristic functions and CSG (Constructive Solid Geometry) operators, and b) a compiler/interpreter that examines the source code written in the proposed language, and generates the objects accordingly. This tool enables the generation of an unrestricted number of structures, which can be incorporated in simulators such as the Monte Carlo Spin Engine, developed by our group at UFJF.

  15. SHELXT - integrated space-group and crystal-structure determination.

    PubMed

    Sheldrick, George M

    2015-01-01

    The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.

  16. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme. PMID:18413719

  17. Crystal structure of the human GGA1 GAT domain.

    SciTech Connect

    Zhu, G.; Zhai, P.; He, X.; Terzyan, S.; Zhang, R.; Joachimiak, A.; Tang, J.; Zhang, X. C.; Biosciences Division; Oklahoma Medical Research Foundation; Oklahoma Univ. Medical Center

    2003-06-03

    GGAs are a family of vesicle-coating regulatory proteins that function in intracellular protein transport. A GGA molecule contains four domains, each mediating interaction with other proteins in carrying out intracellular transport. The GAT domain of GGAs has been identified as the structural entity that binds membrane-bound ARF, a molecular switch regulating vesicle-coat assembly. It also directly interacts with rabaptin5, an essential component of endosome fusion. A 2.8 A resolution crystal structure of the human GGA1 GAT domain is reported here. The GAT domain contains four helices and has an elongated shape with the longest dimension exceeding 80 A. Its longest helix is involved in two structural motifs: an N-terminal helix-loop-helix motif and a C-terminal three-helix bundle. The N-terminal motif harbors the most conservative amino acid sequence in the GGA GAT domains. Within this conserved region, a cluster of residues previously implicated in ARF binding forms a hydrophobic surface patch, which is likely to be the ARF-binding site. In addition, a structure-based mutagenesis-biochemical analysis demonstrates that the C-terminal three-helix bundle of this GAT domain is responsible for the rabaptin5 binding. These structural characteristics are consistent with a model supporting multiple functional roles for the GAT domain.

  18. Crystal Structure of the BARD1 BRCT Domains

    SciTech Connect

    Birrane,G.; Varma, A.; Soni, A.; Ladias, J.

    2007-01-01

    The interaction of the breast tumor suppressor BRCA1 with the protein BARD1 results in the formation of a heterodimeric complex that has ubiquitin ligase activity and plays central roles in cell cycle checkpoint control and DNA repair. Both BRCA1 and BARD1 possess a pair of tandem BRCT domains that interact in a phosphorylation-dependent manner with target proteins. We determined the crystal structure of the human BARD1 BRCT repeats (residues 568-777) at 1.9 {angstrom} resolution. The composition and structure of the BARD1 phosphoserine-binding pocket P{sub 1} are strikingly similar to those of the BRCA1 and MDC1 BRCT domains, suggesting a similar mode of interaction with the phosphate group of the ligand. By contrast, the BARD1 BRCT selectivity pocket P{sub 2} exhibits distinct structural features, including two prominent histidine residues, His685 and His686, which may be important for ligand binding. The protonation state of these histidines has a marked effect on the calculated electrostatic potential in the vicinity of P{sub 2}, raising the possibility that ligand recognition may be regulated by changes in pH. Importantly, the BARD1 BRCT structure provides insights into the mechanisms by which the cancer-associated missense mutations C645R, V695L, and S761N may adversely affect the structure and function of BARD1.

  19. Crystal structure of the human glucose transporter GLUT1

    NASA Astrophysics Data System (ADS)

    Deng, Dong; Xu, Chao; Sun, Pengcheng; Wu, Jianping; Yan, Chuangye; Hu, Mingxu; Yan, Nieng

    2014-06-01

    The glucose transporter GLUT1 catalyses facilitative diffusion of glucose into erythrocytes and is responsible for glucose supply to the brain and other organs. Dysfunctional mutations may lead to GLUT1 deficiency syndrome, whereas overexpression of GLUT1 is a prognostic indicator for cancer. Despite decades of investigation, the structure of GLUT1 remains unknown. Here we report the crystal structure of human GLUT1 at 3.2 Å resolution. The full-length protein, which has a canonical major facilitator superfamily fold, is captured in an inward-open conformation. This structure allows accurate mapping and potential mechanistic interpretation of disease-associated mutations in GLUT1. Structure-based analysis of these mutations provides an insight into the alternating access mechanism of GLUT1 and other members of the sugar porter subfamily. Structural comparison of the uniporter GLUT1 with its bacterial homologue XylE, a proton-coupled xylose symporter, allows examination of the transport mechanisms of both passive facilitators and active transporters.

  20. Crystal Structure of the Human Cytomegalovirus Glycoprotein B

    PubMed Central

    Burke, Heidi G.; Heldwein, Ekaterina E.

    2015-01-01

    Human cytomegalovirus (HCMV), a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB), thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies. PMID:26484870

  1. Octa-O-propanoyl-B-maltose: crystal structure, acyl stacking, related structures and conformational anaylsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The crystal structure of beta-maltose octapropanoate (1) was solved to increase knowledge of the influences on conformations of di-, oligo- and polysaccharides. The O6 and O6' atoms are in gg and gt conformations, respectively. Extrapolation of the coordinates of the non-reducing residue and observe...

  2. Crystal structure of a Baeyer–Villiger monooxygenase

    PubMed Central

    Malito, Enrico; Alfieri, Andrea; Fraaije, Marco W.; Mattevi, Andrea

    2004-01-01

    Flavin-containing Baeyer–Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon–carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer–Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the formation of two crucial intermediates: a flavin peroxide generated by the reaction of the reduced flavin with molecular oxygen and the “Criegee” intermediate resulting from the attack of the flavin peroxide onto the substrate that is being oxygenated. The crystal structure of phenylacetone monooxygenase, a Baeyer–Villiger monooxygenase from the thermophilic bacterium Thermobifida fusca, exhibits a two-domain architecture resembling that of the disulfide oxidoreductases. The active site is located in a cleft at the domain interface. An arginine residue lays above the flavin ring in a position suited to stabilize the negatively charged flavin-peroxide and Criegee intermediates. This amino acid residue is predicted to exist in two positions; the “IN” position found in the crystal structure and an “OUT” position that allows NADPH to approach the flavin to reduce the cofactor. Domain rotations are proposed to bring about the conformational changes involved in catalysis. The structural studies highlight the functional complexity of this class of flavoenzymes, which coordinate the binding of three substrates (molecular oxygen, NADPH, and phenylacetone) in proximity of the flavin cofactor with formation of two distinct catalytic intermediates. PMID:15328411

  3. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Li, Fenglei

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  4. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сcrystals are isotropic for wavelength λо=896 nm. Indirect transitions in excitonic region Еgx are nonpolarized due to one pair of bands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  5. Tuning the magnetic anisotropy in single-layer crystal structures

    NASA Astrophysics Data System (ADS)

    Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R. T.; Peeters, F. M.

    2015-09-01

    The effect of an applied electric field and the effect of charging are investigated on the magnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that the magnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuning MA of these compounds. In addition, charging can rotate the easy-axis direction of Co-on-graphene and Os-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.

  6. Crystal structure of wild-type human procathepsin K.

    PubMed Central

    Sivaraman, J.; Lalumière, M.; Ménard, R.; Cygler, M.

    1999-01-01

    Cathepsin K is a lysosomal cysteine protease belonging to the papain superfamily. It has been implicated as a major mediator of osteoclastic bone resorption. Wild-type human procathepsin K has been crystallized in a glycosylated and a deglycosylated form. The latter crystals diffract better, to 3.2 A resolution, and contain four molecules in the asymmetric unit. The structure was solved by molecular replacement and refined to an R-factor of 0.194. The N-terminal fragment of the proregion forms a globular domain while the C-terminal segment is extended and shows substantial flexibility. The proregion interacts with the enzyme along the substrate binding groove and along the proregion binding loop (residues Ser138-Asn156). It binds to the active site in the opposite direction to that of natural substrates. The overall binding mode of the proregion to cathepsin K is similar to that observed in cathepsin L, caricain, and cathepsin B, but there are local differences that likely contribute to the specificity of these proregions for their cognate enzymes. The main observed difference is in the position of the short helix alpha3p (67p-75p), which occupies the S' subsites. As in the other proenzymes, the proregion utilizes the S2 subsite for anchoring by placing a leucine side chain there, according to the specificity of cathepsin K toward its substrate. PMID:10048321

  7. Crystal and mol­ecular structure of aflatrem

    PubMed Central

    Lenta, Bruno N.; Ngatchou, Jules; Kenfack, Patrice T.; Neumann, Beate; Stammler, Hans-Georg; Sewald, Norbert

    2015-01-01

    The crystal structure of the title compound, C32H39NO4, confirms the absolute configuration of the seven chiral centres in the mol­ecule. The molecule has a 1,1-dimethylprop-2-enyl substituent on the indole nucleus and this nucleus shares one edge with the five-membered ring which is, in turn, connected to a sequence of three edge-shared fused rings. The skeleton is completed by the 7,7-trimethyl-6,8-dioxabi­cyclo­[3.2.1]oct-3-en-2-one group connected to the terminal cyclohexene ring. The two cyclohexane rings adopt chair and half-chair conformations, while in the dioxabi­cyclo­[3.2.1]oct-3-en-2-one unit, the six-membered ring has a half-chair conformation. The indole system of the mol­ecule exhibits a tilt of 2.02 (1)° between its two rings. In the crystal, O—H⋯O hydrogen bonds connect mol­ecules into chains along [010]. Weak N—H⋯π inter­actions connect these chains, forming sheets parallel to (10-1). PMID:26594569

  8. Crystal structure of substrate free form of glycerol dehydratase

    SciTech Connect

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan; Reiss, Lisa; Emptage, Mark

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate with the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.

  9. Crystal structure of a nuclear actin ternary complex.

    PubMed

    Cao, Tingting; Sun, Lingfei; Jiang, Yuxiang; Huang, Shanjin; Wang, Jiawei; Chen, Zhucheng

    2016-08-01

    Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown. Here, we report the crystal structure of nuclear actin (N-actin) complexed with actin-related protein 4 (Arp4) and the helicase-SANT-associated (HSA) domain of the chromatin remodeler Swr1. The inner face and barbed end of N-actin are sequestered by interactions with Arp4 and the HSA domain, respectively, which prevents N-actin from polymerization and binding to many actin regulators. The two major domains of N-actin are more twisted than those of globular actin (G-actin), and its nucleotide-binding pocket is occluded, freeing N-actin from binding to and regulation by ATP. These findings revealed the salient structural features of N-actin that distinguish it from its cytoplasmic counterpart and provide a rational basis for its functions and regulation inside the nucleus. PMID:27457955

  10. Crystal structure of E. coli lipoprotein diacylglyceryl transferase

    PubMed Central

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C.

    2016-01-01

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure–function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer. PMID:26729647

  11. Structural Insights into Solid-to-Solid Phase Transition and Modulated Crystal Formation in Octyl-β-d-Galactoside Crystals.

    PubMed

    Ogawa, Shigesaburo; Ozaki, Yukihiro; Takahashi, Isao

    2016-09-19

    Despite the significance of synthetic monotailed β-linked galactolipids, for a detailed understanding of natural galactolipids, many aspects of these β-linked galactolipids' crystal structures such as temperature-dependence and hydration characteristics remain inadequately understood. In this manuscript, we demonstrated detailed insight of crystal characteristics of one of the simplest monotailed galactolipids, octyl-β-d-galactoside (MOβ-Gal), using thermal analyses, Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) measurements and grazing-incidence wide-angle X-ray diffraction (GI-WAXD) analysis. As a result, it was revealed that the MOβ-Gal anhydrous crystal showed a continuous structural change from the high-symmetry structure to low-symmetry crystal lattice via the strengthened hydrogen bonding interaction as the temperature decreased. In addition, the hemihydrate crystal was found to be in the modulated "ribbon phase". These insights strongly suggest that β-linked galactolipids possess intrinsic characteristics necessary to form a modulated structure even in the crystal state and demonstrate the importance of the presence of tiny amounts of water as cushioning media for preventing order parameter evolution.

  12. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    SciTech Connect

    Thirumurugan, R. Anitha, K.

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  13. Synthesis, structure, crystal growth and characterization of a novel semiorganic nonlinear optical L-proline lithium bromide monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Sathiskumar, S.; Balakrishnan, T.; Ramamurthi, K.; Thamotharan, S.

    2015-03-01

    L-Proline lithium bromide monohydrate (LPLBM), a promising semiorganic nonlinear optical material, was synthesized and single crystals of LPLBM were grown from solution by slow evaporation technique. Single crystal X-ray structure solution reveals that the grown crystal belongs to monoclinic system with space group P21. Presence of various functional groups was identified by FT-IR and FT-Raman spectral analyses. UV-Vis-NIR spectroscopic study shows that the LPLBM crystal possesses 90% of transmittance in the range of 250-1100 nm. Vickers microhardness values, the dielectric constant and dielectric loss of the LPLBM crystal were reported. Elemental analysis by energy dispersive X-ray analysis shows the presence of carbon, nitrogen, oxygen and bromine. The surface morphology of the crystal was investigated using scanning electron microscopic study. The thermal stability of the LPLBM crystal was studied from TGA and DSC analysis. Second harmonic generation efficiency of the LPLBM crystal measured by Kurtz and Perry powder technique using Nd:YAG laser is about 0.3 times that of urea.

  14. m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis.

    PubMed

    Guesmi, Afef; Gatfaoui, Sofian; Roisnel, Thierry; Marouani, Houda

    2016-06-01

    The crystal structure of the title salt {systematic name: [1,3-phenyl-enebis(methyl-ene)]bis-(aza-nium) sulfate}, C8H14N2 (2+)·SO4 (2-), consists of infinite (100) sheets of alternating organic and inorganic entities The m-xylylenediaminium cations are linked to the sulfate anions by N-H⋯O and asymmetric bifurcated N-H⋯(O,O) hydrogen bonds, generating a three-dimensional network. A weak C-H⋯O inter-action also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H⋯O/O⋯H and H⋯H contacts. PMID:27308040

  15. m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis

    PubMed Central

    Guesmi, Afef; Gatfaoui, Sofian; Roisnel, Thierry; Marouani, Houda

    2016-01-01

    The crystal structure of the title salt {systematic name: [1,3-phenyl­enebis(methyl­ene)]bis­(aza­nium) sulfate}, C8H14N2 2+·SO4 2−, consists of infinite (100) sheets of alternating organic and inorganic entities The m-xylylenediaminium cations are linked to the sulfate anions by N—H⋯O and asymmetric bifurcated N—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. A weak C—H⋯O inter­action also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H⋯O/O⋯H and H⋯H contacts. PMID:27308040

  16. Crystal Structure of Enteric Adenovirus Serotype 41 Short Fiber Head

    PubMed Central

    Seiradake, Elena; Cusack, Stephen

    2005-01-01

    Human enteric adenoviruses of species F contain two fibers in the same virion, a long fiber which binds to coxsackievirus and adenovirus receptor (CAR) and a short fiber of unknown function. We have determined the high-resolution crystal structure of the short fiber head of human adenovirus serotype 41 (Ad41). The short fiber head has the characteristic fold of other known fiber heads but has three unusual features. First, it has much shorter loops between the beta-strands. Second, one of the usually well-ordered beta-strands on the distal face of the fiber head is highly disordered and this same region is sensitive to digestion with pepsin, an enzyme occurring naturally in the intestinal tract, the physiological environment of Ad41. Third, the AB loop has a deletion giving it a distinct conformation incompatible with CAR binding. PMID:16254343

  17. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wu, Ying; Wang, Yi

    2015-11-01

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (QL) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  18. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  19. Structural phase transitions in single crystal C{sub 60}

    SciTech Connect

    Moret, R.; Cejolin, R.; Agafonov, V.

    1992-12-01

    X-ray diffraction has been employed to study the low temperature structural behavior of a C{sub 60} fcc crystal. The intensity of selected reflections that appear at the fcc to simple cubic transition was measured as a function of temperature down to 25K. This orientational ordering transition is found at T{sub o} = 254K{plus_minus}1K. It displays an hysteresis of about 1K but no discontinuity of the intensity at T{sub o}. Between T{sub o} and 25K, the intensity increases by a factor of 2 or more, and supplementary features are revealed. A clear enhancement of the rate of increase of the intensity is observed below 150-160K. This may reflect a change in the rapid molecular reorientations that persist below T{sub o}. A second change of slope that needs to be confirmed was found around 90K in some of the authors measurements.

  20. Structural conditionality of the piezoelectric properties of langasite family crystals

    SciTech Connect

    Dudka, A. P. Simonov, V. I.

    2011-11-15

    The atomic displacements upon isomorphic substitutions in crystals of the langasite family have been analyzed. The thermal parameters are determined and the probability density function of atoms is analyzed. Local potential energy minima are found which can be occupied by atoms under external effects. The contributions of cations in all four independent crystallographic positions and anions in all three such positions to the piezoelectric properties are established. One specific structural feature is the constant (at isomorphic substitutions) or possible (under external effects) but always opposite displacements of two cations along symmetry axis 2. Large cations in eight-vertex polyhedra make the main contribution to the piezoelectric properties. The cations in the tetrahedra on symmetry axis 2 weaken these properties. The cations in the octahedra in the origin of coordinates and in the tetrahedra on symmetry axes 3 only slightly affect the piezoelectricity.

  1. Crystal structure of (E)-dodec-2-enoic acid.

    PubMed

    Sonneck, Marcel; Peppel, Tim; Spannenberg, Anke; Wohlrab, Sebastian

    2015-07-01

    The crystal structure of (E)-dodec-2-enoic acid, C12H22O2, an α,β-unsaturated carb-oxy-lic acid with a melting point (295 K) near room temperature, is characterized by carb-oxy-lic acid inversion dimers linked by pairs of O-H⋯O hydrogen bonds. The carb-oxy-lic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid mol-ecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydro-carbon chain adopt a nearly fully staggered conformation [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°]. PMID:26279945

  2. Crystal structure of 4-sulfamoylanilinium di­hydrogen phosphate

    PubMed Central

    Muthuselvi, C.; Mala, N.; Srinivasan, N.; Pandiarajan, S.; Krishnakumar, R. V.

    2014-01-01

    In the crystal structure of the title mol­ecular salt, C6H9N2O2S+·H2PO4 −, the sulfomylalinium cations and the di­hydrogen phosphate anions form independent [100] chains through Ns—H⋯O (s = sulfamo­yl) and O—H⋯O hydrogen bonds, respectively. The chains are cross-linked by Na—H⋯O (a = amine) hydrogen bonds, generating (010) sheets. Two C—H⋯O hydrogen bonds involving diametrically opposite C atoms in the benzene ring of the cation as donors form chains parallel to [202] in which P=O and P—OH groups are acceptors. Together, these inter­actions lead to a three-dimensional network. PMID:25309301

  3. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    SciTech Connect

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi E-mail: ywangwnlo@mail.hust.edu.cn; Wu, Ying E-mail: ywangwnlo@mail.hust.edu.cn

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  4. Crystal structure of cindoxin, the P450cin redox partner.

    PubMed

    Madrona, Yarrow; Hollingsworth, Scott A; Tripathi, Sarvind; Fields, James B; Rwigema, Jean-Christophe N; Tobias, Douglas J; Poulos, Thomas L

    2014-03-11

    The crystal structure of the flavin mononucleotide (FMN)-containing redox partner to P450cin, cindoxin (Cdx), has been determined to 1.3 Å resolution. The overall structure is similar to that of the FMN domain of human cytochrome P450 reductase. A Brownian dynamics-molecular dynamics docking method was used to produce a model of Cdx with its redox partner, P450cin. This Cdx-P450cin model highlights the potential importance of Cdx Tyr96 in bridging the FMN and heme cofactors as well P450cin Arg102 and Arg346. Each of the single-site Ala mutants exhibits ~10% of the wild-type activity, thus demonstrating the importance of these residues for binding and/or electron transfer. In the well-studied P450cam system, redox partner binding stabilizes the open low-spin conformation of P450cam and greatly decreases the stability of the oxy complex. In sharp contrast, Cdx does not shift P450cin to a low-spin state, although the stability of oxy-P450cin is decreased 10-fold in the presence of Cdx. This indicates that Cdx may have a modest effect on the open-closed equilibrium in P450cin compared to that in P450cam. It has been postulated that part of the effector role of Pdx on P450cam is to promote a significant structural change that makes available a proton relay network involving Asp251 required for O2 activation. The structure around the corresponding Asp in P450cin, Asp241, provides a possible structural reason for why P450cin is less dependent on its redox partner for functionally important structural changes. PMID:24533927

  5. Modulation of defect modes intensity by controlled light scattering in photonic crystal with liquid crystal domain structure

    NASA Astrophysics Data System (ADS)

    Gunyakov, V. A.; Krakhalev, M. N.; Zyryanov, V. Ya.; Shabanov, V. F.; Loiko, V. A.

    2016-07-01

    A method to modulate the defect modes intensity in a multilayer photonic crystal with a nematic liquid crystal layer arranged midmost has been proposed. The various electrohydrodynamic domain structures (Williams domains, oblique rolls and grid pattern) were formed in the nematic layer under the action of ac electric field. The domains cause a polarization-sensitive light scattering which leads to an anisotropic reduction of the defect modes intensity. Thus by varying the applied voltage, we can tune gradually the transmittance spectrum of photonic crystal. In addition, the spectrum strongly depends on the light polarization direction above threshold voltage.

  6. Crystal Structure of Human Plasma Platelet-Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Bahnson, B

    2008-01-01

    Human plasma platelet-activating factor (PAF) acetylhydrolase functions by reducing PAF levels as a general anti-inflammatory scavenger and is linked to anaphylactic shock, asthma, and allergic reactions. The enzyme has also been implicated in hydrolytic activities of other pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids. This plasma enzyme is tightly bound to low and high density lipoprotein particles and is also referred to as lipoprotein-associated phospholipase A{sub 2}. The crystal structure of this enzyme has been solved from x-ray diffraction data collected to a resolution of 1.5{angstrom}. It has a classic lipase {alpha}/{beta}-hydrolase fold, and it contains a catalytic triad of Ser{sup 273}, His{sup 351}, and Asp{sup 296}. Two clusters of hydrophobic residues define the probable interface-binding region, and a prediction is given of how the enzyme is bound to lipoproteins. Additionally, an acidic patch of 10 carboxylate residues and a neighboring basic patch of three residues are suggested to play a role in high density lipoprotein/low density lipoprotein partitioning. A crystal structure is also presented of PAF acetylhydrolase reacted with the organophosphate compound paraoxon via its active site Ser{sup 273}. The resulting diethyl phosphoryl complex was used to model the tetrahedral intermediate of the substrate PAF to the active site. The model of interface binding begins to explain the known specificity of lipoprotein-bound substrates and how the active site can be both close to the hydrophobic-hydrophilic interface and at the same time be accessible to the aqueous phase.

  7. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  8. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions

    SciTech Connect

    Qiu, Xiayang; Janson, Cheryl A.

    2010-11-16

    A topic of current interest is engineering surface mutations in order to improve the success rate of protein crystallization. This report explores the possibility of using metal-ion-mediated crystal-packing interactions to facilitate rational design. Escherichia coli apo acyl carrier protein was chosen as a test case because of its high content of negatively charged carboxylates suitable for metal binding with moderate affinity. The protein was successfully crystallized in the presence of zinc ions. The crystal structure was determined to 1.1 {angstrom} resolution with MAD phasing using anomalous signals from the co-crystallized Zn{sup 2+} ions. The case study suggested an integrated strategy for crystallization and structure solution of proteins via engineering surface Asp and Glu mutants, crystallizing them in the presence of metal ions such as Zn{sup 2+} and solving the structures using anomalous signals.

  9. Crystal Structure of Alcohol Oxidase from Pichia pastoris

    PubMed Central

    Valerius, Oliver; Feussner, Ivo; Ficner, Ralf

    2016-01-01

    FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring. PMID:26905908

  10. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.

    PubMed Central

    Jeffery, C. J.; Barry, T.; Doonan, S.; Petsko, G. A.; Ringe, D.

    1998-01-01

    The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution. PMID:9655342

  11. Crystal structure of potato tuber ADP-glucose pyrophosphorylase

    PubMed Central

    Jin, Xiangshu; Ballicora, Miguel A; Preiss, Jack; Geiger, James H

    2005-01-01

    ADP-glucose pyrophosphorylase catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP-glucose pyrophosphorylase. Crystals of potato tuber ADP-glucose pyrophosphorylase α subunit were grown in high concentrations of sulfate, resulting in the sulfate-bound, allosterically inhibited form of the enzyme. The N-terminal catalytic domain resembles a dinucleotide-binding Rossmann fold and the C-terminal domain adopts a left-handed parallel β helix that is involved in cooperative allosteric regulation and a unique oligomerization. We also report structures of the enzyme in complex with ATP and ADP-glucose. Communication between the regulator-binding sites and the active site is both subtle and complex and involves several distinct regions of the enzyme including the N-terminus, the glucose-1-phosphate-binding site, and the ATP-binding site. These structures provide insights into the mechanism for catalysis and allosteric regulation of the enzyme. PMID:15692569

  12. Crystal structure of the RNA component of bacterial ribonuclease P

    SciTech Connect

    Torres-Larios, Alfredo; Swinger, Kerren K.; Krasilnikov, Andrey S.; Pan, Tao; Mondragon, Alfonso

    2010-03-08

    Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 {angstrom} resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.

  13. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302.

    PubMed

    Chou, Tsung-Han; Delmar, Jared A; Wright, Catherine C; Kumar, Nitin; Radhakrishnan, Abhijith; Doh, Julia K; Licon, Meredith H; Bolla, Jani Reddy; Lei, Hsiang-Ting; Rajashankar, Kanagalaghatta R; Su, Chih-Chia; Purdy, Georgiana E; Yu, Edward W

    2015-12-01

    Mycobacterium tuberculosis is a pathogenic bacterial species, which is neither Gram positive nor Gram negative. It has a unique cell wall, making it difficult to kill and conferring resistance to antibiotics that disrupt cell wall biosynthesis. Thus, the mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the mycobacterial membrane protein large (MmpL) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complicated regulatory network system. Here we report crystallographic structures of two forms of the TetR-family transcriptional regulator Rv0302, which participates in regulating the expression of MmpL proteins. The structures reveal a dimeric, two-domain molecule with architecture consistent with the TetR family of regulators. Comparison of the two Rv0302 crystal structures suggests that the conformational changes leading to derepression may be due to a rigid body rotational motion within the dimer interface of the regulator. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by this protein. In addition, our isothermal titration calorimetry and electrophoretic mobility shift experiments indicate that fatty acids may be the natural ligand of this regulator. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters. PMID:26362239

  14. Crystal structure of a eukaryotic group II intron lariat

    PubMed Central

    Robart, Aaron R.; Chan, Russell T.; Peters, Jessica K.; Rajashankar, Kanagalaghatta R.; Toor, Navtej

    2014-01-01

    The formation of branched lariat RNA is an evolutionarily conserved feature of splicing reactions for both group II and spliceosomal introns. The lariat is important for the fidelity of 5′ splice site selection and consists of a 2′-5′ phosphodiester bond between a bulged adenosine and the 5′ end of the intron. To gain insight into this ubiquitous intramolecular linkage, we determined the crystal structure of a eukaryotic group IIB intron in the lariat form at 3.7 Å. This revealed that two tandem tetraloop-receptor interactions, η-η’ and π-π’, place domain VI in the core to position the lariat bond in the post-catalytic state. Based on structural and biochemical data, we propose that π-π’ is a dynamic interaction that mediates the transition between the two steps of splicing, with η-η’ serving an ancillary role. The structure also reveals a four-magnesium-ion cluster involved in both catalysis and positioning of the 5′ end. Given the evolutionary relationship between group II and nuclear introns, it is likely that this active site configuration exists in the spliceosome as well. PMID:25252982

  15. Crystal structure of unliganded TRAP: implications for dynamic allostery.

    PubMed

    Malay, Ali D; Watanabe, Masahiro; Heddle, Jonathan G; Tame, Jeremy R H

    2011-03-15

    Allostery is vital to the function of many proteins. In some cases, rather than a direct steric effect, mutual modulation of ligand binding at spatially separated sites may be achieved through a change in protein dynamics. Thus changes in vibrational modes of the protein, rather than conformational changes, allow different ligand sites to communicate. Evidence for such an effect has been found in TRAP (trp RNA-binding attenuation protein), a regulatory protein found in species of Bacillus. TRAP is part of a feedback system to modulate expression of the trp operon, which carries genes involved in tryptophan synthesis. Negative feedback is thought to depend on binding of tryptophan-bound, but not unbound, TRAP to a specific mRNA leader sequence. We find that, contrary to expectations, at low temperatures TRAP is able to bind RNA in the absence of tryptophan, and that this effect is particularly strong in the case of Bacillus stearothermophilus TRAP. We have solved the crystal structure of this protein with no tryptophan bound, and find that much of the structure shows little deviation from the tryptophan-bound form. These data support the idea that tryptophan may exert its effect on RNA binding by TRAP through dynamic and not structural changes, and that tryptophan binding may be mimicked by low temperature. PMID:21175426

  16. Crystal structure of an HIV assembly and maturation switch

    PubMed Central

    Wagner, Jonathan M; Zadrozny, Kaneil K; Chrustowicz, Jakub; Purdy, Michael D; Yeager, Mark; Ganser-Pornillos, Barbie K; Pornillos, Owen

    2016-01-01

    Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II β-turn, and the stem comprises a 6-helix bundle. The β-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysis during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate. DOI: http://dx.doi.org/10.7554/eLife.17063.001 PMID:27416583

  17. Crystal structure of potato tuber ADP-glucose pyrophosphorylase.

    PubMed

    Jin, Xiangshu; Ballicora, Miguel A; Preiss, Jack; Geiger, James H

    2005-02-23

    ADP-glucose pyrophosphorylase catalyzes the first committed and rate-limiting step in starch biosynthesis in plants and glycogen biosynthesis in bacteria. It is the enzymatic site for regulation of storage polysaccharide accumulation in plants and bacteria, being allosterically activated or inhibited by metabolites of energy flux. We report the first atomic resolution structure of ADP-glucose pyrophosphorylase. Crystals of potato tuber ADP-glucose pyrophosphorylase alpha subunit were grown in high concentrations of sulfate, resulting in the sulfate-bound, allosterically inhibited form of the enzyme. The N-terminal catalytic domain resembles a dinucleotide-binding Rossmann fold and the C-terminal domain adopts a left-handed parallel beta helix that is involved in cooperative allosteric regulation and a unique oligomerization. We also report structures of the enzyme in complex with ATP and ADP-glucose. Communication between the regulator-binding sites and the active site is both subtle and complex and involves several distinct regions of the enzyme including the N-terminus, the glucose-1-phosphate-binding site, and the ATP-binding site. These structures provide insights into the mechanism for catalysis and allosteric regulation of the enzyme.

  18. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    SciTech Connect

    Wu, R.; Richter, S.; Zhang, R.; Anderson, V. J.; Missiakas, D.; Joachimiak, A.; Biosciences Division; Univ. of Chicago

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.

  19. Crystal structure of an HIV assembly and maturation switch.

    PubMed

    Wagner, Jonathan M; Zadrozny, Kaneil K; Chrustowicz, Jakub; Purdy, Michael D; Yeager, Mark; Ganser-Pornillos, Barbie K; Pornillos, Owen

    2016-01-01

    Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II β-turn, and the stem comprises a 6-helix bundle. The β-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysis during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate. PMID:27416583

  20. Crystal structure of the epithelial calcium channel TRPV6.

    PubMed

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology. PMID:27296226

  1. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences.

    PubMed

    Liu, Xiao; Wang, Hao; Lavina, Barbara; Tu, Bingtian; Wang, Weimin; Fu, Zhengyi

    2014-06-16

    Spinel-type crystals may possess complex and versatile chemical composition and crystal structure, which leads to difficulty in constructing relationships among the chemical composition, crystal structure, and intrinsic properties. In this work, we develop new empirical methods based on bond valences to estimate the intrinsic properties, namely, compressibility and thermal expansion of complex spinel-type crystals. The composition-weighted average of bond force constants in tetrahedral and octahedral coordination polyhedra is derived as a function of the composition-weighted average of bond valences, which can be calculated according to the experimental chemical composition and crystal structural parameters. We discuss the coupled effects of tetrahedral and octahedral frameworks on the aforementioned intrinsic properties. The bulk modulus could be quantitatively calculated from the composition-weighted average of bond force constants in tetrahedral and octahedral coordination polyhedra. In contrast, a quantitative estimation of the thermal expansion coefficient could be obtained from the composition-weighted average of bond force constants in octahedral coordination polyhedra. These empirical methods have been validated by the results obtained for a new complex quaternary spinel-type oxynitride Mg0.268Al2.577O3.733N0.267 as well as MgAl2O4 and Al2.85O3.45N0.55 from the literature. Further, these empirical methods have the potential to be extensively applied in other types of complex crystals.

  2. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    SciTech Connect

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  3. Crystal structure of lactoperoxidase at 2.4 A resolution.

    PubMed

    Singh, Amit Kumar; Singh, Nagendra; Sharma, Sujata; Singh, S Baskar; Kaur, Punit; Bhushan, A; Srinivasan, A; Singh, Tej P

    2008-02-29

    Lactoperoxidase (LPO) is a member of the mammalian peroxidase superfamily. It catalyzes the oxidation of thiocyanate and halides. Freshly isolated and purified samples of caprine LPO were saturated with ammonium iodide and crystallized using 20% polyethylene glycol 3350 in a hanging drop vapor diffusion setup. The structure has been determined using X-ray crystallographic method and refined to R(cryst) and R(free) factors of 0.196 and 0.203, respectively. The structure determination revealed an unexpected phosphorylation of Ser198 in LPO, which is also confirmed by anti-phosphoserine antibody binding studies. The structure is also notable for observing densities for glycan chains at all the four potential glycosylation sites. Caprine LPO consists of a single polypeptide chain of 595 amino acid residues and folds into an oval-shaped structure. The structure contains 20 well-defined alpha-helices of varying lengths including a helix, H(2a), unique to LPO, and two short antiparallel beta-strands. The structure confirms that the heme group is covalently linked to the protein through two ester linkages involving carboxylic groups of Glu258 and Asp108 and modified methyl groups of pyrrole rings A and C, respectively. The heme moiety is slightly distorted from planarity, but pyrrole ring B is distorted considerably. However, an iron atom is displaced only by 0.1 A from the plane of the heme group toward the proximal site. The substrate diffusing channel in LPO is cylindrical in shape with a diameter of approximately 6 A. Two histidine residues and six buried water molecules are connected through a hydrogen-bonded chain from the distal heme cavity to the surface of protein molecule and seemingly form the basis of proton relay for catalytic action. Ten iodide ions have been observed in the structure. Out of these, only one iodide ion is located in the distal heme cavity and is hydrogen bonded to the water molecule W1. W1 is also hydrogen bonded to the heme iron as well as

  4. Crystal structure and physicochemical properties of doped lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Aksenova, T. V.; Gavrilova, L. Ya.; Cherepanov, V. A.

    2012-12-01

    Substituted lanthanum-strontium manganites La0.7Sr0.3Mn0.9Me0.1O3 ± δ (Me = Ti, Cr, Fe, and Cu) are obtained by standard ceramic and glycerin-nitrate techniques. High-temperature powder X-ray diffraction is employed to study the crystal structure of La0.7Sr0.3Mn0.9Me0.1O3 ± δ oxides. It is shown that in the range 298-1023 K in air, La0.7Sr0.3Mn0.9Me0.103 ± δ manganites crystallized in an orthorhombic cell (space group R-3c). The isobaric temperature dependences of unit cell parameters are determined. Thermal expansion coefficients are calculated for La0.7Sr0.3Mn0.9Me0.103 ± δ oxides. The conductivity of La0.7Sr0.3Mn0.9Me0.103 ± δ is studied as a function of temperature in the range 500 K ≤ T ≤ 1200 K in air. It is shown that substituting 3 d metal for manganese considerably lowers the conductivity of basic La0.7Sr0.3Mn0.9O3 ± δ. The chemical stability of iron-substituted manganite La0.7Sr0.3Mn0.9Fe0.1O3 ± δ is studied with respect to the electrolyte material.

  5. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  6. Physical and Structural Studies on the Cryo-cooling of Insulin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Reflection profiles were analyzed from microgravity-(mg) and earth-grown insulin crystals to measure mosaicity (h) and to reveal mosaic domain structure and composition. The effects of cryocooling on single and multi-domain crystals were compared. The effects of cryocooling on insulin structure were also re-examined. Microgravity crystals were larger, more homogeneous, and more perfect than earth crystals. Several mg crystals contained primarily a single mosaic domain with havg of 0.005deg. The earth crystals varied in quality and all contained multiple domains with havg of 0.031deg. Cryocooling caused a 43-fold increase in h for mg crystals (havg=0.217deg) and an %fold increase for earth crystals (havg=0.246deg). These results indicate that very well-ordered crystals are not completely protected from the stresses associated with cryocooling, especially when structural perturbations occur. However, there were differences in the reflection profiles. For multi-mosaic domain crystals, each domain individually broadened and separated from the other domains upon cryo-cooling. Cryo-cooling did not cause an increase in the number of domains. A crystal composed of a single domain retained this domain structure and the reflection profiles simply broadened. Therefore, an improved signal-to-noise ratio for each reflection was measured from cryo-cooled single domain crystals relative to cryo-cooled multi-domain crystals. This improved signal, along with the increase in crystal size, facilitated the measurement of the weaker high- resolution reflections. The observed broadening of reflection profiles indicates increased variation in unit cell dimensions which may be linked to cryo-cooling-associated structural changes and disorder.

  7. The X-ray crystal structure of glutathionylcobalamin revealed.

    PubMed

    Hannibal, Luciana; Smith, Clyde A; Jacobsen, Donald W

    2010-11-01

    The first evidence of a complex between glutathione and cobalamin, glutathionylcobalamin (GSCbl), was presented by Wagner and Bernhauer more than 40 years ago (Ann. N.Y. Acad. Sci. 1964, 112, 580). More recently, NMR and EXAFS solution studies by Brown et al. (Biochemistry 1993, 32, 8421) and Scheuring et al. (Biochemistry 1994, 33, 6310), respectively, provided evidence that the glutathionyl moiety in GSCbl is bound to the cobalt center via a Co-S bond. Despite continued efforts, the structural analysis of glutathionylcobalamin in the solid state has remained elusive. Here, we report the first atomic resolution crystal structure of GSCbl, refined to a crystallographic R factor of 0.0683. The glutathione moiety is bound to the cobalt center through the sulfur atom as expected, with a Co-S bond distance of 2.295(1) Å. This distance agrees with the distance obtained from the EXAFS analysis of GSCbl (2.280(5) Å). However, the bond to the axial α-5,6-dimethylbenzimidazole base (DMB), 2.074(3) Å, is significantly shorter than that determined from the EXAFS measurements (Co-N3B = 2.15(3) Å). The corrin fold angle is 24.7°, the highest ever reported for a cobalamin structure, and points in the direction of the β face of the corrin, toward the glutathione (GS(-)). The GS(-) ligand has been modeled in two conformations, each featuring distinct hydrogen bonding interactions. In both conformations, the α-carboxylate group of the GS(-) ligand interacts with the generally rigid side chain a of the cobalamin molecule, resulting in two distinct conformations. A comparison with the structure of other thiolatocobalamins revealed high similarity in the positions of the atoms in the cysteinyl moiety, the fold of the corrin rings, and the Co-S bond distances.

  8. Advanced piezoelectric crystal Ca3TaGa3Si2O14: growth, crystal structure perfection, and acoustic properties

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Erko, Alexei; Zizak, Ivo; Irzhak, Dmitry; Fahrtdinov, Rashid; Buzanov, Oleg

    2014-03-01

    A five-component crystal of the lanthanum-gallium silicate family Ca3TaGa3Si2O14 (CTGS) was grown by the Czochralski method. The CTGS crystal, like the langasite crystal (La3Ga5SiO14, LGS), possesses unique temperature properties and the fewer number of the Ga atoms in the unit cell makes the density much lower and, consequently, increases the velocity of acoustic wave propagation. The unit-cell parameters were determined by the powder diffraction technique. The defects in the CTGS crystal structure were studied by X-ray topography, which enables the visualization of growth banding characteristics of crystals grown by the Czochralski method. Surface acoustic wave (SAW) propagation in the CTGS crystal was investigated by the high-resolution X-ray diffraction method on the BESSY II synchrotron radiation source. The velocities of propagation and power flow angles of SAWs in the Y- and X-cuts of the CTGS crystal were determined from the X-ray diffraction spectra.

  9. Crystal Structures of a Quorum-Quenching Antibody

    PubMed Central

    Debler, Erik W.; Kaufmann, Gunnar F.; Kirchdoerfer, Robert N.; Mee, Jenny M.; Janda, Kim D.; Wilson, Ian A.

    2007-01-01

    Summary A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely-related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short and narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow for entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody combining site with a closed binding pocket, suggestive of an induced fit mechanism for ligand binding. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will now aid in further development of an antibody

  10. Crystal Structures of a Quorum-Quenching Antibody

    SciTech Connect

    Debler, E.W.; Kaufmann, G.F.; Kirchdoerfer, R.N.; Mee, J.M.; Janda, K.D.; Wilson, I.A.; /Scripps Res. Inst. /Skaggs Inst. /WIRM, La Jolla

    2007-07-09

    A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody-combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short, narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody-combining site with a closed binding pocket. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will aid further development of an antibody-based therapy against bacterial pathogens by interference with quorum sensing.

  11. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    SciTech Connect

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  12. Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure.

    PubMed

    Wang, Jianying; Hu, Yuandu; Deng, Renhua; Liang, Ruijing; Li, Weikun; Liu, Shanqin; Zhu, Jintao

    2013-07-16

    Hydrogel photonic crystal microparticles (HPCMs) with inverse-opal structure are generated through a combination of microfluidic and templating technique. Temperature and pH responsive HPCMs have firstly been prepared by copolymerizing functional monomers, for example, N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA). HPCMs not only show tunable color variation almost covering the entire wavelength of visible light (above 150 nm of stop-band shift) by simply tailoring temperature or pH value of the solution, but also display rapid response (less than 1 min) due to the small volume and well-ordered porous structure. Importantly, the temperature sensing window of the HPCMs can be enlarged by controlling the transition temperature of the hydrogel matrix, and the HPCMs also exhibit good reversibility and reproducibility for pH response. Moreover, functional species or particles (such as azobenzene derivative or magnetic nanoparticles) can be further introduced into the hydrogel matrix by using post-treatment process. These functionalized HPCMs can respond to the UV/visible light without significantly influencing the temperature and pH response, and thus, multiresponsive capability within one single particle can be realized. The presence of magnetic nanoparticles may facilitate secondary assembly, which has potential applications in advanced optical devices. PMID:23768084

  13. Crystal Structure of an Ammonia-Permeable Aquaporin.

    PubMed

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.

  14. Crystal Structure of A Plant Dual-Affinity Nitrate Transporter

    PubMed Central

    Sun, Ji; Bankston, John R.; Payandeh, Jian; Hinds, Thomas R.; Zagotta, William N.; Zheng, Ning

    2014-01-01

    Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter, which can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr101. Yet how this posttranslational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 indeed dimerizes in the cell membrane and the phosphomimetic mutation of Thr101 converts the protein into a monophasic high affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes. PMID:24572362

  15. Crystal structure of a chimaeric bacterial glutamate dehydrogenase.

    PubMed

    Oliveira, Tânia; Sharkey, Michael A; Engel, Paul C; Khan, Amir R

    2016-06-01

    Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)(+) as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD(+) versus NADP(+), but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase from Clostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia coli enzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP(+) cofactor from the parent E. coli domain II, although there are subtle differences in catalytic activity. PMID:27303899

  16. Crystal Structure of an Ammonia-Permeable Aquaporin.

    PubMed

    Kirscht, Andreas; Kaptan, Shreyas S; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-03-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  17. Crystal Structure of a Two-domain Multicopper Oxidase

    PubMed Central

    Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C.

    2009-01-01

    The two-domain multicopper oxidases are proposed to be key intermediates in the evolution of three-domain multicopper oxidases. A number of two-domain multicopper oxidases have been identified from genome sequences and are classified as type A, type B, or type C on the basis of the predicted location of the type 1 copper center. The crystal structure of blue copper oxidase, a type C two-domain multicopper oxidase from Nitrosomonas europaea, has been determined to 1.9 Å resolution. Blue copper oxidase is a trimer, of which each subunit comprises two cupredoxin domains. Each subunit houses a type 1 copper site in domain 1 and a type 2/type 3 trinuclear copper cluster at the subunit-subunit interface. The coordination geometry at the trinuclear copper site is consistent with reduction of the copper ions. Although the overall architecture of blue copper oxidase is similar to nitrite reductases, detailed structural alignments show that the fold and domain orientation more closely resemble the three-domain multicopper oxidases. These observations have important implications for the evolution of nitrite reductases and multicopper oxidases. PMID:19224923

  18. Crystal Structure of an Ammonia-Permeable Aquaporin

    PubMed Central

    Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban

    2016-01-01

    Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365

  19. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  20. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  1. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    SciTech Connect

    Singha, S.; Kumar, S.; Dey, S. K.

    2015-06-24

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br···π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  2. Structure and Morphology of PEO-b-PLLA Diblock Copolymer Single Crystal

    NASA Astrophysics Data System (ADS)

    Li, Lingyu

    2005-03-01

    Poly (L-lactide) (PLLA) is an important biodegradable synthetic polymer of interest for medical applications such as controlled drug delivery, resorbable sutures, medical implants, and scaffolds for tissue engineering. Combining PLLA with Poly (ethylene oxide) (PEO) to form a block copolymer PEO-b-PLLA has attracted the interests of material scientists because modifications of physical and chemical properties lead to an accelerated biodegradability. Generally, the rate of degradation strongly depends on the solid state structure of the material therefore clear understanding of crystallization behavior of PEO-b-PLLA is important. Crystallization of PEO-b-PLLA primarily depends on crystallization temperature (Tc). Solution cast thin film crystallization method was used to obtain the PEO-b-PLLA single crystals. At temperatures above Tm of PEO and below that of PLLA, PLLA crystallizes and forms lozenge-shaped single crystal .When cooled to room temperature, PEO begins to crystallize and form fractal-like single crystal on the top of already formed PLLA crystals. However, at temperatures below Tm of PEO, only the fractal-like PEO single crystals were observed. Structure and morphology of this novel single crystal was explored using TEM and AFM.

  3. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C.

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  4. Structure of a high-resolution crystal form of human triosephosphate isomerase: improvement of crystals using the gel-tube method

    SciTech Connect

    Kinoshita, Takayoshi Maruki, Riyo; Warizaya, Masaichi; Nakajima, Hidenori; Nishimura, Shintaro

    2005-04-01

    A high-resolution structure of human triosephosphate isomerase was obtained from crystals improved by means of the gel-tube method. Crystals of human triosephosphate isomerase with two crystal morphologies were obtained using the normal vapour-diffusion technique with identical crystallization conditions. One had a disordered plate shape and the crystals were hollow (crystal form 1). As a result, this form was very fragile, diffracted to 2.8 Å resolution and had similar crystallographic parameters to those of the structure 1hti in the Protein Data Bank. The other had a fine needle shape (crystal form 2) and was formed more abundantly than crystal form 1, but was unsuitable for structure analysis. Since the normal vapour-diffusion method could not control the crystal morphology, gel-tube methods, both on earth and under microgravity, were applied for crystallization in order to control and improve the crystal quality. Whereas crystal form 1 was only slightly improved using this method, crystal form 2 was greatly improved and diffracted to 2.2 Å resolution. Crystal form 2 contained a homodimer in the asymmetric unit, which was biologically essential. Its overall structure was similar to that of 1hti except for the flexible loop, which was located at the active centre Lys13.

  5. Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids.

    PubMed

    Jiang, S Q; Wu, Z W; Li, M Z

    2016-04-21

    The crystallization mechanism in deeply undercooled ZrCu metallic glass-forming liquids was investigated via molecular dynamics simulations. It was found that the crystallization process is mainly controlled by the growth of crystal nuclei formed by the BCC-like atomic clusters, consistent with experimental speculations. The crystallization rate is found to relate to the number of growing crystal nuclei in the crystallization process. The crystallization rate in systems with more crystal nuclei is significantly hindered by the larger surface fractions of crystal nuclei and their different crystalline orientations. It is further revealed that in the crystallization in deeply undercooled regions, the BCC-like crystal nuclei are formed from the inside of the precursors formed by the FCC-like atomic clusters, and growing at the expense of the precursors. Meanwhile, the precursors are expanding at the expense of the outside atomic clusters. This process is consistent with the so-called Ostwald step rule. The atomic structures of metallic glasses are found to have significant impact on the subsequent crystallization process. In the Zr85Cu15 system, the stronger spatial correlation of Cu atoms could hinder the crystallization processes in deeply undercooled regions.

  6. Effect of local structures on crystallization in deeply undercooled metallic glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Jiang, S. Q.; Wu, Z. W.; Li, M. Z.

    2016-04-01

    The crystallization mechanism in deeply undercooled ZrCu metallic glass-forming liquids was investigated via molecular dynamics simulations. It was found that the crystallization process is mainly controlled by the growth of crystal nuclei formed by the BCC-like atomic clusters, consistent with experimental speculations. The crystallization rate is found to relate to the number of growing crystal nuclei in the crystallization process. The crystallization rate in systems with more crystal nuclei is significantly hindered by the larger surface fractions of crystal nuclei and their different crystalline orientations. It is further revealed that in the crystallization in deeply undercooled regions, the BCC-like crystal nuclei are formed from the inside of the precursors formed by the FCC-like atomic clusters, and growing at the expense of the precursors. Meanwhile, the precursors are expanding at the expense of the outside atomic clusters. This process is consistent with the so-called Ostwald step rule. The atomic structures of metallic glasses are found to have significant impact on the subsequent crystallization process. In the Zr85Cu15 system, the stronger spatial correlation of Cu atoms could hinder the crystallization processes in deeply undercooled regions.

  7. Multiple solvent crystal structures of ribonuclease A: An assessment of the method

    SciTech Connect

    Dechene, Michelle; Wink, Glenna; Smith, Mychal; Swartz, Paul; Mattos, Carla

    2010-11-12

    The multiple solvent crystal structures (MSCS) method uses organic solvents to map the surfaces of proteins. It identifies binding sites and allows for a more thorough examination of protein plasticity and hydration than could be achieved by a single structure. The crystal structures of bovine pancreatic ribonuclease A (RNAse A) soaked in the following organic solvents are presented: 50% dioxane, 50% dimethylformamide, 70% dimethylsulfoxide, 70% 1,6-hexanediol, 70% isopropanol, 50% R,S,R-bisfuran alcohol, 70% t-butanol, 50% trifluoroethanol, or 1.0M trimethylamine-N-oxide. This set of structures is compared with four sets of crystal structures of RNAse A from the protein data bank (PDB) and with the solution NMR structure to assess the validity of previously untested assumptions associated with MSCS analysis. Plasticity from MSCS is the same as from PDB structures obtained in the same crystal form and deviates only at crystal contacts when compared to structures from a diverse set of crystal environments. Furthermore, there is a good correlation between plasticity as observed by MSCS and the dynamic regions seen by NMR. Conserved water binding sites are identified by MSCS to be those that are conserved in the sets of structures taken from the PDB. Comparison of the MSCS structures with inhibitor-bound crystal structures of RNAse A reveals that the organic solvent molecules identify key interactions made by inhibitor molecules, highlighting ligand binding hot-spots in the active site. The present work firmly establishes the relevance of information obtained by MSCS.

  8. Crystal Structure of the Human Astrovirus Capsid Protein

    PubMed Central

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  9. Lateral-Structure Single-Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling.

    PubMed

    Dong, Qingfeng; Song, Jingfeng; Fang, Yanjun; Shao, Yuchuan; Ducharme, Stephen; Huang, Jinsong

    2016-04-13

    Single-crystal perovskite solar cells with a lateral structure yield an efficiency enhancement 44-fold that of polycrystalline thin films, due to the much longer carrier diffusion length. A piezoelectric effect observed in perovskite single-crystal and the strain-generated grain-boundaries enable ion migration to form a p-i-n structure. PMID:26836224

  10. Lateral-Structure Single-Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling.

    PubMed

    Dong, Qingfeng; Song, Jingfeng; Fang, Yanjun; Shao, Yuchuan; Ducharme, Stephen; Huang, Jinsong

    2016-04-13

    Single-crystal perovskite solar cells with a lateral structure yield an efficiency enhancement 44-fold that of polycrystalline thin films, due to the much longer carrier diffusion length. A piezoelectric effect observed in perovskite single-crystal and the strain-generated grain-boundaries enable ion migration to form a p-i-n structure.

  11. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  12. 2003 NIH protein structure intiative workshop in protein production and crystallization for structural and functional genomics.

    SciTech Connect

    Adams, M.; Joachimiak, A.; Kim, R.; Montelione, G. T.; Norvell, J.; Biosciences Division; University of Georgia; LBNL; Rutgers Univ.; Robert Wood Johnson Medical School

    2004-03-01

    The United States National Institutes of Health (NIH) Protein Structure Initiative (PSI) is a joint government, university, and industry effort, organized and supported by the National Institute of General Medical Sciences (NIGMS), and aimed at reducing the costs in increasing the speed of protein structure determination. Its long-range goal is to make the three-dimensional atomic-level structures of most proteins in nature easily obtainable from knowledge of their corresponding DNA sequences (http://www.nigms.gov/psi). It is the primary U.S. component of a broad international effort in structural genomics, involving at least 20 projects throughout the world. The PSI is now in its fourth year. Nine PSI pilot research centers have been funded to explore the feasibility and impact of genomic scale protein structure analysis. To date, over 500 3D protein structures, providing the first structural representatives for hundreds of protein domain families, have been completed and deposited by the NIH centers into the public Protein Data Bank. In addition, new technologies for protein sample production, data organization, and structure analysis by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have been developed. These technologies increase the efficiency of protein structure determination both for structural genomics and for the broader structural biology community. Although progress has been substantial, PSI pilot research centers have identified a number of important bottlenecks that need to be solved to meet the goals of the program. For example, it is now accepted that a major challenge to high-throughput protein structure determination is the fact that for some 70% of targeted proteins, it is difficult to produce protein samples and crystals suitable for structural analysis. In an effort to facilitate an effective exchange of developments and advancements between pilot centers, the NIGMS organized a workshop on gene cloning, protein

  13. Crystal structure of a nematode-infecting virus

    PubMed Central

    Guo, Yusong R.; Hryc, Corey F.; Jakana, Joanita; Jiang, Hongbing; Wang, David; Chiu, Wah; Zhong, Weiwei; Tao, Yizhi J.

    2014-01-01

    Orsay, the first virus discovered to naturally infect Caenorhabditis elegans or any nematode, has a bipartite, positive-sense RNA genome. Sequence analyses show that Orsay is related to nodaviruses, but molecular characterizations of Orsay reveal several unique features, such as the expression of a capsid–δ fusion protein and the use of an ATG-independent mechanism for translation initiation. Here we report the crystal structure of an Orsay virus-like particle assembled from recombinant capsid protein (CP). Orsay capsid has a T = 3 icosahedral symmetry with 60 trimeric surface spikes. Each CP can be divided into three regions: an N-terminal arm that forms an extended protein interaction network at the capsid interior, an S domain with a jelly-roll, β-barrel fold forming the continuous capsid, and a P domain that forms surface spike projections. The structure of the Orsay S domain is best aligned to T = 3 plant RNA viruses but exhibits substantial differences compared with the insect-infecting alphanodaviruses, which also lack the P domain in their CPs. The Orsay P domain is remotely related to the P1 domain in calicivirus and hepatitis E virus, suggesting a possible evolutionary relationship. Removing the N-terminal arm produced a slightly expanded capsid with fewer nucleic acids packaged, suggesting that the arm is important for capsid stability and genome packaging. Because C. elegans-Orsay serves as a highly tractable model for studying viral pathogenesis, our results should provide a valuable structural framework for further studies of Orsay replication and infection. PMID:25136116

  14. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    SciTech Connect

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  15. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.; Verin, I. A.

    2010-07-01

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) Å, b = 17.1823(4) Å, c = 23.5718(5) Å, β = 90°, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with | F| > 7σ( F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula ( Z = 4) is Ca2Mg{2/IV}Fe{2/(2+)IV}[Al{14/VI}O31(OH)][Al{2/IV}O][AlIV]ALIV(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe2+ tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  16. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  17. Tantalum-bearing titanite: synthesis and crystal structure data

    NASA Astrophysics Data System (ADS)

    Liferovich, Ruslan P.; Mitchell, Roger H.

    2006-04-01

    Synthetic titanite, CaTiOSiO4, and the series of (Ca1- x Na x )(Ti1- x Ta x )OSiO4 and Ca(Ti1-2 x Ta x Al x )OSiO4 solid solutions have been prepared by ceramic methods, and their crystal structure determined by the Rietveld analysis. At ambient conditions, titanite can contain up to 20 mol% NaTaOSiO4 or 60 mol% Ca(Al0.5Ta0.5)OSiO4. These limits might differ in natural samples due to combination with substitutions involving fluorine and/or hydroxyl replacing oxygen together with vacancies at cationic sites. All cations located at the vii X- and vi Y-sites in the structures of tantalian titanite are disordered. Expansion of the bond from 1.618 to 1.621 Å in CaTi0.8Ta0.1Al0.1OSiO4 and CaTi0.6Ta0.2Al0.2OSiO4 to 1.644 Å in the CaTi0.4Ta0.3Al0.3OSiO4 titanite suggests the possible presence of some Al3+ in the tetrahedral site replacing Si4+ in the latter. All tantalian titanites crystallize in the space group A2 /a. This implies that both single-site and complex double-site substitutional schemes induce P21/ a → A2/ a phase transition(s). The (Ca1- x Na x )(Ti1- x Ta x )OSiO4 substitution scheme incorporates larger cations at both the vii X and vi Y sites, whereas the Ca(Ti1-2 x Ta x Al x )OSiO4 scheme involves only vi Y-site (Al3+,Ta5+) cations with a slightly smaller “average” radius. Unit cell dimensions change insignificantly or increase incrementally with increase of average cationic radii in the (Ca1- x Na x )(Ti1- x Ta x )OSiO4 series, and with an insignificant decrease in the viR Y average cationic radii in the Ca(Ti1-2 x Ta x Al x )OSiO4 series. Both Ta-doped titanite and CaTiOSiO4 consist of distorted polyhedra with the XO7, YO6 coordination polyhedra and the SiO4 tetrahedron in tantalian titanite being less distorted compared to those of the pure CaTiOSiO4.

  18. Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling.

    PubMed

    Huber, A; Ocelic, N; Taubner, T; Hillenbrand, R

    2006-04-01

    We show that slight variations of a crystal lattice cause significant spectral modifications of phonon-polariton resonant near-field interaction between polar semiconductor crystals and a scanning metal tip. Exploiting the effect for near-field imaging a SiC polytype boundary, we establish infrared mapping of crystal structure and crystal defects at 20 nm spatial resolution (lambda/500). By spectroscopic probing of doped SiC polytypes, we find that phonon-polariton resonant near-field interaction is also sensitive to electronic properties due to plasmon-phonon coupling in the crystals.

  19. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    NASA Astrophysics Data System (ADS)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  20. Are the Crystal Structures of Enantiopure and Racemic Mandelic Acids Determined by Kinetics or Thermodynamics?

    PubMed

    Hylton, Rebecca K; Tizzard, Graham J; Threlfall, Terence L; Ellis, Amy L; Coles, Simon J; Seaton, Colin C; Schulze, Eric; Lorenz, Heike; Seidel-Morgenstern, Andreas; Stein, Matthias; Price, Sarah L

    2015-09-01

    Mandelic acids are prototypic chiral molecules where the sensitivity of crystallized forms (enantiopure/racemic compound/polymorphs) to both conditions and substituents provides a new insight into the factors that may allow chiral separation by crystallization. The determination of a significant number of single crystal structures allows the analysis of 13 enantiopure and 30 racemic crystal structures of 21 (F/Cl/Br/CH3/CH3O) substituted mandelic acid derivatives. There are some common phenyl packing motifs between some groups of racemic and enantiopure structures, although they show very different hydrogen-bonding motifs. The computed crystal energy landscape of 3-chloromandelic acid, which has at least two enantiopure and three racemic crystal polymorphs, reveals that there are many more possible structures, some of which are predicted to be thermodynamically more favorable as well as slightly denser than the known forms. Simulations of mandelic acid dimers in isolation, water, and toluene do not differentiate between racemic and enantiopure dimers and also suggest that the phenyl ring interactions play a major role in the crystallization mechanism. The observed crystallization behavior of mandelic acids does not correspond to any simple "crystal engineering rules" as there is a range of thermodynamically feasible structures with no distinction between the enantiopure and racemic forms. Nucleation and crystallization appear to be determined by the kinetics of crystal growth with a statistical bias, but the diversity of the mandelic acid crystallization behavior demonstrates that the factors that influence the kinetics of crystal nucleation and growth are not yet adequately understood. PMID:26244445

  1. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  2. On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin

    PubMed Central

    Liebschner, Dorothee; Dauter, Miroslawa; Brzuszkiewicz, Anna; Dauter, Zbigniew

    2013-01-01

    Structural studies of proteins usually rely on a model obtained from one crystal. By investigating the details of this model, crystallographers seek to obtain insight into the function of the macromolecule. It is therefore important to know which details of a protein structure are reproducible or to what extent they might differ. To address this question, the high-resolution structures of five crystals of bovine trypsin obtained under analogous conditions were compared. Global parameters and structural details were investigated. All of the models were of similar quality and the pairwise merged intensities had large correlation coefficients. The Cα and backbone atoms of the structures superposed very well. The occupancy of ligands in regions of low thermal motion was reproducible, whereas solvent molecules containing heavier atoms (such as sulfur) or those located on the surface could differ significantly. The coordination lengths of the calcium ion were conserved. A large proportion of the multiple conformations refined to similar occupancies and the residues adopted similar orientations. More than three quarters of the water-molecule sites were conserved within 0.5 Å and more than one third were conserved within 0.1 Å. An investigation of the protonation states of histidine residues and carboxylate moieties was consistent for all of the models. Radiation-damage effects to disulfide bridges were observed for the same residues and to similar extents. Main-chain bond lengths and angles averaged to similar values and were in agreement with the Engh and Huber targets. Other features, such as peptide flips and the double conformation of the inhibitor molecule, were also reproducible in all of the trypsin structures. Therefore, many details are similar in models obtained from different crystals. However, several features of residues or ligands located in flexible parts of the macromolecule may vary significantly, such as side-chain orientations and the occupancies

  3. Fluoride Inhibition of Enolase: Crystal Structure and Thermodynamics

    SciTech Connect

    Qin, Jie; Chai, Geqing; Brewer, John M.; Lovelace, Leslie L.; Lebioda, Lukasz

    2010-12-03

    Enolase is a dimeric metal-activated metalloenzyme which uses two magnesium ions per subunit: the strongly bound conformational ion and the catalytic ion that binds to the enzyme-substrate complex inducing catalysis. The crystal structure of the human neuronal enolase-Mg{sub 2}F{sub 2}P{sub i} complex (enolase fluoride/phosphate inhibitory complex, EFPIC) determined at 1.36 {angstrom} resolution shows that the combination of anions effectively mimics an intermediate state in catalysis. The phosphate ion binds in the same site as the phosphate group of the substrate/product, 2-phospho-d-glycerate/phosphoenolpyruvate, and induces binding of the catalytic Mg{sup 2+} ion. One fluoride ion bridges the structural and catalytic magnesium ions while the other interacts with the structural magnesium ion and the ammonio groups of Lys 342 and Lys 393. These fluoride ion positions correspond closely to the positions of the oxygen atoms of the substrate's carboxylate moiety. To relate structural changes resulting from fluoride, phosphate, and magnesium ions binding to those that are induced by phosphate and magnesium ions alone, we also determined the structure of the human neuronal enolase-Mg{sub 2}Pi complex (enolase phosphate inhibitory complex, EPIC) at 1.92 {angstrom} resolution. It shows the closed conformation in one subunit and a mixture of open and semiclosed conformations in the other. The EPFIC dimer is essentially symmetric while the EPIC dimer is asymmetric. Isothermal titration calorimetry data confirmed binding of four fluoride ions per dimer and yielded K{sub b} values of 7.5 x 10{sup 5} {+-} 1.3 x 10{sup 5}, 1.2 x 10{sup 5} {+-} 0.2 x 10{sup 5}, 8.6 x 10{sup 4} {+-} 1.6 x 10{sup 4}, and 1.6 x 10{sup 4} {+-} 0.7 x 10{sup 4} M{sup -1}. The different binding constants indicate negative cooperativity between the subunits; the asymmetry of EPIC supports such an interpretation.

  4. New zirconium phosphate fluorides: Hydrothermal synthesis and crystal structures

    SciTech Connect

    Wloka, M.; Troyanov, S.I.; Kemnitz, E.

    1998-02-01

    A series of zirconium phosphate fluorides were synthesized and structurally characterized using different amines as templates. The compounds have the general formulas [amH{sub n}]{sub 1/n}[Zr{sub 2}(HPO{sub 4})(PO{sub 4}){sub 2}F]{center_dot}H{sub 2}O (1, am = ethylenediamine, n = 2; 2. am = N-methylethylenediamine, n = 2; 3, am = 1,3-diaminopropane, n = 2; 4, am = diethylenetriamine, n = 3) and [amH{sub 2}]{sub 0.5}[Zr{sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})F{sub 2}]{center_dot}0.5H{sub 2}O (5, am = N,N,N{prime},N{prime}-tetramethylethylenediamine). In the structures of 2--4 with a Zr:F ratio of 2:1, there exists a three-dimensional arrangement of zirconium octahedra (one ZrO{sub 6} and one ZrO{sub 5}F) and phosphate tetrahedra (two PO{sub 4} and one HPO{sub 4}) connected via common oxygen atoms, whereas fluorine atoms and OH groups are terminal. These compounds crystallize in the ZrPO-1 structure type, which contains channels along the b axis formed by eight-membered rings of alternating PO{sub 4} tetrahedra and ZrO{sub 6} or ZrO{sub 5}F octahedra, respectively. The protonated disordered templates occupy the channels. Half the water molecules are situated in the positions alternatively left free by the disordered templates and the other half are bonded via hydrogen bridges to the terminal OH groups of the HPO{sub 4} tetrahedra. In contrast, the structure of 5 reveals a Zr:F ratio of 1:1, consequently forming a layer structure. The layers formed by ZrO{sub 5}F octahedra and PO{sub 4} or HPO{sub 4} tetrahedra, respectively, are linked by hydrogen bridges of type O{single_bond}H{hor_ellipsis}F and by weak H bonds over the protonated template. The similarities in connectivity pattern between Zr octahedra and P tetrahedra in all known zirconium phosphate fluorides and some zirconium phosphates are discussed.

  5. Crystal structure of eukaryotic translation initiation factor 2B.

    PubMed

    Kashiwagi, Kazuhiro; Takahashi, Mari; Nishimoto, Madoka; Hiyama, Takuya B; Higo, Toshiaki; Umehara, Takashi; Sakamoto, Kensaku; Ito, Takuhiro; Yokoyama, Shigeyuki

    2016-03-01

    Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits; its α-, β- and δ-subunits constitute the regulatory subcomplex, while the γ- and ε-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2α phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2γ, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.

  6. Band structure in two-dimensional fiber-air phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Yu, Wei-Dong; Pan, Ning

    2011-02-01

    A two-dimensional phononic crystal (PC) composed of textile fiber and air is initially discussed in this paper, which is different from the previous PCs with rigid inclusions. The plain wave expansion method is used to calculate band structure of different PCs by altering fiber material properties and structure parameters. Numerical results show that the effect of material properties of soft fiber on band structure of phononic crystal can be ignored, while the effect of structural parameters is obvious.

  7. Crystal structure controlled synthesis and characterization of copper sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Babu, S. Moorthy

    2016-05-01

    Phase pure, controlled crystal structure of digenite (Cu9S5) copper sulfide nanoparticles were synthesized by hot injection method at the temperature of 180°C. The mixture of Oleylamine, 1-Octadecene and 1-Dodecanethiol were taken as solvent as well as capping agents. The effect of the mixture of solvents on the phase formation and morphology of the synthesized nanoparticles were analysed. The nanocrystals were characterized using X-Ray diffraction (XRD) which confirms the presence of single phase rhombohedral digenite Cu9S5 NPs, Morphological analysis clearly depicts the formation of hexagonal faceted Cu9S5 NPs, Energy dispersive X-ray absorption spectroscopy (EDS) reveals the stoichiometric ratio of 1.8:1 for synthesized NPs. From the UV-Vis absorption spectroscopy the bandgap value of Cu1.8S is found to be 1.71 eV. The presence of capping agents along the surface of the Cu9S5 NPs was confirmed from FTIR analysis.

  8. Crystal structure and phase transition of thermoelectric SnSe.

    PubMed

    Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo

    2016-06-01

    Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.

  9. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities.

    PubMed

    Kumar, C S Chidan; Then, Li Yee; Chia, Tze Shyang; Chandraju, Siddegowda; Win, Yip-Foo; Sulaiman, Shaida Fariza; Hashim, Nurul Shafiqah; Ooi, Kheng Leong; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-09-11

    A series of five new 2-(1-benzofuran-2-yl)-2-oxoethyl 4-(un/substituted)benzoates 4(a-e), with the general formula of C₈H₅O(C=O)CH₂O(C=O)C₆H₄X, X = H, Cl, CH₃, OCH₃ or NO₂, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a-e) were characterized by FTIR, ¹H-, (13)C- and ¹H-(13)C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC) value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34%) in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, 4d (31.01% ± 4.35%) in ferric reducing antioxidant power (FRAP) assay and 4a (27.11% ± 1.06%) in metal chelating (MC) activity.

  10. Crystal Structure of the Eukaryotic Origin Recognition Complex

    PubMed Central

    Bleichert, Franziska; Botchan, Michael R.; Berger, James M.

    2015-01-01

    Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138

  11. Synthesis, single crystal structure and characterization of pentanitromonoformylhexaazaisowurtzitane.

    PubMed

    Chen, Huaxiong; Chen, Shusen; Li, Lijie; Jiao, Qingze; Wei, Tianyu; Jin, Shaohua

    2010-03-15

    Pentanitromonoformylhexaazaisowurtzitane (PNMFIW) was synthesized by the nitrolysis of tetraacetyldiformylhexaazaisowurtzitane (TADFIW) in mixed nitric and sulfuric acids and structurally characterized by element analysis, FT-IR, MS and (1)H NMR. Single crystals of PNMFIW were grown from aqueous solution employing the technique of controlled evaporation. PNMFIW belongs to the orthorhombic system having four molecules in the unit cell, with space group P2(1)2(1)2(1) and the lattice parameters a=8.8000(18)A, b=12.534(2)A, and c=12.829(3)A. The calculated density reaches 1.977 g/cm(3) at 93 K, while the experimental density is 1.946 g/cm(3) at 20 degrees C. The calculated detonation velocity and pressure of PNMFIW according to the experimental density are 9195.76 m/s and 39.68G Pa, respectively. PNMFIW is insensitive compared with epsilon-HNIW through drop hammer impact sensitivity test. PMID:19913358

  12. Electronic structure of graphene on single-crystal copper substrates

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Nie, Shu; Bostwick, Aaron; Kim, Keun Su; Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Horn, Karsten; McCarty, Kevin F.; Rotenberg, Eli

    2011-11-01

    The electronic structure of graphene on Cu(111) and Cu(100) single crystals is investigated using low-energy electron microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. On both substrates the graphene is rotationally disordered and interactions between the graphene and substrate lead to a shift in the Dirac crossing of ˜-0.3 eV and the opening of a ˜250 meV gap. Exposure of the samples to air resulted in intercalation of oxygen under the graphene on Cu(100), which formed a (2×22)R45o superstructure. The effect of this intercalation on the graphene π bands is to increase the offset of the Dirac crossing (˜-0.6 eV) and enlarge the gap (˜350 meV). No such effect is observed for the graphene on the Cu(111) sample, with the surface state at Γ not showing the gap associated with a surface superstructure. The graphene film is found to protect the surface state from air exposure, with no change in the effective mass observed, as for one monolayer of Ag on Cu(111).

  13. Crystal Structure of a Potassium Ion Transporter TrkH

    SciTech Connect

    Y Cao; X Jin; H Huang; M Getahun Derebe; E Levin; V Kabaleeswaran; Y Pan; M Punta; J Love; et al.

    2011-12-31

    The TrkH/TrkG/KtrB proteins mediate K{sup +} uptake in bacteria and probably evolved from simple K{sup +} channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K{sup +} channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K{sup +} and Rb{sup +} over smaller ions such as Na{sup +} or Li{sup +}. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K{sup +} flux. These results reveal the molecular basis of K{sup +} selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

  14. Crystal structure and phase transition of thermoelectric SnSe.

    PubMed

    Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo

    2016-06-01

    Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed. PMID:27240762

  15. Crystal structure of advanced lithium titanate with lithium oxide additives

    NASA Astrophysics Data System (ADS)

    Hoshino, Tsuyoshi; Sasaki, Kazuya; Tsuchiya, Kunihiko; Hayashi, Kimio; Suzuki, Akihiro; Hashimoto, Takuya; Terai, Takayuki

    2009-04-01

    Li 2TiO 3 is one of the most promising candidates among solid breeder materials proposed for fusion reactors. However, the mass of Li 2TiO 3 was found to decrease with time in the sweep gas mixed with hydrogen. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti 4+ to Ti 3+. In the present paper, the crystal structure and the non-stoichiometry of Li 2TiO 3 added with Li 2O have been extensively investigated by means of X-ray diffraction (XRD) and thermogravimetry. In the case of the Li 2TiO 3 samples used in the present study, LiO-C 2H 5 or LiO-i-C 3H 7 and Ti(O-i-C 3H 7) 4 were mixed in the proportion corresponding to the molar ratio Li 2O/TiO 2 of either 2.00 or 1.00. In thermogravimetry, the mass of this sample decreased with time due to lithium deficiency, where no presence of oxygen deficiency was indicated.

  16. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes. PMID:17630120

  17. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  18. Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer

    NASA Astrophysics Data System (ADS)

    Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.

    2002-03-01

    The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.

  19. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    SciTech Connect

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  20. Crystal Structure of a “Nonfoldable” Insulin

    PubMed Central

    Liu, Ming; Wan, Zhu-li; Chu, Ying-Chi; Aladdin, Hassan; Klaproth, Birgit; Choquette, Meredith; Hua, Qing-xin; Mackin, Robert B.; Rao, J. Sunil; De Meyts, Pierre; Katsoyannis, Panayotis G.; Arvan, Peter; Weiss, Michael A.

    2009-01-01

    Protein evolution is constrained by folding efficiency (“foldability”) and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with β-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (LeuA16 → Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, ValA16 blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. ValA16 destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike ValA16, preserve folding efficiency. We propose that LeuA16 stabilizes nonlocal interactions between nascent α-helices in the A- and B-domains to facilitate initial pairing of CysA20 and CysB19, thus surmounting their wide separation in sequence. Although ValA16 is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [ValA16]insulin and [ValA16]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved. PMID:19850922

  1. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    NASA Astrophysics Data System (ADS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S. O.; Evans, Ivana Radosavljević

    2015-02-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn2VO6, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn2VO6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO4 tetrahedra, ZnO6 octahedra and VO4 tetrahedra, and Bi2O12 dimers. It is the only known member of the BiM2AO6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn2VO6, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV.

  2. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.

  3. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  4. On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin

    SciTech Connect

    Liebschner, Dorothee; Dauter, Miroslawa; Brzuszkiewicz, Anna; Dauter, Zbigniew

    2013-08-01

    Details of five very high-resolution accurate structures of bovine trypsin are compared in the context of the reproducibility of models obtained from crystals grown under identical conditions. Structural studies of proteins usually rely on a model obtained from one crystal. By investigating the details of this model, crystallographers seek to obtain insight into the function of the macromolecule. It is therefore important to know which details of a protein structure are reproducible or to what extent they might differ. To address this question, the high-resolution structures of five crystals of bovine trypsin obtained under analogous conditions were compared. Global parameters and structural details were investigated. All of the models were of similar quality and the pairwise merged intensities had large correlation coefficients. The C{sup α} and backbone atoms of the structures superposed very well. The occupancy of ligands in regions of low thermal motion was reproducible, whereas solvent molecules containing heavier atoms (such as sulfur) or those located on the surface could differ significantly. The coordination lengths of the calcium ion were conserved. A large proportion of the multiple conformations refined to similar occupancies and the residues adopted similar orientations. More than three quarters of the water-molecule sites were conserved within 0.5 Å and more than one third were conserved within 0.1 Å. An investigation of the protonation states of histidine residues and carboxylate moieties was consistent for all of the models. Radiation-damage effects to disulfide bridges were observed for the same residues and to similar extents. Main-chain bond lengths and angles averaged to similar values and were in agreement with the Engh and Huber targets. Other features, such as peptide flips and the double conformation of the inhibitor molecule, were also reproducible in all of the trypsin structures. Therefore, many details are similar in models obtained

  5. High-resolution crystal structures of two crystal forms of human cyclophilin D in complex with PEG 400 molecules

    PubMed Central

    Valasani, Koteswara Rao; Carlson, Emily A.; Battaile, Kevin P.; Bisson, Andrea; Wang, Chunyu; Lovell, Scott; Yan, Shirley ShiDu

    2014-01-01

    Cyclophilin D (CypD) is a key mitochondrial target for amyloid-β-induced mitochondrial and synaptic dysfunction and is considered a potential drug target for Alzheimer’s disease. The high-resolution crystal structures of primitive orthorhombic (CypD-o) and primitive tetragonal (CypD-t) forms have been determined to 1.45 and 0.85 Å resolution, respectively, and are nearly identical structurally. Although an isomorphous structure of CypD-t has previously been reported, the structure reported here was determined at atomic resolution, while CypD-o represents a new crystal form for this protein. In addition, each crystal form contains a PEG 400 molecule bound to the same region along with a second PEG 400 site in CypD-t which occupies the cyclosporine A inhibitor binding site of CypD. Highly precise structural information for CypD should be extremely useful for discerning the detailed interaction of small molecules, particularly drugs and/or inhibitors, bound to CypD. The 0.85 Å resolution structure of CypD-t is the highest to date for any CypD structure. PMID:24915078

  6. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-03-27

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P212121, with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 {angstrom}. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies.

  7. Mass Spectrometry Guided In Situ Proteolysis to Obtain Crystals for X-ray Structure Determination

    SciTech Connect

    Gheyi, Tarun; Rodgers, Logan; Romero, Richard; Sauder, J. Michael; Burley, Stephen K.

    2012-04-30

    A strategy for increasing the efficiency of protein crystallization/structure determination with mass spectrometry has been developed. This approach combines insights from limited proteolysis/mass spectrometry and crystallization via in situ proteolysis. The procedure seeks to identify protease-resistant polypeptide chain segments from purified proteins on the time-scale of crystal formation, and subsequently crystallizing the target protein in the presence of the optimal protease at the right relative concentration. We report our experience with 10 proteins of unknown structure, two of which yielded high-resolution X-ray structures. The advantage of this approach comes from its ability to select only those structure determination candidates that are likely to benefit from application of in situ proteolysis, using conditions most likely to result in formation of a stable proteolytic digestion product suitable for crystallization.

  8. Sixty years from discovery to solution: crystal structure of bovine liver catalase form III.

    PubMed

    Foroughi, Leila M; Kang, You Na; Matzger, Adam J

    2011-09-01

    The crystallization and structural characterization of bovine liver catalase (BLC) has been intensively studied for decades. Forms I and II of BLC have previously been fully characterized using single-crystal X-ray diffraction. Form III has previously been analyzed by electron microscopy, but owing to the thinness of this crystal form an X-ray crystal structure had not been determined. Here, the crystal structure of form III of BLC is presented in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.7, b = 173.7, c = 186.3 Å. The asymmetric unit is composed of the biological tetramer, which is packed in a tetrahedron motif with three other BLC tetramers. This higher resolution structure has allowed an assessment of the previously published electron-microscopy studies. PMID:21904028

  9. Crystal structures and conformational analyses of three pyranochromene derivatives

    PubMed Central

    Swaminathan, K.; Sethusankar, K.; Kumar, G. Siva; Bakthadoss, M.

    2015-01-01

    The title compounds, C27H20O6, (I) [systematic name: methyl 7-oxo-14-phenyl-1H,7H,14H-pyrano[3,2-c:5,4-c′]dichromene-14a(6bH)-carboxyl­ate], C24H22O5, (II) [systematic name: methyl 1-oxo-6-phenyl-2,3,4,12b-tetra­hydro-1H,6H-chromeno[3,4-c]chromene-6a(7H)-carboxyl­ate], and C25H23N3O4, (III) [systematic name: 6-(4-ethyl­phen­yl)-2,4-dimethyl-1,3-dioxo-2,3,4,12b-tetra­hydro-1H,6H-chromeno[4′,3′:4,5]pyrano[2,3-d]pyrimidine-6a(7H)-carbo­nitrile], are pyran­ochromene derivatives. The central pyran rings (B) of compounds (I) and (III) adopt half-chair conformations, whereas that of compound (II) adopts a sofa conformation. The pyran rings (A) of the chromene ring systems of compounds (II) and (III) adopt half-chair conformations, while that of compound (I) adopts a sofa conformation. The mean plane of the central pyran rings (B) make dihedral angles of 70.02 (6), 61.52 (6) and 69.12 (7)°, respectively, with the mean planes of the chromene moieties (C+A) of compounds (I), (II) and (III). The bicyclic coumarin ring system (C+A+B+E) in compound (I) is almost planar (r.m.s. deviation = 0.042 Å). The carbo­nitrile side chain in compound (III) is very nearly linear, with the C—C N angle being 176.6 (2)°. The cyclo­hexene ring (E), fused with the central pyran ring (B) in compound (II) adopts a sofa conformation. In the mol­ecular structures of compounds (II) and (III), there are C—H⋯O short contacts, which generate S(7) ring motifs. In the crystal structures of the title compounds, mol­ecules are linked by C—H⋯O hydrogen bonds, which generate mol­ecular sheets parallel to the ab plane, with R 4 3(28) loops in (I), inversion dimers with R 2 2(10) loops in (II) and chains along [010] with R 2 2(12) ring motifs in (III). In the crystal structures of (I) and (III), there are also C—H⋯π inter­actions present, leading to the formation of a three-dimensional framework in (II) and to sheets parallel to (101) in (III). PMID:26396757

  10. Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design

    PubMed Central

    Singh, Onkar; Shillings, Anthony; Craggs, Peter; Wall, Ian; Rowland, Paul; Skarzynski, Tadeusz; Hobbs, Clare I; Hardwick, Phil; Tanner, Rob; Blunt, Michelle; Witty, David R; Smith, Kathrine J

    2013-01-01

    ASK1, a member of the MAPK Kinase Kinase family of proteins has been shown to play a key role in cancer, neurodegeneration and cardiovascular diseases and is emerging as a possible drug target. Here we describe a ‘replacement-soaking’ method that has enabled the high-throughput X-ray structure determination of ASK1/ligand complexes. Comparison of the X-ray structures of five ASK1/ligand complexes from 3 different chemotypes illustrates that the ASK1 ATP binding site is able to accommodate a range of chemical diversity and different binding modes. The replacement-soaking system is also able to tolerate some protein flexibility. This crystal system provides a robust platform for ASK1/ligand structure determination and future structure based drug design. PMID:23776076

  11. Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.

    PubMed

    Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart

    2016-08-18

    Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals. PMID:27478906

  12. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization.

    PubMed

    Menahem, Tali; Pravda, Martin; Mastai, Yitzhak

    2009-10-01

    In this work, we describe the correlation between chiral polymer structures, particularly alpha-helical and random coil conformations, and their efficiency as chiral resolving agents in crystallization processes. A set of chiral block copolymers based on polyethylene oxide with chiral glutamic acid oligopeptide segments (PEG(113)-b-(+)-(S)-Glu(20)) were synthesized and employed as additives in the crystallization of rac-threonine. CD spectroscopy demonstrates that structures of chiral polymers could be switched between a helical and a disordered random coil by pH. The effect of these polymers at different conformations on the crystallization kinetics, crystal morphology, and chiral resolution of rac-threonine is reported. Our study demonstrates that only chiral polymers with alpha-helical conformations of the chiral segment are effective as additives for chiral resolution throughout crystallization. Overall, our results provide useful guidelines for the selection and design of chiral polymer additives that will act efficiently for chiral resolution by crystallization. PMID:19455618

  13. The crystallization of biological macromolecules under microgravity: a way to more accurate three-dimensional structures?

    PubMed

    Lorber, Bernard

    2002-09-23

    The crystallization of proteins and other biological particles (including nucleic acids, nucleo-protein complexes and large assemblies such as nucleosomes, ribosomal subunits or viruses) in a microgravity environment can produce crystals having lesser defects than crystals prepared under normal gravity on earth. Such microgravity-grown crystals can diffract X-rays to a higher resolution and have a lower mosaic spread. The inferred electron density maps can be richer in details owing to which more accurate three-dimensional structure models can be built. Major results reported in this field of research are reviewed. Novel ones obtained with the Advanced Protein Crystallization Facility are presented. For structural biology, practical applications and implications associated with crystallization and crystallography onboard the International Space Station are discussed.

  14. Improving image quality and stability of two-dimensional photonic crystal slab by changing surface structure of the photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Zhao-Jie; Liu, Peng-Fang; Tong, Yuan-Wei

    2016-03-01

    The propagation of electromagnetic (EM) waves in two-dimensional hexagon-lattice photonic crystals (PCs) is investigated through dispersion characteristics analysis and numerical simulation of field pattern. The full width at half maximum (FWHM) of the image reach 0.37λ which is much smaller than 0.5λ by changing surface structure of the photonic crystal, and the variance of FWHM of image focused by the changed slab seems to be less than the variance of FWHM of image focused by the original slab with the changing of source position.

  15. Using crystal structure prediction to rationalize the hydration propensities of substituted adamantane hydrochloride salts.

    PubMed

    Mohamed, Sharmarke; Karothu, Durga Prasad; Naumov, Panče

    2016-08-01

    The crystal energy landscapes of the salts of two rigid pharmaceutically active molecules reveal that the experimental structure of amantadine hydrochloride is the most stable structure with the majority of low-energy structures adopting a chain hydrogen-bond motif and packings that do not have solvent accessible voids. By contrast, memantine hydrochloride which differs in the substitution of two methyl groups on the adamantane ring has a crystal energy landscape where all structures within 10 kJ mol(-1) of the global minimum have solvent-accessible voids ranging from 3 to 14% of the unit-cell volume including the lattice energy minimum that was calculated after removing water from the hydrated memantine hydrochloride salt structure. The success in using crystal structure prediction (CSP) to rationalize the different hydration propensities of these substituted adamantane hydrochloride salts allowed us to extend the model to predict under blind test conditions the experimental crystal structures of the previously uncharacterized 1-(methylamino)adamantane base and its corresponding hydrochloride salt. Although the crystal structure of 1-(methylamino)adamantane was correctly predicted as the second ranked structure on the static lattice energy landscape, the crystallization of a Z' = 3 structure of 1-(methylamino)adamantane hydrochloride reveals the limits of applying CSP when the contents of the crystallographic asymmetric unit are unknown.

  16. Using crystal structure prediction to rationalize the hydration propensities of substituted adamantane hydrochloride salts.

    PubMed

    Mohamed, Sharmarke; Karothu, Durga Prasad; Naumov, Panče

    2016-08-01

    The crystal energy landscapes of the salts of two rigid pharmaceutically active molecules reveal that the experimental structure of amantadine hydrochloride is the most stable structure with the majority of low-energy structures adopting a chain hydrogen-bond motif and packings that do not have solvent accessible voids. By contrast, memantine hydrochloride which differs in the substitution of two methyl groups on the adamantane ring has a crystal energy landscape where all structures within 10 kJ mol(-1) of the global minimum have solvent-accessible voids ranging from 3 to 14% of the unit-cell volume including the lattice energy minimum that was calculated after removing water from the hydrated memantine hydrochloride salt structure. The success in using crystal structure prediction (CSP) to rationalize the different hydration propensities of these substituted adamantane hydrochloride salts allowed us to extend the model to predict under blind test conditions the experimental crystal structures of the previously uncharacterized 1-(methylamino)adamantane base and its corresponding hydrochloride salt. Although the crystal structure of 1-(methylamino)adamantane was correctly predicted as the second ranked structure on the static lattice energy landscape, the crystallization of a Z' = 3 structure of 1-(methylamino)adamantane hydrochloride reveals the limits of applying CSP when the contents of the crystallographic asymmetric unit are unknown. PMID:27484376

  17. Crystal structure and stability of Tl2CO3 at high pressures.

    PubMed

    Grzechnik, A; Friese, K

    2010-03-01

    The crystal structure of dithallium carbonate, Tl(2)CO(3) (C2/m, Z = 4), was investigated at pressures of up to 7.4 GPa using single-crystal X-ray diffraction in a diamond anvil cell. It is stable to at least 5.82 GPa. All atoms except for one of the O atoms lie on crystallographic mirror planes. At higher pressures, the material undergoes a phase transition that destroys the single crystal. PMID:20203393

  18. Synthesis, crystal structures and properties of new quinolinium derivatives

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyuan; Jiang, Xingxing; Li, Yin; Lin, Zheshuai; Zhang, Guochun; Wu, Yicheng

    2015-11-01

    Four phenyl-substituted quinolinium salts with different counter anions, C27H27NO4S, C26H25NO5S, C25H22NO5SCl, and C25H22NO5SBr, were synthesized and their single crystals were successfully grown from methanol solution by slow evaporation. Single crystal X-ray diffraction analyses showed that C27H27NO4S crystal belongs to the noncentrosymmetric orthorhombic space group Pna21, and the other three crystals belong to centrosymmetric monoclinic space group P21/n. Their first order hyperpolarization and macroscopic nonlinearity were analyzed and physical properties were characterized by UV-vis absorption spectroscopy, and differential scanning calorimetric and thermal gravimetric analysis.

  19. Silicon dioxide nanoporous structure with liquid crystal for optical sensors

    NASA Astrophysics Data System (ADS)

    Sushynskyi, Orest; Vistak, Maria; Gotra, Zenon; Fechan, Andriy; Mikityuk, Zinoviy

    2013-05-01

    It has been studied the spectral characteristics of the porous silicon dioxide and cholesteric liquid crystal. It has been shown that doping of the EE1 cholesteric liquid crystal with Fe3O4 magnetite nanoparticles doesn't shift significantly the position of the transmittance minimum of the material. It has been found that the deformation of chiral pitch of cholesteric liquid crystal with magnetite is observed in case of doping of porous nanocomposite host with following shifting of minimum of transmittance into short wavelength direction. It has been shown that influence of carbon monoxide on optical characteristics of the cholesteric liquid crystal with magnetite can be explained by the interaction of CARBON MONOXIDE molecules with magnetite nanodopants.

  20. Synthesis and crystal structure characterisation of sodium neptunate compounds

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Raison, P. E.; Konings, R. J. M.

    2011-06-01

    The present work reports studies of the chemical reactions between neptunium dioxide and sodium oxide either in the presence of oxygen or inert gas (Ar), leading to compounds with hexavalent, heptavalent or pentavalent/tetravalent neptunium, respectively. Solid state synthesis with different NpO 2/Na 2O ratios led to the following polycrystalline compounds: Na 2Np 2O 7 monoclinic (P12 11), α-Na 2NpO 4 orthorhombic (Pbam), β-Na 2NpO 4 orthorhombic (Pbca), β-Na 4NpO 5 tetragonal (I4/mmm), Na 5NpO 6 monoclinic (C2/m) and a cubic compound (Fm-3m) that could either be Na 3NpO 4 or Na 4NpO 4. The crystal structures of the α-Na 2NpO 4 and Na 2Np 2O 7 compounds were refined by Rietveld analysis. Evolution of the cell parameters of α-Na 2NpO 4 was also followed as a function of temperature up to 1273 K by X-ray diffraction. The corresponding linear thermal expansion coefficients along the different axis were determined: αa = 41.3 × 10 -6 K -1, αb = 35.0 × 10 -6 K -1, αc ˜ 0 K -1. From the high temperature X-ray diffraction experiment it was also possible to evidence formation of diverse phases at different temperatures and to review parts of the Na-Np-O system.

  1. Crystal structure, conformation, and absolute configuration of kanamycin A.

    PubMed

    Puius, Yoram A; Stievater, Todd H; Srikrishnan, Thamarapu

    2006-12-11

    Kanamycin, an antibiotic complex produced by Streptomyces kanamycetius isolated from Japanese soil, was described by Okami and Umezawa as early as 1957 and consists of three components: Kanamycin A (the major component), B, and C. The disulfate salt of kanamycin A [4-O-(6-amino-6-deoxy-alpha-d-glucopyranosyl)-6-O-(3-amino-3-deoxy-alpha-d-glucopyranosyl)-2-deoxystreptamine] is a broad-spectrum antibiotic that is used to treat gonorrhea, salmonella, tuberculosis, and many other diseases. Crystals of kanamycin A monosulfate monohydrate obtained from water are triclinic, space group P1, with a=7.2294(14), b=12.4922(15), c=7.1168(9), alpha=94.74(1), beta=89.16(1), gamma=91.59(1), V=640.2(2)A(3), micro(CuKalpha)=18.4cm(-1), FW 600.6, D(calc)=1.558g/cm(3), CAD-4 diffractometric data (2693 reflections, 25543sigma(I)), structure by shelx-86 and refined by full-matrix least squares to a final R value of 0.038. The wrong conformer had an R value of 0.043. Both of the d-glucose moieties are attached to the deoxystreptamine by alpha linkages. This absolute configuration agrees with the earlier determination by both chemical and X-ray methods with photographic data. The (phi,psi) values for the glycosidic linkages are 101.6 degrees , -121.1 degrees , 106.3 degrees , and -140.4 degrees , respectively. Kanamycin interacts with the ribosomal S12 protein to stabilize the codon-anticodon binding between mRNA and the aminoacyl tRNA and inhibits the elongation of peptide chains through a series of reactions resulting in the prevention of ribosomes from moving along mRNA.

  2. Crystal structure and magnetization of a Co{sub 3}B{sub 2}O{sub 6} single crystal

    SciTech Connect

    Kazak, N. V.; Platunov, M. S.; Ivanova, N. B.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Eremin, E. V.; Vasil'ev, A. D.; Bayukov, O. A.; Ovchinnikov, S. G.; Velikanov, D. A.; Zubavichus, Ya. V.

    2013-07-15

    The crystal structure and magnetic properties of Co{sub 3}B{sub 2}O{sub 6} single crystals are studied. Orthorhombic symmetry with space group Pnnm is detected at room temperature. The measurements of static magnetization and dynamic magnetic susceptibility reveal two magnetic anomalies at T{sub 1} = 33 K and T{sub 2} = 10 K and an easy-axis magnetic anisotropy. The effective magnetic moment indicates a high-spin state of the Co{sup 2+} ion. A spin-flop transition is found at low temperatures and H{sub sf} = 23 kOe. EXAFS spectra of the K-edge absorption of Co are recorded at various temperatures, the temperature-induced changes in the parameters of the local environment of cobalt are analyzed, and the effective Co-Co and Co-O distances are determined. The magnetic interactions in the crystal are analyzed in terms of an indirect coupling model.

  3. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  4. Polydisperse hard spheres: crystallization kinetics in small systems and role of local structure

    NASA Astrophysics Data System (ADS)

    Campo, Matteo; Speck, Thomas

    2016-08-01

    We study numerically the crystallization of a hard-sphere mixture with 8% polydispersity. Although often used as a model glass former, for small system sizes we observe crystallization in molecular dynamics simulations. This opens the possibility to study the competition between crystallization and structural relaxation of the melt, which typically is out of reach due to the disparate timescales. We quantify the dependence of relaxation and crystallization times on density and system size. For one density and system size we perform a detailed committor analysis to investigate the suitability of local structures as order parameters to describe the crystallization process. We find that local structures are strongly correlated with generic bond order and add little information to the reaction coordinate.

  5. Crystal Structure and Desolvation Behaviour of the Tadalafil Monosolvates with Acetone and Methyl Ethyl Ketone.

    PubMed

    Miclaus, Maria O; Kacso, Irina E; Martin, Flavia A; David, Leontin; Pop, Mihaela M; Filip, Claudiu; Filip, Xenia

    2015-11-01

    Crystal structures of Tadalafil (TDF) monosolvated forms with acetone (ACE) and methyl ethyl ketone (MEK) were determined by single-crystal X-ray diffraction in which same persistent chains of TDF molecules are present as in the reported structures. The solvates crystallize in a higher orthorhombic symmetry than the known forms with monoclinic structures. Weak interactions between TDF and solvent molecules are present in both solvates, leading to slight conformational distortions of TDF molecules. The MEK solvate showed slightly higher stability than the ACE solvate, regardless of their highly similar molecular conformations and crystal packing. Desolvation into anhydrous TDF was achieved by heating, exposure to temperature and relative humidity and by mechanical stress. The high solubility of TDF in ACE and MEK solvents combined with the ease of desolvation of the resulting solvated forms indicates the viability of the solvates use as intermediates in the TDF crystallization process.

  6. π-Stacked structure of thiadiazolo-fused benzotriazinyl radical: Crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Miura, Youhei; Yoshioka, Naoki

    2015-04-01

    A novel benzotriazinyl radical with a 2,1,3-thiadiazolo fused ring (1,3-diphenyl-1,2-dihydro-[1,2,5]thiadiazolo[3‧,4‧:3,4]benzo[1,2-e]-1,2,4-triazine-2-yl; NSNBT) was prepared and characterized by ESR measurement, cyclic voltammetry, and X-ray crystallographic analysis. By a detailed study of bond lengths and angles, it was found that the molecular structure of NSNBT borrows characteristics both from 2,1,3-benzothiadiazole and from the unsubstituted benzotriazinyl radical, and the central phenyl ring presents a phenanthrene-type bond alternation. Molecules were shown to be arranged in a π-stacked columnar structure, with columns connected to each other through sulfur-sulfur interactions in the crystal. It exhibited strong antiferromagnetic interactions (J/kB = -434 K) derived from its dimer structure.

  7. Crystal structure, thermal and optical properties of Benzimidazole benzimidazolium picrate crystal

    NASA Astrophysics Data System (ADS)

    Jagadesan, A.; Peramaiyan, G.; Srinivasan, T.; Kumar, R. Mohan; Arjunan, S.

    2016-02-01

    A new organic framework of benzimidazole with picric acid has been synthesized. A single crystal with a size of 38×10×4 mm3 was grown by a slow evaporation solution growth technique. X-ray diffraction study revealed that the BZP crystal belongs to triclinic system with space group P-1. High resolution X-ray diffraction study shows the absence of grain boundaries without any defects. The thermal stability and specific heat capacity of BZP were investigated by TG/DT and TG/DSC analyses. From the UV-vis-NIR spectral study, optical transmission window and band gap of BZP were found out. The nonlinear refractive index (n2) and third order susceptibility Re(χ(3)) values of BZP crystal are estimated to be 1.73×10-7 cm2/W and 1.26×10-5 esu, respectively using a Z-scan technique.

  8. Antioxidative succinobucol-sterol conjugates: Crystal structures and pseudosymmetry in the crystals

    NASA Astrophysics Data System (ADS)

    Ikonen, Satu; Jurček, Ondřej; Wimmer, Zdeněk; Drašar, Pavel; Kolehmainen, Erkki

    2012-03-01

    An extensive study to attach succinobucol to sterols has provided conjugates which comprise two pharmaceutically important compounds into one entity where the components are expected to have a synergistic effect. The motivation to design these novel conjugates was the need to broaden the armamentarium of current agents used in the treatment of atherosclerotic diseases and type 2 diabetes. In desire for detailed information of these compounds in solid state, which also have an influence to their physiological activity, systematic crystallization experiments were performed and as a result, X-ray quality single crystals were obtained from four succinobucol-sterol conjugates. All of these compounds crystallized in space group P1 with two or four molecules in an asymmetric unit and the crystallographically independent molecules were found to be related by pseudosymmetry (i.e. by pseudoinversion in 1-3 and by pseudoinversion plus pseudotranslation in 4).

  9. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    PubMed

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-01

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  10. Structures of cholesteric liquid crystals confined in rectangular micro-channels

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Guo, Yubing; Xiang, Jie; Lavrentovich, Oleg

    When cholesteric liquid crystals are confined in various geometries, the interplays between the boundary conditions, the bulk structures and different length scales (pitch, penetration depth, and confinement size) may cause frustration and formation of intriguing topological defects and disclination lines. This paper presents our recent studies on the structures of cholesteric liquid crystals confined in rectangular microchannels with homeotropic alignments. The rectangular microchannels with various sizes and aspect ratios are made in glass substrates by using modern nanofabrication techniques. Detailed liquid crystal structures and their optical characterizations will be presented as a function of the channel depth and width. Work was supported by ACS PRF 53018-ND7.

  11. Ab initio studies on the structure of and atomic interactions in cellulose III(I) crystals.

    PubMed

    Ishikawa, Tetsuya; Hayakawa, Daichi; Miyamoto, Hitomi; Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi

    2015-11-19

    The crystal structure of cellulose III(I)was analyzed using first-principles density functional theory (DFT). The geometry was optimized using variable-cell relaxation, as implemented in Quantum ESPRESSO. The Perdew-Burke-Ernzerhof (PBE) functional with a correction term for long-range van der Waals interactions (PBE-D) reproduced the experimental structure well. By using the optimized crystal structure, the interactions existed among the cellulose chains in the crystal were precisely investigated using the NBO analysis. The results showed that the weak bonding nature of CH/O and the hydrogen bonding occur among glucose molecules in the optimized crystal structure. To investigate the strength of interaction, dimeric and trimeric glucose units were extracted from the crystal, and analyzed using MP2 ab initio counterpoise methods with BSSE correction. The results estimated the strength of the interactions. That is, the packed chains along with a-axis interacts with weak bonding nature of CH/O and dispersion interactions by -7.50 kcal/mol, and two hydrogen bonds of O2HO2…O6 and O6HO6…O2 connect the neighboring packed chains with -11.9 kcal/mol. Moreover, FMO4 calculation was also applied to the optimized crystal structure to estimate the strength of the interactions. These methods can well estimate the interactions existed in the crystal structure of cellulose III(I).

  12. Fractal structures of dendrites in GaSe crystals

    NASA Astrophysics Data System (ADS)

    Kolesnikov, N. N.; Borisenko, E. B.; Borisenko, D. N.; Bozhko, S. I.

    2008-07-01

    Solidification of melts at substantial supercooling is associated with instability on the growth front. This causes growth of dendrites, which form as a branched tree in a crystal. In the layered melt-grown GaSe crystals dendrites are observed, if growth rates are rather high [N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, V.K. Gartman, Influence of growth conditions on microstructure and properties of GaSe crystals, J. Crystal Growth 300 (2) (2007) 294-298]. Models based on solution of the thermal diffusion problem are traditionally used to describe dendrite growth. Solution of this problem requires information about several physical parameters, such as diffusion coefficient, heat conductivity coefficient and supercooling at the solid/liquid interface. The study of scale invariance of dendrites formed in a crystal provides a new approach to solution of the dynamic growth problem. The calculated fractal dimensionality of the experimentally observed dendrites in GaSe crystals is D=1.7. It coincides with dimensionality of the clusters obtained through computer simulation in terms of the model of diffusion-limited aggregation (DLA). This result provides a new approach to description of the dynamics of dendrite growth. We have shown that the dendrite growth mechanism in the layered semiconductor crystals can be described by a two-dimensional DLA model. It is shown that probabilistic simulation can be used to show the development of a dendrite in any material. In contrast to the classical theories of dendrite growth, this approach does not require information on physical parameters.

  13. Comparison of the crystal and solution structures of two RNA oligonucleotides.

    PubMed Central

    Rife, J P; Stallings, S C; Correll, C C; Dallas, A; Steitz, T A; Moore, P B

    1999-01-01

    Until recently, there were no examples of RNAs whose structures had been determined by both NMR and x-ray crystallography, and thus there was no experimental basis for assessing the accuracy of RNA solution structures. A comparison of the solution and the crystal structures of two RNAs is presented, which demonstrates that NMR can produce solution structures that resemble crystal structures and thus validates the application to RNA of a methodology developed initially for the determination of protein conformations. Models for RNA solution structures are appreciably affected by the parameters used for their refinement that describe intramolecular interactions. For the RNAs of interest here, the more realistic those parameters, the greater the similarity between solution structures and crystal structures. PMID:9876123

  14. Crystal structure of a mutant of archaeal ribosomal protein L1 from Methanococcus jannaschii

    NASA Astrophysics Data System (ADS)

    Sarskikh, A. V.; Gabdulkhakov, A. G.; Kostareva, O. S.; Shklyaeva, A. A.; Tishchenko, S. V.

    2014-05-01

    The crystal structure of a mutant of archaeal ribosomal protein L1 from Methanococcus jannaschii with the deletion of a nonconserved positively charged cluster consisting of eight C-terminal amino acid residues is determined by the molecular replacement method at 1.75 Å resolution. This mutant is shown to form more stable and ordered crystals belonging to a space group other than that of the wild-type protein crystals. The positively charged C-terminal region has only a slight effect on the interaction between protein L1 and RNA molecules. Hence, this mutant can be used to prepare protein-RNA complexes and obtain their crystals.

  15. Crystal structure study of (Ca, Gd){sub 2}(Al, Ti)O{sub 4}

    SciTech Connect

    Sawada, Haruo; Marumo, Fumiyuki; Kodama, Nobuhiro

    1998-08-01

    The crystal structures of two crystals of (Ca, Gd){sub 2} (Al, Ti)O{sub 4} [tetragonal I4/mmm; Z = 4], one strongly fluorescent and the other weakly fluorescent, having minor differences in their precise compositions have been studied with single-crystal X-ray diffraction methods. The unit cell is significantly smaller for the weakly fluorescent crystal, which also shows alteration of the coordination polyhedraon around the (Ca, Gd) site, suggesting the formation of vacancies at an oxygen site.

  16. Crystal structure, growth and characterization of LiPbB₉O₁₅: A new congruent melting nonlinear optical crystal

    SciTech Connect

    Xia, M.J.; Li, R.K.

    2013-05-01

    A new congruent-melting crystal LiPbB₉O₁₅ (LPBO) has been grown and its structure was determined by single crystal X-ray diffraction. LPBO crystallizes in a polar space group R3c with a large unit cell of a=b=21.649(11) Å, c=17.193(11) Å, and Z=24. The basic anionic unit, (B₃O₇)⁵⁻ group, is connected by terminal O atoms to build an infinite [(B₃O₅)⁻]ₙ helical chain along the c axis. Second harmonic generation (SHG) measurements of the title compound indicate that LPBO can be phase matchable and its SHG coefficient is almost equal to that of KDP, which is about 3.3 times that of its analog BaLiB₉O₁₅. This significant enhancement of the SHG effect can be tentatively attributed to the lone pair Pb²⁺ cations with severely distorted coordination. LPBO has a wide transparent region from 410 to 2500 nm with a UV absorption edge about 261 nm according to the reflectance spectra. - Graphical abstract: The crystal structure of LiPbB₉O₁₅ composed of the (B₃O₇)⁵⁻ anionic group and the lone pair Pb and Li polyhedra along c axis. Highlights: • A new congruent-melt NLO crystal LiPbB₉O₁₅ (LPBO) has been grown. • The basic structural unit of LPBO is B₃O₇ group same as that found in LiB₃O₅. • LPBO is phase matchable with SHG signal 10 times that of its Ba-analog. • LPBO is highly transparent within 410–1700 nm with a UV cut-off of 261 nm.

  17. Influence of crystal structure on the tableting properties of n-alkyl 4-hydroxybenzoate esters (parabens).

    PubMed

    Feng, Yushi; Grant, David J W; Sun, Changquan C

    2007-12-01

    Certain crystallographic features, such as the existence of slip planes, can greatly facilitate the ability of crystals to deform plastically. An investigation of the relationship between the slip planes and the tableting performance of the crystals of methyl, ethyl, n-propyl, and n-butyl 4-hydroxybenzoate (parabens) was conducted. The absence of slip planes in methyl paraben crystal structure results in significantly poorer tableting performance than the other three parabens. While slip planes are present in the crystal structures of ethyl, propyl, and butyl parabens, they exhibited different plasticity as confirmed by crystal free volume analysis, crystal nano-indentation hardness, and Heckel analysis. Sieved fraction, 150-250 microm, of each paraben powder was compressed into tablets under different conditions. Tablet tensile strength, porosity, and Indices of tableting performance (ITP) were obtained. Under the same compaction pressure, tablet tensile strength was higher for crystals with higher plasticity. Tableting performance, assessed using the ITP, also improved with increasing crystal plasticity. The results confirm that high levels of plasticity, which can result from the presence of slip planes in crystal lattice, plays a critical role in the formation of strong and intact tablets by means of powder compaction.

  18. Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data.

    PubMed

    Mtioui-Sghaier, Olfa; Mendoza-Meroño, Rafael; Ktari, Lilia; Dammak, Mohamed; García-Granda, Santiago

    2015-07-01

    The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005 ▸). Eur. J. Inorg. Chem. pp. 3080-3087; Cavalcante et al. (2013 ▸). Polyhedron, 54, 13-25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa-hedra, both with point group symmetry 2. The distortion of the octa-hedra is reflected by variation of bond lengths and angles from 2.002 (3)-2.274 (4) Å, 80.63 (11)-108.8 (2)° for equatorial and 158.4 (2)- 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)-2.171 (3) Å, 73.39 (16)-104.7 (2), 150.8 (2)-164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa-hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa-gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa-hedral voids.

  19. Redetermination of the crystal structure of β-zinc molybdate from single-crystal X-ray diffraction data

    PubMed Central

    Mtioui-Sghaier, Olfa; Mendoza-Meroño, Rafael; Ktari, Lilia; Dammak, Mohamed; García-Granda, Santiago

    2015-01-01

    The crystal structure of the β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005 ▸). Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcante et al. (2013 ▸). Polyhedron, 54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octa­hedra, both with point group symmetry 2. The distortion of the octa­hedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type of MO6 octa­hedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexa­gonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octa­hedral voids. PMID:26279891

  20. Fabrication of colloidal crystals with defined and complex structures via layer-by-layer transfer.

    PubMed

    Li, Wei; Yang, Bai; Wang, Dayang

    2008-12-01

    A new and versatile way--using poly(dimethylsiloxane) (PDMS) sheets to layer-by-layer (LbL) transfer hexagonal-close-packed particle monolayers from preformed colloidal crystals and stack them on substrates-has been demonstrated to create colloidal crystals. This approach allows LbL control of the thickness of the resulting crystals and especially of the size and the packing structure of the particles in each layer. Furthermore, it also allows fabrication of binary colloidal crystals over large areas by deformation of the PDMS sheets during LbL transfer. Two new binary crystals-one composed of identically sized particles but in different densities and the other of a nonclose-packed monolayer of large particles and a close-packed monolayer of small particles-were created, which are hard grown by other colloidal crystallization techniques developed thus far. PMID:18986179

  1. Polarization structure of lidar signals reflected from ice crystal clouds.

    PubMed

    Krekov, Georgii M; Krekova, Margarita M; Romashov, Dmitrii N; Shamanaev, Vitalii S

    2005-07-01

    Polarization characteristics of signals of a monostatic lidar intended for sensing of homogeneous ice crystal clouds are calculated by the Monte Carlo method. Clouds are modeled as monodisperse ensembles of randomly oriented hexagonal ice crystals. The polarization state of multiply scattered lidar signal components is analyzed for different scattering orders depending on the crystal shapes and sizes as well as on the optical and geometrical conditions of observation. Light-scattering phase matrices (SPMs), calculated by the beam splitting method (BSM), are used as input data for solving the vector radiative transfer equation. The principles of the BSM method are briefly described, and the SPM components are given for hexagonal ice plates and columns of different sizes and linearly polarized incident radiation with the wavelength lambda = 0.55 microm.

  2. Crystal structure of β-d,l-allose

    PubMed Central

    Ishii, Tomohiko; Senoo, Tatsuya; Kozakai, Taro; Fukada, Kazuhiro; Sakane, Genta

    2015-01-01

    The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of d- and l-allose. It was confirmed that d-allose (l-allose) formed β-pyran­ose with a 4 C 1 (1 C 4) conformation in the crystal. In the crystal, molecules are linked by O—H⋯O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic β-d,l-allose is 739.36 (3) Å3, which is about 10 Å3 smaller than that of chiral β-d-allose [V = 751.0 (2) Å3]. PMID:25878872

  3. The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures.

    PubMed

    Maes, D; Zeelen, J P; Thanki, N; Beaucamp, N; Alvarez, M; Thi, M H; Backmann, J; Martial, J A; Wyns, L; Jaenicke, R; Wierenga, R K

    1999-11-15

    The molecular mechanisms that evolution has been employing to adapt to environmental temperatures are poorly understood. To gain some further insight into this subject we solved the crystal structure of triosephosphate isomerase (TIM) from the hyperthermophilic bacterium Thermotoga maritima (TmTIM). The enzyme is a tetramer, assembled as a dimer of dimers, suggesting that the tetrameric wild-type phosphoglycerate kinase PGK-TIM fusion protein consists of a core of two TIM dimers covalently linked to 4 PGK units. The crystal structure of TmTIM represents the most thermostable TIM presently known in its 3D-structure. It adds to a series of nine known TIM structures from a wide variety of organisms, spanning the range from psychrophiles to hyperthermophiles. Several properties believed to be involved in the adaptation to different temperatures were calculated and compared for all ten structures. No sequence preferences, correlated with thermal stability, were apparent from the amino acid composition or from the analysis of the loops and secondary structure elements of the ten TIMs. A common feature for both psychrophilic and T. maritima TIM is the large number of salt bridges compared with the number found in mesophilic TIMs. In the two thermophilic TIMs, the highest amount of accessible hydrophobic surface is buried during the folding and assembly process.

  4. Viscoplastic Deformation of Crystal-like Dusty Plasma Structures

    SciTech Connect

    Fortov, V. E.; Gavrikov, A. V.; Goranskaya, D. N.; Ivanov, A. S.; Petrov, O. F.; Timirkhanov, R. A.

    2008-09-07

    The experimental investigation of a dusty plasma liquid without shearing forces is presented. The boundary value of coupling parameter was determinated, at which clusters began to form. The possible explanation of non-Newtonian behavior of dusty plasma liquid was suggested. The second part of the present work is devoted to the experimental study of viscoplastic flow in the dusty plasma crystal. It was for the first time the viscoplastic flow of dusty plasma crystal was obtained. The threshold type of this viscoplastic flow was demonstrated.

  5. Structural examination of iridium-based single-crystal preparations

    NASA Astrophysics Data System (ADS)

    Axler, K. M.; Roof, R. B.

    A high-temperature crystal growth experiment produced discrete single-crystal products of AlIr and IrSi. The preparation and examination of these phases is described within. This project is part of a materials compatibility study relating to radioisotopic heat sources. These heat sources are comprised of a PuO2 fuel pellet encapsulated in an Ir alloy containment shell. Th is introduced as an additive within the Ir to maintain ductility. Si and P are picked up inadvertently in the fuel processing. The compatibility of the heat sources with Al is of interest because of potential interactions with Al alloy hardware associated with the heat source environment.

  6. Structure of liquid crystal droplets with chiral propeller texture.

    PubMed

    Yang, Deng-Ke; Jeong, Kwang-Un; Cheng, S Z D

    2008-02-01

    We experimentally studied a nematic liquid crystal whose molecules form twisted head-to-head H-bonded dimers. We observed that when the material transformed from the isotropic to nematic phase, it formed droplets with chiral propeller textures. We carried out a computer simulation to investigate the liquid crystal director configuration inside the droplets and to study the effects of elastic constants and chirality on the droplet texture. Results of our study show it is likely that the material in the droplets had nonzero chirality due to spontaneous chiral phase separation.

  7. Intermolecular interactions in multi-component crystals of acridinone/thioacridinone derivatives: Structural and energetics investigations

    NASA Astrophysics Data System (ADS)

    Wera, Michał; Storoniak, Piotr; Trzybiński, Damian; Zadykowicz, Beata

    2016-12-01

    A single crystal X-ray analysis of two multi-component crystals consisting of an acridinone/thioacridinone moiety and a solvent moiety - water and ammonia (1 and 2), respectively, was carried out to determine the crystal structures of obtained crystals. A theoretical approach was undertaken - using the DFT method, lattice energies calculations and Hirshfeld surfaces (HS) - to qualitatively and quantitatively assess the intermolecular interactions within the crystal. HS analysis was showed that the H⋯H, C⋯H/H⋯C and C⋯C contacts for both structures (altogether 81.6% of total Hirshfeld surface area for 1 and 79.3% for 2) and the O⋯H/H⋯O (14.3%) for 1 and the S⋯H/H⋯S (15.2%) contacts for 2 were the characteristic intermolecular contacts in the related crystal structures. Using a computational methods were confirmed that the main contribution to the stabilization of the crystal lattice of compound 1 comes from the Coulombic interactions, whereas in compound 2 electrostatic and van der Waals appear to have similar contribution to the crystal lattice energy. Theoretical calculations of the investigated compounds have also allowed to determine the energy of a single specific intermolecular interaction.

  8. Experimental demonstration on structure-parameter dependence of photonic crystal optical spectrum.

    PubMed

    Wang, Chunxia; Kan, Qiang; Xu, Xingsheng; Du, Wei; Chen, Hongda

    2009-02-01

    We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 microm into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters. PMID:19441451

  9. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  10. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    PubMed

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  11. Formation of crystal-like structures and branched networks from nonionic spherical micelles.

    PubMed

    Cardiel, Joshua J; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q

    2015-01-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  12. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  13. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal

    PubMed Central

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine

    2010-01-01

    Summary Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C. PMID:20625522

  14. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  15. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    PubMed Central

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-01-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries. PMID:26648269

  16. Conformation of the umifenovir cation in the molecular and crystal structures of four carboxylic acid salts

    NASA Astrophysics Data System (ADS)

    Orola, Liana; Sarcevica, Inese; Kons, Artis; Actins, Andris; Veidis, Mikelis V.

    2014-01-01

    The umifenovir salts of maleic, salicylic, glutaric, and gentisic acid as well as the chloroform solvate of the salicylate were prepared. Single crystals of the five compounds were obtained and their molecular and crystal structures determined by X-ray diffraction. In each structure the conformation of phenyl ring with respect to the indole group of the umifenovir moiety is different. The water solubility and melting points of the studied umifenovir salts have been determined.

  17. Crystal structure of (E)-pent-2-enoic acid.

    PubMed

    Peppel, Tim; Sonneck, Marcel; Spannenberg, Anke; Wohlrab, Sebastian

    2015-05-01

    The mol-ecule of the title compound, C5H8O2, a low-melting α,β-unsaturated carb-oxy-lic acid, is essentially planar [maximum displacement = 0.0239 (13) Å]. In the crystal, mol-ecules are linked into centrosymmetric dimers via pairs of O-H⋯O hydrogen bonds. PMID:25995924

  18. Crystal Structure of a Bacterial Albumin-Binding Domain at 1.4 Angstrom Resolution

    SciTech Connect

    Cramer, J.F.; Nordberg, P.A.; Hajdu, J.; Lejon, S.; /Uppsala U. /Aalborg U. /Astra Tech, Molndal /SLAC

    2007-11-26

    The albumin-binding domain, or GA module, of the peptostreptococcal albumin-binding protein expressed in pathogenic strains of Finegoldia magna is believed to be responsible for the virulence and increased growth rate of these strains. Here we present the 1.4 Angstrom crystal structure of this domain, and compare it with the crystal structure of the GA-albumin complex. An analysis of protein-protein interactions in the two crystals, and the presence of multimeric GA species in solution, indicate the GA module is 'sticky', and is capable of forming contacts with a range of protein surfaces. This might lead to interactions with different host proteins.

  19. Acoustic wave velocities in two-dimensional composite structures based on acousto-optical crystals

    NASA Astrophysics Data System (ADS)

    Mal'neva, P. V.; Trushin, A. S.

    2015-04-01

    Sound velocities in two-dimensional composite structures based on isotropic and anisotropic acousto-optical crystals have been determined by numerical simulations. The isotropic materials are represented by fused quartz (SiO2) and flint glass, while anisotropic materials include tetragonal crystals of paratellurite (TeO2) and rutile (TiO2) and a trigonal crystal of tellurium (Te). It is established that the acoustic anisotropy of periodic composite structures strongly depends on both the chemical composition and geometric parameters of components.

  20. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  1. Crystal structure, spectral, thermal and dielectric studies of a new barium complex of benzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Eapen, S. M.; Rajendra Babu, K.

    2013-06-01

    A novel crystalline complex of benzoic acid with barium has been successfully grown in sodium metasilicate gel and its structure has been determined by single crystal X-ray diffraction technique. The crystal belongs to triclinic system with space group P-1 having unit cell parameters a = 7.7064(3)Å, b = 12.8642(5)Å, c = 15.4986(7)Å, α = 86.456(2)°β = 87.080(2)° and γ = 89.835(2)°. The complex exhibits a 3D polymeric structure. This polymeric structure is formed by tetradentate chelating and bidentate bridging of carboxylic oxygens of benzoic acid ligand. Another interesting feature of this polymer is the involvement of deprotonated coordinated aqua molecules in bridging the two metal atoms. The TGA/DTA studies reveal that the complex is thermally stable up to 170 °C. The kinetic and thermodynamic parameters at different decomposition stages were also calculated. FT-IR spectral studies were used to identify the functional groups and the bonding sites of the ligand with the metal atoms. UV-Vis spectroscopy revealed the transparency of the crystal. The optical band gap was found to be 4.1 eV.

  2. Spectroscopic manifestations of local crystal distortions in excited 4f states in crystals of huntite structure

    SciTech Connect

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Sokolov, A. E.; Strokova, A. Ya.; Kartashev, A. V.; Temerov, V. L.

    2013-01-15

    Optical absorption spectra of YbAl{sub 3}(BO{sub 3}){sub 4}, TmAl{sub 3}(BO{sub 3}){sub 4} and TbFe{sub 3}(BO{sub 3}){sub 4} trigonal crystals have been studied in temperature range 2-300 K. Temperature behavior of absorption lines parameters has shown, that during some f-f transitions the local environment of rare earth ions undergo distortions, which are absent in the ground state.

  3. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite.

    PubMed

    Zhang, Li; Meng, Yue; Dera, Przemyslaw; Yang, Wenge; Mao, Wendy L; Mao, Ho-Kwang

    2013-04-16

    Knowledge of the structural properties of mantle phases is critical for understanding the enigmatic seismic features observed in the Earth's lower mantle down to the core-mantle boundary. However, our knowledge of lower mantle phase equilibria at high pressure (P) and temperature (T) conditions has been based on limited information provided by powder X-ray diffraction technique and theoretical calculations. Here, we report the in situ single-crystal structure determination of (Mg,Fe)SiO3 postperovskite (ppv) at high P and after temperature quenching in a diamond anvil cell. Using a newly developed multigrain single-crystal X-ray diffraction analysis technique in a diamond anvil cell, crystallographic orientations of over 100 crystallites were simultaneously determined at high P in a coarse-grained polycrystalline sample containing submicron ppv grains. Conventional single-crystal structural analysis and refinement methods were applied for a few selected ppv crystallites, which demonstrate the feasibility of the in situ study of crystal structures of submicron crystallites in a multiphase polycrystalline sample contained within a high P device. The similarity of structural models for single-crystal Fe-bearing ppv (~10 mol% Fe) and Fe-free ppv from previous theoretical calculations suggests that the Fe content in the mantle has a negligible effect on the crystal structure of the ppv phase.

  4. Low-temperature crystal and magnetic structure of α -RuCl3

    NASA Astrophysics Data System (ADS)

    Cao, H. B.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Lumsden, M. D.; Mandrus, D. G.; Tennant, D. A.; Chakoumakos, B. C.; Nagler, S. E.

    2016-04-01

    Single crystals of the Kitaev spin-liquid candidate α -RuCl3 have been studied to determine the low-temperature bulk properties, the structure, and the magnetic ground state. Refinements of x-ray diffraction data show that the low-temperature crystal structure is described by space group C 2 /m with a nearly perfect honeycomb lattice exhibiting less than 0.2% in-plane distortion. The as-grown single crystals exhibit only one sharp magnetic transition at TN=7 K. The magnetic order below this temperature exhibits a propagation vector of k =(0 ,1 ,1 /3 ) , which coincides with a three-layer stacking of the C 2 /m unit cells. Magnetic transitions at higher temperatures up to 14 K can be introduced by deformations of the crystal that result in regions in the crystal with a two-layer stacking sequence. The best-fit symmetry-allowed magnetic structure of the as-grown crystals shows that the spins lie in the a c plane, with a zigzag configuration in each honeycomb layer. The three-layer repeat out-of-plane structure can be refined as a 120∘ spiral order or a collinear structure with a spin direction of 35∘ away from the a axis. The collinear spin configuration yields a slightly better fit and also is physically preferred. The average ordered moment in either structure is less than 0.45(5) μB per Ru3 + ion.

  5. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    DOE PAGES

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of themore » random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.« less

  6. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    SciTech Connect

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.

  7. Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes

    NASA Astrophysics Data System (ADS)

    Chen, Ling-Jing; Dong, Xian-Zi; Zhao, Yuan-Yuan; Zhang, Yong-Liang; Liu, Jie; Zheng, Mei-Ling; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2015-10-01

    The photonic band gap effect which originates from the translational invariance of the periodic lattice of dielectrics has been widely applied in the technical applications of microwave, telecommunication and visible wavelengths. Among the various examples, polymers based three dimensional (3D) photonic crystals (PhCs) have attracted considerable interest because they can be easily fabricated by femo-second (fs) ultrafast laser direct writing (DLW) method. However, it is difficult to realize complete band gap in polymers PhCs due to the low index contrast between polymers and air. Here, we report the design and experimental realization of light's nonreciprocal propagation in woodpile PhCs fabricated with DLW method. Firstly, we fabricated several polymers woodpile PhCs on glass substrate with different crystal planes. The Fourier transform infrared spectroscopy (FTIR) measurements are in agreement with the theoretical predictions, which proves the validity and the accuracy of our DLW method. Further measurements of the transmission spectra with respect to the incident angle reveal that the surface crystal planes and incident wave vectors play important roles in the optical response. Furthermore, we designed and fabricated a 30° PhC wedge. And we find nonreciprocal transmission effect between the forward and backward waves, resulting from the nonsymmetrical refraction of the light in different planes. Our results may find potential applications in future 3D photonic integrated circuits and pave the way for the fabrication of other photonic and optical devices with DLW method.

  8. Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase

    PubMed Central

    Sun, Xiaolin; Bognar, Andrew L.; Baker, Edward N.; Smith, Clyde A.

    1998-01-01

    Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates. PMID:9618466

  9. Investigation on growth, structure and characterization of succinate salt of 8-hydroxyquinoline: An organic NLO crystal

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Babu, B.; Anitha, K.; Chandrasekaran, J.

    2015-04-01

    8-Hydroxyquinolinium succinate (8-HQSU) has been synthesized and single crystals were grown from ethanol solvent by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated by single crystal X-ray diffraction analysis. It reveals that 8-HQSU crystallizes in monoclinic system with non-centro symmetric space group P21. FTIR, 1H and 13C NMR spectral investigations have been carried out to identify the vibrational modes of various functional groups and placement of proton and carbon in the 8-HQSU compound, respectively. UV-vis-NIR transmission spectrum shows the cutoff wavelength around 357 nm. In addition, a photoluminescence spectral analysis was carried out for 8-HQSU crystals. The thermal properties of crystals were evaluated from TGA and DTA techniques and the crystal was found to be stable up to 145 °C. The dielectric studies show that the dielectric constant and dielectric loss decrease exponentially with frequency at different temperatures. Photoconductivity studies were carried out on the grown crystals it reveals the positive photo conducting nature. Powder second harmonic generation property of the crystal was confirmed by Kurtz and Perry powder SHG technique and it is found to be 1.3 times greater than that of KDP.

  10. Effect of XeCl laser irradiation on the defect structure of Nd:YAG crystals

    NASA Astrophysics Data System (ADS)

    Panahibakhsh, S.; Jelvani, S.; Maleki, M. H.; Mollabashi, M.; Abolhosseini, S.

    2014-09-01

    This paper presents the effect of XeCl laser irradiation on Nd:YAG single crystal samples with various number of pulses at different repetition rates and laser fluences. Effects of the irradiation on the optical and structural properties of the crystal are analyzed by UV-vis-NIR spectroscopy. Annihilation of some point defects of the crystal structure is observed following laser irradiation at a fluence of 100 mJ cm-2 with 100 and 500 pulses. Increasing the laser fluence and pulse numbers leads to saturation and new defects are found to be formed in the crystal. Additional absorption spectra of the irradiated samples show that oxygen vacancies in the Nd:YAG crystals are removed during the low-dose irradiation. The laser irradiation is compared to the thermal annealing process for Nd:YAG crystal modification. Additional absorption spectrum of an annealed sample reveals that induced negative absorption band at 236 nm is correlated with the annihilation of the oxygen vacancy center. Our results also demonstrate that XeCl laser treatment has several advantages upon annealing at high temperatures in the Nd:YAG crystal quality improvement. Thus, the present work can give a new approach to modify Nd:YAG crystals to be used in a wide variety of solid-state laser engineering.

  11. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  12. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-06-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  13. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex.

    PubMed

    Essen, L; Siegert, R; Lehmann, W D; Oesterhelt, D

    1998-09-29

    Heterogenous nucleation on small molecule crystals causes a monoclinic crystal form of bacteriorhodopsin (BR) in which trimers of this membrane protein pack differently than in native purple membranes. Analysis of single crystals by nano-electrospray ionization-mass spectrometry demonstrated a preservation of the purple membrane lipid composition in these BR crystals. The 2.9-A x-ray structure shows a lipid-mediated stabilization of BR trimers where the glycolipid S-TGA-1 binds into the central compartment of BR trimers. The BR trimer/lipid complex provides an example of local membrane thinning as the lipid head-group boundary of the central lipid patch is shifted by 5 A toward the membrane center. Nonbiased electron density maps reveal structural differences to previously reported BR structures, especially for the cytosolic EF loop and the proton exit pathway. The terminal proton release complex now comprises an E194-E204 dyad as a diffuse proton buffer.

  14. A comparative study on the crystal structure of bicycle analogues to the natural phytotoxin helminthosporins

    NASA Astrophysics Data System (ADS)

    Barbosa, Luiz Cláudio de Almeida; Teixeira, Robson Ricardo; Nogueira, Leonardo Brandão; Maltha, Celia Regina Alvares; Doriguetto, Antônio Carlos; Martins, Felipe Terra

    2016-02-01

    Herein we described structural insights of a series of analogues to helminthosporin phytotoxins. The key reaction used to prepare the compounds corresponded to the [3 + 4] cycloaddition between the oxyallyl cation generated from 2,4-dibromopentan-3-one and different furans. Their structures were confirmed upon IR, NMR and X-ray diffraction analyses. While bicycles 7, 8 and 9 crystallize in the centrosymmetric monoclinic space group P21/c, compound 10 was solved in the noncentrosymmetric orthorhombic space group P212121. The solid materials obtained were shown to be racemic crystals (7, 8, 9) or racemic conglomerate (10). In all compounds, there is formation of a bicycle featured by fused tetrahydropyranone and 2,5-dihydrofuran rings. They adopt chair and envelope conformations, respectively. Crystal packing of all compounds is stabilized through C-H•••O contacts. Conformational aspects as well as similarities and differences among the crystal structures of the synthesized analogues are discussed.

  15. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  16. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    PubMed

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  17. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers.

    PubMed

    Zhang, Jie-Peng; Liao, Pei-Qin; Zhou, Hao-Long; Lin, Rui-Biao; Chen, Xiao-Ming

    2014-08-21

    X-Ray single-crystal diffraction has been the most straightforward and important technique in structural determination of crystalline materials for understanding their structure-property relationships. This powerful tool can be used to directly visualize the precise and detailed structural information of porous coordination polymers or metal-organic frameworks at different states, which are unique for their flexible host frameworks compared with conventional adsorbents. With a series of selected recent examples, this review gives a brief overview of single-crystal X-ray diffraction studies and single-crystal to single-crystal transformations of porous coordination polymers under various chemical and physical stimuli such as solvent and gas sorption/desorption/exchange, chemical reaction and temperature change.

  18. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine.

    PubMed

    Noble, Christian G; Li, Shi-Hua; Dong, Hongping; Chew, Sock Hui; Shi, Pei-Yong

    2014-11-01

    Flavivirus methyltransferase is a genetically-validated antiviral target. Crystal structures of almost all available flavivirus methyltransferases contain S-adenosyl-L-methionine (SAM), the methyl donor molecule that co-purifies with the enzymes. This raises a possibility that SAM is an integral structural component required for the folding of dengue virus (DENV) methyltransferase. Here we exclude this possibility by solving the crystal structure of DENV methyltransferase without SAM. The SAM ligand was removed from the enzyme through a urea-mediated denaturation-and-renaturation protocol. The crystal structure of the SAM-depleted enzyme exhibits a vacant SAM-binding pocket, with a conformation identical to that of the SAM-enzyme co-crystal structure. Functionally, equivalent enzymatic activities (N-7 methylation, 2'-O methylation, and GMP-enzyme complex formation) were detected for the SAM-depleted and SAM-containing recombinant proteins. These results clearly indicate that the SAM molecule is not an essential component for the correct folding of DENV methyltransferase. Furthermore, the results imply a potential antiviral approach to search for inhibitors that can bind to the SAM-binding pocket and compete against SAM binding. To demonstrate this potential, we have soaked crystals of DENV methyltransferase without a bound SAM with the natural product Sinefungin and show that preformed crystals are capable of binding ligands in this pocket. PMID:25241250

  19. Structural phase transitions and topological defects in ion Coulomb crystals

    SciTech Connect

    Partner, Heather L.; Nigmatullin, Ramil; Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten; Plenio, Martin B.; Retzker, Alex; Zurek, Wojciech Hubert; del Campo, Adolfo; Mehlstaubler, Tanja E.

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  20. Crystal structure of β-d,l-fructose

    PubMed Central

    Ishii, Tomohiko; Senoo, Tatsuya; Yoshihara, Akihide; Fukada, Kazuhiro; Sakane, Genta

    2015-01-01

    The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of d- and l-fructose (1,3,4,5,6-penta­hydroxy­hexan-2-one, arabino-hexulose or levu­lose), and it was confirmed that d-fructose (or l-fructose) formed β-pyran­ose with a 2 C 5 (or 5 C 2) conformation. In the crystal, two O—H⋯O hydrogen bonds between the hy­droxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral mol­ecules into a column along the a axis. The columns are linked by other O—H⋯O hydrogen bonds between d- and l-fructose mol­ecules, forming a three-dimensional network. PMID:26594441