DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh
2007-04-01
Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less
Koentjoro, Maharani Pertiwi; Adachi, Naruhiko; Senda, Miki; Ogawa, Naoto; Senda, Toshiya
2018-03-01
LysR-type transcriptional regulators (LTTRs) are among the most abundant transcriptional regulators in bacteria. CbnR is an LTTR derived from Cupriavidus necator (formerly Alcaligenes eutrophus or Ralstonia eutropha) NH9 and is involved in transcriptional activation of the cbnABCD genes encoding chlorocatechol degradative enzymes. CbnR interacts with a cbnA promoter region of approximately 60 bp in length that contains the recognition-binding site (RBS) and activation-binding site (ABS). Upon inducer binding, CbnR seems to undergo conformational changes, leading to the activation of the transcription. Since the interaction of an LTTR with RBS is considered to be the first step of the transcriptional activation, the CbnR-RBS interaction is responsible for the selectivity of the promoter to be activated. To understand the sequence selectivity of CbnR, we determined the crystal structure of the DNA-binding domain of CbnR in complex with RBS of the cbnA promoter at 2.55 Å resolution. The crystal structure revealed details of the interactions between the DNA-binding domain and the promoter DNA. A comparison with the previously reported crystal structure of the DNA-binding domain of BenM in complex with its cognate RBS showed several differences in the DNA interactions, despite the structural similarity between CbnR and BenM. These differences explain the observed promoter sequence selectivity between CbnR and BenM. Particularly, the difference between Thr33 in CbnR and Ser33 in BenM appears to affect the conformations of neighboring residues, leading to the selective interactions with DNA. Atomic coordinates and structure factors for the DNA-binding domain of Cupriavidus necatorNH9 CbnR in complex with RBS are available in the Protein Data Bank under the accession code 5XXP. © 2018 Federation of European Biochemical Societies.
Golovenko, Dmitrij; Manakova, Elena; Zakrys, Linas; Zaremba, Mindaugas; Sasnauskas, Giedrius; Gražulis, Saulius; Siksnys, Virginijus
2014-01-01
The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5′-CCTGG-3′). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5′-ACTGGG-3′) complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C–DNA and EcoRII-N–DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C–DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs. PMID:24423868
Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.
2011-01-01
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927
Structural basis for DNA binding by replication initiator Mcm10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin
2009-06-30
Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less
MCM ring hexamerization is a prerequisite for DNA-binding
Froelich, Clifford A.; Nourse, Amanda; Enemark, Eric J.
2015-09-13
The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings to show that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in themore » hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.« less
Ma, Buyong; Pan, Yongping; Gunasekaran, K; Venkataraghavan, R Babu; Levine, Arnold J; Nussinov, Ruth
2005-03-15
p53, the tumor suppressor protein, functions as a dimer of dimers. However, how the tetramer binds to the DNA is still an open question. In the crystal structure, three copies of the p53 monomers (containing chains A, B, and C) were crystallized with the DNA-consensus element. Although the structure provides crucial data on the p53-DNA contacts, the active oligomeric state is unclear because the two dimeric (A-B and B-C) interfaces present in the crystal cannot both exist in the tetramer. Here, we address the question of which of these two dimeric interfaces may be more biologically relevant. We analyze the sequence and structural properties of the p53-p53 dimeric interfaces and carry out extensive molecular dynamics simulations of the crystal structures of the human and mouse p53 dimers. We find that the A-B interface residues are more conserved than those of the B-C. Molecular dynamics simulations show that the A-B interface can provide a stable DNA-binding motif in the dimeric state, unlike B-C. Our results indicate that the interface between chains A-B in the p53-DNA complex constitutes a better candidate for a stable biological interface, whereas the B-C interface is more likely to be due to crystal packing. Thus, they have significant implications toward our understanding of DNA binding by p53 as well as p53-mediated interactions with other proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, E. B., E-mail: evi.struble@nist.gov; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; Center for Advanced Research in Biotechnology/NIST, 9600 Gudelsky Drive, Rockville, MD 20850
2007-06-01
Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production ofmore » crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.
2010-05-25
Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeaemore » and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.« less
Feldkamp, Michael D; Frank, Andreas O; Kennedy, J Phillip; Patrone, James D; Vangamudi, Bhavatarini; Waterson, Alex G; Fesik, Stephen W; Chazin, Walter J
2013-09-17
Replication protein A (RPA) is the primary single-stranded DNA (ssDNA) binding protein in eukaryotes. The N-terminal domain of the RPA70 subunit (RPA70N) interacts via a basic cleft with a wide range of DNA processing proteins, including several that regulate DNA damage response and repair. Small molecule inhibitors that disrupt these protein-protein interactions are therefore of interest as chemical probes of these critical DNA processing pathways and as inhibitors to counter the upregulation of DNA damage response and repair associated with treatment of cancer patients with radiation or DNA-damaging agents. Determination of three-dimensional structures of protein-ligand complexes is an important step for elaboration of small molecule inhibitors. However, although crystal structures of free RPA70N and an RPA70N-peptide fusion construct have been reported, RPA70N-inhibitor complexes have been recalcitrant to crystallization. Analysis of the P61 lattice of RPA70N crystals led us to hypothesize that the ligand-binding surface was occluded. Surface reengineering to alter key crystal lattice contacts led to the design of RPA70N E7R, E100R, and E7R/E100R mutants. These mutants crystallized in a P212121 lattice that clearly had significant solvent channels open to the critical basic cleft. Analysis of X-ray crystal structures, target peptide binding affinities, and (15)N-(1)H heteronuclear single-quantum coherence nuclear magnetic resonance spectra showed that the mutations do not result in perturbations of the RPA70N ligand-binding surface. The success of the design was demonstrated by determining the structure of RPA70N E7R soaked with a ligand discovered in a previously reported molecular fragment screen. A fluorescence anisotropy competition binding assay revealed this compound can inhibit the interaction of RPA70N with the peptide binding motif from the DNA damage response protein ATRIP. The implications of the results are discussed in the context of ongoing efforts to design RPA70N inhibitors.
Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.
2007-01-01
We report the 1.1-Å resolution crystal structure of a bulky rhodium complex bound to two different DNA sites, mismatched and matched in the oligonucleotide 5′-(dCGGAAATTCCCG)2-3′. At the AC mismatch site, the structure reveals ligand insertion from the minor groove with ejection of both mismatched bases and elucidates how destabilized mispairs in DNA may be recognized. This unique binding mode contrasts with major groove intercalation, observed at a matched site, where doubling of the base pair rise accommodates stacking of the intercalator. Mass spectral analysis reveals different photocleavage products associated with the two binding modes in the crystal, with only products characteristic of mismatch binding in solution. This structure, illustrating two clearly distinct binding modes for a molecule with DNA, provides a rationale for the interrogation and detection of mismatches. PMID:17194756
Sugitani, Norie; Voehler, Markus W; Roh, Michelle S; Topolska-Woś, Agnieszka M; Chazin, Walter J
2017-10-13
Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Alfi, Nafiseh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam; Molčanov, Krešimir
2017-06-01
A heteroleptic europium coordination compound formulated as [Eu(phen)2(OH2)2(Cl)2](Cl)(H2O) (phen = 1,10-phenanthroline), has been synthesized and characterized by elemental analysis, FT-IR spectroscopy, and single-crystal X-ray diffractometer. Crystal structure analysis reveals the complex is crystallized in orthorhombic system with Pca21 space group. Electronic absorption and various emission methods for investigation of the binding system of europium(III) complex to Fish Salmon deoxyribonucleic acid (FS-DNA) and Bovamin Serum Albumin (BSA) have been explored. Furthermore, the binding constants, binding sites and the corresponding thermodynamic parameters of the interaction system based on the van't Hoff equation for FS-DNA and BSA were calculated. The thermodynamic parameters reflect the exothermic nature of emission process (ΔH°<0 and ΔS°<0). The experimental results seem to indicate that the [Eu(phen)2(OH2)2(Cl)2](Cl)(H2O) bound to FS-DNA by non-intercalative mode which the groove binding is preferable mode. Also, the complex exhibits a brilliant antimicrobial activity in vitro against standard bacterial strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, James A.; Baumberg, Simon; Stockley, Peter G.
2007-11-01
The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains containmore » a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.« less
Townsend, Philip D.; Jungwirth, Britta; Pojer, Florence; Bußmann, Michael; Money, Victoria A.; Cole, Stewart T.; Pühler, Alfred; Tauch, Andreas; Bott, Michael; Cann, Martin J.; Pohl, Ehmke
2014-01-01
The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition. PMID:25469635
Rubinson, Emily H.; Metz, Audrey H.; O'Quin, Jami; Eichman, Brandt F.
2013-01-01
Summary DNA glycosylases safeguard the genome by locating and excising chemically modified bases from DNA. AlkD is a recently discovered bacterial DNA glycosylase that removes positively charged methylpurines from DNA, and was predicted to adopt a protein fold distinct from other DNA repair proteins. The crystal structure of Bacillus cereus AlkD presented here shows that the protein is composed exclusively of helical HEAT-like repeats, which form a solenoid perfectly shaped to accommodate a DNA duplex on the concave surface. Structural analysis of the variant HEAT repeats in AlkD provides a rationale for how this protein scaffolding motif has been modified to bind DNA. We report 7mG excision and DNA binding activities of AlkD mutants, along with a comparison of alkylpurine DNA glycosylase structures. Together, these data provide important insight into the requirements for alkylation repair within DNA and suggest that AlkD utilizes a novel strategy to manipulate DNA in its search for alkylpurine bases. PMID:18585735
Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu
2009-02-01
The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.
Wang, Hao-Ching; Ko, Tzu-Ping; Wu, Mao-Lun; Ku, Shan-Chi; Wu, Hsing-Ju; Wang, Andrew H.-J.
2012-01-01
DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps. PMID:22373915
Omura, Hiroki; Oikawa, Daisuke; Nakane, Takanori; Kato, Megumi; Ishii, Ryohei; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu
2016-01-01
In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway. PMID:27721487
Squire, C J; Clark, G R; Denny, W A
1997-01-01
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding. PMID:9321660
A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase.
Edwards, Marcus J; Flatman, Ruth H; Mitchenall, Lesley A; Stevenson, Clare E M; Le, Tung B K; Clarke, Thomas A; McKay, Adam R; Fiedler, Hans-Peter; Buttner, Mark J; Lawson, David M; Maxwell, Anthony
2009-12-04
Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-06-03
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.
2012-09-07
Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.
Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder
2014-11-01
DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.
Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene
Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar
2016-01-01
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30–60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. PMID:27006398
Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong
2007-01-01
WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 Å resolution has revealed that this domain is composed of a globular structure with five β strands, forming an antiparallel β-sheet. A novel zinc-binding site is situated at one end of the β-sheet, between strands β4 and β5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at β2 and β3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins. PMID:17264121
Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk
2016-01-01
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.11297.001 PMID:26744780
Jauch, Ralf; Ng, Calista K L; Narasimhan, Kamesh; Kolatkar, Prasanna R
2012-04-01
It has recently been proposed that the sequence preferences of DNA-binding TFs (transcription factors) can be well described by models that include the positional interdependence of the nucleotides of the target sites. Such binding models allow for multiple motifs to be invoked, such as principal and secondary motifs differing at two or more nucleotide positions. However, the structural mechanisms underlying the accommodation of such variant motifs by TFs remain elusive. In the present study we examine the crystal structure of the HMG (high-mobility group) domain of Sox4 [Sry (sex-determining region on the Y chromosome)-related HMG box 4] bound to DNA. By comparing this structure with previously solved structures of Sox17 and Sox2, we observed subtle conformational differences at the DNA-binding interface. Furthermore, using quantitative electrophoretic mobility-shift assays we validated the positional interdependence of two nucleotides and the presence of a secondary Sox motif in the affinity landscape of Sox4. These results suggest that a concerted rearrangement of two interface amino acids enables Sox4 to accommodate primary and secondary motifs. The structural adaptations lead to altered dinucleotide preferences that mutually reinforce each other. These analyses underline the complexity of the DNA recognition by TFs and provide an experimental validation for the conceptual framework of positional interdependence and secondary binding motifs.
Activator Protein-1: redox switch controlling structure and DNA-binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhou; Machius, Mischa; Nestler, Eric J.
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.
The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo,M.; Ko, T.; Musayev, F.
The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
Structure of catabolite activator protein with cobalt(II) and sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Ramya R.; Lawson, Catherine L., E-mail: cathy.lawson@rutgers.edu
2014-04-15
The crystal structure of E. coli catabolite activator protein with bound cobalt(II) and sulfate ions at 1.97 Å resolution is reported. The crystal structure of cyclic AMP–catabolite activator protein (CAP) from Escherichia coli containing cobalt(II) chloride and ammonium sulfate is reported at 1.97 Å resolution. Each of the two CAP subunits in the asymmetric unit binds one cobalt(II) ion, in each case coordinated by N-terminal domain residues His19, His21 and Glu96 plus an additional acidic residue contributed via a crystal contact. The three identified N-terminal domain cobalt-binding residues are part of a region of CAP that is important for transcriptionmore » activation at class II CAP-dependent promoters. Sulfate anions mediate additional crystal lattice contacts and occupy sites corresponding to DNA backbone phosphate positions in CAP–DNA complex structures.« less
Crystal Structure of the Minimalist Max-E47 Protein Chimera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.
Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47more » dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.« less
Structural anatomy of telomere OB proteins.
Horvath, Martin P
2011-10-01
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.
Structural anatomy of telomere OB proteins
Horvath, Martin P.
2015-01-01
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA. PMID:21950380
Structure and decoy-mediated inhibition of the SOX18/Prox1-DNA interaction
Klaus, Miriam; Prokoph, Nina; Girbig, Mathias; Wang, Xuecong; Huang, Yong-Heng; Srivastava, Yogesh; Hou, Linlin; Narasimhan, Kamesh; Kolatkar, Prasanna R.; Francois, Mathias; Jauch, Ralf
2016-01-01
The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis. PMID:26939885
2016-01-01
The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7–10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2–12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography. PMID:27387136
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...
2016-05-03
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
Crystal structure of MboIIA methyltransferase.
Osipiuk, Jerzy; Walsh, Martin A; Joachimiak, Andrzej
2003-09-15
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 A resolution the crystal structure of a beta-class DNA MTase MboIIA (M.MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M.MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M.MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M.RsrI. However, the cofactor-binding pocket in M.MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo
Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less
Activator Protein-1: redox switch controlling structure and DNA-binding.
Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby
2017-11-02
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun
2017-09-01
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
DNA Recognition by a σ 54 Transcriptional Activator from Aquifex aeolicus
Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; ...
2014-08-23
Transcription initiation by bacterial σ 54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ 54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsiblemore » for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ 54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.« less
Jaiswal, Rahul; Singh, Samarendra K; Bastia, Deepak; Escalante, Carlos R
2015-04-01
The Reb1 protein from Schizosaccharomyces pombe is a member of a family of proteins that control programmed replication termination and/or transcription termination in eukaryotic cells. These events occur at naturally occurring replication fork barriers (RFBs), where Reb1 binds to termination (Ter) DNA sites and coordinates the polar arrest of replication forks and transcription approaching in opposite directions. The Reb1 DNA-binding and replication-termination domain was expressed in Escherichia coli, purified and crystallized in complex with a 26-mer DNA Ter site. Batch crystallization under oil was required to produce crystals of good quality for data collection. Crystals grew in space group P2₁, with unit-cell parameters a = 68.9, b = 162.9, c = 71.1 Å, β = 94.7°. The crystals diffracted to a resolution of 3.0 Å. The crystals were mosaic and required two or three cycles of annealing. This study is the first to yield structural information about this important family of proteins and will provide insights into the mechanism of replication and transcription termination.
Structure of p73 DNA-binding domain tetramer modulates p73 transactivation
Ethayathulla, Abdul S.; Tse, Pui-Wah; Monti, Paola; Nguyen, Sonha; Inga, Alberto; Fronza, Gilberto; Viadiu, Hector
2012-01-01
The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation. PMID:22474346
NASA Astrophysics Data System (ADS)
Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan
2016-03-01
New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Menon; S Wang
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, themore » switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkadesh, S.; Mandal, P.K.; Gautham, N., E-mail: n_gautham@hotmail.com
Highlights: {yields} This is the first crystal structure of a four-way junction with sticky ends. {yields} Four junction structures bind to each other and form a rhombic cavity. {yields} Each rhombus binds to others to form 'infinite' 2D tiles. {yields} This is an example of bottom-up fabrication of a DNA nano-lattice. -- Abstract: We report here the crystal structure of the partially self-complementary decameric sequence d(CGGCGGCCGC), which self assembles to form a four-way junction with sticky ends. Each junction binds to four others through Watson-Crick base pairing at the sticky ends to form a rhombic structure. The rhombuses bind tomore » each other and form two dimensional tiles. The tiles stack to form the crystal. The crystal diffracted in the space group P1 to a resolution of 2.5 A. The junction has the anti-parallel stacked-X conformation like other junction structures, though the formation of the rhombic net noticeably alters the details of the junction geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai
2009-12-01
Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predictedmore » to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.« less
Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix
Horton, J. R.; Wang, H.; Mabuchi, M. Y.; ...
2014-09-27
MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNAmore » molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.« less
Structure-affinity relationships for the binding of actinomycin D to DNA
NASA Astrophysics Data System (ADS)
Gallego, José; Ortiz, Angel R.; de Pascual-Teresa, Beatriz; Gago, Federico
1997-03-01
Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin-d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure-affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.
Crystal structure of MboIIA methyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipiuk, J.; Walsh, M. A.; Joachimiak, A.
2003-09-15
DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules inmore » the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.« less
Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands.
Salter, Jason D; Smith, Harold C
2018-05-23
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.
2010-11-05
Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened ormore » eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.« less
A human transcription factor in search mode.
Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos
2016-01-08
Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Langelier; J Planck; S Roy
2011-12-31
Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less
Two high-mobility group box domains act together to underwind and kink DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.
The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A ismore » thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.« less
Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko
2015-01-01
In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575
Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases
Manthei, Kelly A.; Hill, Morgan C.; Burke, Jordan E.; ...
2015-03-23
RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. In this paper, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ~90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATPmore » hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. Finally, this bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.« less
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2009-01-01
The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poor, Catherine B.; Chen, Peng R.; Duguid, Erica
2010-01-20
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds withmore » surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.« less
Knowledge-Based Elastic Potentials for Docking Drugs or Proteins with Nucleic Acids
Ge, Wei; Schneider, Bohdan; Olson, Wilma K.
2005-01-01
Elastic ellipsoidal functions defined by the observed hydration patterns around the DNA bases provide a new basis for measuring the recognition of ligands in the grooves of double-helical structures. Here a set of knowledge-based potentials suitable for quantitative description of such behavior is extracted from the observed positions of water molecules and amino acid atoms that form hydrogen bonds with the nitrogenous bases in high resolution crystal structures. Energies based on the displacement of hydrogen-bonding sites on drugs in DNA-crystal complexes relative to the preferred locations of water binding around the heterocyclic bases are low, pointing to the reliability of the potentials and the apparent displacement of water molecules by drug atoms in these structures. The validity of the energy functions has been further examined in a series of sequence substitution studies based on the structures of DNA bound to polyamides that have been designed to recognize the minor-groove edges of Watson-Crick basepairs. The higher energies of binding to incorrect sequences superimposed (without conformational adjustment or displacement of polyamide ligands) on observed high resolution structures confirm the hypothesis that the drug subunits associate with specific DNA bases. The knowledge-based functions also account satisfactorily for the measured free energies of DNA-polyamide association in solution and the observed sites of polyamide binding on nucleosomal DNA. The computations are generally consistent with mechanisms by which minor-groove binding ligands are thought to recognize DNA basepairs. The calculations suggest that the asymmetric distributions of hydrogen-bond-forming atoms on the minor-groove edge of the basepairs may underlie ligand discrimination of G·C from C·G pairs, in addition to the commonly believed role of steric hindrance. The analysis of polyamide-bound nucleosomal structures reveals other discrepancies in the expected chemical design, including unexpected contacts to DNA and modified basepair targets of some ligands. The ellipsoidal potentials thus appear promising as a mathematical tool for the study of drug- and protein-DNA interactions and for gaining new insights into DNA-binding mechanisms. PMID:15501936
Guo, Qiong; Li, Lianzhi; Dong, Jianfang; Liu, Hongyan; Xu, Tao; Li, Jinghong
2013-04-01
A divanadium(V) complex, [V2O3(o-van-val)2] (o-van-val=Schiff base derived from o-vanillin and L-valine), has been synthesized and structurally characterized. The crystal structure shows that both of the vanadium centers in the complex have a distorted octahedral coordination environment composed of tridentate Schiff base ligand. A V2O3 core in molecular structure adopts intermediate between cis and trans configuration with the O1V1⋯V1AO1A torsion angle 115.22 (28)° and the V1⋯V1A distance 3.455Å. The binding properties of the complex with calf thymus DNA (CT-DNA) have been investigated by UV-vis absorption, fluorescence, CD spectra and viscosity measurement. The results indicate that the complex binds to CT-DNA in non-classical intercalative mode. Meanwhile, the interaction of the complex with bovine serum albumin (BSA) has been studied by UV-vis absorption, fluorescence and CD spectra. Results indicated that the complex can markedly quench the intrinsic fluorescence of BSA via a static quenching process, and cause its conformational change. The calculated apparent binding constant Kb was 1.05×10(6)M(-1) and the binding site number n was 1.18. Copyright © 2013 Elsevier B.V. All rights reserved.
Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, James A.; Baumberg, Simon; Stockley, Peter G.
2007-11-01
The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hitesh; Yu, Shaoning; Kong, Jilie
2009-10-21
The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 {angstrom} resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide bindingmore » domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N{sup 6} of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.« less
The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yi; Fiscus, Valena; Meng, Wuyi
2012-02-08
The Agrobacterium tumefaciens BlcR is a member of the emerging isocitrate lyase transcription regulators that negatively regulates metabolism of {gamma}-butyrolactone, and its repressing function is relieved by succinate semialdehyde (SSA). Our crystal structure showed that BlcR folded into the DNA- and SSA-binding domains and dimerized via the DNA-binding domains. Mutational analysis identified residues, including Phe{sup 147}, that are important for SSA association; BlcR{sup F147A} existed as tetramer. Two BlcR dimers bound to target DNA and in a cooperative manner, and the distance between the two BlcR-binding sequences in DNA was critical for BlcR-DNA association. Tetrameric BlcR{sup F147A} retained DNA bindingmore » activity, and importantly, this activity was not affected by the distance separating the BlcR-binding sequences in DNA. SSA did not dissociate tetrameric BlcR{sup F147A} or BlcR{sup F147A}-DNA. As well as in the SSA-binding site, Phe{sup 147} is located in a structurally flexible loop that may be involved in BlcR oligomerization. We propose that SSA regulates BlcR DNA-binding function via oligomerization.« less
Structural and Histone Binding Ability Characterizations of Human PWWP Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
2013-09-25
The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less
Zaki, Mehvash; Afzal, Mohd; Ahmad, Musheer; Tabassum, Sartaj
2016-08-01
New copper(II)-based complex (1) was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. The in vitro binding studies of complex 1 with CT DNA and HSA have been investigated by employing biophysical techniques to examine the binding propensity of 1 towards DNA and HSA. The results showed that 1 avidly binds to CT DNA via electrostatic mode along with the hydrogen bonding interaction of NH2 and CN groups of Schiff base ligand with the base pairs of DNA helix, leads to partial unwinding and destabilization of the DNA double helix. Moreover, the CD spectral studies revealed that complex 1 binds through groove binding interaction that stabilizes the right-handed B-form of DNA. Complex 1 showed an impressive photoinduced nuclease activity generating single-strand breaks in comparison with the DNA cleavage activity in presence of visible light. The mechanistic investigation revealed the efficiency of 1 to cleave DNA strands by involving the generation of reactive oxygen species. Furthermore, the time dependent DNA cleavage activity showed that there was gradual increase in the amount of NC DNA on increasing the photoexposure time. However, the interaction of 1 and HSA showed that the change of intrinsic fluorescence intensity of HSA was induced by the microenvironment of Trp residue. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.
2014-03-01
Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.
Analysis of the crystal structure of an active MCM hexamer.
Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J
2014-09-29
In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair
Lee, Byung Il; Kim, Kyoung Hoon; Park, Soo Jeong; Eom, Soo Hyun; Song, Hyun Kyu; Suh, Se Won
2004-01-01
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes . The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix–hairpin–helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30−35 Å diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding. PMID:15116069
Buczek, Pawel; Horvath, Martin P.
2009-01-01
In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188
Structure and mechanism of the phage T4 recombination mediator protein UvsY
Gajewski, Stefan; Waddell, Michael Brett; Vaithiyalingam, Sivaraja; ...
2016-03-07
The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via twomore » distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament.« less
Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl
2014-05-02
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family
Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M
2018-01-01
Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642
Clarke, David J; Northey, Christopher G; Mack, Lynsey A; McNae, Iain W; Alexeev, Dmitriy; Sawyer, Lindsay; Campopiano, Dominic J
2004-11-01
Single-stranded DNA-binding (SSB) proteins stabilize single-stranded DNA, which is exposed by separation of the duplex during DNA replication, recombination and repair. The SSB protein from the hyperthermophile Aquifex aeolicus has been overexpressed in Escherichia coli, purified and characterized and crystals of the full-length protein (147 amino acids; M(r) 17 131.20) have been grown by vapour diffusion from ammonium sulfate pH 7.5 in both the absence and presence of ssDNA [dT(pT)(68)]. All crystals diffract to around 2.9 A resolution and those without bound DNA (native) belong to space group P2(1), with two tetramers in the asymmetric unit and unit-cell parameters a = 80.97, b = 73.40, c = 109.76 A, beta = 95.11 degrees . Crystals containing DNA have unit-cell parameters a = 108.65, b = 108.51, c = 113.24 A and could belong to three closely related space groups (I222, I2(1)2(1)2(1) or I4(1)) with one tetramer in the asymmetric unit. Electrospray mass spectrometry of the crystals confirmed that the protein was intact. Molecular replacement with a truncated E. coli SSB structure has revealed the position of the molecules in the unit cell and refinement of both native and DNA-bound forms is under way.
Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena
2010-01-01
The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding
NASA Astrophysics Data System (ADS)
Volbeda, Anne; Dodd, Erin L.; Darnault, Claudine; Crack, Jason C.; Renoux, Oriane; Hutchings, Matthew I.; Le Brun, Nick E.; Fontecilla-Camps, Juan C.
2017-04-01
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe-4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe-4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove.
The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew
Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenicmore » DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.« less
Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T
2014-08-14
2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.
Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre
2004-09-17
Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.
Euro, Liliya; Haapanen, Outi; Róg, Tomasz; Vattulainen, Ilpo; Suomalainen, Anu; Sharma, Vivek
2017-03-07
DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform in the "intrinsic processivity" subdomain of the enzyme. Our data indicate that noncatalytic mutations may disrupt replisomal interactions, thereby causing Pol γ-associated neurodegenerative disorders.
Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria
Kim, Youngchang; Joachimiak, Grazyna; Ye, Zi; Binkowski, T. Andrew; Zhang, Rongguang; Gornicki, Piotr; Callahan, Sean M.; Hess, Wolfgang R.; Haselkorn, Robert; Joachimiak, Andrzej
2011-01-01
HetR is an essential regulator of heterocyst development in cyanobacteria. HetR binds to a DNA palindrome upstream of the hetP gene. We report the crystal structure of HetR from Fischerella at 3.0 Å. The protein is a dimer comprised of a central DNA-binding unit containing the N-terminal regions of the two subunits organized with two helix-turn-helix motifs; two globular flaps extending in opposite directions; and a hood over the central core formed from the C-terminal subdomains. The flaps and hood have no structural precedent in the protein database, therefore representing new folds. The structural assignments are supported by site-directed mutagenesis and DNA-binding studies. We suggest that HetR serves as a scaffold for assembly of transcription components critical for heterocyst development. PMID:21628585
Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component
Hernandez, Carina; Birktoft, Jens J.; Ohayon, Yoel P.; ...
2017-10-05
There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. Furthermore, the work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%,more » and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding.« less
Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component.
Hernandez, Carina; Birktoft, Jens J; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Abdallah, Hatem; Sha, Ruojie; Stojanoff, Vivian; Mao, Chengde; Seeman, Nadrian C
2017-11-16
There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. The work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%, and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Carina; Birktoft, Jens J.; Ohayon, Yoel P.
There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. Furthermore, the work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%,more » and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding.« less
Small terminase couples viral DNA-binding to genome-packaging ATPase activity
Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino
2012-01-01
SUMMARY Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology. PMID:22771211
Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsodikov, Oleg V.; Biswas, Tapan
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). Thesemore » structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.« less
Crystallization of DNA-coated colloids
Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.
2015-01-01
DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020
Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulepati, Sabin; Heroux, Annie; Bailey, Scott
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of proteinmore » subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.« less
Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K
2014-11-01
New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom
2010-07-27
Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.
Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases
Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom
2003-01-01
DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...
2016-03-09
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Molecular dynamics studies on the DNA-binding process of ERG.
Beuerle, Matthias G; Dufton, Neil P; Randi, Anna M; Gould, Ian R
2016-11-15
The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dalei; Su, Xiaoyu; Potluri, Nalini
Here, the neuronal PAS domain proteins NPAS1 and NPAS3 are members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family, and their genetic deficiencies are linked to a variety of human psychiatric disorders including schizophrenia, autism spectrum disorders and bipolar disease. NPAS1 and NPAS3 must each heterodimerize with the aryl hydrocarbon receptor nuclear translocator (ARNT), to form functional transcription complexes capable of DNA binding and gene regulation. Here we examined the crystal structures of multi-domain NPAS1-ARNT and NPAS3-ARNT-DNA complexes, discovering each to contain four putative ligand-binding pockets. Through expanded architectural comparisons between these complexes and HIF-1α-ARNT, HIF-2α-ARNT and CLOCK-BMAL1, we show the widermore » mammalian bHLH-PAS family is capable of multi-ligand-binding and presents as an ideal class of transcription factors for direct targeting by small-molecule drugs.« less
Wu, Dalei; Su, Xiaoyu; Potluri, Nalini; ...
2016-10-26
Here, the neuronal PAS domain proteins NPAS1 and NPAS3 are members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family, and their genetic deficiencies are linked to a variety of human psychiatric disorders including schizophrenia, autism spectrum disorders and bipolar disease. NPAS1 and NPAS3 must each heterodimerize with the aryl hydrocarbon receptor nuclear translocator (ARNT), to form functional transcription complexes capable of DNA binding and gene regulation. Here we examined the crystal structures of multi-domain NPAS1-ARNT and NPAS3-ARNT-DNA complexes, discovering each to contain four putative ligand-binding pockets. Through expanded architectural comparisons between these complexes and HIF-1α-ARNT, HIF-2α-ARNT and CLOCK-BMAL1, we show the widermore » mammalian bHLH-PAS family is capable of multi-ligand-binding and presents as an ideal class of transcription factors for direct targeting by small-molecule drugs.« less
Structure of the human DNA-repair protein RAD52 containing surface mutations.
Saotome, Mika; Saito, Kengo; Onodera, Keiichi; Kurumizaka, Hitoshi; Kagawa, Wataru
2016-08-01
The Rad52 protein is a eukaryotic single-strand DNA-annealing protein that is involved in the homologous recombinational repair of DNA double-strand breaks. The isolated N-terminal half of the human RAD52 protein (RAD52(1-212)) forms an undecameric ring structure with a surface that is mostly positively charged. In the present study, it was found that RAD52(1-212) containing alanine mutations of the charged surface residues (Lys102, Lys133 and Glu202) is highly amenable to crystallization. The structure of the mutant RAD52(1-212) was solved at 2.4 Å resolution. The structure revealed an association between the symmetry-related RAD52(1-212) rings, in which a partially unfolded, C-terminal region of RAD52 extended into the DNA-binding groove of the neighbouring ring in the crystal. The alanine mutations probably reduced the surface entropy of the RAD52(1-212) ring and stabilized the ring-ring association observed in the crystal.
Fluoroquinolone-Gyrase-DNA Complexes
Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl
2014-01-01
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635
Tabassum, Sartaj; Zaki, Mehvash; Ahmad, Musheer; Afzal, Mohd; Srivastav, Saurabh; Srikrishna, Saripella; Arjmand, Farukh
2014-08-18
New Cu(II) complex 1 of indole-3-propionic acid and 1,10-phenanthroline was synthesized and characterized by analytical, spectroscopic and single crystal X-ray diffraction. In vitro DNA binding studies of 1 was performed by employing UV-vis and fluorescence spectroscopic techniques. The binding affinity towards human serum albumin (HSA) was also investigated to understand the carrier role in body system, as the time dependent HPLC experiment of 1 revealed that bonded drug with protein releases slowly in presence of DNA. Complex 1 exhibited good anti-tumor activity (GI50 values <10 μg/ml), and to elucidate the mechanism of tumor inhibition, topoisomerase I enzymatic activity was carried out and further validated by cell imaging studies which clearly showed its nuclear localization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Woo; Xu, Guozhou; Persky, Nicole S.
2011-08-29
Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less
Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
W Joo; G Xu; n Persky
2011-12-31
Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less
Suwa, Yoshiaki; Gu, Jianyou; Baranovskiy, Andrey G.; Babayeva, Nigar D.; Pavlov, Youri I.; Tahirov, Tahir H.
2015-01-01
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å2. Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes. PMID:25847248
Identification of DNA primase inhibitors via a combined fragment-based and virtual screening
NASA Astrophysics Data System (ADS)
Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak
2016-11-01
The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.
NASA Astrophysics Data System (ADS)
Mondal, Apurba Sau; Jana, Mahendra Sekhar; Manna, Chandan Kumar; Naskar, Rahul; Mondal, Tapan Kumar
2018-07-01
A new zinc(II) complex, [Zn(L)](ClO4) with hexadentate N4S2 donor azo-thioether ligand (HL) was synthesized and characterized by several spectroscopic techniques. The structure was confirmed by single crystal X-ray analysis. The interaction of the complex with CT DNA was investigated by UV-vis method and binding constant is found to be 6.6 × 104 M-1. Competitive binding titration with ethidium bromide (EB) by fluorescence titration method reveals that the complex efficiently displaces EB from EB-DNA system and the Stern-Volmer dynamic quenching constant, Ksv is found to be 2.6 × 104 M-1. DFT and TDDFT calculations were carried out to interpret the electronic structure and electronic spectra of the complex.
Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, G.; Kirouac, K.; Shin, Y.J.
2009-09-16
DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with amore » 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.« less
Structure of the E2 DNA-binding domain from human papillomavirus serotype 31 at 2.4 A.
Bussiere, D E; Kong, X; Egan, D A; Walter, K; Holzman, T F; Lindh, F; Robins, T; Giranda, V L
1998-11-01
The papillomaviruses are a family of small double-stranded DNA viruses which exclusively infect epithelial cells and stimulate the proliferation of those cells. A key protein within the papillomavirus life-cycle is known as the E2 (Early 2) protein and is responsible for regulating viral transcription from all viral promoters as well as for replication of the papillomavirus genome in tandem with another protein known as E1. The E2 protein itself consists of three functional domains: an N-terminal trans-activation domain, a proline-rich linker, and a C-terminal DNA-binding domain. The first crystal structure of the human papillomavirus, serotype 31 (HPV-31), E2 DNA-binding domain has been determined at 2.4 A resolution. The HPV DNA-binding domain monomer consists of two beta-alpha-beta repeats of approximately equal length and is arranged as to have an anti-parallel beta-sheet flanked by the two alpha-helices. The monomers form the functional in vivo dimer by association of the beta-sheets of each monomer so as to form an eight-stranded anti-parallel beta-barrel at the center of the dimer, with the alpha-helices lining the outside of the barrel. The overall structure of HVP-31 E2 DNA-binding domain is similar to both the bovine papillomavirus E2-binding domain and the Epstein-Barr nuclear antigen-1 DNA-binding domain.
Gopalan, A; Deka, G; Prabhavathi, M; Savithri, H S; Murthy, M R N; Raja, A
2018-01-01
Latent tuberculosis (TB) is the main hurdle in reaching the goal of "Stop TB 2050". Tuberculin skin and Interferon-gamma release assay tests used currently for the diagnosis of TB infection cannot distinguish between active disease and latent tuberculosis infection (LTBI) and hence new and sensitive protein markers need to be identified for the diagnosis. A protein Rv3716c from Mycobacterium tuberculosis (MtbRv3716c) has been identified as a potential surrogate marker for the diagnosis of LTBI. Here, we present characterization of MtbRv3716c (∼13 kDa) using both biophysical and X-Ray crystallographic methods. EMSA study showed that MtbRv3716c binds to double stranded DNA. X-ray diffraction data collected on a crystal of MtbRv3716c at 1.9 Å resolution was used for structure determination using the molecular replacement method. Significant electron density was not observed for the N-terminal 21 and C-terminal 41 residues in the final electron density map. The C- terminal disordered region is proline rich and displays characteristics of intrinsically disordered proteins. Although the crystal asymmetric unit contained a protomer, a tight dimer could be generated by the application of the crystal two-fold symmetry parallel to the b axis. Packing of dimers in the crystal is mediated by a cadmium ion (Cd 2+ ) occurring at the interface of two dimers. Molecular packing analysis reveals large cavities that are probably occupied by the disordered segments of the N- and C-termini. Structural comparison with other homologous hypothetical DNA binding proteins (PDB codes: 1PUG, 1YBX) highlights structural features that might be significant for DNA binding. Copyright © 2017 Elsevier Inc. All rights reserved.
Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors
Wan, Hua; Hu, Jian-ping; Li, Kang-shun; Tian, Xu-hong; Chang, Shan
2013-01-01
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5′ end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism. PMID:24130757
Functionalizing Designer DNA Crystals
NASA Astrophysics Data System (ADS)
Chandrasekaran, Arun Richard
Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine nucleotides is usually pH dependent (pH < 6) four different TFOs were examined: TFO-1 was unmodified while TFOs 2-4 contained additional stabilizing analogues capable of extending triplex formation to pH 7. In addition, each of the TFOs contained a Cy5 dye at the 5'-end of the oligonucleotide to aid in characterization of TFO binding - crystals were obtained with all four variations of TFOs. Formation of DNA triplex in the motif was characterized by an electrophoretic mobility shift assay (EMSA), UV melting studies and FRET. Crystals containing TFO-1 (unmodified) and TFO-2 (with 2'-amino ethoxy modification) were isolated and flash-frozen in liquid nitrogen for X-ray data collection at beam line NSLS-X25. X-ray data was also collected for crystals of the 3-turn triangle without any TFO bound to it. Difference maps were done between the crystals with TFO against the one without to identify any additional electron density corresponding to the third strand in the triplex binding region. The data from the crystal containing TFO-2 was used to further analyze if the additional density can match the expected position of the TFO on the triangle motif. Since the additional density did not correspond to the entire binding region, 2Fo-Fc, 3Fo-2Fc and 4Fo-3Fc maps were done to check for missing pieces of the electron density. From the resulting 2Fo-Fc map, the asymmetric unit from the 3-turn triangle (31-bp duplex model based on previous structure 3UBI) was inserted into the density as a reference. However, the electron density corresponding to the TFO was still not continuous throughout the 13-nt triplex binding region and allowed only a partial fit of the TFO. The third nucleotide in positions 1, 3, 4, 6, 7 were fit into the density in the major groove of the underlying duplex with proper triplex configuration. The third chapter describes the triplex approach to position a functional group (the UV cross-linking agent psoralen) within a pre-formed DNA motif. Triplex formation and psoralen cross-linking of the motif were analyzed by native and denaturing gel electrophoresis respectively. Motifs containing the Psoralen-TFO were also successfully crystallized and the crosslinking shown by analyzing the denatured crystals on a gel. The end goal would be to form a crosslinked designed DNA crystal that can diffract to a higher resolution. The fourth chapter describes the use of serial femtosecond crystallography for structure determination of designed DNA lattices. X-ray diffraction data from self-assembled 3D DNA microcrystals were collected from a stream of crystals in solution. Serial femtosecond crystallography eliminates the need for large crystals and the need for freezing, thus overcoming any associated crystal defects and radiation damage. Self-assembled nano/microcrystals were successfully made and were diffracted at room temperature. The best diffraction was from the 1-nt SE motif to an extent of 3.5 A in resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin-Yi; Fu, Zheng-Qing; Argonne National Laboratory, Argonne, Illinois
2012-09-01
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using data collected from a moderately diffracting crystal and 1.9 Å synchrotron X-rays. The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent amore » novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF{sub anom}/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R{sub free} = 26.8%) to 2.3 Å resolution. High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R{sub free} = 21.4%) to 1.85 Å resolution. AF1382 has a winged-helix–turn–helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1–82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.« less
NASA Astrophysics Data System (ADS)
Saravanabhavan, Munusamy; Sathya, Krishnan; Puranik, Vedavati G.; Sekar, Marimuthu
2014-01-01
Carbazole picrate (CP), a new organic compound has been synthesized, characterized by various analytical and spectroscopic technique such as FT-IR, UV-Vis, 1H and 13C NMR spectroscopy. An orthorhombic geometry was proposed based on single crystal XRD study. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analyses and found that it was stable up to 170 °C. Further, the newly synthesized title compound was tested for its in vitro antibacterial and antifungal activity against various bacterial and fungal species. Also, the compound was tested for its binding activity with Calf thymus (CT) DNA and the results show a considerable interaction between CP and CT-DNA.
Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood
2006-05-01
The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less
Lin, Chang Sheng-Huei; Chao, Shi-Yu; Hammel, Michal; Nix, Jay C; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying
2014-01-01
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
Cdc6-Induced Conformational Changes in ORC Bound to Origin DNA Revealed by Cryo-Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun J.; Li H.; Kawakami, H.
2012-03-07
The eukaryotic origin recognition complex (ORC) interacts with and remodels origins of DNA replication prior to initiation in S phase. Here, we report a single-particle cryo-EM-derived structure of the supramolecular assembly comprising Saccharomyces cerevisiae ORC, the replication initiation factor Cdc6, and double-stranded ARS1 origin DNA in the presence of ATP{gamma}S. The six subunits of ORC are arranged as Orc1:Orc4:Orc5:Orc2:Orc3, with Orc6 binding to Orc2. Cdc6 binding changes the conformation of ORC, in particular reorienting the Orc1 N-terminal BAH domain. Segmentation of the 3D map of ORC-Cdc6 on DNA and docking with the crystal structure of the homologous archaeal Orc1/Cdc6 proteinmore » suggest an origin DNA binding model in which the DNA tracks along the interior surface of the crescent-like ORC. Thus, ORC bends and wraps the DNA. This model is consistent with the observation that binding of a single Cdc6 extends the ORC footprint on origin DNA from both ends.« less
Zandarashvili, Levani; White, Mark A; Esadze, Alexandre; Iwahara, Junji
2015-07-08
The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
The role of monovalent cations in the ATPase reaction of DNA gyrase.
Hearnshaw, Stephen James; Chung, Terence Tsz-Hong; Stevenson, Clare Elizabeth Mary; Maxwell, Anthony; Lawson, David Mark
2015-04-01
Four new crystal structures of the ATPase domain of the GyrB subunit of Escherichia coli DNA gyrase have been determined. One of these, solved in the presence of K(+), is the highest resolution structure reported so far for this domain and, in conjunction with the three other structures, reveals new insights into the function of this domain. Evidence is provided for the existence of two monovalent cation-binding sites: site 1, which preferentially binds a K(+) ion that interacts directly with the α-phosphate of ATP, and site 2, which preferentially binds an Na(+) ion and the functional significance of which is not clear. The crystallographic data are corroborated by ATPase data, and the structures are compared with those of homologues to investigate the broader conservation of these sites.
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
Mulepati, Sabin; Héroux, Annie; Bailey, Scott
2015-01-01
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kDa complex is called Cascade. Here we report the 3.03Å crystal structure of Cascade bound to a single-stranded DNA target. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This non-canonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding. PMID:25123481
The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament.
Fu, Yang; Slaymaker, Ian M; Wang, Junfeng; Wang, Ganggang; Chen, Xiaojiang S
2014-04-03
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hishiki, Asami; Hara, Kodai; Ikegaya, Yuzu; Yokoyama, Hideshi; Shimizu, Toshiyuki; Sato, Mamoru; Hashimoto, Hiroshi
2015-05-22
HLTF (helicase-like transcription factor) is a yeast RAD5 homolog found in mammals. HLTF has E3 ubiquitin ligase and DNA helicase activities, and plays a pivotal role in the template-switching pathway of DNA damage tolerance. HLTF has an N-terminal domain that has been designated the HIRAN (HIP116 and RAD5 N-terminal) domain. The HIRAN domain has been hypothesized to play a role in DNA binding; however, the structural basis of, and functional evidence for, the HIRAN domain in DNA binding has remained unclear. Here we show for the first time the crystal structure of the HIRAN domain of human HLTF in complex with DNA. The HIRAN domain is composed of six β-strands and two α-helices, forming an OB-fold structure frequently found in ssDNA-binding proteins, including in replication factor A (RPA). Interestingly, this study reveals that the HIRAN domain interacts with not only with a single-stranded DNA but also with a duplex DNA. Furthermore, the structure unexpectedly clarifies that the HIRAN domain specifically recognizes the 3'-end of DNA. These results suggest that the HIRAN domain functions as a sensor to the 3'-end of the primer strand at the stalled replication fork and that the domain facilitates fork regression. HLTF is recruited to a damaged site through the HIRAN domain at the stalled replication fork. Furthermore, our results have implications for the mechanism of template switching. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Leonard, Paul G.; Bezar, Ian F.; Sidote, David J.; Stock, Ann M.
2012-01-01
The AgrA transcription factor regulates the quorum-sensing response in Staphylococcus aureus, controlling the production of hemolysins and other virulence factors. AgrA binds to DNA via its C-terminal LytTR domain, a domain not found in humans but common in many pathogenic bacteria, making it a potential target for antimicrobial development. We have determined the crystal structure of the apo AgrA LytTR domain and screened a library of 500 fragment compounds to find inhibitors of AgrA DNA-binding activity. Using NMR, the binding site for five compounds has been mapped to a common locus at the C-terminal end of the LytTR domain, a site known to be important for DNA-binding activity. Three of these compounds inhibit AgrA DNA binding. These results provide the first evidence that LytTR domains can be targeted by small organic compounds. PMID:23181972
Moore, M H; Gulbis, J M; Dodson, E J; Demple, B; Moody, P C
1994-04-01
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Harrison; G Meinke; H Kwun
2011-12-31
The double-stranded DNA polyomavirus Merkel cell polyomavirus (MCV) causes Merkel cell carcinoma, an aggressive but rare human skin cancer that most often affects immunosuppressed and elderly persons. As in other polyomaviruses, the large T-antigen of MCV recognizes the viral origin of replication by binding repeating G(A/G)GGC pentamers. The spacing, number, orientation, and necessity of repeats for viral replication differ, however, from other family members such as SV40 and murine polyomavirus. We report here the 2.9 {angstrom} crystal structure of the MCV large T-antigen origin binding domain (OBD) in complex with a DNA fragment from the MCV origin of replication. Consistentmore » with replication data showing that three of the G(A/G)GGC-like binding sites near the center of the origin are required for replication, the crystal structure contains three copies of the OBD. This stoichiometry was verified using isothermal titration calorimetry. The affinity for G(A/G)GGC-containing double-stranded DNA was found to be {approx} 740 nM, approximately 8-fold weaker than the equivalent domain in SV40 for the analogous region of the SV40 origin. The difference in affinity is partially attributable to DNA-binding residue Lys331 (Arg154 in SV40). In contrast to SV40, a small protein-protein interface is observed between MCV OBDs when bound to the central region of the origin. This protein-protein interface is reminiscent of that seen in bovine papilloma virus E1 protein. Mutational analysis indicates, however, that this interface contributes little to DNA binding energy.« less
NASA Astrophysics Data System (ADS)
Mondal, Apurba Sau; Pramanik, Ajoy Kumar; Patra, Lakshman; Manna, Chandan Kumar; Mondal, Tapan Kumar
2017-10-01
A new zinc(II) complex, [Zn(L)(H2O)](ClO4) (1) with azo-thioether containing NSNO donor ligand, 3-(2-(2-((pyridin-2-ylmethyl)thio)phenyl)hydrazono)pentane-2,4-dione (HL) is synthesized and characterized by several spectroscopic techniques. The distorted square based pyramidal (DSBP) geometry is confirmed by single crystal X-ray structure. The ability of the complex to bind with CT DNA is investigated by UV-vis method and the binding constant is found to be 4.16 × 104 M-1. Competitive binding study with ethidium bromide (EB) by fluorescence method suggests that the zinc(II) complex efficiently displaces EB from EB-DNA. The Stern-Volmer dynamic quenching constant, Ksv is found to be 1.2 × 104 M-1. Theoretical calculations by DFT and TDDFT/CPCM methods are used to interpret the electronic structure and UV-vis spectrum of the complex.
Khan, Ishaat M; Ahmad, Afaq; Ullah, M F
2011-04-04
A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George
2011-01-01
The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.
Yoga, Yano M. K.; Traore, Daouda A. K.; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R.; Barker, Andrew; Leedman, Peter J.; Wilce, Jacqueline A.; Wilce, Matthew C. J.
2012-01-01
Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5′-CCCTCCCT-3′ DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5′-ACCCCA-3′ DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad. PMID:22344691
Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J
2012-06-01
Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.
Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder
2017-05-01
Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.
Crystal structure of human PCNA in complex with the PIP box of DVC1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049; Xu, Min
2016-05-27
In higher eukaryotes, DVC1 (SPRTN, Spartan or C1orf124) is implicated in the translesion synthesis (TLS) pathway. DVC1 localizes to sites of DNA damage, binds to the proliferating cell nuclear antigen (PCNA) via its conserved PCNA-interacting motif (PIP box), and associates with ubiquitin selective segregase p97 and other factors, thus regulating translesion synthesis polymerases. Here, we report the crystal structure of human PCNA in complex with a peptide ({sup 321}SNSHQNVLSNYFPRVS{sup 336}) derived from human DVC1 that contains a unique YF type PIP box. Structural analysis reveals the detailed PIP box-PCNA interaction. Interestingly, substitution of Y331 with Phe severely reduces its PCNAmore » binding affinity. These findings offer new insights into the determinants of PIP box for PCNA binding. -- Highlights: •Crystal structure of PCNA in complex with DVC1{sup PIP} peptide was determined. •The Y331{sup P7}F mutation severely impairs DVC1's PCNA binding affinity. •The intramolecular hydrogen bond N326−Y331 in the 3{sub 10} helix affects DVC1's PCNA binding affinity.« less
NASA Astrophysics Data System (ADS)
Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan
2015-02-01
Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system
AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide
2015-11-19
Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less
He, Xiaoyuan; Wang, Liqin; Wang, Shuishu
2016-04-15
The transcriptional regulator PhoP is an essential virulence factor in Mycobacterium tuberculosis, and it presents a target for the development of new anti-tuberculosis drugs and attenuated tuberculosis vaccine strains. PhoP binds to DNA as a highly cooperative dimer by recognizing direct repeats of 7-bp motifs with a 4-bp spacer. To elucidate the PhoP-DNA binding mechanism, we determined the crystal structure of the PhoP-DNA complex. The structure revealed a tandem PhoP dimer that bound to the direct repeat. The surprising tandem arrangement of the receiver domains allowed the four domains of the PhoP dimer to form a compact structure, accounting for the strict requirement of a 4-bp spacer and the highly cooperative binding of the dimer. The PhoP-DNA interactions exclusively involved the effector domain. The sequence-recognition helix made contact with the bases of the 7-bp motif in the major groove, and the wing interacted with the adjacent minor groove. The structure provides a starting point for the elucidation of the mechanism by which PhoP regulates the virulence of M. tuberculosis and guides the design of screening platforms for PhoP inhibitors.
Makhov, Alexander M; Sen, Anindito; Yu, Xiong; Simon, Martha N; Griffith, Jack D; Egelman, Edward H
2009-02-20
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is approximately 250 A, with approximately 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing approximately 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, A.M.; Simon, M.; Sen, A.
2009-02-20
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments ismore » {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.« less
Changela, Anita; DiGate, Russell J.; Mondragón, Alfonso
2007-01-01
Summary E. coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5′ phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an 8-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding. PMID:17331537
Pulimamidi, Rabindra Reddy; Nomula, Raju; Pallepogu, Raghavaiah; Shaik, Hussain
2014-05-22
In view of the importance of picolinic acid (PA) in preventing cell growth and arresting cell cycle, new PA based metallonucleases were designed with a view to study their DNA binding and cleavage abilities. Three new Cu(II) complexes [Cu(II)(DPPA)].4H2O (1),[Cu(II)(DPPA)(bpy)].5H2O (2) and [Cu(II)(DPPA)(phen)].5H2O (3), were synthesized using a picolinic acid based bifunctional ligand (DPPA) and heterocyclic bases (where DPPA: Pyridine-2-carboxylic acid {2-phenyl-1-[(pyridin-2-ylmethyl)-carbonyl]-ethyl}-amide; bpy: 2, 2'-bipyridine and phen: 1, 10-phenanthroline). DPPA was obtained by coupling 2-picolinic acid and 2-picolyl amine with l-phenylalanine through amide bond. Complexes were structurally characterized by a single crystal X-ray crystallography. The molecular structure of 1 shows Cu(II) center essentially in a square planar coordination geometry, while complex 2 shows an approximate five coordinated square-pyramidal geometry. Eventhough we could not isolate single crystal for complex (3), its structure was established based on other techniques. The complex (3) also exhibits five coordinate square pyramidal geometry. The complexes show good binding affinity towards CT-DNA. The binding constants (Kb) decrease in the order 1.35 ± 0.01 × 10(5) (3) > 1.23 ± 0.01 × 10(5) (2) > 8.3 ± 0.01 × 10(4) (1) M(-1). They also exhibit efficient nuclease activity towards supercoiled pUC19 DNA both in the absence and presence of external agent (H2O2). The kinetic studies reveal that the hydrolytic cleavage reactions follow the pseudo first-order rate constant and the hydrolysis rates are in the range of (5.8-8.0) × 10(7) fold rate enhancement compared to non-catalyzed double stranded DNA (3.6 × 10(-8) h(-1)). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Zeglis, Brian M.; Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.
2009-01-01
Two crystal structures are determined for Δ-Rh(bpy)2(chrysi)3+ (chrysi = 5,6-chrysenequinone diimine) bound to the oligonucleotide duplex 5′-CGGAAATTACCG-3′ containing two adenosine-adenosine mismatches (italics) through metalloinsertion. Diffraction quality crystals with two different space groups (P3221 and P43212) were obtained under very similar crystallization conditions. In both structures, the bulky rhodium complex inserts into the two mismatched sites from the minor groove side, ejecting the mismatched bases into the major groove. The conformational changes are localized to the mismatched site; the metal complex replaces the mismatched base pair without an increase in base pair rise. The expansive metal complex is accommodated in the duplex by a slight opening in the phosphodiester backbone; all sugars retain a C2′-endo puckering, and flanking base pairs neither stretch nor shear. The structures differ, however, in that in one of the structures, an additional metal complex is bound by intercalation from the major groove at the central 5′-AT-3′ step. We conclude that this additional metal complex is intercalated into this central step because of crystal packing forces. The structures described here of Δ-Rh(bpy)2(chrysi)3+ bound to thermodynamically destabilized AA mismatches share critical features with binding by metalloinsertion in two other oligonucleotides containing different single base mismatches. These results underscore the generality of the metalloinsertion as a new mode of non-covalent binding by small molecules with a DNA duplex. PMID:19374348
NASA Astrophysics Data System (ADS)
Aminzadeh, Mohammad; Eslami, Abbas; Kia, Reza; Aleeshah, Roghayeh
2017-10-01
Diquaternarization of dipyrido-[2,3-a:2‧,3‧-c]-phenazine,(dppz) and its analogous dipyrido-[2,3-a:2‧,3‧-c]-dimethylphenazine,(dppx) using 1,3-dibromopropane afford new water-soluble derivatives of phenazine, propylene-bipyridyldiylium-phenazine (1) and propylene-bipyridyldiylium-dimethylphenazine (2). The compounds have been characterized by means of FT-IR, NMR, elemental analysis and conductometric measurements and their structure were determined by X-ray crystallography. The experimental studies on the compounds have been accompanied computationally by Density Functional Theory (DFT) calculations. The DNA binding properties of both compounds to calf thymus DNA (ctDNA) were investigated by UV-Vis absorption and emission methods. The expanded UV-Vis spectral data matrix was analyzed by multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profile and pure spectra of all reaction species which existed in the interaction procedure. Multivariate curve resolution may help us to give a better understanding of the 1(Cl)2-ctDNA and 2(Cl)2-ctDNA interaction mechanism. The results suggest that both compounds bind tightly to DNA through intercalation mechanism and the DNA binding affinity of 2 is slightly lower than that of 1 due to steric hindrance of the methyl group. Also, thermal denaturation studies reveal that these compounds show strong affinity for binding with calf thymus DNA. The thermodynamic parameters of the DNA binding process were obtained from the temperature dependence of the binding constants and the results showed that binding of both compounds to DNA is an enthalpically driven process that is in agreement with proposed DNA intercalation capability of these compounds.
2011-01-01
To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop. PMID:22148158
Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena
2010-01-01
The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human α-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5′–5′ inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin–TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein–DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin–mTBA complex has been attempted. The crystals diffracted to 2.15 Å resolution and belonged to space group I222. PMID:20693681
Thermodynamic and structural insights into CSL-DNA complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, David R.; Kovall, Rhett A.
The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less
Mechanism of foreign DNA selection in a bacterial adaptive immune system
Sashital, Dipali G.; Wiedenheft, Blake; Doudna, Jennifer A.
2012-01-01
Summary In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary “non-self” DNA sequences for destruction, while avoiding binding to “self” sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for non-self target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved 3-base pair motif that is required for non-self target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade. PMID:22521690
Saravanabhavan, Munusamy; Sathya, Krishnan; Puranik, Vedavati G; Sekar, Marimuthu
2014-01-24
Carbazole picrate (CP), a new organic compound has been synthesized, characterized by various analytical and spectroscopic technique such as FT-IR, UV-Vis, (1)H and (13)C NMR spectroscopy. An orthorhombic geometry was proposed based on single crystal XRD study. The thermal stability of the crystal was studied by using thermo-gravimetric and differential thermal analyses and found that it was stable up to 170°C. Further, the newly synthesized title compound was tested for its in vitro antibacterial and antifungal activity against various bacterial and fungal species. Also, the compound was tested for its binding activity with Calf thymus (CT) DNA and the results show a considerable interaction between CP and CT-DNA. Copyright © 2013 Elsevier B.V. All rights reserved.
Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes
Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.
2005-01-01
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465
El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges
2015-01-01
Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali
2017-09-01
This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.
The role of monovalent cations in the ATPase reaction of DNA gyrase
Hearnshaw, Stephen James; Chung, Terence Tsz-Hong; Stevenson, Clare Elizabeth Mary; Maxwell, Anthony; Lawson, David Mark
2015-01-01
Four new crystal structures of the ATPase domain of the GyrB subunit of Escherichia coli DNA gyrase have been determined. One of these, solved in the presence of K+, is the highest resolution structure reported so far for this domain and, in conjunction with the three other structures, reveals new insights into the function of this domain. Evidence is provided for the existence of two monovalent cation-binding sites: site 1, which preferentially binds a K+ ion that interacts directly with the α-phosphate of ATP, and site 2, which preferentially binds an Na+ ion and the functional significance of which is not clear. The crystallographic data are corroborated by ATPase data, and the structures are compared with those of homologues to investigate the broader conservation of these sites. PMID:25849408
Presynaptic Filament Dynamics in Homologous Recombination and DNA Repair
Liu, Jie; Ehmsen, Kirk T.; Heyer, Wolf-Dietrich; Morrical, Scott W.
2014-01-01
Homologous Recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA. Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we review the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments: some intrinsic such as recombinase ATP binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examine dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examine the biochemical properties of recombination proteins from four model systems (T4 phage, E. coli, S. cerevisiae, and H. sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We propose that the presynaptic filament has evolved to rely on multiple external factors for increased multi-level regulation of HR processes in genomes with greater structural and sequence complexity. PMID:21599536
Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates
Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje
2014-01-01
The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841
Crystal Structure of the GRAS Domain of SCARECROW-LIKE7 in Oryza sativa
Li, Shengping; Zhao, Yanhe; Zhao, Zheng; Wu, Xiuling; Sun, Lifang; Liu, Qingsong; Wu, Yunkun
2016-01-01
GRAS proteins belong to a plant-specific protein family with many members and play essential roles in plant growth and development, functioning primarily in transcriptional regulation. Proteins in the family are minimally defined as containing the conserved GRAS domain. Here, we determined the structure of the GRAS domain of Os-SCL7 from rice (Oryza sativa) to 1.82 Å. The structure includes cap and core subdomains and elucidates the features of the conserved GRAS LRI, VHIID, LRII, PFYRE, and SAW motifs. The structure is a dimer, with a clear groove to accommodate double-stranded DNA. Docking a DNA segment into the groove to generate an Os-SCL7/DNA complex provides insight into the DNA binding mechanism of GRAS proteins. Furthermore, the in vitro DNA binding property of Os-SCL7 and model-defined recognition residues are assessed by electrophoretic mobility shift analysis and mutagenesis assays. These studies reveal the structure and preliminary DNA interaction mechanisms of GRAS proteins and open the door to in-depth investigation and understanding of the individual pathways in which they play important roles. PMID:27081181
Xu, Rui-Gang; Jenkins, Huw T.; Chechik, Maria; Blagova, Elena V.; Lopatina, Anna; Klimuk, Evgeny; Minakhin, Leonid; Severinov, Konstantin
2017-01-01
Abstract Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism. PMID:28100693
Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr
2012-02-01
The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less
Discovery, SAR, and X-ray Binding Mode Study of BCATm Inhibitors from a Novel DNA-Encoded Library
2015-01-01
As a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (R)-3-((1-(5-bromothiophene-2-carbonyl)pyrrolidin-3-yl)oxy)-N-methyl-2′-(methylsulfonamido)-[1,1′-biphenyl]-4-carboxamide (15e) from a novel compound library synthesized via on-DNA Suzuki–Miyaura cross-coupling showed BCATm inhibitory activity with IC50 = 2.0 μM. A protein crystal structure of 15e revealed that it binds to BCATm within the catalytic site adjacent to the PLP cofactor. The identification of this novel inhibitor series plus the establishment of a BCATm protein structure provided a good starting point for future structure-based discovery of BCATm inhibitors. PMID:26288694
Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d
Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Ting-Wan; Chou, Chia-Cheng; Chen, Chun-Jung; Wang, Andrew H.-J.
2005-01-01
Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA. PMID:15653643
Makhov, Alexander M.; Sen, Anindito; Yu, Xiong; Simon, Martha N.; Griffith, Jack D.; Egelman, Edward H.
2009-01-01
Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single strand binding protein and recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic (EM) studies showed that ICP8 will form long left-handed helical filaments. Here EM image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using Scanning Transmission Electron Microscopy. The pitch of the filaments is ~ 250 Å, with ~ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ~ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA, based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary single stranded DNA into double-stranded DNA, where each strand runs in opposite directions. PMID:19138689
Leonard, D A; Rajaram, N; Kerppola, T K
1997-05-13
Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.
Kotaka, Masayo; Johnson, Christopher; Lamb, Heather K; Hawkins, Alastair R; Ren, Jingshan; Stammers, David K
2008-08-29
Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.
Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei
2010-07-01
A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.
Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A
2017-04-28
Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.
Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations
NASA Technical Reports Server (NTRS)
Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.
1985-01-01
In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is boundmore » along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.« less
Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Yuhong; Steitz, Thomas A.
2015-05-01
During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less
Recognition of AT-Rich DNA Binding Sites by the MogR Repressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Aimee; Higgins, Darren E.; Panne, Daniel
2009-07-22
The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity.more » The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.« less
Saminadin, P; Dautant, A; Mondon, M; Langlois D'estaintot, B; Courseille, C; Précigoux, G
2000-01-01
Doxorubicin is among the most widely used anthracycline in cancer chemotherapy. In an attempt to avoid the cardiotoxicity and drug resistance of doxorubicin therapy, several analogues were synthesized. The cyanomorpholinyl derivative is the most cytotoxic. They differ greatly from their parent compound in their biological and pharmacological properties, inducing cross-links in drug DNA complexes. The present study concerns N-cyanomethyl-N-(2-methoxyethyl)-daunomycin (CMDa), a synthetic analogue of cyanomorpholino-daunomycin. Compared to doxorubicin, CMDa displays a cytotoxic activity on L1210 leukemia cells at higher concentration but is effective on doxorubicin resistant cells. The results of fluorescence quenching experiments as well as the melting temperature (DeltaTm = 7.5 degrees C) studies are consistent with a drug molecule which intercalates between the DNA base pairs and stabilizes the DNA double helix. The crystal structure of CMDa complexed to the hexanucleotide d(CGATCG) has been determined at 1.5 A resolution. The complex crystallizes in the space group P41212 and is similar to other anthracycline-hexanucleotide complexes. In the crystal state, the observed densities indicate the formation of N-hydroxymethyl-N-(2-methoxyethyl)-daunomycin (HMDa) with the release of the cyano moiety without DNA alkylation. The formation of this degradation compound is discussed in relation with other drug modifications when binding to DNA. Comparison with two other drug-DNA crystal structures suggests a correlation between a slight change in DNA conformation and the nature of the amino sugar substituents at the N3' position located in the minor groove.
Dym, Orly; Albeck, Shira; Unger, Tamar; Jacobovitch, Jossef; Branzburg, Anna; Michael, Yigal; Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Elbaum, Michael
2008-08-12
Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners.
Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops
Gupta, Shikha; Gellert, Martin; Yang, Wei
2011-01-01
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch Syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ complexed with DNA containing insertion-deletion loops (IDL) of 2, 3, 4, or 6 unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream basepair can become unpaired; thereby a single unpaired base can be converted to an IDL of 2 nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair. PMID:22179786
Terminating DNA Tile Assembly with Nanostructured Caps.
Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca
2017-10-24
Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.
NASA Astrophysics Data System (ADS)
Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj
2015-09-01
A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.
Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng
2018-05-10
Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.
Otani, Hiroshi; Stogios, Peter J.; Xu, Xiaohui; ...
2015-09-22
CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl–CoA (K d = 11 ± 1 μM). The presence of p-coumaroyl–CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl–CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR– p-coumaroyl–CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer andmore » their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl–CoA (K d = 89 ± 6 μM). Altogether, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.« less
Russo Krauss, Irene; Ramaswamy, Sneha; Neidle, Stephen; Haider, Shozeb; Parkinson, Gary N
2016-02-03
We report here on an X-ray crystallographic and molecular modeling investigation into the complex 3' interface formed between putative parallel stranded G-quadruplexes and a duplex DNA sequence constructed from the human telomeric repeat sequence TTAGGG. Our crystallographic approach provides a detailed snapshot of a telomeric 3' quadruplex-duplex junction: a junction that appears to have the potential to form a unique molecular target for small molecule binding and interference with telomere-related functions. This unique target is particularly relevant as current high-affinity compounds that bind putative G-quadruplex forming sequences only rarely have a high degree of selectivity for a particular quadruplex. Here DNA junctions were assembled using different putative quadruplex-forming scaffolds linked at the 3' end to a telomeric duplex sequence and annealed to a complementary strand. We successfully generated a series of G-quadruplex-duplex containing crystals, both alone and in the presence of ligands. The structures demonstrate the formation of a parallel folded G-quadruplex and a B-form duplex DNA stacked coaxially. Most strikingly, structural data reveals the consistent formation of a TAT triad platform between the two motifs. This triad allows for a continuous stack of bases to link the quadruplex motif with the duplex region. For these crystal structures formed in the absence of ligands, the TAT triad interface occludes ligand binding at the 3' quadruplex-duplex interface, in agreement with in silico docking predictions. However, with the rearrangement of a single nucleotide, a stable pocket can be produced, thus providing an opportunity for the binding of selective molecules at the interface.
Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun
2016-01-01
Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250
Williams, Sunanda Margrett; Chandran, Anu Vijayakumari; Prakash, Sunita; Vijayan, Mamannamana; Chatterji, Dipankar
2017-09-05
Proteins of the ferritin family are ubiquitous in living organisms. With their spherical cage-like structures they are the iron storehouses in cells. Subfamilies of ferritins include 24-meric ferritins and bacterioferritins (maxiferritins), and 12-meric Dps (miniferritins). Dps safeguards DNA by direct binding, affording physical protection and safeguards from free radical-mediated damage by sequestering iron in its core. The maxiferritins can oxidize and store iron but cannot bind DNA. Here we show that a mutation at a critical interface in Dps alters its assembly from the canonical 12-mer to a ferritin-like 24-mer under crystallization. This structural switch was attributed to the conformational alteration of a highly conserved helical loop and rearrangement of the C-terminus. Our results demonstrate a novel concept of mutational switch between related protein subfamilies and corroborate the popular model for evolution by which subtle substitutions in an amino acid sequence lead to diversification among proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Venkateswarlu, Kadtala; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Daravath, Sreenu; Rangan, Krishnan; Shivaraj
2018-05-01
Three novel binary metal complexes; 1 [Cu(L)2], 2 [Ni(L)2] and 3 [Co(L)3] where, L (2-(((furan-2-yl) methylimino)methyl)-6-ethoxyphenol, C14H15NO3), were synthesized and characterized by various spectral techniques. Based on spectral studies square planar geometry is assigned for Cu(II) and Ni(II) complexes, whereas Co(III) owned octahedral geometry. Ligand, [Cu(L)2] and [Ni(L)2] are crystallized and found to be monoclinic crystal systems. CT-DNA absorption binding studies revealed that the complexes show good binding propensity (Kb = 5.02 × 103 M-1, 2.77 × 103 M-1, 1.63 × 104 M-1 for 1, 2 and 3 respectively). The role of these complexes in the oxidative and photolytic cleavage of supercoiled pBR322 DNA was studied and found that the complexes cleave the pBR322 DNA effectively. The catalytic ability of 1, 2 and 3 follows the order: 3 > 1 >2. Antioxidant studies of the new complexes revealed that they exhibit significant antioxidant activity against DPPH radical. The Schiff base and its metal complexes have been screened for antibacterial studies by Minimum Inhibitory Concentration method. It is observed that all metal complexes showed more activity than free ligand.
Felicori, Liza; Jameson, Katie H.; Roblin, Pierre; Fogg, Mark J.; Garcia-Garcia, Transito; Ventroux, Magali; Cherrier, Mickaël V.; Bazin, Alexandre; Noirot, Philippe; Wilkinson, Anthony J.; Molina, Franck; Terradot, Laurent; Noirot-Gros, Marie-Françoise
2016-01-01
YabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function. The crystal structure of the N-terminal domain (NTD) of YabA solved at 2.7 Å resolution reveals an extended α-helix that contributes to an intermolecular four-helix bundle. Homology modeling and biochemical analysis indicates that the C-terminal domain (CTD) of YabA is a small Zn-binding domain. Multi-angle light scattering and SAXS demonstrate that YabA is a tetramer in which the CTDs are independent and connected to the N-terminal four-helix bundle via flexible linkers. While YabA can simultaneously interact with both DnaA and DnaN, we found that an isolated CTD can bind to either DnaA or DnaN, individually. Site-directed mutagenesis and yeast-two hybrid assays identified DnaA and DnaN binding sites on the YabA CTD that partially overlap and point to a mutually exclusive mode of interaction. Our study defines YabA as a novel structural hub and explains how the protein tetramer uses independent CTDs to bind multiple partners to orchestrate replication initiation in the bacterial cell. PMID:26615189
Conformational elasticity can facilitate TALE-DNA recognition
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong
2015-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191
Conformational elasticity can facilitate TALE-DNA recognition.
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong
2014-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanchanadevi, S.; Parveen, S.; Mahalingam, V.
2018-04-01
Three new complexes containing salicylaldazine (HL) ligand were synthesised by reacting suitable precursor complex [MCl2(PPh3)2] with the ligand (where M = Cu(II) or Ni(II) or Co(II)). The new complexes were characterised by various spectral studies such as IR, UV-Vis,1H NMR,EPR,fluorescence and elemental analyses. The binding modes of the complexes with HS-DNA have been studied by UV-Vis absorption titration. Binding of the complexes with bovine serum albumin (BSA) protein has been investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods. Redox behaviour of the complexes has been investigated by cyclic voltammetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherney, L.T.; Cherney, M.M.; Garen, C.R.
2009-05-12
The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the L-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 {angstrom} resolution with bound arginine and at 2.15 {angstrom} resolution in the unliganded form. These structures show that six molecules ofmore » MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11{sup o} upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.« less
Wang, Yue; Okabe, Nobuo; Odoko, Mamiko
2005-10-01
The crystal structures of a series of three palladium(II) ternary complexes of 5-halogeno-2-aminobenzoic acid (5-X-AB, where X=Cl, Br and I) with 1,10-phenanthroline [Pd(5-Cl-AB)(phen)] (1), [Pd(5-Br-AB)(phen)] (2) and [Pd(5-I-AB)(phen)] (3) have been determined, and their coordination geometries and the crystal architecture characterized. All of the complexes are an isostructure in which each Pd(II) atom has basically similar square planar coordination geometry. The substitute halogen group at 5-position of AB plays an important role in producing the coordination bonds of the carboxylate and amino groups in which the carboxylate O atom and the amino N atom act as the negative monodentate ligand atoms. The coordination bond distances of O-Pd increase in the order 1<2<3, while those of N-Pd decrease in the same order. The binding of the complexes to the calf thymus DNA has also been studied by the fluorescence method. Each of the complexes shows high binding propensity to DNA which can be reflected as the relative order 1<2<3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi
2014-10-15
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less
Crystal structure of the Msx-1 homeodomain/DNA complex.
Hovde, S; Abate-Shen, C; Geiger, J H
2001-10-09
The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newberry, K.J.; Huffman, J.L.; Miller, M.C.
2009-05-22
BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets,more » that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.« less
Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.
2014-01-01
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090
2016-01-01
Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446
Structure and Biochemical Activities of Escherichia coli MgsA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Asher N.; George, Nicholas P.; Marceau, Aimee H.
2012-02-27
Bacterial 'maintenance of genome stability protein A' (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA{sup +} proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA{sup +} proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA{sup +} proteins) and a tetramerizationmore » domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA{sup +} ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA{sup +} proteins.« less
Structure and Biochemical Activities of Escherichia coli MgsA*♦
Page, Asher N.; George, Nicholas P.; Marceau, Aimee H.; Cox, Michael M.; Keck, James L.
2011-01-01
Bacterial “maintenance of genome stability protein A” (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA+ proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA+ proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA+ proteins) and a tetramerization domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA+ ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA+ proteins. PMID:21297161
Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep
2018-02-12
The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.
An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.
Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J
2007-07-13
In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.
Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina
2013-01-01
In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.
Lo, Yu-Sheng; Tseng, Wen-Hsuan; Chuang, Chien-Ying; Hou, Ming-Hon
2013-01-01
The potent anticancer drug actinomycin D (ActD) functions by intercalating into DNA at GpC sites, thereby interrupting essential biological processes including replication and transcription. Certain neurological diseases are correlated with the expansion of (CGG)n trinucleotide sequences, which contain many contiguous GpC sites separated by a single G:G mispair. To characterize the binding of ActD to CGG triplet repeat sequences, the structural basis for the strong binding of ActD to neighbouring GpC sites flanking a G:G mismatch has been determined based on the crystal structure of ActD bound to ATGCGGCAT, which contains a CGG triplet sequence. The binding of ActD molecules to GCGGC causes many unexpected conformational changes including nucleotide flipping out, a sharp bend and a left-handed twist in the DNA helix via a two site-binding model. Heat denaturation, circular dichroism and surface plasmon resonance analyses showed that adjacent GpC sequences flanking a G:G mismatch are preferred ActD-binding sites. In addition, ActD was shown to bind the hairpin conformation of (CGG)16 in a pairwise combination and with greater stability than that of other DNA intercalators. Our results provide evidence of a possible biological consequence of ActD binding to CGG triplet repeat sequences. PMID:23408860
A conserved MCM single-stranded DNA binding element is essential for replication initiation.
Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J
2014-04-01
The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.
A conserved MCM single-stranded DNA binding element is essential for replication initiation
Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J
2014-01-01
The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001 PMID:24692448
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Harrington, Lucas B; Doxzen, Kevin W; Ma, Enbo; Liu, Jun-Jie; Knott, Gavin J; Edraki, Alireza; Garcia, Bianca; Amrani, Nadia; Chen, Janice S; Cofsky, Joshua C; Kranzusch, Philip J; Sontheimer, Erik J; Davidson, Alan R; Maxwell, Karen L; Doudna, Jennifer A
2017-09-07
CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9. Copyright © 2017 Elsevier Inc. All rights reserved.
Kouno, Takahide; Silvas, Tania V.; Hilbert, Brendan J.; Shandilya, Shivender M. D.; Bohn, Markus F.; Kelch, Brian A.; Royer, William E.; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A.
2017-01-01
Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A–ssDNA complex defines the 5′–3′ directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics. PMID:28452355
Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.
Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A
2018-05-14
The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.
Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin
2015-02-27
Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1
Sasnauskas, Giedrius; Kauneckaitė, Kotryna; Siksnys, Virginijus
2018-01-01
Abstract Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5′-CATGCA-3′/5′-TGCATG-3′. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5′-TGCATG-3′ sequence. The VAL1-B3–DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences. PMID:29660015
How aromatic compounds block DNA binding of HcaR catabolite regulator
Kim, Youngchang; Joachimiak, Grazyna; Bigelow, Lance; ...
2016-04-25
Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Åmore » resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. Furthermore, the current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.« less
Tu, Chao; Tan, Yu-Hong; Shaw, Gary; Zhou, Zheng; Bai, Yawen; Luo, Ray; Ji, Xinhua
2008-01-01
Tumor suppressor p53 is a sequence-specific DNA-binding protein and its central DNA-binding domain (DBD) harbors six hotspots (Arg175, Gly245, Arg248, Arg249, Arg273 and Arg282) for human cancers. Here, the crystal structure of a low-frequency hotspot mutant, p53DBD(R282Q), is reported at 1.54 Å resolution together with the results of molecular-dynamics simulations on the basis of the structure. In addition to eliminating a salt bridge, the R282Q mutation has a significant impact on the properties of two DNA-binding loops (L1 and L3). The L1 loop is flexible in the wild type, but it is not flexible in the mutant. The L3 loop of the wild type is not flexible, whereas it assumes two conformations in the mutant. Molecular-dynamics simulations indicated that both conformations of the L3 loop are accessible under biological conditions. It is predicted that the elimination of the salt bridge and the inversion of the flexibility of L1 and L3 are directly or indirectly responsible for deactivating the tumor suppressor p53. PMID:18453682
Deakyne, Julianna S; Malecka, Kimberly A; Messick, Troy E; Lieberman, Paul M
2017-10-01
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dongwen; Chung, Suhman; Miller, Maria
2012-06-19
The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less
Chan, Leo L.; Pineda, Maria; Heeres, James T.; Hergenrother, Paul J.; Cunningham, Brian T.
2009-01-01
Protein–DNA interactions are essential for fundamental cellular processes such as transcription, DNA damage repair, and apoptosis. As such, small molecule disruptors of these interactions could be powerful tools for investigation of these biological processes, and such compounds would have great potential as therapeutics. Unfortunately, there are few methods available for the rapid identification of compounds that disrupt protein–DNA interactions. Here we show that photonic crystal (PC) technology can be utilized to detect protein–DNA interactions, and can be used in a high-throughput screening mode to identify compounds that prevent protein–DNA binding. The PC technology is used to detect binding between protein–DNA interactions that are DNA-sequence-dependent (the bacterial toxin–antitoxin system MazEF) and those that are DNA-sequence-independent (the human apoptosis inducing factor (AIF)). The PC technology was further utilized in a screen for inhibitors of the AIF–DNA interaction, and through this screen aurin tricarboxylic acid was identified as the first in vitro inhibitor of AIF. The generality and simplicity of the photonic crystal method should enable this technology to find broad utility for identification of compounds that inhibit protein–DNA binding. PMID:18582039
Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA.
Horton, John R; Borgaro, Janine G; Griggs, Rose M; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong
2014-07-01
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.
2014-07-03
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves DNA containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises anmore » N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ~ 70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ~ 22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.« less
Bøggild, Andreas; Sofos, Nicholas; Andersen, Kasper R.; Feddersen, Ane; Easter, Ashley D.; Passmore, Lori A.; Brodersen, Ditlev E.
2012-01-01
Summary The bacterial relBE locus encodes a toxin-antitoxin complex in which the toxin, RelE, is capable of cleaving mRNA in the ribosomal A site cotranslationally. The antitoxin, RelB, both binds and inhibits RelE, and regulates transcription through operator binding and conditional cooperativity controlled by RelE. Here, we present the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 Å resolution, comprising both the RelB-inhibited RelE and the RelB dimerization domain that binds DNA. RelE and RelB associate into a V-shaped heterotetrameric complex with the ribbon-helix-helix (RHH) dimerization domain at the apex. Our structure supports a model in which relO is optimally bound by two adjacent RelB2E heterotrimeric units, and is not compatible with concomitant binding of two RelB2E2 heterotetramers. The results thus provide a firm basis for understanding the model of conditional cooperativity at the molecular level. PMID:22981948
Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.
Rivera-Gómez, Nancy; Martínez-Núñez, Mario Alberto; Pastor, Nina; Rodriguez-Vazquez, Katya; Perez-Rueda, Ernesto
2017-08-01
Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.
Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shikha; Gellert, Martin; Yang, Wei
2012-04-17
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flippedmore » out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.« less
Programmable DNA scaffolds for spatially-ordered protein assembly
NASA Astrophysics Data System (ADS)
Chandrasekaran, Arun Richard
2016-02-01
Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed. Dedicated to my advisor Ned Seeman on the occasion of his 70th birthday.
NASA Astrophysics Data System (ADS)
Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.
2018-04-01
Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.
Dolot, Rafal; Lam, Curtis H; Sierant, Malgorzata; Zhao, Qiang; Liu, Feng-Wu; Nawrot, Barbara; Egli, Martin; Yang, Xianbin
2018-05-18
Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5'-GGT TGG TGT GGT TGG-3' that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent's aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2'-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Lountos, George T; Tropea, Joseph E; Zhang, Di; Jobson, Andrew G; Pommier, Yves; Shoemaker, Robert H; Waugh, David S
2009-01-01
Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity. PMID:19177354
Mulepati, Sabin; Bailey, Scott
2011-09-09
RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.
Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain.
Rong, S. B.; Väliaho, J.; Vihinen, M.
2000-01-01
BACKGROUND: Bloom syndrome (BS) is characterized by mutations within the BLM gene. The Bloom syndrome protein (BLM) has similarity to the RecQ subfamily of DNA helicases, which contain seven conserved helicase domains and share significant sequence and structural similarity with the Rep and PcrA DNA helicases. We modeled the three-dimensional structure of the BLM helicase domain to analyze the structural basis of BS-causing mutations. MATERIALS AND METHODS: The sequence alignment was performed for RecQ DNA helicases and Rep and PcrA helicases. The crystal structure of PcrA helicase (PDB entry 3PJR) was used as the template for modeling the BLM helicase domain. The model was used to infer the function of BLM and to analyze the effect of the mutations. RESULTS: The structural model with good stereochemistry of the BLM helicase domain contains two subdomains, 1A and 2A. The electrostatic potential of the model is highly negative over most of the surface, except for the cleft between subdomains 1A and 2A which is similar to the template protein. The ATP-binding site is located inside the model between subdomains 1A and 2A; whereas, the DNA-binding region is situated at the surface cleft, with positive potential between 1A and 2A. CONCLUSIONS: The three-dimensional structure of the BLM helicase domain was modeled and applied to interpret BS-causing mutations. The mutation I841T is likely to weaken DNA binding, while the mutations C891R, C901Y, and Q672R presumably disturb the ATP binding. In addition, other critical positions are discussed. PMID:10965492
A novel transcriptional regulator of L-arabinose utilization in human gut bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Changsoo; Tesar, Christine; Li, Xiaoqing
2015-10-04
Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraRmore » forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less
A novel transcriptional regulator of L-arabinose utilization in human gut bacteria
Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; ...
2015-10-04
We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less
Detection of anthrax lef with DNA-based photonic crystal sensors
NASA Astrophysics Data System (ADS)
Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong
2011-12-01
Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.
TIA-1 RRM23 binding and recognition of target oligonucleotides
Waris, Saboora; García-Mauriño, Sofía M.; Sivakumaran, Andrew; Beckham, Simone A.; Loughlin, Fionna E.; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C.J.
2017-01-01
Abstract TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. PMID:28184449
TIA-1 RRM23 binding and recognition of target oligonucleotides.
Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A
2017-05-05
TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu
2007-01-01
Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754
Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng
2014-04-01
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
Anjomshoa, Marzieh; Hadadzadeh, Hassan; Torkzadeh-Mahani, Masoud; Fatemi, Seyed Jamilaldin; Adeli-Sardou, Mahboubeh; Rudbari, Hadi Amiri; Nardo, Viviana Mollica
2015-01-01
The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)](PF6)2(dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), has been synthesized and fully characterized by spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA-binding studies of the complex have been investigated by several methods. The results showed that the complex intercalates into the base pairs of DNA. The complex also indicated good binding propensity to BSA. The results of molecular docking and molecular dynamic simulation methods confirm the experimental results. Finally, the in vitro cytotoxicity indicate that the complex has excellent anticancer activity against the three human carcinoma cell lines, MCF-7, A-549, and HT-29, with IC50 values of 9.8, 7.80, and 4.50 μM, respectively. The microscopic analyses of the cancer cells demonstrate that the Cu(II) complex apparently induced apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Gleghorn; E Davydova; R Basu
2011-12-31
We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groupsmore » of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie
2010-10-08
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.
Esteghamat-Panah, Roya; Hadadzadeh, Hassan; Farrokhpour, Hossein; Simpson, Jim; Abdolmaleki, Amir; Abyar, Fatemeh
2017-02-15
A new mononuclear rhodium(III) complex, [Rh(bzimpy)Cl 3 ] (bzimpy = 2,6-bis(2-benzimidazolyl)pyridine), was synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with fish sperm DNA (FS-DNA) was investigated by UV spectroscopy, emission titration, and viscosity measurement in order to evaluate the possible DNA-binding mode and to calculate the corresponding DNA-binding constant. The results reveal that the Rh(III) complex interacts with DNA through groove binding mode with a binding affinity on the order of 10 4 . In addition, the binding of the Rh(III) complex to bovine serum albumin (BSA) was monitored by UV-Vis and fluorescence emission spectroscopy at different temperatures. The mechanism of the complex interaction was found to be static quenching. The thermodynamic parameters (ΔH, ΔS, and ΔG) obtained from the fluorescence spectroscopy data show that van der Waals interactions and hydrogen bonds play a major role in the binding of the Rh(III) complex to BSA. For the comparison of the DNA- and BSA-binding affinities of the free bzimpy ligand with its Rh(III) complex, the absorbance titration and fluorescence quenching experiments of the free bzimpy ligand with DNA and BSA were carried out. Competitive experiments using eosin Y and ibuprofen as site markers indicated that the complex was mainly located in the hydrophobic cavity of site I of the protein. These experimental results were confirmed by the results of molecular docking. Finally, the in vitro cytotoxicity properties of the Rh(III) complex against the MCF-7, K562, and HT-29 cell lines were evaluated and compared with those of the free ligand (bzimpy). It was found that the complexation process improved the anticancer activity significantly. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya
2017-05-01
Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.
2015-02-01
The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less
Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M
1986-09-01
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.
DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain.
Northall, Sarah J; Buckley, Ryan; Jones, Nathan; Penedo, J Carlos; Soultanas, Panos; Bolt, Edward L
2017-09-01
Hel308 helicases promote genome stability linked to DNA replication in archaea, and have homologues in metazoans. In the crystal structure of archaeal Hel308 bound to a tailed DNA duplex, core helicase domains encircle single-stranded DNA (ssDNA) in a "ratchet" for directional translocation. A winged helix domain (WHD) is also present, but its function is mysterious. We investigated the WHD in full-length Hel308, identifying that mutations in a solvent exposed α-helix resulted in reduced DNA binding and unwinding activities. When isolated from the rest of Hel308, the WHD protein alone bound to duplex DNA but not ssDNA, and DNA binding by WHD protein was abolished by the same mutations as were analyzed in full-length Hel308. Isolated WHD from a human Hel308 homologue (HelQ) also bound to duplex DNA. By disrupting the interface between the Hel308 WHD and a RecA-like domain, a topology typical of Ski2 helicases, we show that this is crucial for ATPase and helicase activities. The data suggest a model in which the WHD promotes activity of Hel308 directly, through binding to duplex DNA that is distinct from ssDNA binding by core helicase, and indirectly through interaction with the RecA-like domain. We propose how the WHD may contribute to ssDNA translocation, resulting in DNA helicase activity or in removal of other DNA bound proteins by "reeling" ssDNA. Copyright © 2017 Elsevier B.V. All rights reserved.
Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Betzi, Stéphane; Morelli, Xavier; Burmeister, Wim P.; Iseni, Frédéric
2014-01-01
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface. PMID:24603707
DNA binding specificity of the basic-helix-loop-helix protein MASH-1.
Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K
1995-09-05
Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.
NASA Technical Reports Server (NTRS)
Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.
A Structural Basis for the Regulatory Inactivation of DnaA
Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.
2009-01-01
Summary Regulatory inactivation of DnaA is dependent on Hda, a protein homologous to the AAA+ ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 Å resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174, 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation which promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel β-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda. PMID:19000695
Kinetic gating mechanism of DNA damage recognition by Rad4/XPC
NASA Astrophysics Data System (ADS)
Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; Park, Beomseok; Shim, Yoonjung; Kim, Youngchang; Liu, Lili; van Houten, Bennett; He, Chuan; Ansari, Anjum; Min, Jung-Hyun
2015-01-01
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.
Kinetic gating mechanism of DNA damage recognition by Rad4/XPC
Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; ...
2015-01-06
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivitymore » arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Lastly, kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.« less
On the binding of indeno[1,2-c]isoquinolines in the DNA-topoisomerase I cleavage complex.
Xiao, Xiangshu; Antony, Smitha; Pommier, Yves; Cushman, Mark
2005-05-05
An ab initio quantum mechanics calculation is reported which predicts the orientation of indenoisoquinoline 4 in the ternary cleavage complex formed from DNA and topoisomerase I (top1). The results of this calculation are consistent with the hypothetical structures previously proposed for the indenoisoquinoline-DNA-top1 ternary complexes based on molecular modeling, the crystal structure of a recently reported ternary complex, and the biological results obtained with a pair of diaminoalkyl-substituted indenoisoquinoline enantiomers. The results of these studies indicate that the pi-pi stacking interactions between the indenoisoquinolines and the neighboring DNA base pairs play a major role in determining binding orientation. The calculation of the electrostatic potential surface maps of the indenoisoquinolines and the adjacent DNA base pairs shows electrostatic complementarity in the observed binding orientation, leading to the conclusion that electrostatic attraction between the intercalators and the base pairs in the cleavage complex plays a major stabilizing role. On the other hand, the calculation of LUMO and HOMO energies of indenoisoquinoline 13b and neighboring DNA base pairs in conjunction with NBO analysis indicates that charge transfer complex formation plays a relatively minor role in stabilizing the ternary complexes derived from indenoisoquinolines, DNA, and top1. The results of these studies are important in understanding the existing structure-activity relationships for the indenoisoquinolines as top1 inhibitors and as anticancer agents, and they will be important in the future design of indenoisoquinoline-based top1 inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Eliason, William K.; Steitz, Thomas A.
2013-09-19
During the assembly of the bacterial loader-dependent primosome, helicase loader proteins bind to the hexameric helicase ring, deliver it onto the oriC DNA and then dissociate from the complex. Here, to provide a better understanding of this key process, we report the crystal structure of the ~570-kDa prepriming complex between the Bacillus subtilis loader protein and the Bacillus stearothermophilus helicase, as well as the helicase-binding domain of primase with a molar ratio of 6:6:3 at 7.5 Å resolution. The overall architecture of the complex exhibits a three-layered ring conformation. Moreover, the structure combined with the proposed model suggests that themore » shift from the ‘open-ring’ to the ‘open-spiral’ and then the ‘closed-spiral’ state of the helicase ring due to the binding of single-stranded DNA may be the cause of the loader release.« less
Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah
2016-12-01
In the present study, new Schiff base complexes with the composition [M(NCS) 2 (L1) 2 ]·nH 2 O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS) 2 (L2) 2 ], M=Co (3) and Ni (4) as well as [M(NCS) 2 (L3) 2 ], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10 6 moldm -3 ) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations. Copyright © 2016 Elsevier B.V. All rights reserved.
Cristóvão, Michele; Sisamakis, Evangelos; Hingorani, Manju M.; Marx, Andreas D.; Jung, Caroline P.; Rothwell, Paul J.; Seidel, Claus A. M.; Friedhoff, Peter
2012-01-01
Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand. PMID:22367846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, K.H.; /Ohio State U.; Niebuhr, M.
2009-04-30
We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less
DNA interaction, antioxidant activity, and bioactivity studies of two ruthenium(II) complexes
NASA Astrophysics Data System (ADS)
Han, Bing-Jie; Jiang, Guang-Bin; Yao, Jun-Hua; Li, Wei; Wang, Ji; Huang, Hong-Liang; Liu, Yun-Jun
2015-01-01
Two new ruthenium(II) polypyridyl complexes [Ru(dmb)2(dcdppz)](ClO4)2 (1) and [Ru(bpy)2(dcdppz)](ClO4)2 (2) were prepared and characterized. The crystal structure of the complex 2 was solved by single crystal X-ray diffraction. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.9622(14) Å, b = 17.1619(19) Å, c = 22.7210(3) Å, β = 100.930(2)°, R = 0.0536, Rω = 0.1111. The DNA-binding constants for complexes 1 and 2 were determined to be 1.92 × 105 (s = 1.72) and 2.24 × 105 (s = 1.86) M-1, respectively. The DNA-binding behaviors showed that complexes 1 and 2 interact with DNA by intercalative mode. The antioxidant activities of the ligand and the complexes were performed. Ligand, dcdppz, has no cytotoxicity against the selected cell lines. Complex 1 shows higher cytotoxicity than complex 2, but lower than cisplatin toward selected cell lines. The apoptosis and cell cycle arrest were investigated, and the apoptotic mechanism of BEL-7402 cells was studied by reactive oxygen species (ROS), mitochondrial membrane potential and western blot analysis. Complex 1 induces apoptosis in BEL-7402 cells through ROS-mediated mitochondrial dysfunction pathway and by regulating the expression of Bcl-2 family proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proudfoot, Andrew; Axelrod, Herbert L.; Geralt, Michael
The Dlx5 homeodomain is a transcription factor related to the Drosophila Distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including Split Hand and Foot Malformation-1 (SHFM-1) in humans. Our characterization of a Dlx5 homeodomain–(CGACTAATTAGTCG) 2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85 Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A remarkably subtle mutation, Q186H, is linked tomore » SHFM-1; this change likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and likely destabilize the formation of functional complexes.« less
Bazzicalupi, Carla; Ferraroni, Marta; Papi, Francesco; Massai, Lara; Bertrand, Benoît; Messori, Luigi; Gratteri, Paola; Casini, Angela
2016-03-18
The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)2 ](+) and Tel 23 DNA G-quadruplex was solved. Tel 23 maintains a characteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites. Stacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proudfoot, Andrew; Axelrod, Herbert L.; Geralt, Michael; ...
2016-01-29
The Dlx5 homeodomain is a transcription factor related to the Drosophila Distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including Split Hand and Foot Malformation-1 (SHFM-1) in humans. Our characterization of a Dlx5 homeodomain–(CGACTAATTAGTCG) 2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85 Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A remarkably subtle mutation, Q186H, is linked tomore » SHFM-1; this change likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and likely destabilize the formation of functional complexes.« less
Parallel Force Assay for Protein-Protein Interactions
Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146
Parallel force assay for protein-protein interactions.
Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.
Crystal Structure of the Dimeric Oct6 (Pou3fl) POU Domain Bound to Palindromic MORE DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
R Jauch; S Choo; C Ng
POU domains (named after their identification in Pit1, Oct1 unc86) are found in around 15 transcription factors encoded in mammalian genomes many of which feature prominently as key regulators at development bifurcations. For example, the POU III class Octamer binding protein 6 (Oct6) is expressed in embryonic stem cells and during neural development and drives the differentia5tion of myelinated cells in the central and peripheral nervous system. Defects in oct6 expression levels are linked to neurological disorders such as schizophrenia. POU proteins contain a bi-partite DNA binding domain that assembles on various DNA motifs with differentially configured subdomains. Intriguingly, alternativemore » configurations of POU domains on different DNA sites were shown to affect the subsequent recruitment of transcriptional coactivators. Namely, binding of Oct1 to a Palindromic Oct-factor Recognition Element (PORE) was shown to facilitate the recruitment of the OBF1 coactivator whereas More of PORE (MORE) bound Oct1 does not. Moreover, Pit1 was shown to recruit the corepressor N-CoR only when bound to a variant MORE motif with a 2 bp half-site spacing. Therefore, POU proteins are seen as a paradigm for DNA induced allosteric effects on transcription factors modulating their regulatory potential. However, a big unresolved conundrum for the POU class and for most if not all other transcription factor classes is how highly similar proteins regulate different sets of genes causing fundamentally different biological responses. Ultimately, there must be subtle features enabling those factors to engage in contrasting molecular interactions in the cell. Thus, the dissection of the molecular details of the transcription-DNA recognition in general, and the formation of multimeric regulatory complexes, in particular, is highly desirable. To contribute to these efforts they solved the 2.05 {angstrom} crystal structure of Oct6 bound as a symmetrical homodimer to palindromic MORE DNA.« less
Anandapadamanaban, Madhanagopal; Pilstål, Robert; Andresen, Cecilia; Trewhella, Jill; Moche, Martin; Wallner, Björn; Sunnerhagen, Maria
2016-08-02
MexR is a repressor of the MexAB-OprM multidrug efflux pump operon of Pseudomonas aeruginosa, where DNA-binding impairing mutations lead to multidrug resistance (MDR). Surprisingly, the crystal structure of an MDR-conferring MexR mutant R21W (2.19 Å) presented here is closely similar to wild-type MexR. However, our extended analysis, by molecular dynamics and small-angle X-ray scattering, reveals that the mutation stabilizes a ground state that is deficient of DNA binding and is shared by both mutant and wild-type MexR, whereas the DNA-binding state is only transiently reached by the more flexible wild-type MexR. This population shift in the conformational ensemble is effected by mutation-induced allosteric coupling of contact networks that are independent in the wild-type protein. We propose that the MexR-R21W mutant mimics derepression by small-molecule binding to MarR proteins, and that the described allosteric model based on population shifts may also apply to other MarR family members. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meyer, Sam; Everaers, Ralf
2015-02-01
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Okuyama, Takahide; Yamagishi, Ryosuke; Shimada, Jiro; Ikeda, Masaaki; Maruoka, Yayoi; Kaneko, Hiroki
2018-02-01
Oct4 is a master regulator of the induction and maintenance of cellular pluripotency, and has crucial roles in early stages of differentiation. It is the only factor that cannot be substituted by other members of the same protein family to induce pluripotency. However, although Oct4 nuclear transport and delivery to target DNA are critical events for reprogramming to pluripotency, little is known about the molecular mechanism. Oct4 is imported to the nucleus by the classical nuclear transport mechanism, which requires importin α as an adaptor to bind the nuclear localization signal (NLS). Although there are structures of complexes of the NLS of transcription factors (TFs) in complex with importin α, there are no structures available for complexes involving intact TFs. We have therefore modeled the structure of the complex of the whole Oct4 POU domain and importin α2 using protein-protein docking and molecular dynamics. The model explains how the Ebola virus VP24 protein has a negative effect on the nuclear import of STAT1 by importin α but not on Oct4, and how Nup 50 facilitates cargo release from importin α. The model demonstrates the structural differences between the Oct4 importin α bound and DNA bound crystal states. We propose that the 'expanded linker' between the two DNA-binding domains of Oct4 is an intrinsically disordered region and that its conformational changes have a key role in the recognition/binding to both DNA and importin α. Moreover, we propose that this structural change enables efficient delivery to DNA after release from importin α.
Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids
NASA Astrophysics Data System (ADS)
Anatole von Lilienfeld, O.; Tkatchenko, Alexandre
2010-06-01
We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.
Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre
We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less
DNA Nanotubes for NMR Structure Determination of Membrane Proteins
Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.
2013-01-01
Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667
A structural basis for the regulatory inactivation of DnaA.
Xu, Qingping; McMullan, Daniel; Abdubek, Polat; Astakhova, Tamara; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Elsliger, Marc-Andre; Feuerhelm, Julie; Hale, Joanna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Johnson, Hope A; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Trame, Christine; van den Bedem, Henry; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A
2009-01-16
Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.
NASA Astrophysics Data System (ADS)
Chen, Linlin; Wang, Yi; Huang, Minggao; Li, Xiaodan; Zhu, Licai; Li, Hong
2017-06-01
The intercalation of [Ru(bpy)2(dppz)]2 + labeled as Ru(II) (bpy = 2,2‧-bipyridine and dppz = dipyrido[3,2,-a:2‧,3‧-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850 °C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2. The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.
Mutations altering the cleavage specificity of a homing endonuclease
Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.
2002-01-01
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772
NASA Astrophysics Data System (ADS)
Sirajuddin, Muhammad; Nooruddin; Ali, Saqib; McKee, Vickie; Khan, Shahan Zeb; Malook, Khan
2015-01-01
The titled compound, 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid was synthesized and characterized by various techniques like elemental analyses, FT-IR, NMR (1H, and 13C) and single crystal X-ray structural analysis. The appearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra conform the formation of the compound. A good agreement was found between the calculated values of C, H, N and found values in elemental analysis that show the purity of the compound. Protons H2 and H3 are in cis conformation with each other as conformed both from 1H NMR as well as from single crystal X-ray analysis. The molecular structure of the title compound, C10H10NO3Cl, is stabilized by short intramolecular Osbnd H- - -O hydrogen bonds within the molecule. In the crystal structure, intermolecular Nsbnd H- - -O hydrogen bonds link molecules into zigzag chains resulting in a dendrimer like structure. The title compound was screened for biological activities like interaction with DNA, cytotoxicity, antitumor and antioxidant activities. DNA interaction study reveals that the binding mode of interaction of the compound with SS-DNA is intercalative as it results in hypochromism along with significant red shift of 5 nm. It was also found to be effective antioxidant of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and show almost comparable antioxidant activity to that of the standard and known antioxidant, ascorbic acid, at higher concentration. The antitumor activity data of the compound shows that it can be used as potent antitumor agent.
Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton
2010-01-01
The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514
Crystal structure of the Rous sarcoma virus intasome
Yin, Zhiqi; Shi, Ke; Banerjee, Surajit; ...
2016-02-17
Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less
Structural Confirmation of a Bent and Open Model for the Initiation Complex of T7 RNA Polymerase
Turingan, Rosemary S.; Liu, Cuihua; Hawkins, Mary E.; Martin, Craig T.
2008-01-01
T7 RNA polymerase is known to induce bending of its promoter DNA upon binding, as evidenced by gel-shift assays and by recent end-to-end fluorescence energy transfer distance measurements. Crystal structures of promoter-bound and initially transcribing complexes, however, lack downstream DNA, providing no information on the overall path of the DNA through the protein. Crystal structures of the elongation complex do include downstream DNA and provide valuable guidance in the design of models for the complete melted bubble structure at initiation. In the current study, we test a specific structural model for the initiation complex, obtained by alignment of the C-terminal regions of the protein structures from both initiation and elongation and then simple transferal of the downstream DNA from the elongation complex onto the initiation complex. FRET measurement of distances from a point upstream on the promoter DNA to various points along the downstream helix reproduce the expected helical periodicity in the distances and support the model’s orientation and phasing of the downstream DNA. The model also makes predictions about the extent of melting downstream of the active site. By monitoring fluorescent base analogs incorporated at various positions in the DNA we have mapped the downstream edge of the bubble, confirming the model. The initially melted bubble, in the absence of substrate, encompasses 7–8 bases and is sufficient to allow synthesis of a 3 base transcript before further melting is required. The results demonstrate that despite massive changes in the N-terminal portion of the protein and in the DNA upstream of the active site, the DNA downstream of the active site is virtually identical in both initiation and elongation complexes. PMID:17253774
Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.
2014-01-01
DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808
DNA nanotubes for NMR structure determination of membrane proteins.
Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M
2013-04-01
Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.
NASA Astrophysics Data System (ADS)
Gianti, Eleonora; Messick, Troy E.; Lieberman, Paul M.; Zauhar, Randy J.
2016-04-01
The Epstein-Barr Nuclear Antigen 1 (EBNA1) is a critical protein encoded by the Epstein-Barr Virus (EBV). During latent infection, EBNA1 is essential for DNA replication and transcription initiation of viral and cellular genes and is necessary to immortalize primary B-lymphocytes. Nonetheless, the concept of EBNA1 as drug target is novel. Two EBNA1 crystal structures are publicly available and the first small-molecule EBNA1 inhibitors were recently discovered. However, no systematic studies have been reported on the structural details of EBNA1 "druggable" binding sites. We conducted computational identification and structural characterization of EBNA1 binding pockets, likely to accommodate ligand molecules (i.e. "druggable" binding sites). Then, we validated our predictions by docking against a set of compounds previously tested in vitro for EBNA1 inhibition (PubChem AID-2381). Finally, we supported assessments of pocket druggability by performing induced fit docking and molecular dynamics simulations paired with binding affinity predictions by Molecular Mechanics Generalized Born Surface Area calculations for a number of hits belonging to druggable binding sites. Our results establish EBNA1 as a target for drug discovery, and provide the computational evidence that active AID-2381 hits disrupt EBNA1:DNA binding upon interacting at individual sites. Lastly, structural properties of top scoring hits are proposed to support the rational design of the next generation of EBNA1 inhibitors.
Structural and functional analysis of the YAP-binding domain of human TEAD2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.
2010-06-15
The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less
Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.
Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J
2011-01-21
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.
Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso
2010-01-01
Summary Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix hairpin helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and shows how topoisomerase V may interact with DNA. PMID:20637419
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.« less
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka; ...
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Additionally a RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σ A dissociation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.
2009-04-01
Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacteriummore » glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni{sup 2+} ions but that it is able to bind Zn{sup 2+} with K{sub d} < 70 nM. It is concluded that Zn{sup 2+} is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.« less
The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA
Gai, Dahai; Wang, Damian; Li, Shu-Xing; Chen, Xiaojiang S
2016-01-01
DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.18129.001 PMID:27921994
Role of the C-terminal residue of the DNA polymerase of bacteriophage T7.
Kumar, J K; Tabor, S; Richardson, C C
2001-09-14
The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.
DNA glycosylases search for and remove oxidized DNA bases.
Wallace, Susan S
2013-12-01
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seungil; Chang, Jeanne S.; Griffor, Matt
DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2more » tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.« less
Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong
2011-09-02
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle ofmore » the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.« less
Gup, Ramazan; Gökçe, Cansu; Dilek, Nefise
2015-03-01
A new water soluble zinc complex has been prepared and structurally characterized. The Zn(II) complex was synthesized by the reaction of 2,6-diacetylpyridine dihydrazone (dph) with {4-[(2E)-2-(hydroxyimino)acetyl]phenoxy} acetic acid (H₂L) in the presence of zinc(II) acetate. Single crystal X-ray diffraction study revealed that the zinc ion is situated in distorted trigonal-bipyramidal environment where the equatorial position is occupied by the nitrogen atom of pyridine ring and the oxygen atoms of acetate groups of two oxime ligands (H₂L) whereas the axial positions of the zinc complex are occupied by the imine nitrogen atoms of dph ligand. Characterization of the complex with FTIR, (1)H and (13)C NMR, UV-vis and elemental analysis also confirmed the proposed structure. Interaction of the Zn(II) complex with calf-thymus DNA (CT-DNA) was investigated through UV-vis spectroscopy and viscosity measurements. The results suggest that the complex preferably bind to DNA through the groove binding mode. The zinc complex cleaves plasmid pBR 322 DNA in the presence and absence of an oxidative agent (H₂O₂), possibly through a hydrolytic pathway which is also supported by DNA cleave experiments in the presence of different radical scavengers. The nuclease activity of the zinc complex significantly depends on concentration of the complex and incubation time both in the presence and absence of H₂O₂. DNA cleave activity is inhibited in the presence of methyl green indicating that the zinc complex seems to bind the major groove of DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and Function of the Macrolide Biosensor Protein, MphR(A), with and without Erythromycin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianting; Sagar, Vatsala; Smolinsky, Adam
2009-09-02
The regulatory protein MphR(A) has recently seen extensive use in synthetic biological applications, such as metabolite sensing and exogenous control of gene expression. This protein negatively regulates the expression of a macrolide 2{prime}-phosphotransferase I resistance gene (mphA) via binding to a 35-bp DNA operator upstream of the start codon and is de-repressed by the presence of erythromycin. Here, we present the refined crystal structure of the MphR(A) protein free of erythromycin and that of the MphR(A) protein with bound erythromycin at 2.00- and 1.76-{angstrom} resolutions, respectively. We also studied the DNA binding properties of the protein and identified mutants ofmore » MphR(A) that are defective in gene repression and ligand binding in a cell-based reporter assay. The combination of these two structures illustrates the molecular basis of erythromycin-induced gene expression and provides a framework for additional applied uses of this protein in the isolation and engineered biosynthesis of polyketide natural products.« less
Crystal structure of the Csm3-Csm4 subcomplex in the type III-A CRISPR-Cas interference complex.
Numata, Tomoyuki; Inanaga, Hideko; Sato, Chikara; Osawa, Takuo
2015-01-30
Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci play a pivotal role in the prokaryotic host defense system against invading genetic materials. The CRISPR loci are transcribed to produce CRISPR RNAs (crRNAs), which form interference complexes with CRISPR-associated (Cas) proteins to target the invading nucleic acid for degradation. The interference complex of the type III-A CRISPR-Cas system is composed of five Cas proteins (Csm1-Csm5) and a crRNA, and targets invading DNA. Here, we show that the Csm1, Csm3, and Csm4 proteins from Methanocaldococcus jannaschii form a stable subcomplex. We also report the crystal structure of the M. jannaschii Csm3-Csm4 subcomplex at 3.1Å resolution. The complex structure revealed the presence of a basic concave surface around their interface, suggesting the RNA and/or DNA binding ability of the complex. A gel retardation analysis showed that the Csm3-Csm4 complex binds single-stranded RNA in a non-sequence-specific manner. Csm4 structurally resembles Cmr3, a component of the type III-B CRISPR-Cas interference complex. Based on bioinformatics, we constructed a model structure of the Csm1-Csm4-Csm3 ternary complex, which provides insights into its role in the Csm interference complex. Copyright © 2014 Elsevier Ltd. All rights reserved.
Programmable DNA scaffolds for spatially-ordered protein assembly.
Chandrasekaran, Arun Richard
2016-02-28
Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.
Wu, Jia Wei; Krawitz, Ariel R; Chai, Jijie; Li, Wenyu; Zhang, Fangjiu; Luo, Kunxin; Shi, Yigong
2002-11-01
The Ski family of nuclear oncoproteins represses TGF-beta signaling through interactions with the Smad proteins. The crystal structure of the Smad4 binding domain of human c-Ski in complex with the MH2 domain of Smad4 reveals specific recognition of the Smad4 L3 loop region by a highly conserved interaction loop (I loop) from Ski. The Ski binding surface on Smad4 significantly overlaps with that required for binding of the R-Smads. Indeed, Ski disrupts the formation of a functional complex between the Co- and R-Smads, explaining how it could lead to repression of TGF-beta, activin, and BMP responses. Intriguingly, the structure of the Ski fragment, stabilized by a bound zinc atom, resembles the SAND domain, in which the corresponding I loop is responsible for DNA binding.
Weihofen, Wilhelm Andreas; Cicek, Aslan; Pratto, Florencia; Alonso, Juan Carlos; Saenger, Wolfram
2006-01-01
Repressor ω regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. ω belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel β-sheet for DNA major groove binding. Homodimeric ω2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5′-A/TATCACA/T-3′, symbolized by →) in palindromic inverted, converging (→←) or diverging (←→) orientation and also, unique to ω2 and contrasting other RHH2 repressors, to non-palindromic direct (→→) repeats. Here we investigate with crystal structures how ω2 binds specifically to heptads in minimal operators with (→→) and (→←) repeats. Since the pseudo-2-fold axis relating the monomers in ω2 passes the central C–G base pair of each heptad with ∼0.3 Å downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (→→), ∼0.6 Å shorter in (→←) but would be ∼0.6 Å longer in (←→). These variations grade interactions between adjacent ω2 and explain modulations in cooperative binding affinity of ω2 to operators with different heptad orientations. PMID:16528102
Structural Basis for Intrinsic Thermosensing by the Master Virulence Regulator RovA of Yersinia*
Quade, Nick; Mendonca, Chriselle; Herbst, Katharina; Heroven, Ann Kathrin; Ritter, Christiane; Heinz, Dirk W.; Dersch, Petra
2012-01-01
Pathogens often rely on thermosensing to adjust virulence gene expression. In yersiniae, important virulence-associated traits are under the control of the master regulator RovA, which uses a built-in thermosensor to control its activity. Thermal upshifts encountered upon host entry induce conformational changes in the RovA dimer that attenuate DNA binding and render the protein more susceptible to proteolysis. Here, we report the crystal structure of RovA in the free and DNA-bound forms and provide evidence that thermo-induced loss of RovA activity is promoted mainly by a thermosensing loop in the dimerization domain and residues in the adjacent C-terminal helix. These determinants allow partial unfolding of the regulator upon an upshift to 37 °C. This structural distortion is transmitted to the flexible DNA-binding domain of RovA. RovA contacts mainly the DNA backbone in a low-affinity binding mode, which allows the immediate release of RovA from its operator sites. We also show that SlyA, a close homolog of RovA from Salmonella with a very similar structure, is not a thermosensor and remains active and stable at 37 °C. Strikingly, changes in only three amino acids, reflecting evolutionary replacements in SlyA, result in a complete loss of the thermosensing properties of RovA and prevent degradation. In conclusion, only minor alterations can transform a thermotolerant regulator into a thermosensor that allows adjustment of virulence and fitness determinants to their thermal environment. PMID:22936808
The helical structure of DNA facilitates binding
NASA Astrophysics Data System (ADS)
Berg, Otto G.; Mahmutovic, Anel; Marklund, Emil; Elf, Johan
2016-09-01
The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction-diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general.
Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.
Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H
2009-01-21
LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngchang; Joachimiak, Grazyna; Bigelow, Lance
Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9-2.4 Åmore » resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. Furthermore, the current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.« less
Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan
2013-11-15
The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.
Crystal structure of RuvC resolvase in complex with Holliday junction substrate
Górecka, Karolina M.; Komorowska, Weronika; Nowotny, Marcin
2013-01-01
The key intermediate in genetic recombination is the Holliday junction (HJ), a four-way DNA structure. At the end of recombination, HJs are cleaved by specific nucleases called resolvases. In Gram-negative bacteria, this cleavage is performed by RuvC, a dimeric endonuclease that belongs to the retroviral integrase superfamily. Here, we report the first crystal structure of RuvC in complex with a synthetic HJ solved at 3.75 Å resolution. The junction in the complex is in an unfolded 2-fold symmetrical conformation, in which the four arms point toward the vertices of a tetrahedron. The two scissile phosphates are located one nucleotide from the strand exchange point, and RuvC approaches them from the minor groove side. The key protein–DNA contacts observed in the structure were verified using a thiol-based site-specific cross-linking approach. Compared with known complex structures of the phage resolvases endonuclease I and endonuclease VII, the RuvC structure exhibits striking differences in the mode of substrate binding and location of the cleavage site. PMID:23980027
Sugiyama, Shigeru; Nomura, Yusuke; Sakamoto, Taiichi; Kitatani, Tomoya; Kobayashi, Asako; Miyakawa, Shin; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Nakamura, Yoshikazu; Matsumura, Hiroyoshi
2008-01-01
Aptamers, which are folded DNA or RNA molecules, bind to target molecules with high affinity and specificity. An RNA aptamer specific for the Fc fragment of human immunoglobulin G (IgG) has recently been identified and it has been demonstrated that an optimized 24-nucleotide RNA aptamer binds to the Fc fragment of human IgG and not to other species. In order to clarify the structural basis of the high specificity of the RNA aptamer, it was crystallized in complex with the Fc fragment of human IgG1. Preliminary X-ray diffraction studies revealed that the crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 83.7, b = 107.2, c = 79.0 Å. A data set has been collected to 2.2 Å resolution. PMID:18931441
BuD, a helix–loop–helix DNA-binding domain for genome modification
Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo
2014-01-01
DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngchang; Chhor, Gekleng; Tsai, Ching-Sung
The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and some of them require AHLs for folding and stability, and for protease-resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. One such protein is YenR of Yersinia enterocolitica, which is antagonized by N-3-oxohexanoyl-l-homoserine lactone (OHHL). This pheromone is produced by the OHHL synthase, a product of the adjacent yenI gene. Anothermore » example is CepR2 of Burkholderia cenocepacia, which is antagonized by N-octanoyl-l-homoserine lactone (OHL), whose synthesis is directed by the cepI gene of the same bacterium. Here, we describe the high-resolution crystal structures of the AHL binding domains of YenR and CepR2. YenR was crystallized in the presence and absence of OHHL. While this ligand does not cause large scale changes in the YenR structure, it does alter the orientation of several highly conserved YenR residues within and near the pheromone-binding pocket, which in turn caused a significant movement of a surface-exposed loop.« less
Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.
Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M
2007-05-01
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bick, M.; Lamour, V; Rajashankar, K
2009-01-01
Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to whichmore » it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.« less
Direct observation of transcription activator-like effector (TALE) protein dynamics
NASA Astrophysics Data System (ADS)
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2014-03-01
In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.
Heintz, Udo; Schlichting, Ilme
2016-01-01
The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics. DOI: http://dx.doi.org/10.7554/eLife.11860.001 PMID:26754770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuqian; Hellinga, Homme W.; Beese, Lorena S.
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'–3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed endsmore » at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.« less
Shi, Yuqian; Hellinga, Homme W; Beese, Lorena S
2017-06-06
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'-3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.
The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, K.; Borovilos, M.; Zhou, M
2009-12-25
Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less
The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission
Chandra, Vikas; Wu, Dalei; Li, Sheng; ...
2017-10-11
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor beta-retinoic X receptor alpha (RAR beta-RXR alpha) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RAR beta ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within theirmore » quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its hetero-dimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.« less
The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Vikas; Wu, Dalei; Li, Sheng
Assessing the physical connections and allosteric communications in multi-domain nuclear receptor (NR) polypeptides has remained challenging, with few crystal structures available to show their overall structural organizations. Here we report the quaternary architecture of multi-domain retinoic acid receptor beta-retinoic X receptor alpha (RAR beta-RXR alpha) heterodimer bound to DNA, ligands and coactivator peptides, examined through crystallographic, hydrogen-deuterium exchange mass spectrometry, mutagenesis and functional studies. The RAR beta ligand-binding domain (LBD) and DNA-binding domain (DBD) are physically connected to foster allosteric signal transmission between them. Direct comparisons among all the multi-domain NRs studied crystallographically to date show significant variations within theirmore » quaternary architectures, rather than a common architecture adhering to strict rules. RXR remains flexible and adaptive by maintaining loosely organized domains, while its hetero-dimerization partners use a surface patch on their LBDs to form domain-domain interactions with DBDs.« less
Yang, Hongfang; Medeiros, Patricia F; Raha, Kaushik; Elkins, Patricia; Lind, Kenneth E; Lehr, Ruth; Adams, Nicholas D; Burgess, Joelle L; Schmidt, Stanley J; Knight, Steven D; Auger, Kurt R; Schaber, Michael D; Franklin, G Joseph; Ding, Yun; DeLorey, Jennifer L; Centrella, Paolo A; Mataruse, Sibongile; Skinner, Steven R; Clark, Matthew A; Cuozzo, John W; Evindar, Ghotas
2015-05-14
In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.
2015-01-01
In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein. PMID:26005528
Gulten, Gulcin; Sacchettini, James C
2013-10-08
CarD from Mycobacterium tuberculosis (Mtb) is an essential protein shown to be involved in stringent response through downregulation of rRNA and ribosomal protein genes. CarD interacts with the β-subunit of RNAP and this interaction is vital for Mtb's survival during the persistent infection state. We have determined the crystal structure of CarD in complex with the RNAP β-subunit β1 and β2 domains at 2.1 Å resolution. The structure reveals the molecular basis of CarD/RNAP interaction, providing a basis to further our understanding of RNAP regulation by CarD. The structural fold of the CarD N-terminal domain is conserved in RNAP interacting proteins such as TRCF-RID and CdnL, and displays similar interactions to the predicted homology model based on the TRCF/RNAP β1 structure. Interestingly, the structure of the C-terminal domain, which is required for complete CarD function in vivo, represents a distinct DNA-binding fold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Min; Wei, Zhiyi; Chang, Shaojie; Teng, Maikun; Gong, Weimin
2006-04-21
A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Rongjin; Aiyer, Sriram; Cote, Marie L.
The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structuresmore » of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.« less
Odell, Mark; Malinina, Lucy; Sriskanda, Verl; Teplova, Marianna; Shuman, Stewart
2003-09-01
Chlorella virus DNA ligase is the smallest eukaryotic ATP-dependent DNA ligase known; it suffices for yeast cell growth in lieu of the essential yeast DNA ligase Cdc9. The Chlorella virus ligase-adenylate intermediate has an intrinsic nick sensing function and its DNA footprint extends 8-9 nt on the 3'-hydroxyl (3'-OH) side of the nick and 11-12 nt on the 5'-phosphate (5'-PO4) side. Here we establish the minimal length requirements for ligatable 3'-OH and 5'-PO4 strands at the nick (6 nt) and describe a new crystal structure of the ligase-adenylate in a state construed to reflect the configuration of the active site prior to nick recognition. Comparison with a previous structure of the ligase-adenylate bound to sulfate (a mimetic of the nick 5'-PO4) suggests how the positions and contacts of the active site components and the bound adenylate are remodeled by DNA binding. We find that the minimal Chlorella virus ligase is capable of catalyzing non-homologous end-joining reactions in vivo in yeast, a process normally executed by the structurally more complex cellular Lig4 enzyme. Our results suggest a model of ligase evolution in which: (i) a small 'pluripotent' ligase is the progenitor of the much larger ligases found presently in eukaryotic cells and (ii) gene duplications, variations within the core ligase structure and the fusion of new domains to the core structure (affording new protein-protein interactions) led to the compartmentalization of eukaryotic ligase function, i.e. by enhancing some components of the functional repertoire of the ancestral ligase while disabling others.
Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity.
Le Bihan, Yann-Vaï; Matot, Béatrice; Pietrement, Olivier; Giraud-Panis, Marie-Josèphe; Gasparini, Sylvaine; Le Cam, Eric; Gilson, Eric; Sclavi, Bianca; Miron, Simona; Le Du, Marie-Hélène
2013-03-01
Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.
Jo, Chang Hwa; Kim, Junsoo; Han, Ah-reum; Park, Sam Yong; Hwang, Kwang Yeon; Nam, Ki Hyun
2016-03-01
Site-specific Xer recombination plays a pivotal role in reshuffling genetic information. Here, we report the 2.5 Å crystal structure of XerA from the archaean Thermoplasma acidophilum. Crystallographic data reveal a uniquely open conformational state, resulting in a C-shaped clamp with an angle of ~ 48° and a distance of 57 Å between the core-binding and the catalytic domains. The catalytic nucleophile, Tyr264, is positioned in cis-cleavage mode by XerA's C-term tail that interacts with the CAT domain of a neighboring monomer without DNA substrate. Structural comparisons of tyrosine recombinases elucidate the dynamics of Xer recombinase. © 2016 Federation of European Biochemical Societies.
High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation
Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I.; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria
2016-01-01
The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 when bound to yeast TBP, together with mutational data. The yTAF1-TAND1, which in itself acts as a transcriptional activator, binds into the DNA-binding TBP concave surface by presenting similar anchor residues to TBP as E. coli Mot1 but from a distinct structural scaffold. Furthermore, we show how yTAF1-TAND2 employs an aromatic and acidic anchoring pattern to bind a conserved yTBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides compelling insight into the competitive multiprotein TBP interplay critical to transcriptional regulation. PMID:23851461
High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.
Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria
2013-08-01
The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.
Zhou, Yuzhen; Larson, John D.; Bottoms, Christopher A.; Arturo, Emilia C.; Henzl, Michael T.; Jenkins, Jermaine L.; Nix, Jay C.; Becker, Donald F.; Tanner, John J.
2009-01-01
Summary The multifunctional Escherichia coli PutA flavoprotein functions as both a membrane-associated proline catabolic enzyme and transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52) complexed with DNA and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5′-GTTGCA-3′, were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25 Å resolution crystal structure of PutA52 bound to one of the operators (operator 2, 21-bp) shows that the protein contacts a 9-bp fragment, corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic with an enthalpy of −1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and 15-fold lower affinity, which shows that base pairs outside of the consensus motif impact binding. The structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators. PMID:18586269
NASA Astrophysics Data System (ADS)
Eshaghi Malekshah, Rahime; Salehi, Mehdi; Kubicki, Maciej; Khaleghian, Ali
2017-12-01
Two novel mononuclear complexes, [Zn (TTA) (bipy)Cl] (1) and [Zn (TTA) (phen)Cl] (2) (TTA = 4,4,4-Trifluoro-1-(2-furyl)-1,3-butanedione, phen = 1,10-phenanthroline and bipy 2, 2ʹ-bipyridine), were synthesized and fully characterized by elemental analyses, 1H NMR, UV-Vis, FTIR spectroscopy, and conductivity measurements. The crystal structures of these two mono-nuclear zinc (II) complexes were determined by X-ray single-crystal diffraction. The result of X-ray diffraction analyses revealed that both complexes have distorted tetragonal-pyramid structures. In MTT cytotoxicity studies, these Zn (II) complexes exhibited antitumor activity against MCF-7 and MKN-45 cell lines. It was also found that the proliferation rate of MCF-7 and MKN-45 cells decreased after treatment with the above-mentioned complexes. In addition, the apoptosis-inducing activity was assessed by AO/EB (Acridine Orange/Ethidium bromide) staining assay and found that they have the potential to act as effective metal-based anticancer drugs. Finally, the molecular docking studies showed that complex 2 strongly binds through minor groove with DNA by relative binding energy -7.33 kcal mol-1.
Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao
2010-07-20
Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalentmore » intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.« less
Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee
2008-11-01
The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.
Structural basis for inhibition of DNA replication by aphidicolin
Baranovskiy, A. G.; Babayeva, N. D.; Suwa, Y.; ...
2014-11-27
Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with anmore » RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.« less
NASA Astrophysics Data System (ADS)
Benito, S.; Ferrer, A.; Benabou, S.; Aviñó, A.; Eritja, R.; Gargallo, R.
2018-05-01
Guanine-rich sequences may fold into highly ordered structures known as G-quadruplexes. Apart from the monomeric G-quadruplex, these sequences may form multimeric structures that are not usually considered when studying interaction with ligands. This work studies the interaction of a ligand, crystal violet, with three guanine-rich DNA sequences with the capacity to form multimeric structures. These sequences correspond to short stretches found near the promoter regions of c-kit and SMARCA4 genes. Instrumental techniques (circular dichroism, molecular fluorescence, size-exclusion chromatography and electrospray ionization mass spectrometry) and multivariate data analysis were used for this purpose. The polymorphism of G-quadruplexes was characterized prior to the interaction studies. The ligand was shown to interact preferentially with the monomeric G-quadruplex; the binding stoichiometry was 1:1 and the binding constant was in the order of 105 M-1 for all three sequences. The results highlight the importance of DNA treatment prior to interaction studies.
Using DNA mechanics to predict in vitro nucleosome positions and formation energies
Morozov, Alexandre V.; Fortney, Karissa; Gaykalova, Daria A.; Studitsky, Vasily M.; Widom, Jonathan; Siggia, Eric D.
2009-01-01
In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While competition with other DNA-binding factors and action of chromatin remodeling enzymes significantly affect nucleosome formation in vivo, nucleosome positions in vitro are determined by steric exclusion and sequence alone. We have developed a biophysical model, DNABEND, for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a set of in vitro nucleosome positions mapped at high resolution. We have also made a first ab initio prediction of nucleosomal DNA geometries, and checked its accuracy against the nucleosome crystal structure. We have used DNABEND to design both strong and weak histone- binding sequences, and measured the corresponding free energies of nucleosome formation. We find that DNABEND can successfully predict in vitro nucleosome positions and free energies, providing a physical explanation for the intrinsic sequence dependence of histone–DNA interactions. PMID:19509309
NASA Astrophysics Data System (ADS)
Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam
2017-06-01
The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.
Unique structural modulation of a non-native substrate by cochaperone DnaJ.
Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli
2013-02-12
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...
2015-06-02
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
Menchise, Valeria; De Simone, Giuseppina; Tedeschi, Tullia; Corradini, Roberto; Sforza, Stefano; Marchelli, Rosangela; Capasso, Domenica; Saviano, Michele; Pedone, Carlo
2003-01-01
Peptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA–RNA and PNA–DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as d-Lys-based units) into the PNA backbone. To investigate the structural features of chiral PNAs, the structure of a PNA decamer containing three d-Lys-based monomers (namely H-GpnTpnApnGpnAdlTdlCdlApnCpnTpn-NH2, in which pn represents a pseudopeptide link and dl represents a d-Lys analogue) hybridized with its complementary antiparallel DNA has been solved at a 1.66-Å resolution by means of a single-wavelength anomalous diffraction experiment on a brominated derivative. Thed-Lys-based chiral PNA–DNA (LPD) heteroduplex adopts the so-called P-helix conformation. From the substantial similarity between the PNA conformation in LPD and the conformations observed in other PNA structures, it can be concluded that PNAs possess intrinsic conformational preferences for the P-helix, and that their flexibility is rather restricted. The conformational rigidity of PNAs is enhanced by the presence of the chiral centers, limiting the ability of PNA strands to adopt other conformations and, ultimately, increasing the selectivity in molecular recognition. PMID:14512516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stella, Stefano; University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen; Molina, Rafael
Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-bindingmore » domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.« less
Gao, Yong-Gui; Suzuki, Hiroaki; Itou, Hiroshi; Zhou, Yong; Tanaka, Yoshikazu; Wachi, Masaaki; Watanabe, Nobuhisa; Tanaka, Isao; Yao, Min
2008-01-01
LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-Å resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn2+ binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed. PMID:18988622
Shank, Nathaniel I; Pham, Ha H; Waggoner, Alan S; Armitage, Bruce A
2013-01-09
The cyanine dye thiazole orange (TO) is a well-known fluorogenic stain for DNA and RNA, but this property precludes its use as an intracellular fluorescent probe for non-nucleic acid biomolecules. Further, as is the case with many cyanines, the dye suffers from low photostability. Here, we report the synthesis of a bridge-substituted version of TO named α-CN-TO, where the central methine hydrogen of TO is replaced by an electron withdrawing cyano group, which was expected to decrease the susceptibility of the dye toward singlet oxygen-mediated degradation. An X-ray crystal structure shows that α-CN-TO is twisted drastically out of plane, in contrast to TO, which crystallizes in the planar conformation. α-CN-TO retains the fluorogenic behavior of the parent dye TO in viscous glycerol/water solvent, but direct irradiation and indirect bleaching studies showed that α-CN-TO is essentially inert to visible light and singlet oxygen. In addition, the twisted conformation of α-CN-TO mitigates nonspecific binding and fluorescence activation by DNA and a previously selected TO-binding protein and exhibits low background fluorescence in HeLa cell culture. α-CN-TO was then used to select a new protein that binds and activates fluorescence from the dye. The new α-CN-TO/protein fluoromodule exhibits superior photostability to an analogous TO/protein fluoromodule. These properties indicate that α-CN-TO will be a useful fluorogenic dye in combination with specific RNA and protein binding partners for both in vitro and cell-based applications. More broadly, structural features that promote nonplanar conformations can provide an effective method for reducing nonspecific binding of cationic dyes to nucleic acids and other biomolecules.
Shank, Nathaniel I.; Pham, Ha; Waggoner, Alan S.; Armitage, Bruce A.
2013-01-01
The cyanine dye thiazole orange (TO) is a well-known fluorogenic stain for DNA and RNA, but this property precludes its use as an intracellular fluorescent probe for non-nucleic acid biomolecules. Further, as is the case with many cyanines, the dye suffers from low photostability. Here we report the synthesis of a bridge-substituted version of TO named α-CN-TO, where the central methine hydrogen of TO is replaced by an electron withdrawing cyano group, which was expected to decrease the susceptibility of the dye toward singlet oxygen-mediated degradation. An X-ray crystal structure shows that α-CN-TO is twisted drastically out of plane, in contrast to TO, which crystallizes in the planar conformation. α-CN-TO retains the fluorogenic behavior of the parent dye TO in viscous glycerol/water solvent, but direct irradiation and indirect bleaching studies showed that α-CN-TO is essentially inert to visible light and singlet oxygen. In addition, the twisted conformation of α-CN-TO mitigates non-specific binding and fluorescence activation by DNA and a previously selected TO-binding protein and exhibits low background fluorescence in HeLa cell culture. α-CN-TO was then used to select a new protein that binds and activates fluorescence from the dye. The new α-CN-TO/protein fluoromodule exhibits superior photostability to an analogous TO/protein fluoromodule. These properties indicate that α-CN-TO will be a useful fluorogenic dye in combination with specific RNA and protein binding partners for both in vitro and cell-based applications. More broadly, structural features that promote nonplanar conformations can provide an effective method for reducing nonspecific binding of cationic dyes to nucleic acids and other biomolecules. PMID:23252842
Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.
Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz
2013-06-01
X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.
NASA Astrophysics Data System (ADS)
Bauer, William Joseph, Jr.
The fate of an individual cell, or even an entire organism, is often determined by minute, yet very specific differences in the conformation of a single protein species. Very often, proteins take on alternate folds or even side chain conformations to deal with different situations present within the cell. These differences can be as large as a whole domain or as subtle as the alteration of a single amino acid side chain. Yet, even these seemingly minor side chain conformational differences can determine the development of a cell type during differentiation or even dictate whether a cell will live or die. Two examples of situations where minor conformational differences within a specific protein could lead to major differences in the life cycle of a cell are described herein. The first example describes the variations seen in DNA conformations which can lead to slightly different Hox protein binding conformations responsible for recognizing biologically relevant regulatory sites. These specific differences occur in the minor groove of the bound DNA and are limited to the conformation of only two side chains. The conformation of the bound DNA, however, is not solely determined by the sequence of the DNA, as multiple sequences can result in the same DNA conformation. The second example takes place in the context of a yeast prion protein which contains a mutation that decreases the frequency at which fibrils form. While the specific interactions leading to this physiological change were not directly detected, it can be ascertained from the crystal structure that the structural changes are subtle and most likely involve another binding partner. In both cases, these conformational changes are very slight but have a profound effect on the downstream processes.
Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors
NASA Astrophysics Data System (ADS)
Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja
2014-06-01
The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.
Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1
Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter
2015-01-01
Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880
Das, Aditi; Mandal, Chhabinath; Dasgupta, Arindam; Sengupta, Tanushri; Majumder, Hemanta K.
2002-01-01
DNA topoisomerases are ubiquitous enzymes that govern the topological interconversions of DNA thereby playing a key role in many aspects of nucleic acid metabolism. Recently determined crystal structures of topoisomerase fragments, representing nearly all the known subclasses, have been solved. The type IB enzymes are structurally distinct from other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. A putative topoisomerase I open reading frame from the kinetoplastid Leishmania donovani was reported which shared a substantial degree of homology with type IB topoisomerases but having a variable C-terminus. Here we present a molecular model of the above parasite gene product, using the human topoisomerase I crystal structure in complex with a 22 bp oligonucleotide as a template. Our studies indicate that the overall structure of the parasite protein is similar to the human enzyme; however, major differences occur in the C-terminal loop, which harbors a serine in place of the usual catalytic tyrosine. Most other structural themes common to type IB topoisomerases, including secondary structural folds, hinged clamps that open and close to bind DNA, nucleophilic attack on the scissile DNA strand and formation of a ternary complex with the topoisomerase I inhibitor camptothecin could be visualized in our homology model. The validity of serine acting as the nucleophile in the case of the parasite protein model was corroborated with our biochemical mapping of the active site with topoisomerase I enzyme purified from L.donovani promastigotes. PMID:11809893
Finarov, Igal; Moor, Nina; Kessler, Naama; Klipcan, Liron; Safro, Mark G
2010-03-10
The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the anticodon-binding domain B8 in human cytosolic PheRS (hcPheRS) is indicative of variations in the tRNA(Phe) binding and recognition as compared to bacterial PheRSs. We report herein the crystal structure of hcPheRS in complex with phenylalanine at 3.3 A resolution. A novel structural module has been revealed at the N terminus of the alpha subunit. It stretches out into the solvent of approximately 80 A and is made up of three structural domains (DBDs) possessing DNA-binding fold. The dramatic reduction of aminoacylation activity for truncated N terminus variants coupled with structural data and tRNA-docking model testify that DBDs play crucial role in hcPheRS activity.
Low-resolution structure of Drosophila translin
Kumar, Vinay; Gupta, Gagan D.
2012-01-01
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579
Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin
2015-08-01
While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Structural integration in hypoxia-inducible factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dalei; Potluri, Nalini; Lu, Jingping
The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinctmore » pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.« less
DNA Glycosylases Search for and Remove Oxidized DNA Bases
Wallace, Susan S.
2014-01-01
The following mini review summarizes recent research from the Author’s laboratory as presented to the Environmental Mutagen Society in October 2012. It provides an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a “zincless finger” with the same properties. Also the “lesion recognition loop” is not involved in lesion recognition rather stabilization of 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the duplex and interact with the opposite strand which may account for its preference for lesions in single stranded DNA. We also showed, using single molecule approaches, that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. PMID:24123395
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Swarts, Daan C; van der Oost, John; Jinek, Martin
2017-04-20
The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies. Copyright © 2017 Elsevier Inc. All rights reserved.
Cuozzo, John W; Centrella, Paolo A; Gikunju, Diana; Habeshian, Sevan; Hupp, Christopher D; Keefe, Anthony D; Sigel, Eric A; Soutter, Holly H; Thomson, Heather A; Zhang, Ying; Clark, Matthew A
2017-05-04
We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svintradze, David V.; Virginia Commonwealth University, Richmond, VA 23219-1540; Peterson, Darrell L.
Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces,more » which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.« less
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka
2018-03-01
The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.
Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage.
Deshpande, Ishan; Seeber, Andrew; Shimada, Kenji; Keusch, Jeremy J; Gut, Heinz; Gasser, Susan M
2017-10-19
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural basis of the 3′-end recognition of a leading strand in stalled replication forks by PriA
Sasaki, Kaori; Ose, Toyoyuki; Okamoto, Naoaki; Maenaka, Katsumi; Tanaka, Taku; Masai, Hisao; Saito, Mihoko; Shirai, Tsuyoshi; Kohda, Daisuke
2007-01-01
In eubacteria, PriA helicase detects the stalled DNA replication forks. This critical role of PriA is ascribed to its ability to bind to the 3′ end of a nascent leading DNA strand in the stalled replication forks. The crystal structures in complexes with oligonucleotides and the combination of fluorescence correlation spectroscopy and mutagenesis reveal that the N-terminal domain of PriA possesses a binding pocket for the 3′-terminal nucleotide residue of DNA. The interaction with the deoxyribose 3′-OH is essential for the 3′-terminal recognition. In contrast, the direct interaction with 3′-end nucleobase is unexpected, considering the same affinity for oligonucleotides carrying the four bases at the 3′ end. Thus, the N-terminal domain of PriA recognizes the 3′-end base in a base-non-selective manner, in addition to the deoxyribose and 5′-side phosphodiester group, of the 3′-terminal nucleotide to acquire both sufficient affinity and non-selectivity to find all of the stalled replication forks generated during DNA duplication. This unique feature is prerequisite for the proper positioning of the helicase domain of PriA on the unreplicated double-stranded DNA. PMID:17464287
Recognition of Local DNA Structures by p53 Protein
Brázda, Václav; Coufal, Jan
2017-01-01
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646
Maier, Holly; Ostraat, Rachel; Parenti, Sarah; Fitzsimmons, Daniel; Abraham, Lawrence J.; Garvie, Colin W.; Hagman, James
2003-01-01
Pax-5, a member of the paired domain family of transcription factors, is a key regulator of B lymphocyte-specific transcription and differentiation. A major target of Pax-5-mediated activation is the mb-1 gene, which encodes the essential transmembrane signaling protein Ig-α. Pax-5 recruits three members of the Ets family of transcription factors: Ets-1, Fli-1 and GABPα (with GABPβ1), to assemble ternary complexes on the mb-1 promoter in vitro. Using the Pax-5:Ets-1:DNA crystal structure as a guide, we defined amino acid requirements for transcriptional activation of endogenous mb-1 genes using a novel cell-based assay. Mutations in the β-hairpin/β-turn of the DNA-binding domain of Pax-5 demonstrated its importance for DNA sequence recognition and activation of mb-1 transcription. Mutations of amino acids contacting Ets-1 in the crystal structure reduced or blocked mb-1 promoter activation. One of these mutations, Q22A, resulted in greatly reduced mb-1 gene transcript levels, concurrent with the loss of its ability to recruit Fli-1 to bind the promoter in vitro. In contrast, the mutation had no effect on recruitment of the related Ets protein GABPα (with GABPβ1). These data further define requirements for Pax-5 function in vivo and reveal the complexity of interactions required for cooperative partnerships between transcription factors. PMID:14500810
Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex
NASA Astrophysics Data System (ADS)
Gilewska, Agnieszka; Masternak, Joanna; Kazimierczuk, Katarzyna; Trynda, Justyna; Wietrzyk, Joanna; Barszcz, Barbara
2018-03-01
In order to obtain a potential chemotherapeutic which is not affected on the normal BALB/3T3 cell line, a new arene ruthenium(II) complex {[RuCl(L1)(η6-p-cymene)]PF6}2 · H2O has been synthesized by a direct reaction of precursor, [{(η6-p-cymene)Ru(μ-Cl)}2Cl2], with N,N-chelating ligand (L1 - 2,2‧-bis(4,5-dimethylimidazole). The compound has been fully characterized by elemental analysis, X-ray diffraction, IR, UV-Vis and 1H, 13C NMR spectroscopies. X-ray analysis have confirmed that the compound crystallized in the monoclinic group Cc as an inversion twin. The asymmetric unit contains two symmetrically independent cationic complexes [RuCl(L1)(η6-p-cymene)]+ whose charge is balanced by two PF6- counterions. The shape of each cationic coordination polyhedral can be described as a distorted dodecahedron and shows a typical piano-stool geometry. In addition, an analysis of the crystal structure and the Hirshfeld surface analysis were used to detect and visualize important hydrogen bonds and intermolecular interaction. Moreover, the antiproliferative behavior of the obtained complex was assayed against three human cells: MV-4-11, LoVo, MCF-7 and BALB/3T3 - normal mice fibroblast cells. To predict a binding mode, a potential interaction of ruthenium complex with calf thymus DNA (CT-DNA) has been explored using UV absorption and circular dichroism (CD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw
DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less
Shi, Yuqian; Hellinga, Homme W.; Beese, Lorena S.
2017-01-01
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5′-nuclease superfamily. Its dominant, processive 5′–3′ exonuclease and secondary 5′-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5′-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5′ flaps. Their distinctive 5′ ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5′ flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity. PMID:28533382
Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.
Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M
1999-09-01
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.
Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.
Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A
1997-03-15
The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes in protein structure as a result of calcium binding may facilitate phosphorylation. A small, but significant, movement of metal ions and sidechains could position catalytically important threonine residues for phosphorylation. The second calcium site represents a new calcium-binding motif that can play a role in the stabilization of protein structure. We discuss how the information about catalytic events in the active site could be transmitted to the peptide-binding domain.
Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site.
Sun, Xingmin; Mierke, Dale F; Biswas, Tapan; Lee, Sang Yeol; Landy, Arthur; Radman-Livaja, Marta
2006-11-17
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.
2009-01-01
The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR_C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni2+ ions but that it is able to bind Zn2+ with K d < 70 nM. It is concluded that Zn2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors. PMID:19307717
Structural studies on Pax-8 Prd domain/DNA complex.
Campagnolo, M; Pesaresi, A; Zelezetsky, I; Geremia, S; Randaccio, L; Bisca, A; Tell, G
2007-04-01
Pax-8 is a member of the Pax family of transcription factors and is essential in the development of thyroid follicular cells. Pax-8 has two DNA-binding domains: the paired domain and the homeo domain. In this study, a preliminary X-ray diffraction analysis of the mammalian Pax-8 paired domain in complex with the C-site of the thyroglobulin promoter was achieved. The Pax-8 paired domain was crystallized by the hanging-drop vapor-diffusion method in complex with both a blunt-ended 26 bp DNA fragment and with a sticky-ended 24 bp DNA fragment with two additional overhanging bases. Crystallization experiments make clear that the growth of transparent crystals with large dimensions and regular shape is particularly influenced by ionic strength. The crystals of Pax-8 complex with blunt-ended and sticky-ended DNA, diffracted synchrotron radiation to 6.0 and 8.0 A resolution and belongs both to the C centered monoclinic system with cell dimensions: a = 89.88 A, b = 80.05 A, c = 67.73 A, and beta = 124.3 degrees and a = 256.56, b = 69.07, c = 99.32 A, and beta = 98.1 degrees , respectively. Fluorescence experiments suggest that the crystalline disorder, deduced by the poor diffraction, can be attributed to the low homogeneity of the protein-DNA sample. The theoretical comparative model of the Pax-8 paired domain complexed with the C-site of the thyroglobulin promoter shows the probable presence of some specific protein-DNA interactions already observed in other Pax proteins and the important role of the cysteine residues of PAI subdomain in the redox control of the DNA recognition.
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
Jiang, Jiansen; Chan, Henry; Cash, Darian D.; ...
2015-10-15
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansen; Chan, Henry; Cash, Darian D.
Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). In this paper, we report the cryo–electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunitmore » interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Finally, our findings provide structural and mechanistic insights into telomerase holoenzyme function.« less
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.
2015-01-01
Summary The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. PMID:25402841
Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M
2015-02-01
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Gao, Xiaoli; Qin, Lin
2010-12-01
Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and can cause neuroparalytic disease botulism. Due to the limitations of production and manipulation of holoenzymes, expressing non-toxic heavy chain receptor binding domains (HCR) has become a common strategy for vaccine and antibody development. Meanwhile, large quantities and highly purified soluble proteins are required for research areas such as antibody maturation and structural biology. We present high level expression and purification of the BoNT serotype D HCR in E. coli using a codon-optimized cDNA. By varying expression conditions, especially at low temperature, the protein was expressed at a high level withmore » high solubility. About 150-200 mg protein was purified to >90% purity from 1 L cell culture. The recombinant D_HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belong to space group P212121 with unit cell dimensions a = 60.8 Å, b = 89.7 Å, c = 93.9 Å. Preliminary crystallographic data analysis revealed one molecule in asymmetric unit.« less
Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik
2016-12-01
Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.
Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution
Ahlstrom, Logan S.; Miyashita, Osamu
2011-01-01
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751
Killikelly, April; Jakoncic, Jean; Benson, Meredith A.; ...
2014-10-20
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killikelly, April; Jakoncic, Jean; Benson, Meredith A.
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure ofmore » Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R 91, at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y 66, predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. As a result, this work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.« less
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-09-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between -35 and -10 elements.
Nisha, J; Shanthi, V
2018-06-01
Mycobacterium leprae, the causal agent of leprosy is non-cultivable in vitro. Thus, the assessment of antibiotic activity against Mycobacterium leprae depends primarily upon the time-consuming mouse footpad system. The GyrA protein of Mycobacterium leprae is the target of the antimycobacterial drug, Ofloxacin. In recent times, the GyrA mutation (A91V) has been found to be resistant to Ofloxacin. This phenomenon has necessitated the development of new, long-acting antimycobacterial compounds. The underlying mechanism of drug resistance is not completely known. Currently, experimentally crystallized GyrA-DNA-OFLX models are not available for highlighting the binding and mechanism of Ofloxacin resistance. Hence, we employed computational approaches to characterize the Ofloxacin interaction with both the native and mutant forms of GyrA complexed with DNA. Binding energy measurements obtained from molecular docking studies highlights hydrogen bond-mediated efficient binding of Ofloxacin to Asp47 in the native GyrA-DNA complex in comparison with that of the mutant GyrA-DNA complex. Further, molecular dynamics studies highlighted the stable binding of Ofloxacin with native GyrA-DNA complex than with the mutant GyrA-DNA complex. This mechanism provided a plausible reason for the reported, reduced effect of Ofloxacin to control leprosy in individuals with the A91V mutation. Our report is the first of its kind wherein the basis for the Ofloxacin drug resistance mechanism has been explored with the help of ternary Mycobacterium leprae complex, GyrA-DNA-OFLX. These structural insights will provide useful information for designing new drugs to target the Ofloxacin-resistant DNA gyrase.
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Non-B-DNA structures on the interferon-beta promoter?
Robbe, K; Bonnefoy, E
1998-01-01
The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.
Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed
2017-06-01
A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.
Davlieva, Milya; Shi, Yiwen; Leonard, Paul G.; ...
2015-04-19
LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structuralmore » basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaR D191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. The crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.« less
Cao, Nan; Tan, Kemin; Annamalai, Thirunavukkarasu; Joachimiak, Andrzej; Tse-Dinh, Yuk-Ching
2018-06-14
We have obtained new crystal structures of Mycobacterium tuberculosis topoisomerase I, including structures with ssDNA substrate bound to the active site, with and without Mg2+ ion present. Significant enzyme conformational changes upon DNA binding place the catalytic tyrosine in a pre-transition state position for cleavage of a specific phosphodiester linkage. Meanwhile, the enzyme/DNA complex with bound Mg2+ ion may represent the post-transition state for religation in the enzyme's multiple-step DNA relaxation catalytic cycle. The first observation of Mg2+ ion coordinated with the TOPRIM residues and DNA phosphate in a type IA topoisomerase active site allows assignment of likely catalytic role for the metal and draws a comparison to the proposed mechanism for type IIA topoisomerases. The critical function of a strictly conserved glutamic acid in the DNA cleavage step was assessed through site-directed mutagenesis. The functions assigned to the observed Mg2+ ion can account for the metal requirement for DNA rejoining but not DNA cleavage by type IA topoisomerases. This work provides new structural insights into a more stringent requirement for DNA rejoining versus cleavage in the catalytic cycle of this essential enzyme, and further establishes the potential for selective interference of DNA rejoining by this validated TB drug target.
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.; ...
2014-12-15
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Asmita; Shuman, Stewart; Mondragon, Alfonso
Type IB DNA topoisomerases are found in all eukarya, two families of eukaryotic viruses (poxviruses and mimivirus), and many genera of bacteria. They alter DNA topology by cleaving and resealing one strand of duplex DNA via a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate. Bacterial type IB enzymes were discovered recently and are described as poxvirus-like with respect to their small size, primary structures, and bipartite domain organization. Here we report the 1.75-{angstrom} crystal structure of Deinococcus radiodurans topoisomerase IB (DraTopIB), a prototype of the bacterial clade. DraTopIB consists of an amino-terminal (N) {beta}-sheet domain (amino acids 1-90) and a predominantly {alpha}-helical carboxyl-terminal (C)more » domain (amino acids 91-346) that closely resemble the corresponding domains of vaccinia virus topoisomerase IB. The five amino acids of DraTopIB that comprise the catalytic pentad (Arg-137, Lys-174, Arg-239, Asn-280, and Tyr-289) are preassembled into the active site in the absence of DNA in a manner nearly identical to the pentad configuration in human topoisomerase I bound to DNA. This contrasts with the apoenzyme of vaccinia topoisomerase, in which three of the active site constituents are either displaced or disordered. The N and C domains of DraTopIB are splayed apart in an 'open' conformation, in which the surface of the catalytic domain containing the active site is exposed for DNA binding. A comparison with the human topoisomerase I-DNA cocrystal structure suggests how viral and bacterial topoisomerase IB enzymes might bind DNA circumferentially via movement of the N domain into the major groove and clamping of a disordered loop of the C domain around the helix.« less
Sun, Wenbo; Song, Weiling; Guo, Xiaoyan; Wang, Zonghua
2017-07-25
In this study, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensors were combined with template enhanced hybridization processes (TEHP), rolling circle amplification (RCA) and biocatalytic precipitation (BCP) for ultrasensitive detection of DNA and protein. The DNA complementary to the aptamer was released by the specific binding of the aptamer to the target protein and then hybridized with the capture probe and the assistant DNA to form a ternary "Y" junction structure. The initiation chain was generated by the template-enhanced hybridization process which leaded to the rolling circle amplification reaction, and a large number of repeating unit sequences were formed. Hybridized with the enzyme-labeled probes, the biocatalytic precipitation reaction was further carried out, resulting in a large amount of insoluble precipitates and amplifying the detection signal. Under the optimum conditions, detection limits as low as 43 aM for target DNA and 53 aM for lysozyme were achieved. In addition, this method also showed good selectivity and sensitivity in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.
Identifying DNA-binding proteins using structural motifs and the electrostatic potential
Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.
2004-01-01
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290
Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.
1994-01-01
The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597
IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation.
Hároníková, Lucia; Coufal, Jan; Kejnovská, Iva; Jagelská, Eva B; Fojta, Miroslav; Dvořáková, Petra; Muller, Petr; Vojtesek, Borivoj; Brázda, Václav
2016-01-01
Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.
Structural investigations of platinum anticancer drugs with DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, S.F.
The antitumor agent cis-diamminedichloroplatinum (II) (cis-DDP) can successfully treat testicular and ovarian cancers, presumably by binding to DNA and preventing replication. cis-DDP is less successful in treating lung and breast cancers and the trans isomer is inactive. It has been suggested that cellular recognition and repair processes may be responsible for the difference in activity between cis- and trans-DDP, the differential effectiveness against different types of cancers, as well as acquired resistance. The author reviews structural methods used to characterize several site-specific adducts. Structure-function relations that emerge may help clarify the mechanism of action. The extent of DNA bending causedmore » by several site-specific DNA adducts formed by cis- and trans-DDP has been determined using a gel electrophoresis assay. The adducts cis-GG, cis-AG, cis-GTG, and trans-GTG were incorporated into synthetic DNA oligonucleotides of varying lengths with two bp cohesive ends. Subtle DNA distortions were amplified by polymerizing these monomers and quantitated using polyacrylamide gel electrophoresis. The three adducts cis-GG, cis-AG, and cis-GTG were all found to bend the helix in a directed fashion by about 32-35[degrees]. The trans-GTG adduct gave a degree of flexibility to the double helix, allowing bending in more than one direction. The DNA unwinding caused by the platinum binding was measured by systematically varying the interplatinum distance in a series of synthetic DNA oligonucleotides. The cis-GG and cis-AG adducts both unwind the double helix by 13[degrees]C, while the cis-GTG adduct unwinds by 23[degrees]. To determine the complete structure of platinated duplex DNA< single crystals of a platinated 12 base pair duplex oligonucletide were obtained. Despite extreme temperature and radiation sensitivity problems, a complete set of data was collected. Several different approaches to solve the structure were attempted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.
2012-04-05
The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less
Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.
Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun
2013-11-01
Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Qianqian; Li, Lanlan; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun
2014-11-01
The Z-DNA-binding domain of human double-stranded RNA adenosine deaminase I (hZαADAR1) can specifically recognize the left-handed Z-DNA which preferentially occurs at alternating purine-pyrimidine repeats, especially the CG-repeats. The interactions of hZαADAR1 and Z-DNAs in different sequence contexts can affect many important biological functions including gene regulation and chromatin remodeling. Therefore it is of great necessity to fully understand their recognition mechanisms. However, most existing studies are aimed at the standard CG-repeat Z-DNA rather than the non-CG-repeats, and whether the molecular basis of hZαADAR1 binding to various Z-DNAs are identical or not is still unclear on the atomic level. Here, based on the recently determined crystal structures of three representative non-CG-repeat Z-DNAs (d(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2) in complex with hZαADAR1, 40 ns molecular dynamics simulation together with binding free energy calculation were performed for each system. For comparison, the standard CG-repeat Z-DNA (d(CGCGCG)2) complexed with hZαADAR1 was also simulated. The consistent results demonstrate that nonpolar interaction is the driving force during the protein-DNA binding process, and that polar interaction mainly from helix α3 also provides important contributions. Five common hot-spot residues were identified, namely Lys169, Lys170, Asn173, Arg174 and Tyr177. Hydrogen bond analysis coupled with surface charge distribution further reveal the interfacial information between hZαADAR1 and Z-DNA in detail. All of the analysis illustrate that four complexes share the common key features and the similar binding modes irrespective of Z-DNA sequences, suggesting that Z-DNA recognition by hZαADAR1 is conformation-specific rather than sequence-specific. Additionally, by analyzing the conformational changes of hZαADAR1, we found that the binding of Z-DNA could effectively stabilize hZαADAR1 protein. Our study can provide some valuable information for better understanding the binding mechanism between hZαADAR1 or even other Z-DNA-binding protein and Z-DNA.
Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P
2014-11-25
The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.
SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres
Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy
2014-01-01
Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755
Corbett, John; Cornacchione, Louis; Daly, William; Galan, Diego; Wysota, Michael; Tivnan, Patrick; Collins, Justin; Nye, Dillon; Levitz, Talya; Breyer, Wendy A.; Glasfeld, Arthur
2015-01-01
ABSTRACT Streptococcus mutans is the causative agent of dental caries, a significant concern for human health, and therefore an attractive target for therapeutics development. Previous work in our laboratory has identified a homodimeric, manganese-dependent repressor protein, SloR, as an important regulator of cariogenesis and has used site-directed mutagenesis to map functions to specific regions of the protein. Here we extend those studies to better understand the structural interaction between SloR and its operator and its effector metal ions. The results of DNase I assays indicate that SloR protects a 42-bp region of DNA that overlaps the sloABC promoter on the S. mutans UA159 chromosome, while electrophoretic mobility shift and solution binding assays indicate that each of two SloR dimers binds to this region. Real-time semiquantitative reverse transcriptase PCR (real-time semi-qRT-PCR) experiments were used to determine the individual base pairs that contribute to SloR-DNA binding specificity. Solution studies indicate that Mn2+ is better than Zn2+ at specifically activating SloR to bind DNA, and yet the 2.8-Å resolved crystal structure of SloR bound to Zn2+ provides insight into the means by which selective activation by Mn2+ may be achieved and into how SloR may form specific interactions with its operator. Taken together, these experimental observations are significant because they can inform rational drug design aimed at alleviating and/or preventing S. mutans-induced caries formation. IMPORTANCE This report focuses on investigating the SloR protein as a regulator of essential metal ion transport and virulence gene expression in the oral pathogen Streptococcus mutans and on revealing the details of SloR binding to its metal ion effectors and binding to DNA that together facilitate this expression. We used molecular and biochemical approaches to characterize the interaction of SloR with Mn2+ and with its SloR recognition element to gain a clearer picture of the regulatory networks that optimize SloR-mediated metal ion homeostasis and virulence gene expression in S. mutans. These experiments can have a significant impact on caries treatment and/or prevention by revealing the S. mutans SloR-DNA binding interface as an appropriate target for the development of novel therapeutic interventions. PMID:26350131
Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G
2016-02-25
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency.
Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas; Delecluse, Henri-Jacques; Chiang, Alan K S; Altieri, Dario C; Messick, Troy E; Lieberman, Paul M
2017-01-31
Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.
Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S
2014-05-05
New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.
In and out of the minor groove: interaction of an AT-rich DNA with the drug CD27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta-Reyes, Francisco J.; Dardonville, Christophe; Koning, Harry P. de
New features of an antiprotozoal DNA minor-groove binding drug, which acts as a cross-linking agent, are presented. It also fills the minor groove of DNA completely and prevents the access of proteins. These features are also expected for other minor-groove binding drugs when associated with suitable DNA targets. The DNA of several pathogens is very rich in AT base pairs. Typical examples include the malaria parasite Plasmodium falciparum and the causative agents of trichomoniasis and trypanosomiases. This fact has prompted studies of drugs which interact with the minor groove of DNA, some of which are used in medical practice. Previousmore » studies have been performed almost exclusively with the AATT sequence. New features should be uncovered through the study of different DNA sequences. In this paper, the crystal structure of the complex of the DNA duplex d(AAAATTTT){sub 2} with the dicationic drug 4, 4′-bis(imidazolinylamino)diphenylamine (CD27) is presented. The drug binds to the minor groove of DNA as expected, but it shows two new features that have not previously been described: (i) the drugs protrude from the DNA and interact with neighbouring molecules, so that they may act as cross-linking agents, and (ii) the drugs completely cover the whole minor groove of DNA and displace bound water. Thus, they may prevent the access to DNA of proteins such as AT-hook proteins. These features are also expected for other minor-groove binding drugs when associated with all-AT DNA. These findings allow a better understanding of this family of compounds and will help in the development of new, more effective drugs. New data on the biological interaction of CD27 with the causative agent of trichomoniasis, Trichomonas vaginalis, are also reported.« less
Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S
2015-11-05
A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikary, Suraj; Eichman, Brandt F.
DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity,more » although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.« less
3D DNA Crystals and Nanotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paukstelis, Paul; Seeman, Nadrian
DNA's molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.
3D DNA Crystals and Nanotechnology
Paukstelis, Paul; Seeman, Nadrian
2016-08-18
DNA's molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.
Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.
Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinctmore » outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.« less
Hollis, Thomas; Ichikawa, Yoshitaka; Ellenberger, Tom
2000-01-01
The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an SN1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner. PMID:10675345
Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities
Hanaoka, Shingo; Nagadoi, Aritaka; Nishimura, Yoshifumi
2005-01-01
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2. PMID:15608118
Importance of the DNA “bond” in programmable nanoparticle crystallization
Macfarlane, Robert J.; Thaner, Ryan V.; Brown, Keith A.; Zhang, Jian; Lee, Byeongdu; Nguyen, SonBinh T.; Mirkin, Chad A.
2014-01-01
If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling’s rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner. PMID:25298535
Design Rule for Colloidal Crystals of DNA-Functionalized Particles
NASA Astrophysics Data System (ADS)
Martinez-Veracoechea, Francisco J.; Mladek, Bianca M.; Tkachenko, Alexei V.; Frenkel, Daan
2011-07-01
We report a Monte Carlo simulation study of the phase behavior of colloids coated with long, flexible DNA chains. We find that an important change occurs in the phase diagram when the number of DNAs per colloid is decreased below a critical value. In this case, the triple point disappears and the condensed phase that coexists with the vapor is always liquid. Our simulations thus explain why, in the dilute solutions typically used in experiments, colloids coated with a small number of DNA strands cannot crystallize. We understand this behavior in terms of the discrete nature of DNA binding.
The mechanism and control of DNA transfer by the conjugative relaxase of resistance plasmid pCU1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Rebekah Potts; Habibi, Sohrab; Cheng, Yuan
2010-11-15
Bacteria expand their genetic diversity, spread antibiotic resistance genes, and obtain virulence factors through the highly coordinated process of conjugative plasmid transfer (CPT). A plasmid-encoded relaxase enzyme initiates and terminates CPT by nicking and religating the transferred plasmid in a sequence-specific manner. We solved the 2.3 {angstrom} crystal structure of the relaxase responsible for the spread of the resistance plasmid pCU1 and determined its DNA binding and nicking capabilities. The overall fold of the pCU1 relaxase is similar to that of the F plasmid and plasmid R388 relaxases. However, in the pCU1 structure, the conserved tyrosine residues (Y18,19,26,27) that aremore » required for DNA nicking and religation were displaced up to 14 {angstrom} out of the relaxase active site, revealing a high degree of mobility in this region of the enzyme. In spite of this flexibility, the tyrosines still cleaved the nic site of the plasmid's origin of transfer, and did so in a sequence-specific, metal-dependent manner. Unexpectedly, the pCU1 relaxase lacked the sequence-specific DNA binding previously reported for the homologous F and R388 relaxase enzymes, despite its high sequence and structural similarity with both proteins. In summary, our work outlines novel structural and functional aspects of the relaxase-mediated conjugative transfer of plasmid pCU1.« less
NASA Astrophysics Data System (ADS)
Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.
2018-07-01
An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.
Andera, L; Spangler, C J; Galeone, A; Mayol, L; Geiduschek, E P
1994-02-11
TF1, a homodimeric DNA-binding and -bending protein with a preference for hydroxymethyluracil-containing DNA is the Bacillus subtilis-encoded homolog of the bacterial HU proteins and of the E. coli integration host factor. A temperature-sensitive mutation at amino acid 25 of TF1 (L25-->A) and two intragenic second site revertants at amino acids 15 (E15-->G) and 32 (L32-->I) were previously identified and their effects on virus development were examined. The DNA-binding properties of these proteins and the thermal stability of their secondary structures have now been analyzed. Amino acids 15 and 32 are far removed from the putative DNA-binding domains of TF1 but changes there exert striking effects on DNA affinity that correlate with effects on structure. The double mutant protein TF1-G15I32 binds to a preferred site in hydroxymethyluracil-containing DNA 40 times more tightly, denatures at higher temperature (delta tm = 21 degrees C), and also exchanges subunits much more slowly than does the wild-type protein. The L25-->A mutation makes TF1 secondary structure and DNA-binding highly salt concentration-dependent. The E15-->G mutation partly suppresses this effect: secondary structure of TF1-A25G15 is restored at 21 degrees C by 1 M NaCl or, at low NaCl concentration, by binding to DNA.
A structural role for the PHP domain in E. coli DNA polymerase III.
Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H
2013-05-14
In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.
Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune
2008-07-18
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.
Structural and sequencing analysis of local target DNA recognition by MLV integrase.
Aiyer, Sriram; Rossi, Paolo; Malani, Nirav; Schneider, William M; Chandar, Ashwin; Bushman, Frederic D; Montelione, Gaetano T; Roth, Monica J
2015-06-23
Target-site selection by retroviral integrase (IN) proteins profoundly affects viral pathogenesis. We describe the solution nuclear magnetic resonance structure of the Moloney murine leukemia virus IN (M-MLV) C-terminal domain (CTD) and a structural homology model of the catalytic core domain (CCD). In solution, the isolated MLV IN CTD adopts an SH3 domain fold flanked by a C-terminal unstructured tail. We generated a concordant MLV IN CCD structural model using SWISS-MODEL, MMM-tree and I-TASSER. Using the X-ray crystal structure of the prototype foamy virus IN target capture complex together with our MLV domain structures, residues within the CCD α2 helical region and the CTD β1-β2 loop were predicted to bind target DNA. The role of these residues was analyzed in vivo through point mutants and motif interchanges. Viable viruses with substitutions at the IN CCD α2 helical region and the CTD β1-β2 loop were tested for effects on integration target site selection. Next-generation sequencing and analysis of integration target sequences indicate that the CCD α2 helical region, in particular P187, interacts with the sequences distal to the scissile bonds whereas the CTD β1-β2 loop binds to residues proximal to it. These findings validate our structural model and disclose IN-DNA interactions relevant to target site selection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.
TFBSshape: a motif database for DNA shape features of transcription factor binding sites
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955
Song, Wei; Guo, Jun-Tao
2015-01-01
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
Swigon, David; Coleman, Bernard D.; Olson, Wilma K.
2006-01-01
Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444
DNA recognition by an RNA-guided bacterial Argonaute
Doudna, Jennifer A.
2017-01-01
Argonaute (Ago) proteins are widespread in prokaryotes and eukaryotes and share a four-domain architecture capable of RNA- or DNA-guided nucleic acid recognition. Previous studies identified a prokaryotic Argonaute protein from the eubacterium Marinitoga piezophila (MpAgo), which binds preferentially to 5′-hydroxylated guide RNAs and cleaves single-stranded RNA (ssRNA) and DNA (ssDNA) targets. Here we present a 3.2 Å resolution crystal structure of MpAgo bound to a 21-nucleotide RNA guide and a complementary 21-nucleotide ssDNA substrate. Comparison of this ternary complex to other target-bound Argonaute structures reveals a unique orientation of the N-terminal domain, resulting in a straight helical axis of the entire RNA-DNA heteroduplex through the central cleft of the protein. Additionally, mismatches introduced into the heteroduplex reduce MpAgo cleavage efficiency with a symmetric profile centered around the middle of the helix. This pattern differs from the canonical mismatch tolerance of other Argonautes, which display decreased cleavage efficiency for substrates bearing sequence mismatches to the 5′ region of the guide strand. This structural analysis of MpAgo bound to a hybrid helix advances our understanding of the diversity of target recognition mechanisms by Argonaute proteins. PMID:28520746
Turegun, Bengi; Baker, Richard W; Leschziner, Andres E; Dominguez, Roberto
2018-01-01
The catalytic subunits of SWI/SNF-family and INO80-family chromatin remodelers bind actin and actin-related proteins (Arps) through an N-terminal helicase/SANT-associated (HSA) domain. Between the HSA and ATPase domains lies a conserved post-HSA (pHSA) domain. The HSA domain of Sth1, the catalytic subunit of the yeast SWI/SNF-family remodeler RSC, recruits the Rtt102-Arp7/9 heterotrimer. Rtt102-Arp7/9 regulates RSC function, but the mechanism is unclear. We show that the pHSA domain interacts directly with another conserved region of the catalytic subunit, protrusion-1. Rtt102-Arp7/9 binding to the HSA domain weakens this interaction and promotes the formation of stable, monodisperse complexes with DNA and nucleosomes. A crystal structure of Rtt102-Arp7/9 shows that ATP binds to Arp7 but not Arp9. However, Arp7 does not hydrolyze ATP. Together, the results suggest that Rtt102 and ATP stabilize a conformation of Arp7/9 that potentiates binding to the HSA domain, which releases intramolecular interactions within Sth1 and controls DNA and nucleosome binding.
Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy.
Morimatsu, Katsumi; Takahashi, Masayuki; Nordén, Bengt
2002-09-03
Linear dichroism (LD) polarized-light spectroscopy is used to determine the arrangement of RecA in its large filamentous complex with DNA, active in homologous recombination. Angular orientation data for two tryptophan and seven tyrosine residues, deduced from differential LD of wild-type RecA vs. mutants that were engineered to attenuate the UV absorption of selected residues, revealed a rotation by some 40 degrees of the RecA subunits relative to the arrangement in crystal without DNA. In addition, conformational changes are observed for tyrosine residues assigned to be involved in DNA binding and in RecA-RecA contacts, thus potentially related to the global structure of the filament and its biological function. The presented spectroscopic approach, called "Site-Specific Linear Dichroism" (SSLD), may find forceful applications also to other biologically important fibrous complexes not amenable to x-ray crystallographic or NMR structural analysis.
TALEs from a spring--superelasticity of Tal effector protein structures.
Flechsig, Holger
2014-01-01
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA.
TALEs from a Spring – Superelasticity of Tal Effector Protein Structures
Flechsig, Holger
2014-01-01
Transcription activator-like effectors (TALEs) are DNA-related proteins that recognise and bind specific target sequences to manipulate gene expression. Recently determined crystal structures show that their common architecture reveals a superhelical overall structure that may undergo drastic conformational changes. To establish a link between structure and dynamics in TALE proteins we have employed coarse-grained elastic-network modelling of currently available structural data and implemented a force-probe setup that allowed us to investigate their mechanical behaviour in computer experiments. Based on the measured force-extension curves we conclude that TALEs exhibit superelastic dynamical properties allowing for large-scale global conformational changes along their helical axis, which represents the soft direction in such proteins. For moderate external forcing the TALE models behave like linear springs, obeying Hooke's law, and the investigated structures can be characterised and compared by a corresponding spring constant. We show that conformational flexibility underlying the large-scale motions is not homogeneously distributed over the TALE structure, but instead soft spot residues around which strain is accumulated and which turn out to represent key agents in the transmission of conformational motions are identified. They correspond to the RVD loop residues that have been experimentally determined to play an eminent role in the binding process of target DNA. PMID:25313859
Kulén, Martina; Lindgren, Marie; Hansen, Sabine; Cairns, Andrew G; Grundström, Christin; Begum, Afshan; van der Lingen, Ingeborg; Brännström, Kristoffer; Hall, Michael; Sauer, Uwe H; Johansson, Jörgen; Sauer-Eriksson, A Elisabeth; Almqvist, Fredrik
2018-05-10
Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (A I ), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-A I selective PrfA inhibitors with potent antivirulence properties.
An intercalation-locked parallel-stranded DNA tetraplex
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
2015-01-27
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...
2014-12-30
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.
2014-12-30
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activitymore » in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean
2004-04-16
2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less
Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan
2015-01-01
The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668
Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor
Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi
2016-01-01
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367
Drakou, Christina E; Tsitsanou, Katerina E; Potamitis, Constantinos; Fessas, Dimitrios; Zervou, Maria; Zographos, Spyros E
2017-01-01
Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.034 and 0.714 mM) and thermodynamic profiles of ligand binding. To elucidate the binding mode of Icaridin, the crystal structure of AgamOBP1•Icaridin complex was determined at 1.75 Å resolution. We found that Icaridin binds to the DEET-binding site in two distinct orientations and also to a novel binding site located at the C-terminal region. Importantly, only the most active 1R,2S-isomer of Icaridin's equimolar diastereoisomeric mixture binds to the AgamOBP1 crystal, providing structural evidence for the possible contribution of OBP1 to the stereoselectivity of Icaridin perception in mosquitoes. Structural analysis revealed two ensembles of conformations differing mainly in spatial arrangement of their sec-butyl moieties. Moreover, structural comparison with DEET indicates a common recognition mechanism for these structurally related repellents. Ligand interactions with both sites and binding modes were further confirmed by 2D 1 H- 15 N HSQC NMR spectroscopy. The identification of a novel repellent-binding site in AgamOBP1 and the observed structural conservation and stereoselectivity of its DEET/Icaridin-binding sites open new perspectives for the OBP1-structure-based discovery of next-generation insect repellents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoyagi-Scharber, Mika, E-mail: maoyagi@bmrn.com; Gardberg, Anna S.; Yip, Bryan K.
2014-08-29
BMN 673, a novel PARP1/2 inhibitor in clinical development with substantial tumor cytotoxicity, forms extensive hydrogen-bonding and π-stacking in the nicotinamide pocket, with its unique disubstituted scaffold extending towards the less conserved edges of the pocket. These interactions might provide structural insight into the ability of BMN 673 to both inhibit catalysis and affect DNA-binding activity. Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2), which are involved in DNA damage response, are targets of anticancer therapeutics. BMN 673 is a novel PARP1/2 inhibitor with substantially increased PARP-mediated tumor cytotoxicity and is now in later-stage clinical development for BRCA-deficient breast cancers.more » In co-crystal structures, BMN 673 is anchored to the nicotinamide-binding pocket via an extensive network of hydrogen-bonding and π-stacking interactions, including those mediated by active-site water molecules. The novel di-branched scaffold of BMN 673 extends the binding interactions towards the outer edges of the pocket, which exhibit the least sequence homology among PARP enzymes. The crystallographic structural analyses reported here therefore not only provide critical insights into the molecular basis for the exceptionally high potency of the clinical development candidate BMN 673, but also new opportunities for increasing inhibitor selectivity.« less
NASA Astrophysics Data System (ADS)
Smith, Jarrod Anson
2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.
Keane, Páraic M; Hall, James P; Poynton, Fergus E; Poulsen, Bjørn C; Gurung, Sarah P; Clark, Ian P; Sazanovich, Igor V; Towrie, Michael; Gunnlaugsson, Thorfinnur; Quinn, Susan J; Cardin, Christine J; Kelly, John M
2017-08-01
Key to the development of DNA-targeting phototherapeutic drugs is determining the interplay between the photoactivity of the drug and its binding preference for a target sequence. For the photo-oxidising lambda-[Ru(TAP) 2 (dppz)] 2+ (Λ-1) (dppz=dipyridophenazine) complex bound to either d{T 1 C 2 G 3 G 4 C 5 G 6 C 7 C 8 G 9 A 10 } 2 (G9) or d{TCGGCGCCIA} 2 (I9), the X-ray crystal structures show the dppz intercalated at the terminal T 1 C 2 ;G 9 A 10 step or T 1 C 2 ;I 9 A 10 step. Thus substitution of the G 9 nucleobase by inosine does not affect intercalation in the solid state although with I9 the dppz is more deeply inserted. In solution it is found that the extent of guanine photo-oxidation, and the rate of back electron-transfer, as determined by pico- and nanosecond time-resolved infrared and transient visible absorption spectroscopy, is enhanced in I9, despite it containing the less oxidisable inosine. This is attributed to the nature of the binding in the minor groove due to the absence of an NH 2 group. Similar behaviour and the same binding site in the crystal are found for d{TTGGCGCCAA} 2 (A9). In solution, we propose that intercalation occurs at the C 2 G 3 ;C 8 I 9 or T 2 G 3 ;C 8 A 9 steps, respectively, with G 3 the likely target for photo-oxidation. This demonstrates how changes in the minor groove (in this case removal of an NH 2 group) can facilitate binding of Ru II dppz complexes and hence influence any sensitised reactions occurring at these sites. No similar enhancement of photooxidation on binding to I9 is found for the delta enantiomer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure of human Cdc45 and implications for CMG helicase function
Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca
2016-01-01
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187
Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek
Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA,more » which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.« less
Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa
Wang, Dan; Huang, Shanqing; Liu, Pingying; Liu, Xichun; He, Yafeng; Chen, Weizhong; Hu, Qingyuan; Wei, Tianbiao; Gan, Jianhua; Ma, Jing; Chen, Hao
2016-01-01
The metalloprotein MerR is a mercury(II)-dependent transcriptional repressor-activator that responds to mercury(II) with extraordinary sensitivity and selectivity. It’s widely distributed in both Gram-negative and Gram-positive bacteria but with barely detectable sequence identities between the two sources. To provide structural basis for the considerable biochemical and biophysical experiments previously performed on Tn501 and Tn21 MerR from Gram-negative bacteria, we analyzed the crystal structure of mercury(II)-bound Tn501 MerR. The structure in the metal-binding domain provides Tn501 MerR with a high affinity for mercury(II) and the ability to distinguish mercury(II) from other metals with its unique planar trigonal coordination geometry, which is adopted by both Gram-negative and Gram-positive bacteria. The mercury(II) coordination state in the C-terminal metal-binding domain is transmitted through the allosteric network across the dimer interface to the N-terminal DNA-binding domain. Together with the previous mutagenesis analyses, the present data indicate that the residues in the allosteric pathway have a central role in maintaining the functions of Tn501 MerR. In addition, the complex structure exhibits significant differences in tertiary and quaternary structural arrangements compared to those of Bacillus MerR from Gram-positive bacteria, which probably enable them to function with specific promoter DNA with different spacers between −35 and −10 elements. PMID:27641146
Structural basis for the D-stereoselectivity of human DNA polymerase β
Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.
2017-01-01
Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan
Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less
The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Wang, Zhongduo; Hou, Feng
2017-01-01
Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. Wemore » used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.« less
Slama-Schwok, A; Zakrzewska, K; Léger, G; Leroux, Y; Takahashi, M; Käs, E; Debey, P
2000-01-01
Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation. PMID:10777751
NASA Astrophysics Data System (ADS)
Singaravelan, K.; Chandramohan, A.; Saravanabhavan, M.; Muthu Vijayan Enoch, I. V.; Suganthi, V. S.
2017-09-01
Radical scavenging activity against DPPH radical and binding properties of a hydrogen bonded charge transfer molecular salt 4-chloro anilinium-3-nitrophthalate(CANP) with calf thymus DNA has been studied by electronic absorption and emission spectroscopy. The molecular structure and crystallinity of the CANP salt have been established by carried out powder and single crystal X-ray diffraction analysis which indicated that cation and anion are linked through strong N+sbnd H…O- type of hydrogen bond. FTIR spectroscopic study was carried out to know the various functional groups present in the crystal. 1H and 13C NMR spectra were recorded to further confirm the molecular structure of the salt crystal. The thermal stability of the title salt was established by TG/DTA analyses simultaneously on the powdered sample of the title crystal. Further, the CANP salt was examined against various bacteria and fungi strains which showed a remarkable antimicrobial activity compared to that of the standards Ciproflaxin and Clotrimazole. The results showed that the CANP salt could interact with CT-DNA through intercalation. Antioxidant studies of the substrates alone and synthesized CANP salt showed that the latter has been better radical scavenging activity than that of the former against DPPH radical. The third order nonlinear susceptibility of the CANP salt was established by the Z-scan study.
Chan, I-San; Al-Sarraj, Taufik; Shahravan, S. Hesam; Fedorova, Anna V.; Shin, Jumi A.
2012-01-01
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4-bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR), and that 5H-LR comprises two 4-bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explored how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP–DNA interactions at a number of full-sites that contain 5H-LR vs. either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo. PMID:22856882
Chan, I-San; Al-Sarraj, Taufik; Shahravan, S Hesam; Fedorova, Anna V; Shin, Jumi A
2012-08-21
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.
NASA Astrophysics Data System (ADS)
Suenaga, A.; Yatsu, C.; Komeiji, Y.; Uebayasi, M.; Meguro, T.; Yamato, I.
2000-08-01
Molecular dynamics simulation of Escherichia colitrp-repressor/operator complex was performed to elucidate protein-DNA interactions in solution for 800 ps on special-purpose computer MD-GRAPE. The Ewald summation method was employed to treat the electrostatic interaction without cutoff. DNA kept stable conformation in comparison with the result of the conventional cutoff method. Thus, the trajectories obtained were used to analyze the protein-DNA interaction and to understand the role of dynamics of water molecules forming sequence specific recognition interface. The dynamical cross-correlation map showed a significant positive correlation between the helix-turn-helix DNA-binding motifs and the major grooves of operator DNA. The extensive contact surface was stable during the simulation. Most of the contacts consisted of direct interactions between phosphates of DNA and the protein, but several water-mediated polar contacts were also observed. These water-mediated interactions, which were also seen in the crystal structure (Z. Otwinowski, et al., Nature, 335 (1998) 321) emerged spontaneously from the randomized initial configuration of the solvent. This result suggests the importance of the water-mediated interaction in specific recognition of DNA by the trp-repressor, consistent with X-ray structural information.
Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin
2014-06-01
The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less
Dynamic binding of replication protein a is required for DNA repair
Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.
2016-01-01
Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385
Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Meredith, Joanne; Prendergast, Richard; Walsh, Danielle; Bryant, Patrick; Levy, Colin; Helliwell, John R
2012-05-01
The anticancer complexes cisplatin and carboplatin target the DNA major groove, forming intrastrand and interstrand cross-links between guanine bases through their N7 atoms, causing distortion of the DNA helix and apoptotic cell death. A major side effect of these drugs is toxicity, which is caused via binding to many proteins in the body. A range of crystallographic studies have been carried out involving the cocrystallization of hen egg-white lysozyme (HEWL) as a test protein with cisplatin and carboplatin in aqueous and dimethyl sulfoxide (DMSO) conditions. Different cryoprotectants, glycerol and Paratone, were used for each of the cisplatin and carboplatin cocrystallization cases, while silicone oil was used for studies involving N-acetylglucosamine (NAG). Both cisplatin and carboplatin do not bind to HEWL in aqueous media on the timescales of the conditions used here, but upon addition of DMSO two molecules of cisplatin or carboplatin bind either side of His15, which is the only His residue in lysozyme and is assumed to be an imidazolyl anion or a chemical resonance moiety, i.e. both imidazole N atoms are chemically reactive. To identify the platinum-peak positions in the 'with DMSO conditions', anomalous scattering maps were calculated as a cross-check with the F(o) - F(c) OMIT maps. Platinum-occupancy σ values were established using three different software programs in each case. The use of EVAL15 to process all of the diffraction data sets provided a consistent platform for a large ensemble of data sets for the various protein and platinum-compound model refinements with REFMAC5 and then SHELXTL. Overall, this extensive set of crystallization and cryoprotectant conditions allowed a systematic evaluation of cisplatin and carboplatin binding to lysozyme as a test protein via detailed X-ray crystal structure characterizations. DMSO is used as a super-solvent for drug delivery as it is deemed to cause no effect upon drug binding. However, these results show that addition of DMSO causes the platinum anticancer drugs to bind to HEWL. This effect should be considered in toxicity assessments of these drugs and perhaps more widely. © 2012 International Union of Crystallography
Structure of Full-length Drosophila Cryptochrome
Zoltowski, Brian D.; Vaidya, Anand T.; Top, Deniz; Widom, Joanne; Young, Michael W.; Crane, Brian R.
2011-01-01
The Cryptochrome/Photolyase (CRY/PL) family of photoreceptors mediates adaptive responses to UV and blue light exposure in all kingdoms of life 1; 2; 3; 4; 5. Whereas PLs function predominantly in DNA repair of cyclobutane pyrimidine dimers (CPDs)and 6-4 photolesions caused by UV radiation, CRYs transduce signals important for growth, development, magnetosensitivity and circadian clocks1; 2; 3; 4; 5. Despite these diverse functions, PLs/CRYs preserve a common structural fold, a dependence on flavin adenine dinucleotide (FAD) and an internal photoactivation mechanism3; 6. However, members of the CRY/PL family differ in the substrates recognized (protein or DNA), photochemical reactions catalyzed and involvement of an antenna cofactor. It is largely unknown how the animal CRYs that regulate circadian rhythms act on their substrates. CRYs contain a variable C-terminal tail that appends the conserved PL homology domain (PHD) and is important for function 7; 8; 9; 10; 11; 12. Herein, we report a 2.3 Å resolution crystal structure of Drosophila CRY with an intact C-terminus. The C-terminal helix docks in the analogous groove that binds DNA substrates in PLs. Conserved Trp536 juts into the CRY catalytic center to mimic PL recognition of DNA photolesions. The FAD anionic semiquinone found in the crystals assumes a conformation to facilitate restructuring of the tail helix. These results help reconcile the diverse functions of the CRY/PL family by demonstrating how conserved protein architecture, and photochemistry can be elaborated into a range of light-driven functions. PMID:22080955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xun; Guanga, Gerald P; Wan, Cheng
2012-11-13
MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less
Interplay of protein and DNA structure revealed in simulations of the lac operon.
Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K
2013-01-01
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1
Clifton, Matthew C.; Dranow, David M.; Leed, Alison; Fulroth, Ben; Fairman, James W.; Abendroth, Jan; Atkins, Kateri A.; Wallace, Ellen; Fan, Dazhong; Xu, Guoping; Ni, Z. J.; Daniels, Doug; Van Drie, John; Wei, Guo; Burgin, Alex B.; Golub, Todd R.; Hubbard, Brian K.; Serrano-Wu, Michael H.
2015-01-01
Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors. PMID:25909780
An overview of the structures of protein-DNA complexes
Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M
2000-01-01
On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519
Characterization of the DNA binding properties of polyomavirus capsid protein
NASA Technical Reports Server (NTRS)
Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1993-01-01
The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.
Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kemin; Cao, Nan; Cheng, Bokun
The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) andmore » the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52 angstrom resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel beta-sheet stabilized by a crossing-over alpha-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.« less
Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin
2013-01-01
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assefa, Netsanet Gizaw; Niiranen, Laila; University of Turku, FIN-20014 Turku
2014-08-01
A structural and biophysical study of the interactions between cod and human uracil-DNA N-glycosylase (UNG) and their inhibitor Ugi is presented. The stronger interaction between cod UNG and Ugi can be explained by a greater positive electrostatic surface potential. Uracil-DNA N-glycosylase from Atlantic cod (cUNG) shows cold-adapted features such as high catalytic efficiency, a low temperature optimum for activity and reduced thermal stability compared with its mesophilic homologue human UNG (hUNG). In order to understand the role of the enzyme–substrate interaction related to the cold-adapted properties, the structure of cUNG in complex with a bacteriophage encoded natural UNG inhibitor (Ugi)more » has been determined. The interaction has also been analyzed by isothermal titration calorimetry (ITC). The crystal structure of cUNG–Ugi was determined to a resolution of 1.9 Å with eight complexes in the asymmetric unit related through noncrystallographic symmetry. A comparison of the cUNG–Ugi complex with previously determined structures of UNG–Ugi shows that they are very similar, and confirmed the nucleotide-mimicking properties of Ugi. Biophysically, the interaction between cUNG and Ugi is very strong and shows a binding constant (K{sub b}) which is one order of magnitude larger than that for hUNG–Ugi. The binding of both cUNG and hUNG to Ugi was shown to be favoured by both enthalpic and entropic forces; however, the binding of cUNG to Ugi is mainly dominated by enthalpy, while the entropic term is dominant for hUNG. The observed differences in the binding properties may be explained by an overall greater positive electrostatic surface potential in the protein–Ugi interface of cUNG and the slightly more hydrophobic surface of hUNG.« less
DNA mimic proteins: functions, structures, and bioinformatic analysis.
Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J
2014-05-13
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barends, Thomas R. M., E-mail: thomas.barends@mpimf-heidelberg.mpg.de; Brosi, Richard W. W.; Steinmetz, Andrea
2013-08-01
The crystal structure of the N-terminal part of T. thermophilus DnaJ unexpectedly showed an ordered GF domain and guided the design of a construct enabling the first structure determination of a complete DnaJ cochaperone molecule. By combining the crystal structures with spin-labelling EPR and cross-linking in solution, a dynamic view of this flexible molecule was developed. Hsp70 chaperones assist in a large variety of protein-folding processes in the cell. Crucial for these activities is the regulation of Hsp70 by Hsp40 cochaperones. DnaJ, the bacterial homologue of Hsp40, stimulates ATP hydrolysis by DnaK (Hsp70) and thus mediates capture of substrate protein,more » but is also known to possess chaperone activity of its own. The first structure of a complete functional dimeric DnaJ was determined and the mobility of its individual domains in solution was investigated. Crystal structures of the complete molecular cochaperone DnaJ from Thermus thermophilus comprising the J, GF and C-terminal domains and of the J and GF domains alone showed an ordered GF domain interacting with the J domain. Structure-based EPR spin-labelling studies as well as cross-linking results showed the existence of multiple states of DnaJ in solution with different arrangements of the various domains, which has implications for the function of DnaJ.« less
Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine
2017-01-01
Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388
DNA-binding mechanism of the Escherichia coli Ada O6-alkylguanine–DNA alkyltransferase
Verdemato, Philip E.; Brannigan, James A.; Damblon, Christian; Zuccotto, Fabio; Moody, Peter C. E.; Lian, Lu-Yun
2000-01-01
The C-terminal domain of the Escherichia coli Ada protein (Ada-C) aids in the maintenance of genomic integrity by efficiently repairing pre-mutagenic O6-alkylguanine lesions in DNA. Structural and thermodynamic studies were carried out to obtain a model of the DNA-binding process. Nuclear magnetic resonance (NMR) studies map the DNA-binding site to helix 5, and a loop region (residues 151–160) which form the recognition helix and the ‘wing’ of a helix–turn–wing motif, respectively. The NMR data also suggest the absence of a large conformational change in the protein upon binding to DNA. Hence, an O6-methylguanine (O6meG) lesion would be inaccessible to active site nucleophile Cys146 if the modified base remained stacked within the DNA duplex. The experimentally determined DNA-binding face of Ada-C was used in combination with homology modelling, based on the catabolite activator protein, and the accepted base-flipping mechanism, to construct a model of how Ada-C binds to DNA in a productive manner. To complement the structural studies, thermodynamic data were obtained which demonstrate that binding to unmethylated DNA was entropically driven, whilst the demethylation reaction provoked an exothermic heat change. Methylation of Cys146 leads to a loss of structural integrity of the DNA-binding subdomain. PMID:11000262
Brucet, Marina; Querol-Audí, Jordi; Serra, Maria; Ramirez-Espain, Ximena; Bertlik, Kamila; Ruiz, Lidia; Lloberas, Jorge; Macias, Maria J; Fita, Ignacio; Celada, Antonio
2007-05-11
TREX1 is the most abundant mammalian 3' --> 5' DNA exonuclease. It has been described to form part of the SET complex and is responsible for the Aicardi-Goutières syndrome in humans. Here we show that the exonuclease activity is correlated to the binding preferences toward certain DNA sequences. In particular, we have found three motifs that are selected, GAG, ACA, and CTGC. To elucidate how the discrimination occurs, we determined the crystal structures of two murine TREX1 complexes, with a nucleotide product of the exonuclease reaction, and with a single-stranded DNA substrate. Using confocal microscopy, we observed TREX1 both in nuclear and cytoplasmic subcellular compartments. Remarkably, the presence of TREX1 in the nucleus requires the loss of a C-terminal segment, which we named leucine-rich repeat 3. Furthermore, we detected the presence of a conserved proline-rich region on the surface of TREX1. This observation points to interactions with proline-binding domains. The potential interacting motif "PPPVPRPP" does not contain aromatic residues and thus resembles other sequences that select SH3 and/or Group 2 WW domains. By means of nuclear magnetic resonance titration experiments, we show that, indeed, a polyproline peptide derived from the murine TREX1 sequence interacted with the WW2 domain of the elongation transcription factor CA150. Co-immunoprecipitation studies confirmed this interaction with the full-length TREX1 protein, thereby suggesting that TREX1 participates in more functional complexes than previously thought.
Controlling Non-Equilibrium Structure Formation on the Nanoscale.
Buchmann, Benedikt; Hecht, Fabian Manfred; Pernpeintner, Carla; Lohmueller, Theobald; Bausch, Andreas R
2017-12-06
Controlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding. However, regulating the structural growth processes from the nano- to the micro- and mesoscale remains elusive. Here, we show that the non-equilibrium structure formation of gold nanoparticles can be stirred in a binary heterocoagulation process to generate nanoparticle clusters of different sizes. The gold nanoparticles are coated with sticky single stranded DNA and mixed at different stoichiometries and sizes. This not only allows for structural control but also yields access to the optical properties of the nanoparticle suspensions. As a result, we were able to reliably control the kinetic structure formation process to produce cluster sizes between tens of nanometers up to micrometers. Consequently, the intricate optical properties of the gold nanoparticles could be utilized to control the maximum of the nanoparticle suspension extinction spectra between 525 nm and 600 nm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hayashi, Yohei; Caboni, Laura; Das, Debanu; ...
2015-03-30
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less
Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.
Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu
2014-09-01
Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.
Hayashi, Yohei; Caboni, Laura; Das, Debanu; Yumoto, Fumiaki; Clayton, Thomas; Deller, Marc C.; Nguyen, Phuong; Farr, Carol L.; Chiu, Hsiu-Ju; Miller, Mitchell D.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Tomoda, Kiichiro; Conklin, Bruce R.; Wilson, Ian A.; Yamanaka, Shinya; Fletterick, Robert J.
2015-01-01
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering. PMID:25825768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Yohei; Caboni, Laura; Das, Debanu
NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutantsmore » based on the protein–DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings indicate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.« less
Chen, Luan; Shi, Ke; Yin, Zhiqi; Aihara, Hideki
2013-01-07
Holliday junction (HJ) resolvases are structure-specific endonucleases that cleave four-way DNA junctions (HJs) generated during DNA recombination and repair. Bacterial RuvC, a prototypical HJ resolvase, functions as homodimer and nicks DNA strands precisely across the junction point. To gain insights into the mechanisms underlying symmetrical strand cleavages by RuvC, we performed crystallographic and biochemical analyses of RuvC from Thermus thermophilus (T.th. RuvC). The crystal structure of T.th. RuvC shows an overall protein fold similar to that of Escherichia coli RuvC, but T.th. RuvC has a more tightly associated dimer interface possibly reflecting its thermostability. The binding mode of a HJ-DNA substrate can be inferred from the shape/charge complementarity between the T.th. RuvC dimer and HJ-DNA, as well as positions of sulfate ions bound on the protein surface. Unexpectedly, the structure of T.th. RuvC homodimer refined at 1.28 Å resolution shows distinct asymmetry near the dimer interface, in the region harboring catalytically important aromatic residues. The observation suggests that the T.th. RuvC homodimer interconverts between two asymmetric conformations, with alternating subunits switched on for DNA strand cleavage. This model provides a structural basis for the 'nick-counter-nick' mechanism in HJ resolution, a mode of HJ processing shared by prokaryotic and eukaryotic HJ resolvases.
Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean
2014-09-01
Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
Ohniwa, Ryosuke L.; Muchaku, Hiroki; Saito, Shinji; Wada, Chieko; Morikawa, Kazuya
2013-01-01
Bacterial genomic DNA is packed within the nucleoid of the cell along with various proteins and RNAs. We previously showed that the nucleoid in log phase cells consist of fibrous structures with diameters ranging from 30 to 80 nm, and that these structures, upon RNase A treatment, are converted into homogeneous thinner fibers with diameter of 10 nm. In this study, we investigated the role of major DNA-binding proteins in nucleoid organization by analyzing the nucleoid of mutant Escherichia coli strains lacking HU, IHF, H–NS, StpA, Fis, or Hfq using atomic force microscopy. Deletion of particular DNA-binding protein genes altered the nucleoid structure in different ways, but did not release the naked DNA even after the treatment with RNase A. This suggests that major DNA-binding proteins are involved in the formation of higher order structure once 10-nm fiber structure is built up from naked DNA. PMID:23951337
Strecker, Claas; Meyer, Bernd
2018-05-29
Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.
Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I
2014-06-01
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
Structure, function, and tethering of DNA-binding domains in σ 54 transcriptional activators
Vidangos, Natasha; Maris, Ann E.; Young, Anisa; ...
2013-07-02
In this paper, we compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ 54 transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ 54-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-likemore » homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. Finally, the comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly.« less
A structural role for the PHP domain in E. coli DNA polymerase III
2013-01-01
Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase. PMID:23672456
Crystal Structure of the Eukaryotic Origin Recognition Complex
Bleichert, Franziska; Botchan, Michael R.; Berger, James M.
2015-01-01
Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138
Virador, Victoria M; Reyes Grajeda, Juan P; Blanco-Labra, Alejandro; Mendiola-Olaya, Elizabeth; Smith, Gary M; Moreno, Abel; Whitaker, John R
2010-01-27
The full-length cDNA sequence (P93622_VITVI) of polyphenol oxidase (PPO) cDNA from grape Vitis vinifera L., cv Grenache, was found to encode a translated protein of 607 amino acids with an expected molecular weight of ca. 67 kDa and a predicted pI of 6.83. The translated amino acid sequence was 99%, identical to that of a white grape berry PPO (1) (5 out of 607 amino acid potential sequence differences). The protein was purified from Grenache grape berries by using traditional methods, and it was crystallized with ammonium acetate by the hanging-drop vapor diffusion method. The crystals were orthorhombic, space group C222(1). The structure was obtained at 2.2 A resolution using synchrotron radiation using the 39 kDa isozyme of sweet potato PPO (PDB code: 1BT1 ) as a phase donor. The basic symmetry of the cell parameters (a, b, and c and alpha, beta, and gamma) as well as in the number of asymmetric units in the unit cell of the crystals of PPO, differed between the two proteins. The structures of the two enzymes are quite similar in overall fold, the location of the helix bundles at the core, and the active site in which three histidines bind each of the two catalytic copper ions, and one of the histidines is engaged in a thioether linkage with a cysteine residue. The possibility that the formation of the Cys-His thioether linkage constitutes the activation step is proposed. No evidence of phosphorylation or glycoslyation was found in the electron density map. The mass of the crystallized protein appears to be only 38.4 kDa, and the processing that occurs in the grape berry that leads to this smaller size is discussed.
Duda, David M.; van Waardenburg, Robert C. A. M.; Borg, Laura A.; McGarity, Sierra; Nourse, Amanda; Waddell, M. Brett; Bjornsti, Mary-Ann; Schulman, Brenda A.
2007-01-01
Summary The SUMO ubiquitin-like proteins play regulatory roles in cell division, transcription, DNA repair, and protein subcellular localization. Paralleling other ubiquitin-like proteins, SUMO proteins are proteolytically processed to maturity, conjugated to targets by E1-E2-E3 cascades, and subsequently recognized by specific downstream effectors containing a SUMO-binding motif (SBM). SUMO and its E2 from the budding yeast S. cerevisiae, Smt3p and Ubc9p, are encoded by essential genes. Here we describe the 1.9 Å resolution crystal structure of a noncovalent Smt3p–Ubc9p complex. Unexpectedly, a heterologous portion of the crystallized complex derived from the expression construct mimics an SBM, and binds Smt3p in a manner resembling SBM binding to human SUMO family members. In the complex, Smt3p binds a surface distal from Ubc9's catalytic cysteine. The structure implies that a single molecule of Smt3p cannot bind concurrently to both the noncovalent binding site and the catalytic cysteine of a single Ubc9p molecule. However, formation of higher-order complexes can occur, where a single Smt3p covalently linked to one Ubc9p's catalytic cysteine also binds noncovalently to another molecule of Ubc9p. Comparison with other structures from the SUMO pathway suggests that formation of the noncovalent Smt3p–Ubc9p complex occurs mutually exclusively with many other Smt3p and Ubc9p interactions in the conjugation cascade. By contrast, high-resolution insights into how Smt3p–Ubc9p can also interact with downstream recognition machineries come from contacts with the SBM mimic. Interestingly, the overall architecture of the Smt3p–Ubc9p complex is strikingly similar to recent structures from the ubiquitin pathway. The results imply that noncovalent ubiquitin-like protein–E2 complexes are conserved platforms, which function as parts of larger assemblies involved many protein post-translational regulatory pathways. PMID:17475278
Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements.
Hudson, William H; Vera, Ian Mitchelle S de; Nwachukwu, Jerome C; Weikum, Emily R; Herbst, Austin G; Yang, Qin; Bain, David L; Nettles, Kendall W; Kojetin, Douglas J; Ortlund, Eric A
2018-04-06
Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.
The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport.
May, Janine M; Owens, Tristan W; Mandler, Michael D; Simpson, Brent W; Lazarus, Michael B; Sherman, David J; Davis, Rebecca M; Okuda, Suguru; Massefski, Walter; Ruiz, Natividad; Kahne, Daniel
2017-12-06
Novobiocin is an orally active antibiotic that inhibits DNA gyrase by binding the ATP-binding site in the ATPase subunit. Although effective against Gram-positive pathogens, novobiocin has limited activity against Gram-negative organisms due to the presence of the lipopolysaccharide-containing outer membrane, which acts as a permeability barrier. Using a novobiocin-sensitive Escherichia coli strain with a leaky outer membrane, we identified a mutant with increased resistance to novobiocin. Unexpectedly, the mutation that increases novobiocin resistance was not found to alter gyrase, but the ATPase that powers lipopolysaccharide (LPS) transport. Co-crystal structures, biochemical, and genetic evidence show novobiocin directly binds this ATPase. Novobiocin does not bind the ATP binding site but rather the interface between the ATPase subunits and the transmembrane subunits of the LPS transporter. This interaction increases the activity of the LPS transporter, which in turn alters the permeability of the outer membrane. We propose that novobiocin will be a useful tool for understanding how ATP hydrolysis is coupled to LPS transport.
Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB
Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria
2016-01-01
Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site(s), missing in the separate catalytic domain, that must also be saturated for maximal activity. The molecular bases of the thermostabilizing effect of Mn2+ on the N-terminal domain of the protein as well as the potential location of additional metal binding sites in the entire RepB are discussed. PMID:27709114
Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.
Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong
2016-08-23
The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.
NASA Astrophysics Data System (ADS)
Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.
2018-07-01
A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.
NASA Astrophysics Data System (ADS)
Dostani, Morteza; Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Farrokhpour, Hossein; Sabzalian, Mohammad R.; Abyar, Fatemeh; Azarian, Mohammad Hossein
2017-06-01
In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4 × 105, 1.9 × 105 and 4.2 × 104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n > 1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2 +, Cu2 + and VO2 + ions were colonized by fungal growth.
Crochet, Robert B.; Kim, Jeong-Do; Lee, Herie; Yim, Young-Sun; Kim, Song-Gun; Neau, David; Lee, Yong-Hwan
2016-01-01
The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate’s inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate’s negative feed-back loop of the glycolytic pathway via PFKFB2. PMID:27802586
Diltemiz, S Emir; Hür, D; Ersöz, A; Denizli, A; Say, R
2009-11-15
Quartz crystal microbalance (QCM) sensors coated with molecular imprinted polymers (MIP) have been developed for the determination of thymine. In this method, methacryloylamidoadenine (MA-Ade) have used as a new monomer and thymine template for inspiration of DNA nucleobases interaction. The thymine can be simultaneously hydrogen binding to MA-Ade and fit into the shape-selective cavities. Thus, the interaction between nucleobases has an effect on the binding ability of the QCM sensors. The binding affinity of the thymine imprinted sensors has investigated by using the Langmuir isotherm. The thymine imprinted QCM electrodes have shown homogeneous binding sites for thymine (K(a): 1.0 x 10(5)M(-1)) while heterogeneous binding sites for uracil. On the other hand, recognition selectivity of the QCM sensor based on thymine imprinted polymer toward to uracil, ssDNA and ssRNA has been reported in this work.
Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala
2018-01-11
The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .
Laino, Aldana; Lopez-Zavala, Alonso A.; Garcia-Orozco, Karina D.; ...
2017-09-11
Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus ( PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, andmore » it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant ( K m) was 1.7 mM with a k cat of 75 s –1. Two crystal structures are presented, the apo PvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310–320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Lastly, these results contribute to knowledge of mechanistic details of the function of arginine kinase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laino, Aldana; Lopez-Zavala, Alonso A.; Garcia-Orozco, Karina D.
Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus ( PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, andmore » it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant ( K m) was 1.7 mM with a k cat of 75 s –1. Two crystal structures are presented, the apo PvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310–320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Lastly, these results contribute to knowledge of mechanistic details of the function of arginine kinase.« less
Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K
2013-02-01
Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.
A new structural framework for integrating replication protein A into DNA processing machinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosey, Chris A; Yan, Chunli; Tsutakawa, Susan E
2013-01-01
By coupling the protection and organization of ssDNA with the recruitment and alignment of DNA processing factors, Replication Protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA manages to coordinate the biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA s DNA binding activity, combining small-angle x-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA s DNA-binding core. It has been long held that RPA engages ssDNA in three stages, but our data reveal that RPA undergoes two rather than threemore » transitions as it binds ssDNA. In contrast to previous models, RPA is more compact when fully engaged on 20-30 nucleotides of ssDNA than when DNA-free, and there is no evidence for significant population of a highly compacted structure in the initial 8-10 nucleotide binding mode. These results provide a new framework for understanding the integration of ssDNA into DNA processing machinery and how binding partners may manipulate RPA architecture to gain access to the substrate.« less
Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao
2018-01-01
When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.
Liang, H; Olejniczak, E T; Mao, X; Nettesheim, D G; Yu, L; Thompson, C B; Fesik, S W
1994-01-01
The ets family of eukaryotic transcription factors is characterized by a conserved DNA-binding domain of approximately 85 amino acids for which the three-dimensional structure is not known. By using multidimensional NMR spectroscopy, we have determined the secondary structure of the ets domain of one member of this gene family, human Fli-1, both in the free form and in a complex with a 16-bp cognate DNA site. The secondary structure of the Fli-1 ets domain consists of three alpha-helices and a short four-stranded antiparallel beta-sheet. This secondary structure arrangement resembles that of the DNA-binding domain of the catabolite gene activator protein of Escherichia coli, as well as those of several eukaryotic DNA-binding proteins including histone H5, HNF-3/fork head, and the heat shock transcription factor. Differences in chemical shifts of backbone resonances and amide exchange rates between the DNA-bound and free forms of the Fli-1 ets domain suggest that the third helix is the DNA recognition helix, as in the catabolite gene activator protein and other structurally related proteins. These results suggest that the ets domain is structurally similar to the catabolite gene activator protein family of helix-turn-helix DNA-binding proteins. Images PMID:7972119
Structure-based Analysis to Hu-DNA Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinger,K.; Rice, P.
2007-01-01
HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently publishedmore » Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from 10-14.5 kcal/mol, representing K{sub d} values in the nanomolar to low picomolar range, and a maximum stabilization of at least 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.« less
Park, Chin-Ju; Lee, Joon-Hwa; Choi, Byong-Seok
2005-01-01
Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA. PMID:16043636
Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.
2013-11-20
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less
The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.
Salgado, Paula S; Makeyev, Eugene V; Butcher, Sarah J; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M
2004-02-01
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.
2015-01-01
Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faucher, Frédérick; Robey-Bond, Susan M.; Wallace, Susan S.
DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C {yields} T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylasemore » (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2'-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhiqi; Shi, Ke; Banerjee, Surajit
Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less