Selenium Derivatization of Nucleic Acids for Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang,J.; Sheng, J.; Carrasco, N.
2007-01-01
The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauber, Mark; Yeshiva University, 2495 Amsterdam Avenue, New York, NY 10033-3312; Jakoncic, Jean
Crystallization of lysozyme with (R)-2-methyl-2, 4-pentanediol produces more ordered crystals and a higher resolution protein structure than crystallization with (S)-2-methyl-2, 4-pentanediol. The results suggest that chiral interactions with chiral additives are important in protein crystal formation. Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2, 4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order andmore » produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less
A top-down approach to crystal engineering of a racemic Δ2-isoxazoline.
Lombardo, Giuseppe M; Rescifina, Antonio; Chiacchio, Ugo; Bacchi, Alessia; Punzo, Francesco
2014-02-01
The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top-down approach to be a useful tool for crystal engineering.
Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state.
Kypr, J; Chládková, J; Zimulová, M; Vorlícková, M
1999-09-01
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.
Trevino, R J; Gliubich, F; Berni, R; Cianci, M; Chirgwin, J M; Zanotti, G; Horowitz, P M
1999-05-14
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.
Formation of crystal-like structures and branched networks from nonionic spherical micelles
NASA Astrophysics Data System (ADS)
Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.
2015-12-01
Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.
Lemieux, M Joanne
2007-01-01
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.
In-situ study on growth units of Ba2Mg(B3O6)2 crystal
NASA Astrophysics Data System (ADS)
Lv, X. S.; Sun, Y. L.; Tang, X. L.; Wan, S. M.; Zhang, Q. L.; You, J. L.; Yin, S. T.
2013-05-01
BMBO (Ba2Mg(B3O6)2 crystal) is an excellent birefringent crystal and a potential stimulated Raman scattering (SRS) crystal. In this paper, high temperature Raman spectroscopy was used to in-situ study the melt structure near a BMBO crystal-melt interface. [B3O6]3- groups were found in this region. The result reveals that both of BaO bonds and MgO bonds are the weak bonds in the BMBO crystal structure. During the melting process, the crystal structure broke into Ba2+ ions, Mg2+ ions and [B3O6]3- groups. Our experimental results confirmed that the well-developed faces of BMBO crystals are the (001), (101) and (012) faces. Based on attachment energy theory, the crystal growth habit was discussed. The (001) (101) and (012) crystal faces linked by the weak BaO bonds and MgO bonds have smaller attachment energies and slower growth rates, and thus present in the final morphology. The (012) crystal face has a multi-terrace structure, which suggests that BMBO crystal grows with a layer-by-layer mode.
Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.
2014-01-01
It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678
Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.
Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M
2018-04-01
Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.
Demonstration of Crystal Structure.
ERIC Educational Resources Information Center
Neville, Joseph P.
1985-01-01
Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)
Bunker, Richard D; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J; Pentelute, Bradley L; Lott, J Shaun; Kent, Stephen B H; Baker, Edward N
2015-04-07
Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.
Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers
NASA Astrophysics Data System (ADS)
Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan
2018-04-01
Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.
Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials.
Sun, Shuyang; Lu, Ming
2018-06-23
Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO-LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm 3 ), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.
Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre
2018-01-18
Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.
Identifying, studying and making good use of macromolecular crystals
Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.; Newman, Janet; Snell, Edward H.
2014-01-01
Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed. PMID:25084371
Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.
Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart
2016-08-18
Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals.
Lapkouski, Mikalai; Hofbauerova, Katerina; Sovova, Zofie; Ettrichova, Olga; González-Pérez, Sergio; Dulebo, Alexander; Kaftan, David; Kuta Smatanova, Ivana; Revuelta, Jose L.; Arellano, Juan B.; Carey, Jannette; Ettrich, Rüdiger
2012-01-01
Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally “dry,” has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein. PMID:23071614
Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae
2018-01-01
Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia. The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light–adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling. PMID:29651457
Thakur, Manish Kumar; Kumar, Amit; Birudukota, Swarnakumari; Swaminathan, Srinivasan; Tyagi, Rajiv; Gosu, Ramachandraiah
2016-09-16
Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50%.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation. Copyright © 2016 Elsevier Inc. All rights reserved.
Manjasetty, Babu A; Chance, Mark R
2006-07-07
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.
Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less
Toward Fully in Silico Melting Point Prediction Using Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Maginn, EJ
2013-03-01
Melting point is one of the most fundamental and practically important properties of a compound. Molecular computation of melting points. However, all of these methods simulation methods have been developed for the accurate need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structuresmore » (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.« less
Crystal Structure of Bacillus subtilis α-Amylase in Complex with Acarbose
Kagawa, Masayuki; Fujimoto, Zui; Momma, Mitsuru; Takase, Kenji; Mizuno, Hiroshi
2003-01-01
The crystal structure of Bacillus subtilis α-amylase, in complex with the pseudotetrasaccharide inhibitor acarbose, revealed an hexasaccharide in the active site as a result of transglycosylation. After comparison with the known structure of the catalytic-site mutant complexed with the native substrate maltopentaose, it is suggested that the present structure represents a mimic intermediate in the initial stage of the catalytic process. PMID:14617662
Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.
Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C
2015-03-28
The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.
Viewing Ice Crystals Using Polarized Light.
ERIC Educational Resources Information Center
Kinsman, E. M.
1992-01-01
Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…
Miyake, Ryosuke; Shionoya, Mitsuhiko
2014-06-02
To understand reversible structural switching in crystalline materials, we studied the mechanism of reversible crystal-to-crystal transformation of a tetranuclear Ni(II) macrocycle consisting of artificial β-dipeptides. On the basis of detailed structural analyses and thermodynamic measurements made in a comparison of pseudo-isostructural crystals (NO3 and BF4 salts), we herein discuss how ligand-exchange reactions take place in the crystal due to changes in water content and temperature. Observations of the structural transformation of NO3 salt indicated that a pseudo crystalline phase transformation takes place through concerted ligand-exchange reactions at the four Ni(II) centers of the macrocycle with hydrogen bond switching. A mechanism for this ligand exchange was supported by IR spectroscopy. Thermodynamic measurements suggested that the favorable compensation relationship of the enthalpy changes due to water uptake and structural changes are keys to the reversible structural transformation. On the basis of a comparison with the pseudo-isostructural crystals, it is apparent that the crystal packing structure and the types of counter anions are important factors for facilitating reversible ligand exchange with single crystallinity.
Yamamoto, Masataka; Hayakawa, Naoki; Murakami, Midori; Kouyama, Tsutomu
2009-10-30
The hexagonal P622 crystal of bacteriorhodopsin, which is made up of stacked membranes, is stable provided that the precipitant concentration in the soaking solution is higher than a critical value (i.e., 1.5 M ammonium sulfate). Diffraction data showed that the crystal lattice shrank linearly with increasing precipitant concentration, due primarily to narrowing of intermembrane spaces. Although the crystal shrinkage did not affect the rate of formation of the photoreaction M intermediate, its lifetime increased exponentially with the precipitant concentration. It was suggested that the energetic barrier of the M-to-N transition becomes higher when the motional freedom of the EF loop is reduced by crystal lattice force. As a result of this property, the M state accumulated predominantly when the crystal that was soaked at a high precipitant concentration was illuminated at room temperature. Structural data obtained at various pH levels showed that the overall structure of M is not strongly dependent on pH, except that Glu194 and Glu204 in the proton release complex are more separated at pH 7 than at pH 4.4. This result suggests that light-induced disruption of the paired structure of Glu194 and Glu204 is incomplete when external pH is lower than the pK(a) value of the proton release group in the M state.
Electronic structure of lead pyrophosphate
NASA Astrophysics Data System (ADS)
Suewattana, Malliga; Singh, David
2007-03-01
Lead Pyrophosphate Pb2P2O7 is of interest for potential radiation detection applications and use in long term waste storage. It forms in triclinic P1 crystals and can also be grown as glasses. We performed electronic structure calculations using the crystal structure which determined by Mullica et. al (J. Solid State Chem (1986)) using x-ray diffraction and found large forces on atoms suggesting that the refined atomic positions were not fully correct. Here we report first principles structure relaxation and a revised crystal structure for this compound. We analyze the resulting structure using pair distribution functions and discuss the implications for the electronic properties. This work was supported by DOE NA22 and the Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam ismore » often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Furthermore, our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.« less
Crystal structures of the methyltransferase and helicase from the ZIKA 1947 MR766 Uganda strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukrejewska, Malgorzata; Derewenda, Urszula; Radwanska, Malwina
2017-08-15
Two nonstructural proteins encoded byZika virusstrain MR766 RNA, a methyltransferase and a helicase, were crystallized and their structures were solved and refined at 2.10 and 2.01 Å resolution, respectively. The NS5 methyltransferase contains a boundS-adenosyl-L-methionine (SAM) co-substrate. The NS3 helicase is in the apo form. Comparison with published crystal structures of the helicase in the apo, nucleotide-bound and single-stranded RNA (ssRNA)-bound states suggests that binding of ssRNA to the helicase may occur through conformational selection rather than induced fit.
Understanding Nanocalcification: A Role Suggested for Crystal Ghosts
Bonucci, Ermanno
2014-01-01
The present survey deals with the initial stage of the calcification process in bone and other hard tissues, with special reference to the organic-inorganic relationship and the transformation that the early inorganic particles undergo as the process moves towards completion. Electron microscope studies clearly exclude the possibility that these particles might be crystalline structures, as often believed, by showing that they are, instead, organic-inorganic hybrids, each comprising a filamentous organic component (the crystal ghost) made up of acidic proteins. The hypothesis is suggested that the crystal ghosts bind and stabilize amorphous calcium phosphate and that their subsequent degradation allows the calcium phosphate, once released, to acquire a hydroxyapatite, crystal-like organization. A conclusive view of the mechanism of biological calcification cannot yet be proposed; even so, however, the role of crystal ghosts as a template of the structures usually called “crystallites” is a concept that has gathered increasing support and can no longer be disregarded. PMID:25056630
Identifying, studying and making good use of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.
2014-07-25
As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources moremore » intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.« less
Probing the crystal structure landscape by doping: 4-bromo, 4-chloro and 4-methylcinnamic acids.
Desiraju, Gautam R; Chakraborty, Shaunak; Joseph, Sumy
2018-06-11
Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br-atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii and others, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of pi...pi interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Mora, Eugenio; Flores-Hernández, Edith; Jakoncic, Jean
SdsA, a sodium dodecyl sulfate hydrolase, from Pseudomonas aeruginosa was crystallized in three different crystal polymorphs and their three-dimensional structure was determined. The different polymorphs present different crystal packing habits. One of the polymorphs suggests the existence of a tetramer, an oligomeric state not observed previously, while the crystal packing of the remaining two polymorphs obstructs the active site entrance but stabilizes flexible regions of the protein. Nonconventional crystallization methods that minimize convection, such as counterdiffusion in polyvinyl alcohol gel coupled with the influence of a 500 MHz (10.2 T) magnetic field, were necessary to isolate the poorest diffracting polymorphmore » and increase its internal order to determine its structure by X-ray diffraction. In conclusion, the results obtained show the effectiveness of nonconventional crystallographic methods to isolate different crystal polymorphs.« less
A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.
Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall
2016-03-08
Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.
Remarkable features in lattice-parameter ratios of crystals. II. Monoclinic and triclinic crystals.
de Gelder, R; Janner, A
2005-06-01
The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle beta has a sharp peak at 90 degrees and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters alpha, beta and gamma, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287-295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr; Stellato, Francesco; Chiu, Elaine; Yeh, Shin-Mei; Aquila, Andrew; Basu, Shibom; Bean, Richard; Beyerlein, Kenneth R.; Botha, Sabine; Boutet, Sébastien; DePonte, Daniel P.; Doak, R. Bruce; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; James, Daniel R.; Kupitz, Christopher; Lomb, Lukas; Messerschmidt, Marc; Nass, Karol; Rendek, Kimberly; Shoeman, Robert L.; Wang, Dingjie; Weierstall, Uwe; White, Thomas A.; Williams, Garth J.; Zatsepin, Nadia A.; Fromme, Petra; Spence, John C. H.; Goldie, Kenneth N.; Jehle, Johannes A.; Metcalf, Peter; Barty, Anton
2017-01-01
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach. PMID:28202732
Gati, Cornelius; Oberthuer, Dominik; Yefanov, Oleksandr; ...
2017-02-15
To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam ismore » often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Furthermore, our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, B.; Madan, Lalima L.; Betz, Stephen F.
2010-11-10
Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s),more » whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.« less
Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain
Bruhn, Jessica F.; Barnett, Katherine C.; Bibby, Jaclyn; Thomas, Jens M. H.; Keegan, Ronan M.; Rigden, Daniel J.; Bornholdt, Zachary A.
2014-01-01
The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle. PMID:24155387
2016-01-01
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. PMID:27983843
Hayatshahi, Hamed S; Roe, Daniel R; Galindo-Murillo, Rodrigo; Hall, Kathleen B; Cheatham, Thomas E
2017-01-26
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.
Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polikanov, Yury S.; Moore, Peter B.
2015-09-26
The diffuse scattering pattern produced by frozen crystals of the 70S ribosome fromThermus thermophilusis as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.
Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.
Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru
2015-11-10
The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.
The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less
Cevallos, F. Alex; Stolze, Karoline; Cava, Robert J.
2018-03-23
The single crystal growth, structure, and basic magnetic properties of ErMgGaO 4 are reported. The structure consists of triangular layers of magnetic ErO 6 octahedra separated by a double layer of randomly occupied non-magnetic (Ga,Mg)O 5 bipyramids. The Er atoms are positionally disordered. Magnetic measurements parallel and perpendicular to the c axis of a single crystal reveal dominantly antiferromagnetic interactions, with a small degree of magnetic anisotropy. A weighted average of the directional data suggests an antiferromagnetic Curie Weiss temperature of approximately -30 K. Below 10 K the temperature dependences of the inverse susceptibilities in the in-plane and perpendicular-to planemore » directions are parallel, indicative of an isotropic magnetic moment at low temperatures. In conclusion, no sign of magnetic ordering is observed above 1.8 K, suggesting that ErMgGaO 4 is a geometrically frustrated magnet.« less
Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T.; ...
2016-04-07
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Here, although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-raymore » scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.« less
Analysis of the crystal structure of an active MCM hexamer.
Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J
2014-09-29
In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.
Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad.
Zhang, Diana; Huang, Terry; Lukeman, Philip S; Paukstelis, Paul J
2014-12-01
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kim, Y; Haren, A M
1995-11-01
The purpose of this study is to investigate the effect of zinc and cresol on the structure of insulinotropin crystals. Insulinotropin crystals grown from a saline solution were treated with zinc and/or m-cresol using a crystal soaking technique. The effects of these additives on the crystal structure were investigated with powder X-ray diffraction, photomicrography, and differential scanning calorimetry. The molecular interaction between insulinotropin and m-trifluorocresol in solution was also studied by 19F NMR: The data suggest that the original crystals grown from a saline solution have relatively weak lattice forces. After the addition of m-cresol to the suspension of the insulinotropin crystals, the crystals were immediately rendered amorphous. The m-cresol molecules which diffused into the crystals through solvent channels may have disturbed the lattice interactions that maintain the integrity of the crystal. In contrast, the zinc added to the suspension stabilized the crystal lattice so that the subsequent addition of m-cresol did not alter the integrity of the crystals. A marked increase in melting point (206 degrees versus 184 degrees) and heat of fusion (24.6 J/g versus 1.4 J/g) of the crystals was observed after the treatment with zinc. The solubility of the zinc treated crystals in a pH 7.1 phosphate buffered saline was 1/20 of that of the original crystals. When the insulinotropin crystals were treated with the additives using a crystal soaking method, the crystals underwent structural changes. Zinc stabilized the crystal lattice, and reduced the solubility of the peptide.
Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses
Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...
2016-03-05
Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less
Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yuto; Matsushita, Yoshitaka; Oda, Migaku
Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by amore » weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
Roccanova, Rachel; Ming, Wenmei; Whiteside, Vincent R.; ...
2017-11-02
Here, we report the synthesis, crystal and electronic structures, as well as optical properties of the hybrid organic–inorganic compounds MA 2CdX 4 (MA = CH 3NH 3; X = Cl, Br, I). MA 2CdI 4 is a new compound, whereas, for MA 2CdCl 4 and MA 2CdBr 4, structural investigations have already been conducted but electronic structures and optical properties are reported here for the first time. Single crystals were grown through slow evaporation of MA 2CdX 4 solutions with optimized conditions yielding mm-sized colorless (X = Cl, Br) and pale yellow (X = I) crystals. Single crystal and variablemore » temperature powder X-ray diffraction measurements suggest that MA 2CdCl 4 forms a 2D layered perovskite structure and has two structural transitions at 283 and 173 K. In contrast, MA 2CdBr 4 and MA 2CdI 4 adopt 0D K 2SO 4-derived crystal structures based on isolated CdX 4 tetrahedra and show no phase transitions down to 20 K. The contrasting crystal structures and chemical compositions in the MA 2CdX 4 family impact their air stabilities, investigated for the first time in this work; MA 2CdCl 4 is air-stable, whereas MA 2CdBr 4 and MA 2CdI 4 partially decompose when left in air. Optical absorption measurements suggest that MA 2CdX 4 have large optical band gaps above 3.9 eV. Room temperature photoluminescence spectra of MA 2CdX 4 yield broad peaks in the 375–955 nm range with full width at half-maximum values up to 208 nm. These PL peaks are tentatively assigned to self-trapped excitons in MA 2CdX 4 following the crystal and electronic structure considerations. The bands around the Fermi level have small dispersions, which is indicative of high charge localization with significant exciton binding energies in MA 2CdX 4. On the basis of our combined experimental and computational results, MA 2CdX 4 and related compounds may be of interest for white-light-emitting phosphors and scintillator applications.« less
TaRh2B2 and NbRh2B2: Superconductors with a chiral noncentrosymmetric crystal structure.
Carnicom, Elizabeth M; Xie, Weiwei; Klimczuk, Tomasz; Lin, Jingjing; Górnicka, Karolina; Sobczak, Zuzanna; Ong, Nai Phuan; Cava, Robert J
2018-05-01
It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.
Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, J.; Salon, J; Gan, J
2010-01-01
The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describemore » a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.« less
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin
2013-01-01
Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C222(1), with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data.
Zhang, Liang; Chen, Ruyi; Dong, Zhe; Li, Xin
2013-01-01
Organophosphates (OPs) are extremely toxic compounds that are used as insecticides or even as chemical warfare agents. Phosphotriesterases (PHPs) are responsible for the detoxification of OPs by catalysing their degradation. Almost 100 PHP structures have been solved to date, yet the crystal structure of the phosphotriesterase from Mycobacterium tuberculosis (mPHP) remains unavailable. This study reports the first crystallization of mPHP. The crystal belonged to space group C2221, with unit-cell parameters a = 68.03, b = 149.60, c = 74.23 Å, α = β = γ = 90°. An analytical ultracentrifugation experiment suggested that mPHP exists as a dimer in solution, even though one molecule is calculated to be present in the asymmetric unit according to the structural data. PMID:23295488
Low-resolution structure of Drosophila translin
Kumar, Vinay; Gupta, Gagan D.
2012-01-01
Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579
Real-time molecular scale observation of crystal formation.
Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny
2017-04-01
How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.
Olson, Andrew L.; Neumann, Terrence S.; Cai, Sheng; Sem, Daniel S.
2012-01-01
Here we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C-terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared to the solution structure. Based on these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti-mycobacterial agents, or as chemical genetic probes of function. PMID:23229911
Wang, L; Ruffner, D E
1997-01-01
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly. PMID:9336468
Zeolite Crystal Growth (ZCG) Flight on USML-2
NASA Technical Reports Server (NTRS)
Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.
1997-01-01
The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Pei; Maldonis, Jason J.; Besser, M. F.
Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less
Bukvetskii, B V; Mirochnik, A G; Zhikhareva, P A
2017-05-01
The atomic structure of crystals of the [Eu(NО 3 ) 3 (HMPA) 3 ] [hexamethylphosphotriamide (HMPA)] complex characterized by an intensive luminescence and triboluminescence was determined using X-ray structural analysis. Noncentrosymmetric crystals have a monoclinic syngony: a = 16.0686 (3), b = 11.0853 (2), c = 20.9655 Å (4), β = 93.232° (1), space group P2 1 , Z = 4, ρ calc = 1.560 g/cm 3 . The crystal structure is represented by individual С 18 Н 54 EuN 12 O 12 P 3 complexes linked through van der Waals interactions with clearly expressed cleavage planes. The Eu(III) atom coordination polyhedron reflected the state of a distorted square antiprism. Structural aspects of the suggested model, including formation of triboluminescence properties, were considered and the role of the cleavage planes was discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Structural Basis for the Potent and Selective Inhibition of Casein Kinase 1 Epsilon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Alexander M.; Zhao, Huilin; Huang, Xin
2012-10-29
Casein kinase 1 epsilon (CK1ε) and its closest homologue CK1δ are key regulators of diverse cellular processes. We report two crystal structures of PF4800567, a potent and selective inhibitor of CK1ε, bound to the kinase domains of human CK1ε and CK1δ as well as one apo CK1ε crystal structure. These structures provide a molecular basis for the strong and specific inhibitor interactions with CK1ε and suggest clues for further development of CK1δ inhibitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentles, Robert G.; Sheriff, Steven; Beno, Brett R.
Structure based rationales for the activities of potent N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide inhibitors of the hepatitis C viral polymerase are described herein. These compounds bind to the hepatitis C virus non-structural protein 5B (NS5B), and co-crystal structures of select examples from this series with NS5B are reported. Comparison of co-crystal structures of a potent analog with both NS5B genotype 1a and genotype 1b provides a possible explanation for the genotype-selectivity observed with this compound class and suggests opportunities for the further optimization of the series.
Li, Z Y; Lam, W M; Yang, C; Xu, B; Ni, G X; Abbah, S A; Cheung, K M C; Luk, K D K; Lu, W W
2007-03-01
Recently, strontium (Sr) as ranelate compound has become increasingly popular in the treatment of osteoporosis. However, the lattice structure of bone crystal after Sr incorporation is yet to be extensively reported. In this study, we synthesized strontium-substituted hydroxyapatite (Sr-HA) with different Sr content (0.3%, 1.5% and 15% Sr-HA in mole ratio) to simulate bone crystals incorporated with Sr. The changes in chemical composition and lattice structure of apetite after synthetic incorporation of Sr were evaluated to gain insight into bone crystal changes after incorporation of Sr. X-ray diffraction (XRD) patterns revealed that 0.3% and 1.5% Sr-HA exhibited single phase spectrum, which was similar to that of HA. However, 15% Sr-HA induced the incorporation of HPO4(2-) and more CO3(2-), the crystallinity reduced dramatically. Transmission electron microscopy (TEM) images showed that the crystal length and width of 0.3% and 1.5% Sr-HA increased slightly. Meanwhile, the length and width distribution were broadened and the aspect ratio decreased from 10.68+/-4.00 to 7.28+/-2.80. The crystal size and crystallinity of 15% Sr-HA dropped rapidly, which may suggest that the fundamental crystal structure is changed. The findings from this work indicate that current clinical dosage which usually results in Sr incorporation of below 1.5% may not change chemical composition and lattice structure of bone, while it will broaden the bone crystal size distribution and strengthen the bone.
High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization.
Vladimirov, I; Kellermeier, M; Geßner, T; Molla, Zarah; Grigorian, S; Pietsch, U; Schaffroth, L S; Kühn, M; May, F; Weitz, R T
2018-01-10
The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm 2 /(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tiansheng; Thomas, G.J. Jr.; Chen, Zhongguo
Structures of protein and RNA components of bean pod mottle virus (BPMV) have been investigated by use of laser Raman spectroscopy. Raman spectra were collected from both aqueous solutions and single crystals of BPMV capsids (top component) and virions (middle and bottom components, which package, respectively, small and large RNA molecules). Analysis of the data permits the assignment of conformation-sensitive Raman bands to viral protein and RNA constituents and observation of structural similarities and differences between solution and crystalline states of BPMV components. The Raman results show that the protein subunits of the empty capsid contain between 45% and 55%more » {beta}-strand and {beta}-turn secondary structure, in agreement with the recently determined X-ray crystal structure, and that this total {beta}-strand content undergoes a small increase with packaging of RNA. A comparison of Raman spectra of crystal and solution states of the BPMV middle component reveals only minor structural differences between the two, and these are restricted almost exclusively to Raman bands of RNA in the region of assigned phosphodiester conformation markers. Although in both the crystal and solution only C3{prime} endo/anti nucleosides are detected, the crystal exhibits a weaker 813-cm{sup {minus}1} band and strong 870-cm{sup {minus}1} band, which suggests that {approximately}8% of the nucleotides have O-P-O torsions configured differently in the crystal from that in the solution.« less
Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study.
Corbett, Michael S P; Mark, Alan E; Poger, David
2017-02-28
Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wan, Xiangang; Phelan, Daniel
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Neelon, Kelly; Roberts, Mary F; Stec, Boguslaw
2011-12-07
1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mandal, Kalyaneswar; Pentelute, Brad L; Tereshko, Valentina; Thammavongsa, Vilasak; Schneewind, Olaf; Kossiakoff, Anthony A; Kent, Stephen B H
2009-01-01
We describe the use of racemic crystallography to determine the X-ray structure of the natural product plectasin, a potent antimicrobial protein recently isolated from fungus. The protein enantiomers l-plectasin and d-plectasin were prepared by total chemical synthesis; interestingly, l-plectasin showed the expected antimicrobial activity, while d-plectasin was devoid of such activity. The mirror image proteins were then used for racemic crystallization. Synchrotron X-ray diffraction data were collected to atomic resolution from a racemic plectasin crystal; the racemate crystallized in the achiral centrosymmetric space group with one l-plectasin molecule and one d-plectasin molecule forming the unit cell. Dimer-like intermolecular interactions between the protein enantiomers were observed, which may account for the observed extremely low solvent content (13%–15%) and more highly ordered nature of the racemic crystals. The structure of the plectasin molecule was well defined for all 40 amino acids and was generally similar to the previously determined NMR structure, suggesting minimal impact of the crystal packing on the plectasin conformation. PMID:19472324
Crystal morphology variation in inkjet-printed organic materials
NASA Astrophysics Data System (ADS)
Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.
2011-11-01
The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.
The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Chakoumakos, Bryan C
2013-01-01
We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 Kmore » to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.« less
Predicting the structure of screw dislocations in nanoporous materials
NASA Astrophysics Data System (ADS)
Walker, Andrew M.; Slater, Ben; Gale, Julian D.; Wright, Kate
2004-10-01
Extended microscale crystal defects, including dislocations and stacking faults, can radically alter the properties of technologically important materials. Determining the atomic structure and the influence of defects on properties remains a major experimental and computational challenge. Using a newly developed simulation technique, the structure of the 1/2a <100> screw dislocation in nanoporous zeolite A has been modelled. The predicted channel structure has a spiral form that resembles a nanoscale corkscrew. Our findings suggest that the dislocation will enhance the transport of molecules from the surface to the interior of the crystal while retarding transport parallel to the surface. Crucially, the dislocation creates an activated, locally chiral environment that may have enantioselective applications. These predictions highlight the influence that microscale defects have on the properties of structurally complex materials, in addition to their pivotal role in crystal growth.
Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C
2005-11-01
Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.
NASA Astrophysics Data System (ADS)
Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan
2011-02-01
This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.
Unusual Crystallization Behavior Close to the Glass Transition
NASA Astrophysics Data System (ADS)
Desgranges, Caroline; Delhommelle, Jerome
2018-03-01
Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.
Boonna, Sureeporn; Tongta, Sunanta
2018-07-01
Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe 3-xGeTe 2
May, Andrew F.; Calder, Stuart A.; Cantoni, Claudia; ...
2016-01-08
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe 3GeTe 2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μ B/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature T c ≈ 150 K than crystals previously grown by vapor transport (T c = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observedmore » in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe 3–xGeTe 2 and structurally similar Ni 3–xGeTe 2.« less
The 2.3-Angstrom Structure of Porcine Circovirus 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khayat, Reza; Brunn, Nicholas; Speir, Jeffrey A.
Porcine circovirus 2 (PCV2) is a T = 1 nonenveloped icosahedral virus that has had severe impact on the swine industry. Here we report the crystal structure of an N-terminally truncated PCV2 virus-like particle at 2.3-{angstrom} resolution, and the cryo-electron microscopy (cryo-EM) image reconstruction of a full-length PCV2 virus-like particle at 9.6-{angstrom} resolution. This is the first atomic structure of a circovirus. The crystal structure revealed that the capsid protein fold is a canonical viral jelly roll. The loops connecting the strands of the jelly roll define the limited features of the surface. Sulfate ions interacting with the surface andmore » electrostatic potential calculations strongly suggest a heparan sulfate binding site that allows PCV2 to gain entry into the cell. The crystal structure also allowed previously determined epitopes of the capsid to be visualized. The cryo-EM image reconstruction showed that the location of the N terminus, absent in the crystal structure, is inside the capsid. As the N terminus was previously shown to be antigenic, it may externalize through viral 'breathing'.« less
Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel
2016-05-03
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crystal structure of the human 4-1BB/4-1BBL complex.
Gilbreth, Ryan N; Oganesyan, Vaheh Y; Amdouni, Hamza; Novarra, Shabazz; Grinberg, Luba; Barnes, Arnita; Baca, Manuel
2018-05-02
4-1BBL is a member of the TNF superfamily and is the ligand for the TNFRsuperfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells and agonists of this receptor have garnered strong attention as potentialimmunotherapy agents. Broadly speaking, the structural features of TNF superfamilymembers, their receptors and ligand/receptor complexes are similar. However, apublished crystal structure of human 4-1BBL suggests that it may be unique in thisregard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4 Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M
2017-01-01
Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83–248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence. PMID:28915104
Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich
2017-09-15
Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
NASA Astrophysics Data System (ADS)
Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu
2009-08-01
A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.
NASA Astrophysics Data System (ADS)
Wiebe, R. A.; Collins, W. J.
1998-09-01
Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.
Crystal Structure of the Japanese Encephalitis Virus Envelope Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.
2012-03-13
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimermore » in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.« less
Crystal structure of the Japanese encephalitis virus envelope protein.
Luca, Vincent C; AbiMansour, Jad; Nelson, Christopher A; Fremont, Daved H
2012-02-01
Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-Å resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.
Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3
McGuire, Michael A.; Dixit, Hemant; Cooper, Valentino R.; ...
2014-12-23
Here, we examine the crystallographic and magnetic properties of single crystals of CrI 3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (Rmore » $$\\bar{3}$$, BiI 3-type) and the high-temperature structure is monoclinic (C2/m, AlCl 3-type). Evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI 3 was found; we observed an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Our calculations suggest that the ferromagnetic order found in the bulk material may persist into monolayer form, suggesting that CrI 3 and other chromium trihalides may be promising materials for spintronic and magnetoelectronic research.« less
Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT
NASA Astrophysics Data System (ADS)
Liu, Ke; Zhang, Gao; Luan, Jieyu; Chen, Zhiqun; Su, Pengfei; Shu, Yuanjie
2016-04-01
A new cocrystal explosive of 2,4,6,8,10,12-hexanitrohexaazaiso-wurtzitane(CL-20) and 2,5-dinitrotoluene(DNT) in a molar ratio of 1:2 has been prepared by slow solvent evaporation method. Crystal structure of the cocrystal characterized by single crystal X-ray diffraction (SXRD) reveals that the cocrystal is formed by intermolecular hydrogen bond interactions and belongs to the triclinic system with P-1 group. Moreover, the obivious differences of powder X-ray diffraction (PXRD) patterns, infrared spectroscopy and Raman spectroscopy confirm that the intermolecular interactions have great influence for the crystal structure and formation of cocrystal. The cocrystal exhibits a lower impact height of 44 cm, suggesting a substantial reduction of sensitivity in comparison with CL-20. And thermal test results showed cocrystal obtains a lower melting point than DNT, which means huge advantages in blasting engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; ...
2015-04-07
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.
Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto
2016-11-21
The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.
Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.
2014-01-01
It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092
2004-12-16
mistletoe lectin I. The ricin and mistle- toe lectin I structures revealed a domain architec- ture that are similar to HA33/A with two b-trefoil...domains. The complex crystal structures of ricin bound to lactose and mistletoe lectin I bound to galactose revealed that only the 1a and 2g repeats of...H., Tonevitsky, A. G., Agapov, I. I., Saward, S., Pfuller, U. & Palmer, R. A. (2003). Crystal structure at 3 Å of mistletoe lectin I, a dimeric
Analysis of Dependence of the Properties of Alloy V95 on the Pressure Applied to Crystallizing Metal
NASA Astrophysics Data System (ADS)
Korostelev, V. F.; Khromova, L. P.; Denisov, M. S.
2017-05-01
Results of a study aimed at formation of a single-phase fine-grained structure in pistons from aluminum alloy V95 in the process of their fabrication, which involves isostatic pressing of liquid metal before the start of crystallization, application of pressure to the crystallizing metal, and holding under pressure in the process of cooling to the shop temperature, are presented. The ultimate strength and the structure of alloy V95 after casting with imposition of pressure are determined. An example of application of the method suggested for fabricating cast billets ∅ 82 × 70 mm in size with a uniform dense structure without gas shrinkage defects, volume and dendritic segregation is considered.
Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces
NASA Astrophysics Data System (ADS)
Poloni, Laura N.
The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L-cystine surfaces. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal step sites, thereby articulating a strategy for stone prevention based on molecular design. The second part of this thesis describes the crystal growth and inhibition of a P2X3 receptor antagonist, denoted as DAPSA, recently reported as a non-opioid treatment of chronic pain. The low solubility of this compound results in the formation of drug-induced renal calculi (a.k.a. xenostones). in situ AFM of the morphologically significant (011) DAPSA surface revealed dislocation-actuated growth spirals with an anisotropic morphology, behavior that can be attributed to the non-uniform rate of solute attachment to eight crystallographically unique steps of the spiral, a direct consequence of the dissymmetry of this crystal surface. Eighteen molecular imposters were selected from the screening library to systematically investigate the roles of imposter substitute position, size, and functionality on the step velocities along the eight unique crystallographic directions. A non-uniform reduction in step velocities was observed, signaling site discrimination of imposter binding that can be attributed to stereochemical recognition of the imposters at specific crystal sites. The anisotropy of growth inhibition observed in the presence of the various imposters is consistent with binding energies calculated for the thirty-two crystallographically unique kink sites on steps advancing along predominant growth directions. These results provide insight to the design of growth inhibitors for molecular crystalline solids with complex and dissymmetric surfaces, while also suggesting a strategy for formulations containing congeners that can prevent harmful crystal growth in human renal structures. The last two crystalline systems discussed in this thesis are two isomorphous crystal systems that are ideal for the study of impurity incorporation at dissymmetric surfaces because their morphology is dominated by dissymmetric {101} growth faces. Growth processes on the dissymmetric (101) surfaces of these crystalline systems were investigated using metadynamics simulations to determine the free energy of adsorption for solute and impurity attachment to different flat, stepped, and kinked (101) surface terminations. Results suggest that growth occurs via a non-Kossel crystal growth mechanism, and highlights the need for dissymmetric surface structures (i.e. steps and kinks) for a higher fidelity in the orientation of adsorbed molecules. Overall, the results presented in this thesis suggest that growth of molecular crystals, particularly at dissymmetric surfaces, is complex and requires the combination of several experimental and computational techniques to decipher the mechanisms responsible for growth phenomena. The use of molecular imposters to inhibit growth can be useful for the development of therapeutics for pathological crystals, but can also inform processes by which crystal growth occurs at complex surfaces as a result of their site selectivity.
Zamroziewicz, Marta K.; Paul, Erick J.; Zwilling, Chris E.; Johnson, Elizabeth J.; Kuchan, Matthew J.; Cohen, Neal J.; Barbey, Aron K.
2016-01-01
Introduction: Although, diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging. Methods: We examined 76 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence), and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index. Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann's Area 34), partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i) serum lutein and temporal cortex structure, (ii) serum lutein and crystallized intelligence, and (iii) parahippocampal cortex structure and crystallized intelligence. This report demonstrates a novel structural mediation between lutein status and crystallized intelligence, and therefore provides further evidence that specific nutrients may slow or prevent features of cognitive decline by hindering particular aspects of brain aging. Future work should examine the potential mechanisms underlying this mediation, including the antioxidant, anti-inflammatory, and membrane modulating properties of lutein. PMID:27999541
Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS
NASA Astrophysics Data System (ADS)
Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.
1989-02-01
Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.
Coordination geometry of lead carboxylates - spectroscopic and crystallographic evidence.
Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Yap, Glenn P A; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil
2015-02-07
Despite their versatility, only a few single-crystal X-ray structures of lead carboxylates exist, due to difficulties with solubility. In particular, the structures of long-chain metal carboxylates have not been reported. The lone electron pair in Pb(ii) can be stereochemically active or inactive, leading to two types of coordination geometries commonly referred to as hemidirected and holodirected structures, respectively. We report (13)C and (207)Pb solid-state NMR and infrared spectra for a series of lead carboxylates, ranging from lead hexanoate (C6) to lead hexadecanoate (C18). The lead carboxylates based on consistent NMR parameters can be divided in two groups, shorter-chain (C6, C7, and C8) and longer-chain (C9, C10, C11, C12, C14, C16, and C18) carboxylates. This dichotomy suggests two modes of packing in these solids, one for the short-chain lead carboxylates and one for long-chain lead carboxylates. The consistency of the (13)C and (207)Pb NMR parameters, as well as the IR data, in each group suggests that each motif represents a structure characteristic of each subgroup. We also report the single-crystal X-ray diffraction structure of lead nonanoate (C9), the first single-crystal structure to have been reported for the longer-chain subgroup. Taken together the evidence suggests that the coordination geometry of C6-C8 lead carboxylates is hemidirected, and that of C9-C14, C16 and C18 lead carboxylates is holodirected.
New structure type in the mixed-valent compound YbCu4Ga8.
Subbarao, Udumula; Gutmann, Matthias J; Peter, Sebastian C
2013-02-18
The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.
Florence, Alastair J; Johnston, Andrea; Price, Sarah L; Nowell, Harriott; Kennedy, Alan R; Shankland, Norman
2006-09-01
An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=O...H--N R2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=O...H--N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R2(2)(8) motif. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.
Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization.
Juers, Douglas H; Matthews, Brian W
2004-05-01
The flash-cooling of crystals in macromolecular crystallography has become commonplace. The procedure makes it possible to collect data from much smaller specimens than was the case in the past Also, flash-cooled crystals are much less prone to radiation damage than their room-temperature counterparts, allowing data to be accumulated over extended periods of time. Notwithstanding the attractiveness of the technique, it does have potential disadvantages. First, better methods need to be developed to prevent damage to crystals on freezing. There is also a risk that structures determined at low temperature may suggest conclusions based on aspects of the structure that are not necessarily relevant at room temperature.
Crystal structure of a β-aminopeptidase from an Australian Burkholderia sp.
John-White, Marietta; Dumsday, Geoff J; Johanesen, Priscilla; Lyras, Dena; Drinkwater, Nyssa; McGowan, Sheena
2017-07-01
β-Aminopeptidases are a unique group of enzymes that have the unusual capability to hydrolyze N-terminal β-amino acids from synthetic β-peptides. β-Peptides can form secondary structures mimicking α-peptide-like structures that are resistant to degradation by most known proteases and peptidases. These characteristics of β-peptides give them great potential as peptidomimetics. Here, the X-ray crystal structure of BcA5-BapA, a β-aminopeptidase from a Gram-negative Burkholderia sp. that was isolated from activated sludge from a wastewater-treatment plant in Australia, is reported. The crystal structure of BcA5-BapA was determined to a resolution of 2.0 Å and showed a tetrameric assembly typical of the β-aminopeptidases. Each monomer consists of an α-subunit (residues 1-238) and a β-subunit (residues 239-367). Comparison of the structure of BcA5-BapA with those of other known β-aminopeptidases shows a highly conserved structure and suggests a similar proteolytic mechanism of action.
Colloidal crystals with diamond symmetry at optical lengthscales
NASA Astrophysics Data System (ADS)
Wang, Yifan; Jenkins, Ian C.; McGinley, James T.; Sinno, Talid; Crocker, John C.
2017-02-01
Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require--a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications.
A critical analysis of calcium carbonate mesocrystals
Kim, Yi-Yeoun; Schenk, Anna S.; Ihli, Johannes; Kulak, Alex N.; Hetherington, Nicola B. J.; Tang, Chiu C.; Schmahl, Wolfgang W.; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C.
2014-01-01
The term mesocrystal has been widely used to describe crystals that form by oriented assembly, and that exhibit nanoparticle substructures. Using calcite crystals co-precipitated with polymers as a suitable test case, this article looks critically at the concept of mesocrystals. Here we demonstrate that the data commonly used to assign mesocrystal structure may be frequently misinterpreted, and that these calcite/polymer crystals do not have nanoparticle substructures. Although morphologies suggest the presence of nanoparticles, these are only present on the crystal surface. High surface areas are only recorded for crystals freshly removed from solution and are again attributed to a thin shell of nanoparticles on a solid calcite core. Line broadening in powder X-ray diffraction spectra is due to lattice strain only, precluding the existence of a nanoparticle sub-structure. Finally, study of the formation mechanism provides no evidence for crystalline precursor particles. A re-evaluation of existing literature on some mesocrystals may therefore be required. PMID:25014563
Molecular Recognition of Methyl α-d-Mannopyranoside by Antifreeze (Glyco)Proteins
2015-01-01
Antifreeze proteins and glycoproteins [AF(G)Ps] have been well-known for more than three decades for their ability to inhibit the growth and recrystallization of ice through binding to specific ice crystal faces, and they show remarkable structural compatibility with specific ice crystal faces. Here, we show that the crystal growth faces of methyl α-d-mannopyranoside (MDM), a representative pyranose sugar, also show noteworthy structural compatibility with the known periodicities of AF(G)Ps. We selected fish AFGPs (AFGP8, AFGP1–5), and a beetle AFP (DAFP1) with increasing antifreeze activity as potential additives for controlling MDM crystal growth. Similar to their effects on ice growth, the AF(G)Ps can inhibit MDM crystal growth and recrystallization, and more significantly, the effectiveness for the AF(G)Ps are well correlated with their antifreeze activity. MDM crystals grown in the presence of AF(G)Ps are smaller and have better defined shapes and are of higher quality as indicated by single crystal X-ray diffraction and polarized microscopy than control crystals, but no new polymorphs of MDM were identified by single crystal X-ray diffraction, solid-state NMR, and attenuated total reflectance infrared spectroscopy. The observed changes in the average sizes of the MDM crystals can be related to the changes in the number of the MDM nuclei in the presence of the AF(G)Ps. The critical free energy change differences of the MDM nucleation in the absence and presence of the additives were calculated. These values are close to those of the ice nucleation in the presence of AF(G)Ps suggesting similar interactions are involved in the molecular recognition of MDM by the AF(G)Ps. To our knowledge this is the first report where AF(G)Ps have been used to control crystal growth of carbohydrates and on AFGPs controlling non-ice-like crystals. Our finding suggests MDM might be a possible alternative to ice for studying the detailed mechanism of AF(G)P–crystal interactions. The relationships between AF(G)Ps and carbohydrate binding proteins are also discussed. The structural compatibility between AF(G)Ps and growing crystal faces demonstrated herein adds to the repertoire of molecular recognition by AF(G)Ps, which may have potential applications in the sugar, food, pharmaceutical, and materials industries. PMID:24918258
Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei
2018-02-07
Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.
Persistent Self-Association of Solute Molecules in Solution.
Tang, Weiwei; Mo, Huaping; Zhang, Mingtao; Parkin, Sean; Gong, Junbo; Wang, Jingkang; Li, Tonglei
2017-11-02
The structural evolvement of a solute determines the crystallization outcome. The self-association mechanism leading to nucleation, however, remains poorly understood. Our current study explored the solution chemistry of a model compound, tolfenamic acid (TFA), in three different solvents mainly by solution NMR. It was found that hydrogen-bonded pairs of solute-solute or solute-solvent stack with each through forming a much weaker π-π interaction as the concentration increases. Depending on the solvent, configurations of the solution species may be retained in the resultant crystal structure or undergo rearrangement. Yet, the π-π stacking is always retained in the crystal regardless of the solvent used for the crystallization. The finding suggests that nucleation not only involves the primary intermolecular interaction (hydrogen bonding) but also engages the secondary forces in the self-assembly process.
fcc-bcc phase transition in plasma crystals using time-resolved measurements
NASA Astrophysics Data System (ADS)
Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.
2018-04-01
Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.
Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.
2015-01-01
Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib. PMID:26198974
Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien
2017-03-15
Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
van de Streek, Jacco; Neumann, Marcus A
2014-12-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.
van de Streek, Jacco; Neumann, Marcus A.
2014-01-01
In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom. PMID:25449625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauber, Mark; Jakoncic, Jean; Berger, Jacob
Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with ( R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with ( R)-MPD and ( RS)-MPD the crystal contacts are made by ( R)-MPD, demonstrating that there ismore » preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less
Chouquet, Anne; Païdassi, Helena; Ling, Wai Li; Frachet, Philippe; Houen, Gunnar; Arlaud, Gérard J.; Gaboriaud, Christine
2011-01-01
In the endoplasmic reticulum, calreticulin acts as a chaperone and a Ca2+-signalling protein. At the cell surface, it mediates numerous important biological effects. The crystal structure of the human calreticulin globular domain was solved at 1.55 Å resolution. Interactions of the flexible N-terminal extension with the edge of the lectin site are consistently observed, revealing a hitherto unidentified peptide-binding site. A calreticulin molecular zipper, observed in all crystal lattices, could further extend this site by creating a binding cavity lined by hydrophobic residues. These data thus provide a first structural insight into the lectin-independent binding properties of calreticulin and suggest new working hypotheses, including that of a multi-molecular mechanism. PMID:21423620
Crystallization of lysozyme with ( R)-, ( S)- and ( RS)-2-methyl-2,4-pentanediol
Stauber, Mark; Jakoncic, Jean; Berger, Jacob; ...
2015-03-01
Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with ( R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with ( R)-MPD and ( RS)-MPD the crystal contacts are made by ( R)-MPD, demonstrating that there ismore » preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
An intercalation-locked parallel-stranded DNA tetraplex
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
2015-01-27
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
Crystal Structure of Toxoplasma gondii Porphobilinogen Synthase
Jaffe, Eileen K.; Shanmugam, Dhanasekaran; Gardberg, Anna; Dieterich, Shellie; Sankaran, Banumathi; Stewart, Lance J.; Myler, Peter J.; Roos, David S.
2011-01-01
Porphobilinogen synthase (PBGS) is essential for heme biosynthesis, but the enzyme of the protozoan parasite Toxoplasma gondii (TgPBGS) differs from that of its human host in several important respects, including subcellular localization, metal ion dependence, and quaternary structural dynamics. We have solved the crystal structure of TgPBGS, which contains an octamer in the crystallographic asymmetric unit. Crystallized in the presence of substrate, each active site contains one molecule of the product porphobilinogen. Unlike prior structures containing a substrate-derived heterocycle directly bound to an active site zinc ion, the product-bound TgPBGS active site contains neither zinc nor magnesium, placing in question the common notion that all PBGS enzymes require an active site metal ion. Unlike human PBGS, the TgPBGS octamer contains magnesium ions at the intersections between pro-octamer dimers, which are presumed to function in allosteric regulation. TgPBGS includes N- and C-terminal regions that differ considerably from previously solved crystal structures. In particular, the C-terminal extension found in all apicomplexan PBGS enzymes forms an intersubunit β-sheet, stabilizing a pro-octamer dimer and preventing formation of hexamers that can form in human PBGS. The TgPBGS structure suggests strategies for the development of parasite-selective PBGS inhibitors. PMID:21383008
Crystal structure and thermal expansion of a CsCe 2Cl 7 scintillator
Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; ...
2015-04-06
Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe 2Cl 7. It crystallizes in a P112 1/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å 3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe 2Cl 7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10 -6/ °C) withmore » respect to the b and c axes (27.0 10 -6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe 2Cl 7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less
Tautomeric and ionisation forms of dopamine and tyramine in the solid state
NASA Astrophysics Data System (ADS)
Cruickshank, Laura; Kennedy, Alan R.; Shankland, Norman
2013-11-01
Crystallisation of the phenylethylamine neurotransmitter dopamine from basic aqueous solution yielded the 3-phenoxide Zwitterionic tautomer, despite this being a minority form in the solution state. In the crystal structure, dopamine has a dimeric [OCCOH]2 hydrogen bonded catechol motif that expands through Nsbnd H⋯O interactions to give a 2-dimensional sheet of classical hydrogen bonds. These sheets are further interconnected by Nsbnd H⋯π interactions. The structurally related base tyramine crystallises under similar conditions as a hemihydrate with all four possible species of tyramine present (cationic, anionic, Zwitterionic and neutral) in the crystal structure. Single crystal X-ray diffraction studies at 121 and 293 K showed dynamic hydrogen atom disorder for the phenol/phenoxide group, suggesting that the tyramine speciation observed arises from a solid-state process.
Shear induced structures in crystallizing cocoa butter
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.
2004-03-01
Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.
Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A
2016-02-01
A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.
Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor
NASA Astrophysics Data System (ADS)
Talebzadeh, Robabeh; Bavaghar, Mehrdad
2018-05-01
In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yuzo; Yanai, Hisaaki; Kanagawa, Mayumi
2016-07-27
The crystal structures of a subunit of the formylglycinamide ribonucleotide amidotransferase, PurS, fromThermus thermophilus,Sulfolobus tokodaiiandMethanocaldococcus jannaschiiwere determined and their structural characteristics were analyzed. For PurS fromT. thermophilus, two structures were determined using two crystals that were grown in different conditions. The four structures in the dimeric form were almost identical to one another despite their relatively low sequence identities. This is also true for all PurS structures determined to date. A few residues were conserved among PurSs and these are located at the interaction site with PurL and PurQ, the other subunits of the formylglycinamide ribonucleotide amidotransferase. Molecular-dynamics simulations ofmore » the PurS dimer as well as a model of the complex of the PurS dimer, PurL and PurQ suggest that PurS plays some role in the catalysis of the enzyme by its bending motion.« less
The antifriction behaviours of ?
NASA Astrophysics Data System (ADS)
Yan, Feng-yuan; Xue, Qun-ji
1997-03-01
In this paper, the antifriction behaviours of 0022-3727/30/5/010/img2 (3:1) molecules and their crystal powder were evaluated by different methods. It was found that the 0022-3727/30/5/010/img2 crystal powder possessed hexagonal close packed (hcp) crystal structure with a = 10.1 Å and c = 16.55 Å, and a transformation of crystal structure from hcp to face centred cubic (fcc) occurred easily during friction (burnishing). It was confirmed that two kinds of process, breakage of 0022-3727/30/5/010/img2 powder coagulated by nanoscale single crystals and rearrangement of the molecules along the friction direction, had occurred under the friction force. The extreme pressure (EP) performance of 0022-3727/30/5/010/img2 as an additive in paraffin liquid was investigated on an SRV oscillating wear machine. It was found that the extreme pressure load (EP value) of paraffin liquid was increased by dispersion of 0022-3727/30/5/010/img2 powder, accompanied by a slight improvement in the antifriction behaviour. it was confirmed that the improvement in EP value and antifriction behaviour of oil was dependent on the crystal structure of 0022-3727/30/5/010/img2 powder, but independent of the spherical molecular structure of 0022-3727/30/5/010/img8 or 0022-3727/30/5/010/img9. The burnishing experimental results also proved that the antifriction behaviour was determined by the crystal structure and had no relation to the molecular structure. It was also found that fullerenes possessed some physical properties similar to those of graphite. Since the formation of compact fullerenes with high shear strength during friction can be effectively prevented by some other lubricants, it is suggested that fullerenes should be mixed with other lubricants for tribological application.
Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.
Jaehme, Michael; Guskov, Albert; Slotboom, Dirk Jan
2014-11-01
PnuC transporters catalyze cellular uptake of the NAD+ precursor nicotinamide riboside (NR) and belong to a large superfamily that includes the SWEET sugar transporters. We present a crystal structure of Neisseria mucosa PnuC, which adopts a highly symmetrical fold with 3+1+3 membrane topology not previously observed in any protein. The high symmetry of PnuC with a single NR bound in the center suggests a simple alternating-access translocation mechanism.
Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.
Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle
2017-10-01
The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.
2017-06-30
Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less
Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina
Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.
1996-01-01
Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.
DNA-mediated nanoparticle crystallization into Wulff polyhedra
NASA Astrophysics Data System (ADS)
Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.
2014-01-01
Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira
The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of themore » Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.« less
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape
Sripathi, Kamali N.; Tay, Wendy W.; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G.
2014-01-01
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2′-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. PMID:24854621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiruselvam, Viswanathan; Sivaraman, Padavattan; Kumarevel, Thirumananseri, E-mail: kumarevel.thirumananseri@riken.jp
Highlights: • Crystal structure of ferritin was determined. • Endogenously expressed iron’s were identified. • Binuclear iron sites were observed at A and B active sites. - Abstract: Ferritin is an iron regulatory protein. It is responsible for storage and detoxification of excess iron thereby it regulates iron level in the body. Here we report the crystal structure of ferritin with two endogenously expressed Fe atoms binding in both the sites. The protein was purified and characterized by MALDI-TOF and N-terminal amino acid sequencing. The crystal belongs to I4 space group and it diffracted up to 2.5 Å. The structuralmore » analysis suggested that it crystallizes as hexamer and confirmed that it happened to be the first report of endogenously expressed Fe ions incorporated in both the A and B sites, situated in between the helices.« less
NASA Astrophysics Data System (ADS)
Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.
2014-01-01
The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.
Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khon, Yury A., E-mail: khon@ispms.tsc.ru; Kaminskii, Petr P., E-mail: ppk@ispms.tsc.ru
2015-10-27
New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.
Matsuda, Makoto; Takeshita, Kohei; Kurokawa, Tatsuki; Sakata, Souhei; Suzuki, Mamoru; Yamashita, Eiki; Okamura, Yasushi; Nakagawa, Atsushi
2011-07-01
Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) has a transmembrane voltage sensor domain and a cytoplasmic region sharing similarity to the phosphatase and tensin homolog (PTEN). It dephosphorylates phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon membrane depolarization. The cytoplasmic region is composed of a phosphatase domain and a putative membrane interaction domain, C2. Here we determined the crystal structures of the Ci-VSP cytoplasmic region in three distinct constructs, wild-type (248-576), wild-type (236-576), and G365A mutant (248-576). The crystal structure of WT-236 and G365A-248 had the disulfide bond between the catalytic residue Cys-363 and the adjacent residue Cys-310. On the other hand, the disulfide bond was not present in the crystal structure of WT-248. These suggest the possibility that Ci-VSP is regulated by reactive oxygen species as found in PTEN. These structures also revealed that the conformation of the TI loop in the active site of the Ci-VSP cytoplasmic region was distinct from the corresponding region of PTEN; Ci-VSP has glutamic acid (Glu-411) in the TI loop, orienting toward the center of active site pocket. Mutation of Glu-411 led to acquirement of increased activity toward phosphatidylinositol 3,5-bisphosphate, suggesting that this site is required for determining substrate specificity. Our results provide the basic information of the enzymatic mechanism of Ci-VSP.
Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun
2014-09-12
Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less
Crystal structure of the YDR533c S. cerevisiae protein, a class II member of the Hsp31 family.
Graille, Marc; Quevillon-Cheruel, Sophie; Leulliot, Nicolas; Zhou, Cong-Zhao; Li de la Sierra Gallay, Ines; Jacquamet, Lilian; Ferrer, Jean-Luc; Liger, Dominique; Poupon, Anne; Janin, Joel; van Tilbeurgh, Herman
2004-05-01
The ORF YDR533c from Saccharomyces cerevisiae codes for a 25.5 kDa protein of unknown biochemical function. Transcriptome analysis of yeast has shown that this gene is activated in response to various stress conditions together with proteins belonging to the heat shock family. In order to clarify its biochemical function, we determined the crystal structure of YDR533c to 1.85 A resolution by the single anomalous diffraction method. The protein possesses an alpha/beta hydrolase fold and a putative Cys-His-Glu catalytic triad common to a large enzyme family containing proteases, amidotransferases, lipases, and esterases. The protein has strong structural resemblance with the E. coli Hsp31 protein and the intracellular protease I from Pyrococcus horikoshii, which are considered class I and class III members of the Hsp31 family, respectively. Detailed structural analysis strongly suggests that the YDR533c protein crystal structure is the first one of a class II member of the Hsp31 family.
Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vognsen, Tina, E-mail: tv@farma.ku.dk; Kristensen, Ole, E-mail: ok@farma.ku.dk
2012-03-30
Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites formore » RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.« less
Culurgioni, Simone; Muñoz, Inés G; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J
2012-03-30
The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.
Magnetic properties of GdMnO3 nanoparticles embedded in mesoporous silica
NASA Astrophysics Data System (ADS)
Tajiri, Takayuki; Mito, Masaki; Deguchi, Hiroyuki; Kohno, Atsushi
2018-05-01
Perovskite manganite GdMnO3 nanoparticles were synthesized using mesoporous silica as a template, and their magnetic properties and crystal structure were investigated. Powder X-ray diffraction data indicated successful synthesis of the GdMnO3 nanoparticles, with mean particle sizes of 13.9 and 20.9 nm. The lattice constants for the nanoparticles were slightly different from those for the bulk material and varied with the particle size. The magnetic transition temperatures for the nanoparticles were higher than those of the bulk crystal. The synthesized GdMnO3 nanoparticles exhibited superparamagnetic behaviors: The blocking temperature, coercive field, and transition temperature depended on the particle size. Magnetic measurements and crystal structure analysis suggest that the changes in the magnetic properties for GdMnO3 nanoparticles can be attributed to the modulation of the crystallographic structure.
Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity.
Takahashi, Yukari; Obara, Rena; Lin, Zheng-Zhong; Takahashi, Yukihiro; Naito, Toshio; Inabe, Tamotsu; Ishibashi, Shoji; Terakura, Kiyoyuki
2011-05-28
The structural and electrical properties of a metal-halide cubic perovskite, CH(3)NH(3)SnI(3), have been examined. The band structure, obtained using first-principles calculation, reveals a well-defined band gap at the Fermi level. However, the temperature dependence of the single-crystal electrical conductivity shows metallic behavior down to low temperatures. The temperature dependence of the thermoelectric power is also metallic over the whole temperature range, and the large positive value indicates that charge transport occurs with a low concentration of hole carriers. The metallic properties of this as-grown crystal are thus suggested to result from spontaneous hole-doping in the crystallization process, rather than the semi-metal electronic structure. The present study shows that artificial hole doping indeed enhances the conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Monu; Dubey, Vikash K.; Jagannadham, Medicherla V., E-mail: vdubey@iitg.ernet.in
2007-02-01
Cryptolepain is a stable glycosylated novel serine protease was crystallized by hanging-drop method. Crystal data was processed up to 2.25 Å with acceptable statistics and structure determination of the enzyme is under way. Cryptolepain is a stable glycosylated novel serine protease purified from the latex of the medicinally important plant Cryptolepis buchanani. The molecular weight of the enzyme is 50.5 kDa, as determined by mass spectrometry. The sequence of the first 15 N-terminal resides of the protease showed little homology with those of other plant serine proteases, suggesting it to be structurally unique. Thus, it is of interest to solvemore » the structure of the enzyme in order to better understand its structure–function relationship. X-ray diffraction data were collected from a crystal of cryptolepain and processed to 2.25 Å with acceptable statistics. The crystals belong to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 81.78, b = 108.15, c = 119.86 Å. The Matthews coefficient was 2.62 Å{sup 3} Da{sup −1} with one molecule in the asymmetric unit. The solvent content was found to be 53%. Structure determination of the enzyme is under way.« less
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S
2014-01-24
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.
2014-01-01
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789
Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces
NASA Astrophysics Data System (ADS)
McBriarty, Martin E.
Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.
Han, Fei; Wan, Xiangang; Phelan, Daniel; ...
2015-07-13
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Diamond Lattice Colloidal Crystals from Binary DNA-grafted Microspheres
NASA Astrophysics Data System (ADS)
Crocker, John; Wang, Yifan; Jenkins, Ian; McGinley, James; Sinno, Talid
Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals from a binary suspension of sub-micron polymer microspheres with synthetic DNA grafted to their surfaces. While diamond symmetry crystals have previously been grown from much smaller nanoparticles, none of those methods appear workable for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, matched simulations fail to nucleate or grow B32 crystals from suspension; nor have they been predicted on the basis of theoretical arguments. We conjecture that the B32 crystals may form via transformation from a precursor with a different lattice structure in the bulk or on its surface. The feasibility of converting our self-assembled crystals into diamond-symmetry photonic templates will be discussed. This finding suggests that still other unexpected microstructures may be accessible using this approach. US National Science Foundation, CBET- 1403237.
Bao, Xiaofeng; Cao, Xiaowei; Nie, Xuemei; Jin, Yanyan; Zhou, Baojing
2014-06-11
A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job's plot suggested the RBAP formed a 1:1 complex with Sn2+.
NASA Astrophysics Data System (ADS)
Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia
2014-08-01
Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peng; Li, Jingzhi; Weaver, Clarissa
Hsp104 is a yeast member of the Hsp100 family which functions as a molecular chaperone to disaggregate misfolded polypeptides. To understand the mechanism by which the Hsp104 N-terminal domain (NTD) interacts with its peptide substrates, crystal structures of the Hsp104 NTDs fromSaccharomyces cerevisiae(ScHsp104NTD) andCandida albicans(CaHsp104NTD) have been determined at high resolution. The structures of ScHsp104NTD and CaHsp104NTD reveal that the yeast Hsp104 NTD may utilize a conserved putative peptide-binding groove to interact with misfolded polypeptides. In the crystal structures ScHsp104NTD forms a homodimer, while CaHsp104NTD exists as a monomer. The consecutive residues Gln105, Gln106 and Lys107, and Lys141 around themore » putative peptide-binding groove mediate the monomer–monomer interactions within the ScHsp104NTD homodimer. Dimer formation by ScHsp104NTD suggests that the Hsp104 NTD may specifically interact with polyQ regions of prion-prone proteins. The data may reveal the mechanism by which Hsp104 NTD functions to suppress and/or dissolve prions.« less
A computational investigation of the thermodynamics and structure in colloid and polymer mixtures
NASA Astrophysics Data System (ADS)
Mahynski, Nathan Alexander
In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.
Structure of Lmaj006129AAA, a hypothetical protein from Leishmania major
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakaki, Tracy; Le Trong, Isolde; Structural Genomics of Pathogenic Protozoa
2006-03-01
The crystal structure of a conserved hypothetical protein from L. major, Pfam sequence family PF04543, structural genomics target ID Lmaj006129AAA, has been determined at a resolution of 1.6 Å. The gene product of structural genomics target Lmaj006129 from Leishmania major codes for a 164-residue protein of unknown function. When SeMet expression of the full-length gene product failed, several truncation variants were created with the aid of Ginzu, a domain-prediction method. 11 truncations were selected for expression, purification and crystallization based upon secondary-structure elements and disorder. The structure of one of these variants, Lmaj006129AAH, was solved by multiple-wavelength anomalous diffraction (MAD)more » using ELVES, an automatic protein crystal structure-determination system. This model was then successfully used as a molecular-replacement probe for the parent full-length target, Lmaj006129AAA. The final structure of Lmaj006129AAA was refined to an R value of 0.185 (R{sub free} = 0.229) at 1.60 Å resolution. Structure and sequence comparisons based on Lmaj006129AAA suggest that proteins belonging to Pfam sequence families PF04543 and PF01878 may share a common ligand-binding motif.« less
Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape.
Sripathi, Kamali N; Tay, Wendy W; Banáš, Pavel; Otyepka, Michal; Šponer, Jiří; Walter, Nils G
2014-07-01
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape. © 2014 Sripathi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud'ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.
2015-09-01
Single crystals of Nd4FeOS6 were grown from an Fe-S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å3, Z=2), featuring parallel chains of face-sharing [FeS6×1/2]4- trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6 and the related La3CuSiS7- and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions.
Lee, Ting-Wai; Cherney, Maia M; Liu, Jie; James, Karen Ellis; Powers, James C; Eltis, Lindsay D; James, Michael N G
2007-02-23
The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.
Ngo, Tri Duc; Van Le, Binh; Subramani, Vinod Kumar; Thi Nguyen, Chi My; Lee, Hyun Sook; Cho, Yona; Kim, Kyeong Kyu; Hwang, Hye-Yeon
2015-05-22
Proteins in the haloalkaloic acid dehalogenase (HAD) superfamily, which is one of the largest enzyme families, is generally composed of a catalytic core domain and a cap domain. Although proteins in this family show broad substrate specificities, the mechanisms of their substrate recognition are not well understood. In this study, we identified a new substrate binding motif of HAD proteins from structural and functional analyses, and propose that this motif might be crucial for interacting with hydrophobic rings of substrates. The crystal structure of TON_0338, one of the 17 putative HAD proteins identified in a hyperthermophilic archaeon, Thermococcus onnurineus NA1, was determined as an apo-form at 2.0 Å resolution. In addition, we determined the crystal structure TON_0338 in complex with Mg(2+) or N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at 1.7 Å resolution. Examination of the apo-form and CHES-bound structures revealed that CHES is sandwiched between Trp58 and Trp61, suggesting that this Trp sandwich might function as a substrate recognition motif. In the phosphatase assay, TON_0338 was shown to have high activity for flavin mononucleotide (FMN), and the docking analysis suggested that the flavin of FMN may interact with Trp58 and Trp61 in a way similar to that observed in the crystal structure. Moreover, the replacement of these tryptophan residues significantly reduced the phosphatase activity for FMN. Our results suggest that WxxW may function as a substrate binding motif in HAD proteins, and expand the diversity of their substrate recognition mode. Copyright © 2015 Elsevier Inc. All rights reserved.
Three-Dimensional Self-Assembled Photonic Crystal Waveguide
NASA Astrophysics Data System (ADS)
Baek, Kang-Hyun
Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.
Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.
Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C
2018-05-23
Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbing, Mark A.; Handelman, Samuel K.; Kuzin, Alexandre P.
2010-09-27
Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phdmore » antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.« less
Crystal Structure Prediction via Deep Learning.
Ryan, Kevin; Lengyel, Jeff; Shatruk, Michael
2018-06-06
We demonstrate the application of deep neural networks as a machine-learning tool for the analysis of a large collection of crystallographic data contained in the crystal structure repositories. Using input data in the form of multi-perspective atomic fingerprints, which describe coordination topology around unique crystallographic sites, we show that the neural-network model can be trained to effectively distinguish chemical elements based on the topology of their crystallographic environment. The model also identifies structurally similar atomic sites in the entire dataset of ~50000 crystal structures, essentially uncovering trends that reflect the periodic table of elements. The trained model was used to analyze templates derived from the known binary and ternary crystal structures in order to predict the likelihood to form new compounds that could be generated by placing elements into these structural templates in combinatorial fashion. Statistical analysis of predictive performance of the neural-network model, which was applied to a test set of structures never seen by the model during training, indicates its ability to predict known elemental compositions with a high likelihood of success. In ~30% of cases, the known compositions were found among top-10 most likely candidates proposed by the model. These results suggest that the approach developed in this work can be used to effectively guide the synthetic efforts in the discovery of new materials, especially in the case of systems composed of 3 or more chemical elements.
Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Woo; Xu, Guozhou; Persky, Nicole S.
2011-08-29
Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less
Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
W Joo; G Xu; n Persky
2011-12-31
Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less
Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology
NASA Astrophysics Data System (ADS)
Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.
2015-04-01
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.
Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy
NASA Astrophysics Data System (ADS)
Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc
2017-12-01
The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition
NASA Astrophysics Data System (ADS)
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C. Austen
2018-03-01
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed.
Molecular Assembly of Clostridium botulinum progenitor M complex of type E.
Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin; Singh, Bal Ram; Swaminathan, Subramanyam
2015-12-07
Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.
NASA Astrophysics Data System (ADS)
Kogure, Toshihiro; Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Checa, Antonio G.; Sasaki, Takenori; Nagasawa, Hiromichi
2014-07-01
{110} twin density in aragonites constituting various microstructures of molluscan shells has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM), to find the factors that determine the density in the shells. Several aragonite crystals of geological origin were also investigated for comparison. The twin density is strongly dependent on the microstructures and species of the shells. The nacreous structure has a very low twin density regardless of the shell classes. On the other hand, the twin density in the crossed-lamellar (CL) structure has large variation among classes or subclasses, which is mainly related to the crystallographic direction of the constituting aragonite fibers. TEM observation suggests two types of twin structures in aragonite crystals with dense {110} twins: rather regulated polysynthetic twins with parallel twin planes, and unregulated polycyclic ones with two or three directions for the twin planes. The former is probably characteristic in the CL structures of specific subclasses of Gastropoda. The latter type is probably related to the crystal boundaries dominated by (hk0) interfaces in the microstructures with preferred orientation of the c-axis, and the twin density is mainly correlated to the crystal size in the microstructures.
NASA Astrophysics Data System (ADS)
Artioli, G.; Davoli, G.
1994-12-01
Crystal structural refinements of one orthorhombic (Pbca) and two monoclinic (P21/c) single crystals, from chondrules of low-Ca pyroxenes from unequilibrated chondritic meteorites of the LL group, were carried out. The intracrystalline Fe-Mg distribution between the M1 and M2 crystallographic sites of the Parnallee (LL-3) orthoenstatite is suggestive of very rapid cooling, whereas both the structural state and intracrystalline Fe-Mg distribution in the Soko Banja (LL-4) and Jolomba (LL-6) clinoenstaties indicate rapid cooling from the high temperature polymorphs, with no significant re-equilibration at lower temperatures. These results imply that thermal metamorphism in the parent body, if present, was insufficient to allow re-equilibration of the pyroxene minerals to low temperature, ordered crystal structures. The data also indicate that, assuming low or mild pressure and shock effects, there is no well defined correlation between equilibrium temperature of the mineral phases and the alleged petrologic type of the meteorites. This evidence is consistent with a rubble pile model for the parent body accretional history, or with an onion shell model with very low thermal peak metamorphism, as is assumed for a very small object.
Synthesis, Crystal Structure, and Magnetic Properties of the YbFeTi2O7 Compound
NASA Astrophysics Data System (ADS)
Drokina, T. V.; Petrakovskii, G. A.; Molokeev, M. S.; Velikanov, D. A.
2018-03-01
We report on the synthesis conductions and results of experimental investigations of the crystal structure and magnetic properties of a new magnetic compound YbFeTi2O7. According to the X-ray diffractometry data, the crystal structure of the investigated compound is described by the rhombic space group Pcnb with unit cell parameters of a = 9.8115(1) Å, b = 13.5106(2) Å, and c = 7.31302(9) Å and atomic disordering in the distribution of iron ions Fe3+ over five structural sites. The magnetic measurements in the lowtemperature region revealed a kink in the temperature dependence of the magnetic moment and its dependence on the sample magnetic prehistory. The experimental results obtained suggest that with a decrease in temperature the sample passes from the paramagnetic state to the spin-glass-like magnetic state characterized by a freezing temperature of T f = 4.5 K at the preferred antiferromagnetic exchange coupling in the sample spin system. The chemical pressure variation upon replacement of rare-earth ion R by Yb in the RFeTi2O7 system does not change the crystal lattice symmetry and magnetic state.
The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement
Cantaert, Bram; Beniash, Elia
2013-01-01
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP. PMID:24409343
The Role of Poly(Aspartic Acid) in the Precipitation of Calcium Phosphate in Confinement.
Cantaert, Bram; Beniash, Elia; Meldrum, Fiona C
2013-12-28
Many questions remain regarding the formation of ultrathin hydroxapatite (HAP) crystals within the confines of collagen fibrils of bones. These structures form through the interplay of the collagen matrix and non-collagenous proteins, and in vitro mineralization studies employing poly(aspartic acid) (PAsp) as a mimic of the non-collagenous proteins have generated mineralized fibrils with structures comparable to their biogenic counterparts. In this article, we employ the nanoscale cylindrical pores perforating track-etch filtration membranes to investigate the role of PAsp in controlling the infiltration and crystallization of calcium phosphate (CaP) within confined volumes. Oriented polycrystalline HAP and non-oriented octacalcium phosphate (OCP) rods precipitated within the membrane pores via an amorphous calcium phosphate (ACP) precursor, where PAsp increased the proportion of OCP rods. Further, ACP crystallized faster within the membranes than in bulk solution when PAsp was present, suggesting that PAsp inhibits crystallization in solution, but promotes it when bound to a substrate. Finally, in contrast to the collagen system, PAsp reduced the yield of intra-membrane mineral and failed to enhance infiltration. This suggests that a specific interaction between the collagen matrix and ACP/PAsp precursor particles drives effective infiltration. Thus, while orientation of HAP crystals can be achieved by confinement alone, the chemistry of the collagen matrix is necessary for efficient mineralisation with CaP.
Structure of Escherichia coli AdhP (ethanol-inducible dehydrogenase) with bound NAD.
Thomas, Leonard M; Harper, Angelica R; Miner, Whitney A; Ajufo, Helen O; Branscum, Katie M; Kao, Lydia; Sims, Paul A
2013-07-01
The crystal structure of AdhP, a recombinantly expressed alcohol dehydrogenase from Escherichia coli K-12 (substrain MG1655), was determined to 2.01 Å resolution. The structure, which was solved using molecular replacement, also included the structural and catalytic zinc ions and the cofactor nicotinamide adenine dinucleotide (NAD). The crystals belonged to space group P21, with unit-cell parameters a = 68.18, b = 118.92, c = 97.87 Å, β = 106.41°. The final R factor and Rfree were 0.138 and 0.184, respectively. The structure of the active site of AdhP suggested a number of residues that may participate in a proton relay, and the overall structure of AdhP, including the coordination to structural and active-site zinc ions, is similar to those of other tetrameric alcohol dehydrogenase enzymes.
Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms
2016-01-01
Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton
The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less
NASA Astrophysics Data System (ADS)
Yang, Xiaozhen; Wang, Simiao
2012-02-01
The site order parameter (SOP) has been adopted to analyze various order structure formation and distribution during the crystallization of a multi-chain polyethylene globule simulated by molecular dynamics. We found that the nucleation relies on crystallinity fluctuation with increase of amplitude, and the baby nucleus in the fluctuation suddenly appears with different shape and increasing size. In the growth stage, a number of lamellar mergence was observed and their selective behaviors were suggested to be related to the orientation difference between the merging lamellae. We obtained that SOP distribution of all atoms in the system during crystallization appears with two peaks: one for the amorphous phase and the other for the crystalline phase. Mesomorphic structures with medium orders locate between the two peaks as an order promotion pathway. Obtained data show that the medium order structure fluctuates at the growth front and does not always be available; the medium order structure existing at the front is not always good for developing. It is possibly caused by chain entanglement.
NASA Astrophysics Data System (ADS)
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
NUMATA, TOMOYUKI; ISHIMATSU, IKUKO; KAKUTA, YOSHIMITSU; TANAKA, ISAO; KIMURA, MAKOTO
2004-01-01
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5′ leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36–127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 Å resolution by X-ray crystallography. The structure is composed of four helices (α1–α4) and a six-stranded antiparallel β-sheet (β1–β6) with a protruding β-strand (β7) at the C-terminal region. The strand β7 forms an antiparallel β-sheet by interacting with strand β4 in a symmetry-related molecule, suggesting that strands β4 and β7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the β-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal α-helices (α1–α4) and β-strand β6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands β2 and β3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P. PMID:15317976
NASA Astrophysics Data System (ADS)
Oppenheimer, J. C.; Cashman, K. V.; Rust, A.; Dobson, K. J.; Bacon, C. R.; Dingwell, D. B.
2016-12-01
In order to constrain gas migration behaviors in crystal-rich magmas, we compare results of analogue experiments to frozen structures in andesitic enclaves. In the analogue experiments air was injected into mixtures of syrup and particles sandwiched between glass plates. We observed a significant increase in bubble deformation and coalescence when particle fractions increased beyond a critical value (the random loose packing). At high particle fractions, bubble growth re-organized (compacted) the particles adjacent to the bubble walls. This caused liquid segregation into patches within the particle suspension and into large void spaces near the outer edge of experiments. We compare these experiments to void morphologies in a 58 x 70 x 73 cm andesitic enclave from silicic-andesite lava flows of Mt Mazama, Oregon (Bacon, 1986). This enclave is zoned, with a vesicle-rich center and a glass-rich rim, suggesting gas-driven melt segregation from the center to the rim. We use both 2D (optical microscopy and SEM) and 3D (X-ray tomography) techniques to image crystal textures and bubble shapes. The center of the enclave bears scattered patches of groundmass in the main phenocryst framework. These patches are similar to those observed in experiments, and thus melt segregation in the enclave may have occurred both toward the rim and toward these patches. Bubble morphologies reveal two main types of bubbles. (1) Lobate and finger-like bubbles, similar to the deformed bubbles in experiments, are found exclusively in the groundmass patches. They are also often associated with compacted crystal structures at the bubble walls. (2) Diktytaxitic textures - angular bubbles flattened against phenocrysts - are abundant in the crystal networks. These voids are entirely connected in 3D and formed the gas-rich center of the enclave. They likely represent a gas migration regime where the expanding gas front cannot deform the crystal structure but instead invades the pore-space between crystals, pushing out residual melt (filter pressing). The switch between regimes appears to depend on crystal size and aspect ratio. The similar features between bubbles in the enclave and in experiments are encouraging, and suggest that crystal-induced bubble deformation, and gas-driven melt segregation, may be common in crystal-rich magmas.
Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N
2015-07-01
Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
2013-01-01
That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg2+ on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures. PMID:24489438
Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C
2013-12-23
That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO 3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg 2+ on CaCO 3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Peggy; Partlow, Benjamin P.; Kaplan, David L.
Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130–270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealingmore » at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.« less
Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R
2017-11-14
The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.
On the correlation between hydrogen bonding and melting points in the inositols
Bekö, Sándor L.; Alig, Edith; Schmidt, Martin U.; van de Streek, Jacco
2014-01-01
Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006 ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible. PMID:25075320
Structure and high-pressure behavior of 2,5-di-(4-aminophenyl)-1,3,4-oxadiazole
NASA Astrophysics Data System (ADS)
Franco, Olga; Orgzall, Ingo; Reck, Günter; Stockhause, Sabine; Schulz, Burkhard
2005-06-01
The crystalline structures of two modifications of a compound containing the oxadiazole ring, 2,5-di-(4-aminophenyl)-1,3,4-oxadiazole (DAPO) were determined. One of these modifications contains water molecules in the crystal structure, which is observed for the first time for an oxadiazole crystal. Both crystals show an orthorhombic structure. The water free modification, DAPO I, belongs to the space group Pbca (61) and has the lattice parameters: a=13.461(5), b=7.937(3) and c=22.816(8) Å (CCDC 246608). The water containing pseudo-polymorph, DAPO II, has the space group Cmcm (63) and the lattice parameters: a=16.330(5), b=12.307(2) and c=6.9978(14) Å (CCDC 246609). To gain information on the inter molecular interactions within the crystals, X-ray experiments under compression at ambient temperature and under heating at vacuum conditions were performed. Neither DAPO I nor DAPO II undergo phase transitions in the ressure range up to 5 GPa, as could be concluded from X-ray and Raman experiments. X-ray and calorimetric studies indicate that DAPO II dehydrates into DAPO I under increasing temperature. Structural considerations suggest a two-stage process. The compression behavior of both substances is well described by the Murnaghan equation of state (MEOS) and the values of the bulk modulus and its pressure derivative are determined for these crystals. Additionally, in the case of DAPO I, also the thermal expansion coefficient α0 was measured.
Ultra-high resolution crystal structure of recombinant caprine β-lactoglobulin.
Crowther, Jennifer M; Lassé, Moritz; Suzuki, Hironori; Kessans, Sarah A; Loo, Trevor S; Norris, Gillian E; Hodgkinson, Alison J; Jameson, Geoffrey B; Dobson, Renwick C J
2014-11-03
β-Lactoglobulin (βlg) is the most abundant whey protein in the milks of ruminant animals. While bovine βlg has been subjected to a vast array of studies, little is known about the caprine ortholog. We present an ultra-high resolution crystal structure of caprine βlg complemented by analytical ultracentrifugation and small-angle X-ray scattering data. In both solution and crystalline states caprine βlg is dimeric (K(D)<5 μM); however, our data suggest a flexible quaternary arrangement of subunits within the dimer. These structural findings will provide insight into relationships among structural, processing, nutritional and immunological characteristics that distinguish cow's and goat's milk. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
The crystal structure of choline kinase reveals a eukaryotic protein kinase fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisach, D.; Gee, P.; Kent, K.
2010-03-08
Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 {angstrom} crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline bindingmore » site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.« less
NASA Technical Reports Server (NTRS)
Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John
2002-01-01
Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
Crystallization of bi-functional ligand protein complexes.
Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano
2013-06-01
Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.
Nucleation and Crystallization of Globular Proteins: What we Know and What is Missing
NASA Technical Reports Server (NTRS)
Rosenberger, F.; Vekilov, P. G.; Muschol, M.; Thomas, B. R.
1996-01-01
Recently. much progress has been made in understanding the nucleation and crystallization of globular proteins, including the formation of compositional and structural crystal defects, Insight into the interactions of (screened) protein macro-ions in solution, obtained from light scattering, small angle X-ray scattering and osmotic pressure studies. can guide the search for crystallization conditions. These studies show that the nucleation of globular proteins is governed by the same principles as that of small molecules. However, failure to account for direct and indirect (hydrodynamic) protein interactions in the solutions results in unrealistic aggregation scenarios. Microscopic studies of numerous proteins reveal that crystals grow by the attachment of growth units through the same layer-spreading mechanisms as inorganic crystals. Investigations of the growth kinetics of hen-egg-white lysozyme (HEWL) reveal non-steady behavior under steady external conditions. Long-term variations in growth rates are due to changes in step-originating dislocation groups. Fluctuations on a shorter timescale reflect the non-linear dynamics of layer growth that results from the interplay between interfacial kinetics and bulk transport. Systematic gel electrophoretic analyses suggest that most HEWL crystallization studies have been performed with material containing other proteins at percent levels. Yet, sub-percent levels of protein impurities impede growth step propagation and play a role in the formation of structural/compositional inhomogeneities. In crystal growth from highly purified HEWL solutions, however, such inhomogeneities are much weaker and form only in response to unusually large changes in growth conditions. Equally important for connecting growth conditions to crystal perfection and diffraction resolution are recent advances in structural characterization through high-resolution Bragg reflection profiling and X-ray topography.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; ...
2016-04-12
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. Furthermore, this observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
NASA Astrophysics Data System (ADS)
Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S.; Tumas, William; Perkins, John D.; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M.; Zakutayev, Andriy
2016-04-01
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures.
Caskey, Christopher M; Holder, Aaron; Shulda, Sarah; Christensen, Steven T; Diercks, David; Schwartz, Craig P; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Orvananos, Bernardo; Sun, Wenhao; Zhang, Xiuwen; Ceder, Gerbrand; Ginley, David S; Tumas, William; Perkins, John D; Stevanovic, Vladan; Pylypenko, Svitlana; Lany, Stephan; Richards, Ryan M; Zakutayev, Andriy
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed ii/iv valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.
Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskey, Christopher M.; Colorado School of Mines, Golden, Colorado 80401; Larix Chemical Science, Golden, Colorado 80401
2016-04-14
Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experimentsmore » indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less
Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo
2018-05-11
Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kühnel, Karin; Ke, Na; Cryle, Max J; Sligar, Stephen G; Schuler, Mary A; Schlichting, Ilme
2008-06-24
The crystal structures of substrate-free and all-trans-retinoic acid-bound CYP120A1 from Synechocystis sp. PCC 6803 were determined at 2.4 and 2.1 A resolution, respectively, representing the first structural characterization of a cyanobacterial P450. Features of CYP120A1 not observed in other P450 structures include an aromatic ladder flanking the channel leading to the active site and a triple-glycine motif within SRS5. Using spectroscopic methods, CYP120A1 is shown to bind 13-cis-retinoic acid, 9-cis-retinoic acid, and retinal with high affinity and dissociation constants of less than 1 microM. Metabolism of retinoic acid by CYP120A1 suggests that CYP120A1 hydroxylates a variety of retinoid derivatives in vivo. On the basis of the retinoic acid-bound CYP120A1 crystal structure, we propose that either carbon 2 or the methyl groups (C16 or C17) of the beta-ionone ring are modified by CYP120A1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowley, S.; Okumura, N; Lord, S
'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptidemore » GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.
2012-02-07
Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals.more » The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.« less
Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility.
Zeng, Feng; Ma, Fei; Gao, Qunyu; Yu, Shujuan; Kong, Fansheng; Zhu, Siming
2014-11-26
Slowly digestible starch (SDS) was obtained through debranched waxy rice starch and subsequent crystallization under isothermal and temperature-cycled conditions. Temperature-cycled crystallization of dual 4/-20 °C produced a higher yield of SDS product than isotherm crystallization. Crystal structure of SDS products changed from A-type to a mixture of B and V-type X-ray diffraction patterns. The relative crystallinity was higher in the temperature-cycled samples than that of isotherm. Attenuated total reflectance Fourier transform infrared spectroscopy suggested that the peripheral regions of isothermal storage starch were better organized than temperature-cycles. Temperature cycling induced higher onset temperature for melting of crystals than isothermal storage under a differential scanning calorimeter. The cycled temperature storage induced a greater amount of SDS than the isothermal storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Crystal structure of enterococcus faecalis sly A-like transcriptional factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Zhang, R.; Zagnitko, O.
2003-05-30
The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less
NASA Astrophysics Data System (ADS)
Žák, Jiří; Klomínský, Josef
2007-08-01
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.
Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J
2017-08-08
Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.
Crystal structure of a four-stranded intercalated DNA: d(C4)
NASA Technical Reports Server (NTRS)
Chen, L.; Cai, L.; Zhang, X.; Rich, A.
1994-01-01
The crystal structure of d(C4) solved at 2.3-A resolution reveals a four-stranded molecule composed of two interdigitated or intercalated duplexes. The duplexes are held together by hemiprotonated cytosine-cytosine base pairs and are parallel stranded, but the two duplexes point in opposite directions. The molecule has a slow right-handed twist of 12.4 degrees between covalently linked cytosine base pairs, and the base stacking distance is 3.1 A. This is in general agreement with the NMR studies. A biological role for DNA in this conformation is suggested.
GIXAFS study of Fe3+ sorption and precipitation on natural quartz surfaces
Waychunas, G.; Davis, J.; Reitmeyer, R.
1999-01-01
Grazing-incidence EXAFS has been used to characterize the structure of Fe3+ sorbed onto natural single crystal quartz surfaces. Fe3+ sorption at ca. 5% monolayer coverage on a natural crystal allowed to equilibrate in air resulted in formation of hematite nuclei with strong texturing on r-and m-planes. EXAFS calculations suggests that both O and Fe backscattering is necessary to yield acceptable structural models, that about 50% of the sorbed iron resides in nuclei, and that the approximate dimensions of the nuclei can be estimated via Feff 7.0 calculations of various nuclei sizes and shapes.
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.
2018-04-01
The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.
Influence of sodium fluoride (NaF) on the crystallization and spectral properties of L-tyrosine
NASA Astrophysics Data System (ADS)
Thenmozhi, M.; Suguna, K.; Sekar, C.
2011-12-01
L-Tyrosine (C 9H 11NO 3) is an essential amino acid in living organisms. It is also a building unit in protein, takes part in bio-synthesis of hormones, neurotransmitters, pigments and one of the organic chemical constituents of urinary stones. L-Tyrosine has been crystallized in silica gel by double diffusion technique with and without the addition of NaF. The crystals had rosette-like shape. In case of fluoride addition, two types of crystals have formed: rosette like crystallites, at the gel-solution interface and reticulate type crystallites beneath the interface. XRD results confirmed that both the products are of L-tyrosine with identical crystal structures. Crystal structure, morphology, thermal and spectral properties are analyzed using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and UV-vis transmittance studies. The TG-DTA results suggest that the thermal stability of L-tyrosine has markedly improved due to fluoride doping. Optical band gap energy of NaF grown L-tyrosine crystallite is estimated as 4.28 eV. Second harmonic generation efficiency test indicates that L-tyrosine crystals can be used for application in nonlinear optical devices.
Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P
2016-05-10
The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingzhi; Sha, Bingdong, E-mail: bdsha@uab.edu
2015-08-25
The Tim50 crystal structure indicates that the IMS domain of Tim50 exhibits significant structural plasticity within the putative presequence-binding groove. Mitochondrial preproteins are transported through the translocase of the outer membrane (TOM) complex. Tim50 and Tim23 then transfer preproteins with N-terminal targeting presequences through the intermembrane space (IMS) across the inner membrane. The crystal structure of the IMS domain of Tim50 [Tim50(164–361)] has previously been determined to 1.83 Å resolution. Here, the crystal structure of Tim50(164–361) at 2.67 Å resolution that was crystallized using a different condition is reported. Compared with the previously determined Tim50(164–361) structure, significant conformational changes occurmore » within the protruding β-hairpin of Tim50 and the nearby helix A2. These findings indicate that the IMS domain of Tim50 exhibits significant structural plasticity within the putative presequence-binding groove, which may play important roles in the function of Tim50 as a receptor protein in the TIM complex that interacts with the presequence and multiple other proteins. More interestingly, the crystal packing indicates that helix A1 from the neighboring monomer docks into the putative presequence-binding groove of Tim50(164–361), which may mimic the scenario of Tim50 and the presequence complex. Tim50 may recognize and bind the presequence helix by utilizing the inner side of the protruding β-hairpin through hydrophobic interactions. Therefore, the protruding β-hairpin of Tim50 may play critical roles in receiving the presequence and recruiting Tim23 for subsequent protein translocations.« less
NASA Astrophysics Data System (ADS)
Mei, Yang; Wei, Cheng-Fu; Zheng, Wen-Chen
2016-02-01
Detailed theoretical calculations for the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) of the rhombic W5+ center in CaWO4:Y3+ crystal are performed by using the high-order perturbation formulas for d1 ions in rhombic tetrahedral clusters with the ground state |dz2>. These formulas consist of the contributions from two mechanisms, the crystal-field (CF) mechanism connected with CF excited states in the vastly-used CF theory and the frequently-neglected charge-transfer (CT) mechanism related to CT excited states. The calculated results agree well with the experimental values. The calculations indicate that for W5+ ion (or other high valence state dn ions) in crystals, the model calculations of spin-Hamiltonian parameters should take both the CF and CT mechanisms into account. The signs of hyperfine structure constants Ai are suggested and the forming (or defect model) of rhombic W5+ center in CaWO4:Y3+ crystal is confirmed from the calculations.
Lead(ii) soaps: crystal structures, polymorphism, and solid and liquid mesophases.
Martínez-Casado, F J; Ramos-Riesco, M; Rodríguez-Cheda, J A; Redondo-Yélamos, M I; Garrido, L; Fernández-Martínez, A; García-Barriocanal, J; da Silva, I; Durán-Olivencia, M; Poulain, A
2017-07-05
The long-chain members of the lead(ii) alkanoate series or soaps, from octanoate to octadecanoate, have been thoroughly characterized by means of XRD, PDF analysis, DSC, FTIR, ssNMR and other techniques, in all their phases and mesophases. The crystal structures at room temperature of all of the members of the series are now solved, showing the existence of two polymorphic forms in the room temperature crystal phase, different to short and long-chain members. Only nonanoate and decanoate present both forms, and this polymorphism is proven to be monotropic. At higher temperature, these compounds present a solid mesophase, defined as rotator, a liquid crystal phase and a liquid phase, all of which have a similar local arrangement. Since some lead(ii) soaps appear as degradation compounds in oil paintings, the solved crystal structures of lead(ii) soaps can now be used as fingerprints for their detection using X-ray diffraction. Pair distribution function analysis on these compounds is very similar in the same phases and mesophases for the different members, showing the same short range order. This observation suggests that this technique could also be used in the detection of these compounds in disordered phases or in the initial stages of formation in paintings.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele
2016-09-01
Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.
Highly Dynamic Anion-Quadrupole Networks in Proteins.
Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome
2016-11-01
The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.
Protein-Precipitant-Specific Criteria for the Impact of Reduced Gravity on Crystal Perfection
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.; Witherow, W. (Technical Monitor)
2003-01-01
The objective of this research is to provide quantitative criteria for the impact of reduced or enhanced convective transport on protein crystal perfection. Our earlier work strongly suggests that the magnitude of (lattice defect-inducing) fluctuations in the crystallization rate of proteins arise from the coupling of bulk transport and nonlinear interface kinetics. Hence, we surmised that, depending on the relative weight of bulk transport and interface kinetics in the control of the crystallization process on Earth, these fluctuations can either increase or decrease under reduced gravity conditions. The sign and magnitude of these changes depend on the specific protein-precipitant system. As a consequence, space environments can be either beneficial or detrimental for achieving structural perfection in protein crystals. The task objectives consist in systematic investigations of this hypothesis.
Differentiation of magma oceans and the thickness of the depleted layer on Venus
NASA Technical Reports Server (NTRS)
Solomatov, V. S.; Stevenson, D. J.
1993-01-01
Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.
Forest, K T; Langford, P R; Kroll, J S; Getzoff, E D
2000-02-11
Macrophages and neutrophils protect animals from microbial infection in part by issuing a burst of toxic superoxide radicals when challenged. To counteract this onslaught, many Gram-negative bacterial pathogens possess periplasmic Cu,Zn superoxide dismutases (SODs), which act on superoxide to yield molecular oxygen and hydrogen peroxide. We have solved the X-ray crystal structure of the Cu,Zn SOD from Actinobacillus pleuropneumoniae, a major porcine pathogen, by molecular replacement at 1.9 A resolution. The structure reveals that the dimeric bacterial enzymes form a structurally homologous class defined by a water-mediated dimer interface, and share with all Cu,Zn SODs the Greek-key beta-barrel subunit fold with copper and zinc ions located at the base of a deep loop-enclosed active-site channel. Our structure-based sequence alignment of the bacterial enzymes explains the monomeric nature of at least two of these, and suggests that there may be at least one additional structural class for the bacterial SODs. Two metal-mediated crystal contacts yielded our C222(1) crystals, and the geometry of these sites could be engineered into proteins recalcitrant to crystallization in their native form. This work highlights structural differences between eukaryotic and prokaryotic Cu,Zn SODs, as well as similarities and differences among prokaryotic SODs, and lays the groundwork for development of antimicrobial drugs that specifically target periplasmic Cu,Zn SODs of bacterial pathogens. Copyright 12000 Academic Press.
Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan
2007-01-01
Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854
Zhang, Hang; Xu, Qingyan
2017-10-27
Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.
Zhang, Hang; Xu, Qingyan
2017-01-01
Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw), the spiral pitch (hb) and the spiral diameter (hs), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure. PMID:29077067
Influence of precipitating agents on thermodynamic parameters of protein crystallization solutions.
Stavros, Philemon; Saridakis, Emmanuel; Nounesis, George
2016-09-01
X-ray crystallography is the most powerful method for determining three-dimensional structures of proteins to (near-)atomic resolution, but protein crystallization is a poorly explained and often intractable phenomenon. Differential Scanning Calorimetry was used to measure the thermodynamic parameters (ΔG, ΔH, ΔS) of temperature-driven unfolding of two globular proteins, lysozyme, and ribonuclease A, in various salt solutions. The mixtures were categorized into those that were conducive to crystallization of the protein and those that were not. It was found that even fairly low salt concentrations had very large effects on thermodynamic parameters. High concentrations of salts conducive to crystallization stabilized the native folded forms of proteins, whereas high concentrations of salts that did not crystallize them tended to destabilize them. Considering the ΔH and TΔS contributions to the ΔG of unfolding separately, high concentrations of crystallizing salts were found to enthalpically stabilize and entropically destabilize the protein, and vice-versa for the noncrystallizing salts. These observations suggest an explanation, in terms of protein stability and entropy of hydration, of why some salts are good crystallization agents for a given protein and others are not. This in turn provides theoretical insight into the process of protein crystallization, suggesting ways of predicting and controlling it. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 642-652, 2016. © 2016 Wiley Periodicals, Inc.
Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulepati, Sabin; Heroux, Annie; Bailey, Scott
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of proteinmore » subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.« less
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
Mulepati, Sabin; Héroux, Annie; Bailey, Scott
2015-01-01
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kDa complex is called Cascade. Here we report the 3.03Å crystal structure of Cascade bound to a single-stranded DNA target. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This non-canonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding. PMID:25123481
The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament.
Fu, Yang; Slaymaker, Ian M; Wang, Junfeng; Wang, Ganggang; Chen, Xiaojiang S
2014-04-03
Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of amorphous structure on polymorphism in vanadia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.
Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less
Influence of amorphous structure on polymorphism in vanadia
Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; ...
2016-07-13
Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphsmore » of VO 2. Ultimately this suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.« less
Three-dimensional photonic crystals created by single-step multi-directional plasma etching.
Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu
2014-07-14
We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.
Study of Polymer Crystallization by Physical Vapor Deposition
NASA Astrophysics Data System (ADS)
Jeong, Hyuncheol
When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.
2016-01-01
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903
Cheng, Kuo-Chang; Liao, Jhen-Ni; Lyu, Ping-Chiang
2012-01-01
The daily cycle of melatonin biosynthesis in mammals is regulated by AANAT (arylalkylamine N-acetyltransferase; EC 2.3.1.87), making it an attractive target for therapeutic control of abnormal melatonin production in mood and sleep disorders. Drosophila melanogaster Dat (dopamine N-acetyltransferase) is an AANAT. Until the present study, no insect Dat structure had been solved, and, consequently, the structural basis for its acetyl-transfer activity was not well understood. We report in the present paper the high-resolution crystal structure for a D. melanogaster Dat–AcCoA (acetyl-CoA) complex obtained using one-edge (selenium) single-wavelength anomalous diffraction. A binding study using isothermal titration calorimetry suggested that the cofactor bound to Dat first before substrate. Examination of the complex structure and a substrate-docked model indicated that Dat contains a novel AANAT catalytic triad. Site-directed mutagenesis, kinetic studies and pH-rate profiles confirmed that Glu47, Ser182 and Ser186 were critical for catalysis. Collectively, the results of the present study suggest that Dat possesses a specialized active site structure dedicated to a catalytic mechanism. PMID:22716280
Structure-property evolution during polymer crystallization
NASA Astrophysics Data System (ADS)
Arora, Deepak
The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai
2009-12-01
Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predictedmore » to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotsyfakis, Michalis; Horka, Helena; Salat, Jiri
2010-11-17
We have previously demonstrated that two salivary cysteine protease inhibitors from the Borrelia burgdorferi (Lyme disease) vector Ixodes scapularis - namely sialostatins L and L2 - play an important role in tick biology, as demonstrated by the fact that silencing of both sialostatins in tandem results in severe feeding defects. Here we show that sialostatin L2 - but not sialostatin L - facilitates the growth of B. burgdorferi in murine skin. To examine the structural basis underlying these differential effects of the two sialostatins, we have determined the crystal structures of both sialostatin L and L2. This is the firstmore » structural analysis of cystatins from an invertebrate source. Sialostatin L2 crystallizes as a monomer with an 'unusual' conformation of the N-terminus, while sialostatin L crystallizes as a domain-swapped dimer with an N-terminal conformation similar to other cystatins. Deletion of the 'unusual' N-terminal five residues of sialostatin L2 results in marked changes in its selectivity, suggesting that this region is a particularly important determinant of the biochemical activity of sialostatin L2. Collectively, our results reveal the structure of two tick salivary components that facilitate vector blood feeding and that one of them also supports pathogen transmission to the vertebrate host.« less
Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G
2007-02-01
Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.
Crystal structure of the EnvZ periplasmic domain with CHAPS.
Hwang, Eunha; Cheong, Hae-Kap; Kim, Sang-Yoon; Kwon, Ohsuk; Blain, Katherine Y; Choe, Senyon; Yeo, Kwon Joo; Jung, Yong Woo; Jeon, Young Ho; Cheong, Chaejoon
2017-05-01
Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent. The structure of EnvZ-PD shows similar folding topology to the PDC domains of PhoQ, DcuS, and CitA, but distinct orientations of helices and β-hairpin structures. The CD and NMR spectra of EnvZ-PD in the presence of cholate, a major component of bile salts, are similar to those with CHAPS. Chemical cross-linking shows that the dimerization of EnvZ-PD is significantly inhibited by the CHAPS and cholate. Together with β-galactosidase assay, these results suggest that bile salts may affect the EnvZ structure and function in Escherichia coli. © 2017 Federation of European Biochemical Societies.
Kinnibrugh, Tiffany L.; Salman, Seyhan; Getmanenko, Yulia A.; Coropceanu, Veaceslav; Porter, William W.; Timofeeva, Tatiana V.; Matzger, Adam J.; Brédas, Jean-Luc; Marder, Seth R.; Barlow, Stephen
2009-01-01
Crystal structures have been determined for six dipolar polyene chromophores with metallocenyl – ferrocenyl (Fc), octamethylferrocenyl (Fc″), or ruthenocenyl (Rc) – donors and strong heterocyclic acceptors based on 1,3-diethyl-2-thiobarbituric acid or 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide. In each case, crystals were found to belong to centrosymmetric space groups. For one example, polymer-induced heteronucleation revealed the existence of two additional polymorphs, which were inactive in second-harmonic generation, suggesting that they were also centrosymmetric. The bond-length alternations between the formally double and single bonds of the polyene bridges are reduced compared to simple polyenes, indicating significant contribution from charge-separated resonance structures, although the metallocenes are not significantly distorted towards the [(η6-fulvene)(η5-cyclopentadienyl)metal(II)]+ extreme. DFT geometries are in excellent agreement with those determined crystallographically; while the π-donor strengths of the three metallocenyl groups are insufficiently different to result in detectable differences in the crystallographic bond-length alternations, the DFT geometries, as well as DFT-calculations of partial charges for atoms, suggest that π-donor strength decreases in the order Fc″ ≫ Fc > Rc. NMR, IR and electrochemical evidence also suggests that octamethylferrocenyl is the stronger π-donor, exhibiting similar π-donor strength to a p-(dialkylamino)phenyl group, while ferrocenyl and ruthenocenyl show very similar π-donor strengths to one another in chromophores of this type. PMID:20047010
Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C
2016-01-19
The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.
Crystal Structure of the N-Terminal Half of the Traffic Controller UL37 from Herpes Simplex Virus 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenigsberg, Andrea L.; Heldwein, Ekaterina E.; Sandri-Goldin, Rozanne M.
Inner tegument protein UL37 is conserved among all three subfamilies of herpesviruses. Studies of UL37 homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), have suggested that UL37 plays an essential albeit poorly defined role in intracellular capsid trafficking. At the same time, HSV and PRV homologs cannot be swapped, which suggests that in addition to a conserved function, UL37 homologs also have divergent virus-specific functions. Accurate dissection of UL37 functions requires detailed maps in the form of atomic-resolution structures. Previously, we reported the crystal structure of the N-terminal half of UL37 (UL37N) from PRV. Here,more » we report the crystal structure of HSV-1 UL37N. Comparison of the two structures reveals that UL37 homologs differ in their overall shapes, distributions of surface charges, and locations of projecting loops. In contrast, the previously identified R2 surface region is structurally conserved. We propose that within the N-terminal half of UL37, functional conservation is centered within the R2 surface region, whereas divergent structural elements pinpoint regions mediating virus-specific functions and may engage different binding partners. Together, the two structures can now serve as templates for a structure-guided exploration of both conserved and virus-specific functions of UL37. IMPORTANCEThe ability to move efficiently within host cell cytoplasm is essential for replication in all viruses. It is especially important in the neuroinvasive alphaherpesviruses, such as human herpes simplex virus 1 (HSV-1), HSV-2, and veterinarian pseudorabies virus (PRV), that infect the peripheral nervous system and have to travel long distances along axons. Capsid movement in these viruses is controlled by capsid-associated tegument proteins, yet their specific roles have not yet been defined. Systematic exploration of the roles of tegument proteins in capsid trafficking requires detailed navigational charts in the form of their three-dimensional structures. Here, we determined the crystal structure of the N-terminal half of a conserved tegument protein, UL37, from HSV-1. This structure, along with our previously reported structure of the UL37 homolog from PRV, provides a much needed 3-dimensional template for the dissection of both conserved and virus-specific functions of UL37 in intracellular capsid trafficking.« less
Two-step transition towards the reversibility region in Bi2Sr2CaCu2O8-δ single crystals
NASA Astrophysics Data System (ADS)
Pastoriza, H.; de La Cruz, F.; Mitzi, D. B.; Kapitulnik, A.
1992-10-01
We have performed magnetization measurements on Bi2Sr2CaCu2O8-δ single crystals in the c^ crystallographic direction for fields from 2 Oe up to 700 Oe. The results strongly suggest that the reversible thermodynamic region is achieved after the vortex flux structure shows an abrupt transition at a temperature lower than that determined by the irreversibility line.
Rouse, Sarah L; Hawthorne, Wlliam J; Lambert, Sebastian; Morgan, Marc L; Hare, Stephen A; Matthews, Stephen
2016-12-01
Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF 106-430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Å resolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, β = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane β-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung Wook; Moon, Byung Kee; Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr
2015-10-15
Highlights: • SrMoO{sub 4}:Tb{sup 3+} phosphor samples were synthesized at different temperatures. • The crystal and electronic structures, and luminescence properties were studied. • The excitation peak shifts to red with increasing the sintering temperature. • The luminescence mechanism of SrMoO{sub 4}:Tb{sup 3+} was suggested. - Abstract: The experimental and theoretical studies of the optical properties of SrMoO{sub 4}:Tb{sup 3+} phosphors were carried out. The structural, optical, and electronical properties of the phosphors were systematically studied. The phosphor samples were crystallized at different temperatures via a sol–gel method. Excitation spectra of SrMoO{sub 4}:Tb{sup 3+} powder samples exhibited gradual red shiftmore » and luminescent intensity changed with increasing the sintering temperature. Such spectral changes depend strongly on the crystallographic properties such as lattice parameters and crystallinity. The shift of the excitation spectra is mainly ascribed to the covalent bond interaction between Mo−O bonds. An energy band model was demonstrated to describe the luminescence mechanism in the material.« less
Kim, Kyung Rok; Park, Sang Ho; Kim, Hyoun Sook; Rhee, Kyung Hee; Kim, Byung-Gyu; Kim, Dae Gyu; Park, Mi Seul; Kim, Hyun-Jung; Kim, Sunghoon; Han, Byung Woo
2013-01-01
Human cytosolic aspartyl-tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi-tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C-terminal end of the N-helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N-helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post-translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions. PMID:23609930
The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.
2008-01-01
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstromsmore » resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.« less
Structural complexity of simple Fe 2O 3 at high pressures and temperatures
Bykova, Elena; Dubrovinsky, L.; Dubrovinskaia, N.; ...
2016-02-11
Although chemically very simple, Fe 2O 3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe 2O 3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described bymore » the homologous series nFeO·mFe 2O 3. Decomposition of Fe 2O 3 and Fe 3O 4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe 5O 7 and Fe 25O 32 phases with release of oxygen. Lastly, our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.« less
Kim, Kyung Rok; Park, Sang Ho; Kim, Hyoun Sook; Rhee, Kyung Hee; Kim, Byung-Gyu; Kim, Dae Gyu; Park, Mi Seul; Kim, Hyun-Jung; Kim, Sunghoon; Han, Byung Woo
2013-10-01
Human cytosolic aspartyl-tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi-tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å(2) which comprises 16.6% of the monomeric surface area. Our structure reveals the C-terminal end of the N-helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N-helix for the transfer of tRNA(Asp) to elongation factor 1α. From our analyses of the crystal structure and post-translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip
2015-08-01
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.
Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation
NASA Astrophysics Data System (ADS)
Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho
2015-06-01
Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.
Mosquito larvicide BinAB revealed by de novo phasing with an X-ray laser
Colletier, Jacques-Philippe; Sawaya, Michael R.; Gingery, Mari; Rodriguez, Jose A.; Cascio, Duilio; Brewster, Aaron S.; Michels-Clark, Tara; Hice, Robert H.; Coquelle, Nicolas; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; DePonte, Daniel P.; Sierra, Raymond G.; Laksmono, Hartawan; Koglin, Jason E.; Hunter, Mark S.; Park, Hyun-Woo; Uervirojnangkoorn, Monarin; Bideshi, Dennis K.; Brunger, Axel T.; Federici, Brian A.; Sauter, Nicholas K.; Eisenberg, David S.
2016-01-01
Summary BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally toxic oligomeric pores. The small size of the crystals, 50 unit cells per edge, on average, has impeded structural characterization by conventional means. Here, we report the structure of BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser (XFEL). The structure reveals tyrosine and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation. PMID:27680699
Crystal structure of PAV1-137: a protein from the virus PAV1 that infects Pyrococcus abyssi.
Leulliot, N; Quevillon-Cheruel, S; Graille, M; Geslin, C; Flament, D; Le Romancer, M; van Tilbeurgh, H
2013-01-01
Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18 kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2 Å. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four- α -helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions.
A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition.
Woutersen, Sander; Ensing, Bernd; Hilbers, Michiel; Zhao, Zuofeng; Angell, C Austen
2018-03-09
Simulations and theory suggest that the thermodynamic anomalies of water may be related to a phase transition between two supercooled liquid states, but so far this phase transition has not been observed experimentally because of preemptive ice crystallization. We used calorimetry, infrared spectroscopy, and molecular dynamics simulations to investigate a water-rich hydrazinium trifluoroacetate solution in which the local hydrogen bond structure surrounding a water molecule resembles that in neat water at elevated pressure, but which does not crystallize upon cooling. Instead, this solution underwent a sharp, reversible phase transition between two homogeneous liquid states. The hydrogen-bond structures of these two states are similar to those established for high- and low-density amorphous (HDA and LDA) water. Such structural similarity supports theories that predict a similar sharp transition in pure water under pressure if ice crystallization could be suppressed. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Molecular assembly of Clostridium botulinum progenitor M complex of type E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin
2015-12-07
Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. Furthermore, the similarity of the general architecture betweenmore » the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.W.; Eckert, J.; Barthes, M.
1995-11-02
The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less
Structural analysis of as-deposited and annealed low-temperature gallium arsenide
NASA Astrophysics Data System (ADS)
Matyi, R. J.; Melloch, M. R.; Woodall, J. M.
1993-04-01
The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.
Effect of gel formation on the dissolution behavior of clarithromycin tablets.
Inukai, Koki; Takiyama, Kei; Noguchi, Shuji; Iwao, Yasunori; Itai, Shigeru
2017-04-15
Clarithromycin (CAM) is a macrolide antibiotic that is widely used at clinical sites. We found that release of CAM is suppressed when tablets of CAM were exposed to an external solvent containing carboxylate buffers such as citrate. The suppressed release of CAM can be attributed to the formation of gels on the tablet surfaces, which inhibits penetration of the solvent into the tablet and thus disintegration of the tablets. Delayed disintegration of the tablets was also observed for commercial tablets. This suggests that taking CAM and carboxylates at the same time might be avoided. The crystal structure of CAM citrate reveals that molecular chains of CAM are cross-linked by hydrogen bond between citrate groups in the crystal. The crystal structure indicates that cross-linked CAM chains of the three-dimensional mesh structure might also be formed in high concentration CAM solutions in the presence of carboxylates, resulting in gel formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology
Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; ...
2015-04-20
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less
The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase
Shu, Bo; Gong, Peng
2017-01-01
ABSTRACT The nucleotide addition cycle of nucleic acid polymerases includes 2 major events: the pre-chemistry active site closure leading to the addition of one nucleotide to the product chain; the post-chemistry translocation step moving the polymerase active site one position downstream on its template. In viral RNA-dependent RNA polymerases (RdRPs), structural and biochemical evidences suggest that these 2 events are not tightly coupled, unlike the situation observed in A-family polymerases such as the bacteriophage T7 RNA polymerase. Recently, an RdRP translocation intermediate crystal structure of enterovirus 71 shed light on how translocation may be controlled by elements within RdRP catalytic motifs, and a series of poliovirus apo RdRP crystal structures explicitly suggest that a motif B loop may assist the movement of the template strand in late stages of transcription. Implications of RdRP catalysis-translocation uncoupling and the remaining challenges to further elucidate RdRP translocation mechanism are also discussed. PMID:28277928
NASA Astrophysics Data System (ADS)
Zhukov, Anton; Barakhtin, Boris; Kuznetsov, Pavel
By the method of selective laser melting of powder materials nanostructured stainless steels 17-4PH, 316L, 321 were obtained. In all experiments the recorded hardness increase depending on the construction parameters. Obtained relationship of hardness increase with the carbon ratio, which explained by the chemical composition of the metal in the melting zone. It is suggested that the effect of hardness increase is associated with structural changes as to the formation and dissolution of hardening nanophases. Methods of metallography were performed in structural studies. Traces of interlayer segregation were detected inside the grains as turbulent eddies in the bands of different saturation tone caused by the migration of convective (mass transfer) metal atoms. It was visible signs of crystallization through the grain places the image (dendrite crystals). These facts revealed structural features suggest that the adhesion layers of melted powder was initiated by the colder layers and going mechanism epitaxy by coherently oriented groups of atoms from layers of melting.
Cholesteric liquid crystals in living matter.
Mitov, Michel
2017-06-14
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Kamal, Musa R; Khoshkava, Vahid
2015-06-05
In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii
Story, Randall M.; Li, Hong; Abelson, John N.
2001-01-01
We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two α/β domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand β-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA. PMID:11171974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Baldeep; Fu, Zheng-Qing; Huang, I-Hsiu
2012-02-07
A unique feature of the class-C-type sortases, enzymes essential for Gram-positive pilus biogenesis, is the presence of a flexible 'lid' anchored in the active site. However, the mechanistic details of the 'lid' displacement, suggested to be a critical prelude for enzyme catalysis, are not yet known. This is partly due to the absence of enzyme-substrate and enzyme-inhibitor complex crystal structures. We have recently described the crystal structures of the Streptococcus agalactiae SAG2603 V/R sortase SrtC1 in two space groups (type II and type III) and that of its 'lid' mutant and proposed a role of the 'lid' as a protectormore » of the active-site hydrophobic environment. Here, we report the crystal structures of SAG2603 V/R sortase C1 in a different space group (type I) and that of its complex with a small-molecule cysteine protease inhibitor. We observe that the catalytic Cys residue is covalently linked to the small-molecule inhibitor without lid displacement. However, the type I structure provides a view of the sortase SrtC1 lid displacement while having structural elements similar to a substrate sorting motif suitably positioned in the active site. We propose that these major conformational changes seen in the presence of a substrate mimic in the active site may represent universal features of class C sortase substrate recognition and enzyme activation.« less
Crystal structure of bile salt hydrolase from Lactobacillus salivarius.
Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun
2016-05-01
Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.
Heinecke, Christine L; Ni, Thomas W; Malola, Sami; Mäkinen, Ville; Wong, O Andrea; Häkkinen, Hannu; Ackerson, Christopher J
2012-08-15
Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.
Khan, Sameena; Garg, Ankur; Camacho, Noelia; Van Rooyen, Jason; Kumar Pole, Anil; Belrhali, Hassan; Ribas de Pouplana, Lluis; Sharma, Vinay; Sharma, Amit
2013-05-01
Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively.
Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya
The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less
Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches
NASA Astrophysics Data System (ADS)
Pandey, Indra Raj; Kim, H. J.; Kim, Y. D.
2017-12-01
Disodium dimolybdate (Na2Mo2O7) crystals were grown using the Czochralski technique. The thermal characteristics of the compound were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements. The crystal structure of the grown sample was confirmed using X-ray diffraction (XRD). Luminescence properties were measured at room and low temperatures, using a light emitting diode (LED) source. Very weak luminescence was observed at room temperature; however, the luminescence intensity was enhanced at low temperatures. The crystal's transmittance spectrum was measured for estimating its optical quality and energy band gap. The grown crystal exhibited a luminescence light yield of 55% compared with CaMoO4 crystals at 10 K, when excited by a 280-nm-wavelength LED source, but does not have the drawbacks of radioactive Ca isotopes. These results suggest that at cryogenic temperatures, Na2Mo2O7 crystal scintillators are promising for the detection of dark matter and neutrinoless double beta decay of 100Mo.
Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.
Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang
2018-06-20
Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.
Kim, Keon Young; Kim, Sunmin; Park, Jeong Kuk; Song, HyoJin; Park, SangYoun
2014-01-01
Full-length SigR from Streptomyces coelicolor A3(2) was overexpressed in Escherichia coli, purified and submitted to crystallization trials using either polyethylene glycol 3350 or 4000 as a precipitant. X-ray diffraction data were collected to 2.60 Å resolution under cryoconditions using synchrotron X-rays. The crystal packs in space group P43212, with unit-cell parameters a = b = 42.14, c = 102.02 Å. According to the Matthews coefficient, the crystal asymmetric unit cannot contain the full-length protein. Molecular replacement with the known structures of region 2 and region 4 as independent search models indicates that the crystal contains only the −35 element-binding carboxyl-terminal region 4 of full-length SigR. Mass-spectrometric analysis of the harvested crystal confirms this, suggesting a crystal volume per protein weight (V M) of 2.24 Å3 Da−1 and 45.1% solvent content. PMID:24915084
Kadowaki, Marco Antonio Seiki; Iulek, Jorge; Barbosa, João Alexandre Ribeiro Gonçalves; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Monteiro, Rose Adele; de Oliveira, Marco Aurélio Schüler; Steffens, Maria Berenice Reynaud
2012-02-01
The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qβ replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the β-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted β-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution. Copyright © 2011 Elsevier B.V. All rights reserved.
Teaching Crystallography to Noncrystallographers.
ERIC Educational Resources Information Center
Glusker, Jenny P.
1988-01-01
Addresses the requirements of high school students and noncrystallographers in lectures on crystals, diffraction, and structure analysis. Discusses basic understanding and a sequence that addresses these requirements. Suggests visual and descriptive teaching methods used in this effort. (CW)
NASA Astrophysics Data System (ADS)
Colak, Evrim; Serebryannikov, Andriy E.; Ozgur Cakmak, A.; Ozbay, Ekmel
2013-04-01
It is experimentally demonstrated that the combination of diode and splitter functions can be realized in one broadband reciprocal device. The suggested performance is based on the dielectric photonic crystal grating whose structural symmetry is broken owing to non-deep corrugations placed at one of the two interfaces. The study has been performed at a normally incident beam-type illumination obtained from a microwave horn antenna. The two unidirectionally transmitted, deflected beams can show large magnitude and high contrast, while the angular distance between their maxima is 90° and larger. The dual-band unidirectional splitting is possible when using TM and TE polarizations.
Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littrell, K.; Thiyagarajan, P.; Tiede, D.
1999-07-02
In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jianzhao; Wu, Zhonghua; Hu, Gang
Selection of proper targets for the X-ray crystallography will benefit biological research community immensely. Several computational models were proposed to predict propensity of successful protein production and diffraction quality crystallization from protein sequences. We reviewed a comprehensive collection of 22 such predictors that were developed in the last decade. We found that almost all of these models are easily accessible as webservers and/or standalone software and we demonstrated that some of them are widely used by the research community. We empirically evaluated and compared the predictive performance of seven representative methods. The analysis suggests that these methods produce quite accuratemore » propensities for the diffraction-quality crystallization. We also summarized results of the first study of the relation between these predictive propensities and the resolution of the crystallizable proteins. We found that the propensities predicted by several methods are significantly higher for proteins that have high resolution structures compared to those with the low resolution structures. Moreover, we tested a new meta-predictor, MetaXXC, which averages the propensities generated by the three most accurate predictors of the diffraction-quality crystallization. MetaXXC generates putative values of resolution that have modest levels of correlation with the experimental resolutions and it offers the lowest mean absolute error when compared to the seven considered methods. We conclude that protein sequences can be used to fairly accurately predict whether their corresponding protein structures can be solved using X-ray crystallography. Moreover, we also ascertain that sequences can be used to reasonably well predict the resolution of the resulting protein crystals.« less
Crystal structure of an EfPDF complex with Met-Ala-Ser based on crystallographic packing.
Nam, Ki Hyun; Kim, Kook-Han; Kim, Eunice Eun Kyeong; Hwang, Kwang Yeon
2009-04-17
PDF (peptide deformylase) plays a critical role in the production of mature proteins by removing the N-formyl polypeptide of nascent proteins in the prokaryote cell system. This protein is essential for bacterial growth, making it an attractive target for the design of new antibiotics. Accordingly, PDF has been evaluated as a drug target; however, architectural mechanism studies of PDF have not yet fully elucidated its molecular function. We recently reported the crystal structure of PDF produced by Enterococcus faecium [K.H. Nam, J.I. Ham, A. Priyadarshi, E.E. Kim, N. Chung, K.Y. Hwang, "Insight into the antibacterial drug design and architectural mechanism of peptide recognition from the E. faecium peptide deformylase structure", Proteins 74 (2009) 261-265]. Here, we present the crystal structure of the EfPDF complex with MAS (Met-Ser-Ala), thereby not only delineating the architectural mechanism for the recognition of mimic-peptides by N-terminal cleaved expression peptide, but also suggesting possible targets for rational design of antibacterial drugs. In addition to their implications for drug design, these structural studies will facilitate elucidation of the architectural mechanism responsible for the peptide recognition of PDF.
Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei
2017-03-01
A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
NASA Astrophysics Data System (ADS)
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
Co-crystal formation between two organic solids on the surface of Titan
NASA Astrophysics Data System (ADS)
Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.
2017-12-01
Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.
Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study
Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta
2015-01-01
The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly. PMID:26249689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin-Yi; Fu, Zheng-Qing; Argonne National Laboratory, Argonne, Illinois
2012-09-01
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using data collected from a moderately diffracting crystal and 1.9 Å synchrotron X-rays. The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent amore » novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF{sub anom}/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R{sub free} = 26.8%) to 2.3 Å resolution. High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R{sub free} = 21.4%) to 1.85 Å resolution. AF1382 has a winged-helix–turn–helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1–82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.« less
Subbarao, Udumula; Roy, Soumyabrata; Sarma, Saurav Ch; Sarkar, Sumanta; Mishra, Vidyanshu; Khulbe, Yatish; Peter, Sebastian C
2016-10-17
Single crystals (SCs) of the compounds Eu 3 Ag 2 In 9 and EuCu 2 Ge 2 were synthesized through the reactions run in liquid indium. Eu 3 Ag 2 In 9 crystallizes in the La 3 Al 11 structure type [orthorhombic space group (SG) Immm] with the lattice parameters: a = 4.8370(1) Å, b = 10.6078(3) Å, and c = 13.9195(4) Å. EuCu 2 Ge 2 crystallizes in the tetragonal ThCr 2 Si 2 structure type (SG I4/mmm) with the lattice parameters: a = b = 4.2218(1) Å, and c = 10.3394(5) Å. The crystal structure of Eu 3 Ag 2 In 9 is comprised of edge-shared hexagonal rings consisting of indium. The one-dimensional chains of In 6 rings are shared through the edges, which are further interconnected with other six-membered rings forming a three-dimensional (3D) stable crystal structure along the bc plane. The crystal structure of EuCu 2 Ge 2 can be explained as the complex [CuGe] (2+δ)- polyanionic network embedded with Eu ions. These polyanionic networks present in the crystal structure of EuCu 2 Ge 2 are shared through the edges of the 011 plane containing Cu and Ge atoms, resulting in a 3D network. The structural relationship between Eu 3 T 2 In 9 and EuCu 2 Ge 2 has been discussed in detail, and we conclude that Eu 3 T 2 In 9 is the metal deficient variant of EuCu 2 Ge 2 . The magnetic susceptibilities of Eu 3 T 2 In 9 (T = Cu and Ag) and EuCu 2 Ge 2 were measured between 2 and 300 K. In all cases, magnetic susceptibility data followed Curie-Weiss law above 150 K. Magnetic moment values obtained from the measurements indicate the probable mixed/intermediate valent behavior of the europium atoms, which was further confirmed by X-ray absorption studies and bond distances around the Eu atoms. Electrical resistivity measurements suggest that Eu 3 T 2 In 9 and EuCu 2 Ge 2 are metallic in nature.
Nanoparticles in liquid crystals, and liquid crystals in nanoparticles
NASA Astrophysics Data System (ADS)
de Pablo, Juan
2015-03-01
Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.
Remote Sensing of Crystal Shapes in Ice Clouds
NASA Technical Reports Server (NTRS)
van Diedenhoven, Bastiaan
2017-01-01
Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.
Gosenca, Mirjam; Bešter-Rogač, Marija; Gašperlin, Mirjana
2013-09-27
Liquid crystalline systems with a lamellar structure have been extensively studied as dermal delivery systems. Ascorbyl palmitate (AP) is one of the most studied and used ascorbic acid derivatives and is employed as an antioxidant to prevent skin aging. The aim of this study was to develop and characterize skin-compliant dermal delivery systems with a liquid crystalline structure for AP. First, a pseudoternary phase diagram was constructed using Tween 80/lecithin/isopropyl myristate/water at a Tween 80/lecithin mass ratio of 1/1, and the region of lamellar liquid crystals was identified. Second, selected unloaded and AP-loaded lamellar liquid crystal systems were physicochemically characterized with polarizing optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology techniques. The interlayer spacing and rheological parameters differ regarding quantitative composition, whereas the microstructure of the lamellar phase was affected by the AP incorporation, resulting either in additional micellar structures (at 25 and 32 °C) or being completely destroyed at higher temperature (37°C). After this, the study was oriented towards in vitro cytotoxicity evaluation of lamellar liquid crystal systems on a keratinocyte cell line. The results suggest that the lamellar liquid crystals that were developed could be used as a physiologically acceptable dermal delivery system. Copyright © 2013 Elsevier B.V. All rights reserved.
Banner, David W; Gsell, Bernard; Benz, Jörg; Bertschinger, Julian; Burger, Dominique; Brack, Simon; Cuppuleri, Simon; Debulpaep, Maja; Gast, Alain; Grabulovski, Dragan; Hennig, Michael; Hilpert, Hans; Huber, Walter; Kuglstatter, Andreas; Kusznir, Eric; Laeremans, Toon; Matile, Hugues; Miscenic, Christian; Rufer, Arne C; Schlatter, Daniel; Steyaert, Jan; Stihle, Martine; Thoma, Ralf; Weber, Martin; Ruf, Armin
2013-06-01
The aspartic protease BACE2 is responsible for the shedding of the transmembrane protein Tmem27 from the surface of pancreatic β-cells, which leads to inactivation of the β-cell proliferating activity of Tmem27. This role of BACE2 in the control of β-cell maintenance suggests BACE2 as a drug target for diabetes. Inhibition of BACE2 has recently been shown to lead to improved control of glucose homeostasis and to increased insulin levels in insulin-resistant mice. BACE2 has 52% sequence identity to the well studied Alzheimer's disease target enzyme β-secretase (BACE1). High-resolution BACE2 structures would contribute significantly to the investigation of this enzyme as either a drug target or anti-target. Surface mutagenesis, BACE2-binding antibody Fab fragments, single-domain camelid antibody VHH fragments (Xaperones) and Fyn-kinase-derived SH3 domains (Fynomers) were used as crystallization helpers to obtain the first high-resolution structures of BACE2. Eight crystal structures in six different packing environments define an ensemble of low-energy conformations available to the enzyme. Here, the different strategies used for raising and selecting BACE2 binders for cocrystallization are described and the crystallization success, crystal quality and the time and resources needed to obtain suitable crystals are compared.
Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Qiuxiang; Zhu, Ya; Li, Jian
2013-10-21
The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity.more » These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolas, George S., E-mail: gnolas@usf.edu; Hassan, M. Shafiq; Dong, Yongkwan
Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficientmore » and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.« less
Crystal structure of Pistol, a class of self-cleaving ribozyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Laura A.; Wang, Jimin; Steitz, Thomas A.
2017-01-17
Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile bymore » deprotonating the 2'-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5' leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis.« less
Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.
Dresp, Birgitta; Langley, Keith
2006-03-01
The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.
Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase
Gillespie, C. M.; Asthagiri, D.; Lenhoff, A. M.
2014-01-01
Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na+ binding may introduce steric barriers to contact formation, resulting in polymorph selection. PMID:24955067
Surface crystallographic structures of cellulose nanofiber films and overlayers of pentacene
NASA Astrophysics Data System (ADS)
Nakayama, Yasuo; Mori, Toshiaki; Tsuruta, Ryohei; Yamanaka, Soichiro; Yoshida, Koki; Imai, Kento; Koganezawa, Tomoyuki; Hosokai, Takuya
2018-03-01
Cellulose nanofibers or nanocellulose is a promising recently developed biomass and biodegradable material used for various applications. In order to utilize this material as a substrate in organic electronic devices, thorough understanding of the crystallographic structures of the surfaces of the nanocellulose composites and of their interfaces with organic semiconductor molecules is essential. In this work, surface crystallographic structures of nanocellulose films (NCFs) and overlayers of pentacene were investigated by two-dimensional grazing-incidence X-ray diffraction. The NCFs are found to crystallize on solid surfaces with the crystal lattice preserving the same structure of the known bulk phase, whereas distortion of interchain packing toward the surface normal direction is suggested. The pentacene overlayers on the NCFs are found to form the thin-film phase with an in-plane mean crystallite size of over 10 nm.
NASA Astrophysics Data System (ADS)
Ero, Rya; Dimitrova, Valya Tenusheva; Chen, Yun; Bu, Wenting; Feng, Shu; Liu, Tongbao; Wang, Ping; Xue, Chaoyang; Tan, Suet Mien; Gao, Yong-Gui
2015-03-01
The atypical Gβ-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed β transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.
NASA Technical Reports Server (NTRS)
Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.
1995-01-01
In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S.
CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in humanmore » CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.« less
Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J
2009-12-24
In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure.
Protein crystal structure from non-oriented, single-axis sparse X-ray data
Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...
2016-01-01
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less
Protein crystal structure from non-oriented, single-axis sparse X-ray data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.
X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less
Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A
2015-01-01
Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE-SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.
Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A.
2015-01-01
Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role. PMID:25607936
Large magnetoresistance in the type-II Weyl semimetal WP 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aifeng; Graf, D.; Liu, Yu
In this paper, we report a magnetotransport study on type-II Weyl semimetal WP 2 single crystals. Magnetoresistance exhibits a nonsaturating H n field dependence (14 300% at 2 K and 9 T), whereas systematic violation of Kohler's rule was observed. Quantum oscillations reveal a complex multiband electronic structure. The cyclotron effective mass close to the mass of free electron m e was observed in quantum oscillations along the b axis, while a reduced effective mass of about 0.5 m e was observed in α-axis quantum oscillations, suggesting Fermi surface anisotropy. The temperature dependence of the resistivity shows a large upturnmore » that cannot be explained by the multiband magnetoresistance of conventional metals. Finally, even though the crystal structure of WP 2 is not layered as in transition-metal dichalcogenides, quantum oscillations suggest partial two-dimensional character.« less
Large magnetoresistance in the type-II Weyl semimetal WP 2
Wang, Aifeng; Graf, D.; Liu, Yu; ...
2017-09-11
In this paper, we report a magnetotransport study on type-II Weyl semimetal WP 2 single crystals. Magnetoresistance exhibits a nonsaturating H n field dependence (14 300% at 2 K and 9 T), whereas systematic violation of Kohler's rule was observed. Quantum oscillations reveal a complex multiband electronic structure. The cyclotron effective mass close to the mass of free electron m e was observed in quantum oscillations along the b axis, while a reduced effective mass of about 0.5 m e was observed in α-axis quantum oscillations, suggesting Fermi surface anisotropy. The temperature dependence of the resistivity shows a large upturnmore » that cannot be explained by the multiband magnetoresistance of conventional metals. Finally, even though the crystal structure of WP 2 is not layered as in transition-metal dichalcogenides, quantum oscillations suggest partial two-dimensional character.« less
Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung
2015-11-13
ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
Modeling the SHG activities of diverse protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.
2012-10-18
A symmetry-additiveab initiomodel for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within themore » crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less
Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.
Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji
2018-06-01
Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.
WAXS studies of the structural diversity of hemoglobin in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowski, L.; Bardhan, J.; Gore, D.
2011-01-01
Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobinmore » structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structure.« less
Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique
2016-08-01
Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.
Solution structure of the isolated Pelle death domain.
Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J
2005-07-18
The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathuri, P.; Nguyen, E.T.; Svard, S.G.
2007-07-12
Alpha-11 giardin is a member of the multi-gene alpha-giardin family in the intestinal protozoan, Giardia lamblia. This gene family shares an ancestry with the annexin super family, whose common characteristic is calcium-dependent binding to membranes that contain acidic phospholipids. Several alpha giardins are highly expressed during parasite-induced diarrhea in humans. Despite being a member of a large family of proteins, little is known about the function and cellular localization of alpha-11 giardin, although giardins are often associated with the cytoskeleton. It has been shown that Giardia exhibits high levels of alpha-11 giardin mRNA transcript throughout its life cycle; however, constitutivemore » over-expression of this protein is lethal to the parasite. Determining the three-dimensional structure of an alpha-giardin is essential to identifying functional domains shared in the alpha-giardin family. Here we report the crystal structures of the apo and Ca{sup 2+}-bound forms of alpha-11 giardin, the first alpha giardin to be characterized structurally. Crystals of apo and Ca{sup 2+}-bound alpha-11 giardin diffracted to 1.1 angstroms and 2.93 angstroms, respectively. The crystal structure of selenium-substituted apo alpha-11 giardin reveals a planar array of four tandem repeats of predominantly {alpha}-helical domains, reminiscent of previously determined annexin structures, making this the highest-resolution structure of an annexin to date. The apo alpha-11 giardin structure also reveals a hydrophobic core formed between repeats I/IV and II/III, a region typically hydrophilic in other annexins. Surprisingly, the Ca{sup 2+}-bound structure contains only a single calcium ion, located in the DE loop of repeat I and coordinated differently from the two types of calcium sites observed in previous annexin structures. The apo and Ca{sup 2+}-bound alpha-11 giardin structures assume overall similar conformations; however, Ca2+-bound alpha-11 giardin crystallized in a lower-symmetry space group with four molecules in the asymmetric unit. Vesicle-binding studies suggest that alpha-11 giardin, unlike most other annexins, does not bind to vesicles composed of acidic phospholipids in a calcium-dependent manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com; Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020; Domagalski, Marcin J.
Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horsemore » and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty thresholds. The binding of unusual ligands by myoglobin, leading to crystal-induced distortions, suggests that some of the conformational differences between the apo and holo structures might not be ‘functionally important’ but rather artifacts caused by the binding of ‘unusual’ substrate analogs. The causes of P6 symmetry in myoglobin crystals and the relationship between crystal and solution structures are also discussed.« less
Weeratunga, Saroja K.; Lovell, Scott; Yao, Huili; Battaile, Kevin P.; Fischer, Christopher J.; Gee, Casey E.; Rivera, Mario
2010-01-01
The structure of recombinant P. aeruginosa bacterioferritin B (Pa BfrB) has been solved from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with ~ 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after soaking them in FeSO4 solution (Fe soak) and in separate experiments after soaking them in FeSO4 solution followed by soaking in crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights: The ferroxidase center in the as-isolated, mineralized and double soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO4 solution display a fully occupied ferroxidase center and iron bound to the internal, Fe(in), and external, Fe(out), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as an entry port for Fe2+ to the ferroxidase center. On its opposite end the pore is capped by the side chain of His130 when it adopts its “gate closed” conformation that enables coordination to a ferroxidase iron. A change to its “gate-open”, non-coordinative conformation, creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with E. coli Bfr (Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808–6813) indicate that not all bacterioferritins operate in the same manner. PMID:20067302
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; ...
2016-09-19
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less
Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio
Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455
2005-04-01
ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less
Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz; ...
2018-04-03
The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Christopher W.; Chaney, Joseph; Korbel, Gregory
2012-07-25
UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketonemore » inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 {angstrom} resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1{prime} (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Nina M.; Gutka, Hiten J.; Movahedzadeh, Farahnaz
The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus . This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and ismore » probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis ( Mt FBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of Mt FBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of Mt FBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.« less
Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han,Q.; Robinson, H.; Gao, Y.
Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from themore » mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.« less
Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...
2016-06-10
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less
Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre
Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; van Raaij, Mark J.
2006-01-01
Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress. PMID:16682773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less
Effects of Monomer Structure on Their Organization and Polymerization in a Smectic Liquid Crystal
Guymon; Hoggan; Clark; Rieker; Walba; Bowman
1997-01-03
Photopolymerizable diacrylate monomers dissolved in fluid-layer smectic A and smectic C liquid crystal (LC) hosts exhibited significant spatial segregation and orientation that depend strongly on monomer structure. Small, flexible monomers such as 1,6-hexanediol diacrylate (HDDA) oriented parallel to the smectic layers and intercalated, whereas rod-shaped mesogen-like monomers such as 1,4-di-(4-(6-acryloyloxyhexyloxy)benzoyloxy)-2-methylbenzene (C6M) oriented normal to the smectic layers and collected within them. Such spatial segregation caused by the smectic layering dramatically enhanced photopolymerization rates; for HDDA, termination rates were reduced, whereas for C6M, both the termination and propagation rates were increased. These polymerization precursor structures suggest novel materials-design paradigms for gel LCs and nanophase-separated polymer systems.
Incorporation of hydrogen in CuInSe{sub 2}: Improvements of the structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakushev, M. V.; Ogorodnikov, I. I.; Volkov, V. A.
2011-09-15
CuInSe{sub 2} single crystals were ion implanted with a dose of 3 x 10{sup 16} cm{sup -2} by 2.5 keV H{sup +} at 150 and 250 deg. C Before and after the implantation the crystals were analyzed by Rutherford backscattering/channeling (RBS/C) along the <112> axis using 2 MeV He{sup +}. The RBS/C spectra indicate that the implantation at 150 deg. C introduces a layer of radiation damage, whereas after the implantation at 250 deg. C no structural deterioration of the lattice can be seen. Quite the contrary, the RBS/C spectra reveal a considerable decrease in the dechanneling parameters suggesting improvementsmore » in the lattice structural quality attributed to the incorporation of hydrogen.« less
Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2
Kang, Lei; Lin, Zheshuai; Qin, Jingui; Chen, Chuangtian
2013-01-01
With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO3F and RbAlCO3F2 from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MNCO3F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO3F and RbAlCO3F2 crystals is feasible. PMID:23455618
Protein-directed self-assembly of a fullerene crystal.
Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg
2016-04-26
Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.
Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.
Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E
2014-01-01
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
NASA Astrophysics Data System (ADS)
Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-06-01
We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.
de Villiers, Katherine A; Marques, Helder M; Egan, Timothy J
2008-08-01
The crystal structure of the complex formed between the antimalarial drug halofantrine and ferriprotoporphyrin IX (Fe(III)PPIX) has been determined by single crystal X-ray diffraction. The structure shows that halofantrine coordinates to the Fe(III) center through its alcohol functionality in addition to pi-stacking of the phenanthrene ring over the porphyrin. The length of the Fe(III)-O bond is consistent with an alkoxide and not an alcohol coordinating group. The iron porphyrin is five coordinate and monomeric. Changes in the electronic spectrum of Fe(III)PPIX upon addition of halofantrine base in acetonitrile solution are almost identical to those observed upon addition of quinidine free base in the same solvent. This suggests homologous binding. Molecular mechanics modeling of Fe(III)PPIX complexes of quinidine, quinine, 9-epiquinine and 9-epiquinidine based on this homology suggests that the antimalarially active quinidine and quinine can readily adopt conformations that permit formation of an intramolecular salt bridge between the protonated quinuclidine tertiary amino group and unprotonated heme propionate group, while the inactive epimers 9-epiquinidine and 9-epiquinine have to adopt high energy conformations in order to accommodate such salt bridge formation. We propose that salt bridge formation may interrupt formation of the hemozoin precursor dimer formed during the heme detoxification pathway and so account for the strong activity of the two active isomers.
Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coseno,M.; Martin, G.; Berger, C.
Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less
Crystal structure of the 25 kDa subunit of human cleavage factor Im
Coseno, Molly; Martin, Georges; Berger, Christopher; Gilmartin, Gregory; Keller, Walter; Doublié, Sylvie
2008-01-01
Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing. PMID:18445629
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
Tin induced a-Si crystallization in thin films of Si-Sn alloys
NASA Astrophysics Data System (ADS)
Neimash, V.; Poroshin, V.; Shepeliavyi, P.; Yukhymchuk, V.; Melnyk, V.; Kuzmich, A.; Makara, V.; Goushcha, A. O.
2013-12-01
Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (2-4 nm in size) in the amorphous matrix of Si1-xSnx, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300 °C. The aggregate volume of nanocrystals in the deposited film of Si1-xSnx exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ˜80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.
NASA Astrophysics Data System (ADS)
Kah, L. C.; Kronyak, R. E.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L. M.; Wiens, R. C.; Grotzinger, J. P.; Schieber, J.
2015-12-01
The Murray formation in its type section at Pahrump Hills, consists of approximately 14 meters of recessive-weathering mudstone interbedded with decimeter-scale cross-bedded sandstone in the upper portions of the exposed section. Mudstone textures vary from massive, to poorly laminated, to well laminated. Unusual 3-dimensional crystal clusters and dendrites occur in the lowermost part of the section and are erosionally resistant with respect to the host rock. Crystal clusters consist of elongate lathes that occur within individual blocks of the fractured substrate. Individual lathes show tabular morphologies with a pseudo-rectangular cross-section and the three dimensional morphology of the crystal clusters cross-cut host rock lamination with little or no deformation. Dendritic structures are typically larger and show predominantly planar growth aligned with bedding planes. Individual lathes within the dendrites are elongate and pseudo-rectangular in cross-section. Unlike crystal clusters, dendritic morphologies appear to nucleate at bedrock fractures and near mineralized veins. Here we show evidence that crystal clusters and dendrites are post-depositional, potentially burial diagenetic features. Association of features with through-going fractures suggests that fractures may have been a primary transport pathway for ions responsible for dendrite growth. Even where dendrites do not occur, enhanced cementation suggests that fluids permeated the rock matrix. We suggest that growth of clusters proceeded as inter-particle crystal growth, wherein mineral growth within inter-particle spaces resulted in cementation and porosity loss, with little further effect on the rock matrix. Crystal clusters and dendrites are most likely to form when mineral saturation states are highest, for instance with initial intrusion of fracture-borne fluids and mixing with ambient pore fluids, and thus emphasize the importance of fractures in ion transport during late diagenesis.
Appearance of superconductivity at the vacancy order-disorder boundary in KxFe2 -ySe2
NASA Astrophysics Data System (ADS)
Duan, Chunruo; Yang, Junjie; Ren, Yang; Thomas, Sean M.; Louca, Despina
2018-05-01
The role of phase separation and the effect of Fe-vacancy ordering in the emergence of superconductivity in alkali metal doped iron selenides AxFe2 -ySe2 (A = K, Rb, Cs) is explored. High energy x-ray diffraction and Monte Carlo simulation were used to investigate the crystal structure of quenched superconducting (SC) and as-grown nonsuperconducting (NSC) KxFe2 -ySe2 single crystals. The coexistence of superlattice structures with the in-plane √{2 }×√{2 } K-vacancy ordering and the √{5 }×√{5 } Fe-vacancy ordering were observed in both the SC and NSC crystals alongside the I4/mmm Fe-vacancy-free phase. Moreover, in the SC crystals, an Fe-vacancy-disordered phase is additionally proposed to be present. Monte Carlo simulations suggest that it appears at the boundary between the I4/mmm vacancy-free phase and the I4/m vacancy-ordered phases (√{5 }×√{5 } ). The vacancy-disordered phase is nonmagnetic and is most likely the host of superconductivity.
How to identify dislocations in molecular dynamics simulations?
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu
2014-12-01
Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.
Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.
Allen, Frank H; Motherwell, W D Samuel
2002-06-01
The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.
Phonons in two-dimensional soft colloidal crystals.
Chen, Ke; Still, Tim; Schoenholz, Samuel; Aptowicz, Kevin B; Schindler, Michael; Maggs, A C; Liu, Andrea J; Yodh, A G
2013-08-01
The vibrational modes of pristine and polycrystalline monolayer colloidal crystals composed of thermosensitive microgel particles are measured using video microscopy and covariance matrix analysis. At low frequencies, the Debye relation for two-dimensional harmonic crystals is observed in both crystal types; at higher frequencies, evidence for van Hove singularities in the phonon density of states is significantly smeared out by experimental noise and measurement statistics. The effects of these errors are analyzed using numerical simulations. We introduce methods to correct for these limitations, which can be applied to disordered systems as well as crystalline ones, and we show that application of the error correction procedure to the experimental data leads to more pronounced van Hove singularities in the pristine crystal. Finally, quasilocalized low-frequency modes in polycrystalline two-dimensional colloidal crystals are identified and demonstrated to correlate with structural defects such as dislocations, suggesting that quasilocalized low-frequency phonon modes may be used to identify local regions vulnerable to rearrangements in crystalline as well as amorphous solids.
Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong
2010-06-01
A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.
Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa
2018-07-30
Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.
Theory of liquid crystal orientation under action of light wave field and aligning surfaces
NASA Astrophysics Data System (ADS)
Dadivanyan, A. K.; Chausov, D. N.; Belyaev, V. V.; Barabanova, N. N.; Chausova, O. V.; Kuleshova, Yu D.
2018-03-01
Theoretical models developed in the MRSU group under leadership of Professor Artem Dadivanyan in area of the LC orientation and photo-induced effects are presented. Angular distribution functions of the dye and liquid crystal molecules under action of intensive light beam have been derived. The number of molecules in cluster is estimated. A model of dimers formation in the photoalignment dye is suggested that explains influence of the dye molecular structure on both polar and azimuthal anchoring energy.
Spin glass in semiconducting KFe 1.05 Ag 0.88 Te 2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Hyejin; Lei, Hechang; Klobes, B.
2015-05-01
We report discovery of KFe 1.05 Ag 0.88 Te 2 single crystals with semiconducting spin glass ground state. Composition and structure analyses suggest nearly stoichiometric I 4 / mmm space group but allow for the existence of vacancies, absent in long-range semiconducting antiferromagnet KFe 0.85 Ag 1.15 Te 2 . The subtle change in stoichometry in Fe-Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
NASA Astrophysics Data System (ADS)
Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1991-01-01
We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.
Fini, Adamo; Cavallari, Cristina; Ospitali, Francesca
2010-01-01
Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation. PMID:27721347
Measuring and modelling the structure of chocolate
NASA Astrophysics Data System (ADS)
Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim
2015-01-01
The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (<2°C/min). A newer generation of rapid cooling systems has been suggested requiring further understanding of fat crystallisation. To allow better control and understanding of these processes and newer rapid cooling processes, it is necessary to understand both heat transfer and crystallization kinetics. The proposed model aims to predict the temperature in the chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.
Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru
2016-02-26
Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.
Size effects on negative thermal expansion in cubic ScF{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Guo, X. G.; Zhang, K.
2016-07-11
Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less
Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo
2017-12-01
We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.
NASA Astrophysics Data System (ADS)
Mizuta, Kohei; Ohtaki, Michitaka
2016-03-01
We report the electrical and thermal properties of β-pyrochlore (defect pyrochlore) oxides AFe0.33W1.67O6 ( A = K, Rb, Cs) with a crystal structure having a small cation surrounded by oversized cage-like framework. The thermal conductivity, κ, of CsFe0.33W1.67O6 and RbFe0.33W1.67O6 showed extremely low values as oxides (below 1.0 W/mK) similar to those of ATaWO6 ( A = K, Rb, Cs) which we have already reported. These low κ values are ascribed to a "rattling" motion of the A cations, evidenced by their crystal structure refinement and the Raman spectra. Their electrical conductivity, σ, was in the order of 10-3 S/cm, and the Seebeck coefficient, S, was -500 to -600 μV/K. The electrical conductivity of AFe0.33W1.67O6 ( A = Rb, Cs) was much higher than those of ATaWO6 ( A = Rb, Cs), suggesting that an appropriate selection of the framework composition enables us to have better thermoelectric performance.
Goldstein, Rebecca; Cheng, Jiongjia; Stec, Boguslaw; Roberts, Mary F.
2012-01-01
Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PIPLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αβ-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme. PMID:22390775
NASA Astrophysics Data System (ADS)
Manzano, Carlos M.; Bergamini, Fernando R. G.; Lustri, Wilton R.; Ruiz, Ana Lúcia T. G.; de Oliveira, Ellen C. S.; Ribeiro, Marcos A.; Formiga, André L. B.; Corbi, Pedro P.
2018-02-01
Palladium(II) and platinum(II) complexes with a hydrazide derivative of ibuprofen (named HIB) were synthesized and characterized by chemical and spectroscopic methods. Elemental and thermogravimetric analyses, as well as ESI-QTOF-MS studies for both complexes, confirmed a 1:2:2 metal/HIB/Cl- molar ratio. The crystal structure of the palladium(II) complex was solved by single crystal X-ray diffractometric analysis, which permitted identifying the coordination formula [PdCl2(HIB)2]. Crystallographic studies also indicate coordination of HIB to the metal by the NH2 group. Nuclear magnetic resonance and infrared spectroscopies reinforced the coordination observed in the crystal structure and suggested that the platinum(II) complex presents similar coordination modes and structure when compared with the Pd(II) complex. The complexes had their structures optimized with the aid of DFT methods. In vitro antiproliferative assays showed that the [PdCl2(HIB)2] complex is active over ovarian cancer cell line OVCAR-03, while biophysical studies indicated its capacity to interact with CT-DNA. The complexes were inactive over Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains.
Substrate-bound structure of the E. coli multidrug resistance transporter MdfA
Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C
2015-01-01
Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402
NASA Astrophysics Data System (ADS)
Roshal, D. S.; Konevtsova, O. V.; Myasnikova, A. E.; Rochal, S. B.
2016-11-01
We consider how to control the extension of curvature-induced defects in the hexagonal order covering different curved surfaces. In these frames we propose a physical mechanism for improving structures of two-dimensional spherical colloidal crystals (SCCs). For any SCC comprising of about 300 or less particles the mechanism transforms all extended topological defects (ETDs) in the hexagonal order into the point disclinations. Perfecting the structure is carried out by successive cycles of the particle implantation and subsequent relaxation of the crystal. The mechanism is potentially suitable for obtaining colloidosomes with better selective permeability. Our approach enables modeling the most topologically regular tubular and conical two-dimensional nanocrystals including various possible polymorphic forms of the HIV viral capsid. Different HIV-like shells with an arbitrary number of structural units (SUs) and desired geometrical parameters are easily formed. Faceting of the obtained structures is performed by minimizing the suggested elastic energy.
Zandarashvili, Levani; White, Mark A; Esadze, Alexandre; Iwahara, Junji
2015-07-08
The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Structural and electronic properties of L-amino acids
NASA Astrophysics Data System (ADS)
Tulip, P. R.; Clark, S. J.
2005-05-01
The structural and electronic properties of four L-amino acids alanine, leucine, isoleucine, and valine have been investigated using density functional theory (DFT) and the generalized gradient approximation. Within the crystals, it is found that the constituent molecules adopt zwitterionic configurations, in agreement with experimental work. Lattice constants are found to be in good agreement with experimentally determined values, although certain discrepancies do exist due to the description of van der Waals interactions. We find that these materials possess wide DFT band gaps in the region of 5 eV, with electrons highly localized to the constituent molecules. It is found that the main mechanisms behind crystal formation are dipolar interactions and hydrogen bonding of a primarily electrostatic character, in agreement with current biochemical understanding of these systems. The electronic structure suggests that the amine and carboxy functional groups are dominant in determining band structure.
Crystal Structure of AGR_C_4470p from Agrobacterium tumefaciens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev,S.; Neely, H.; Seetharaman, J.
2007-01-01
We report here the crystal structure at 2.0 {angstrom} resolution of the AGR{_}C{_}4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR{_}C{_}4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved inmore » AGR{_}C{_}4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR{_}C{_}4470p in E. coli, in addition to the ChuS protein.« less
Ringer, Ashley L.; Senenko, Anastasia; Sherrill, C. David
2007-01-01
S/π interactions are prevalent in biochemistry and play an important role in protein folding and stabilization. Geometries of cysteine/aromatic interactions found in crystal structures from the Brookhaven Protein Data Bank (PDB) are analyzed and compared with the equilibrium configurations predicted by high-level quantum mechanical results for the H2S–benzene complex. A correlation is observed between the energetically favorable configurations on the quantum mechanical potential energy surface of the H2S–benzene model and the cysteine/aromatic configurations most frequently found in crystal structures of the PDB. In contrast to some previous PDB analyses, configurations with the sulfur over the aromatic ring are found to be the most important. Our results suggest that accurate quantum computations on models of noncovalent interactions may be helpful in understanding the structures of proteins and other complex systems. PMID:17766371
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael
2014-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.
2016-01-01
A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.
A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.
Lupulescu, Alexandra I; Kumar, Manjesh; Rimer, Jeffrey D
2013-05-01
Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.
High-speed prediction of crystal structures for organic molecules
NASA Astrophysics Data System (ADS)
Obata, Shigeaki; Goto, Hitoshi
2015-02-01
We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.
Manikandan, Karuppasamy; Bhardwaj, Amit; Gupta, Naveen; Lokanath, Neratur K.; Ghosh, Amit; Reddy, Vanga Siva; Ramakumar, Suryanarayanarao
2006-01-01
Crystal structures are known for several glycosyl hydrolase family 10 (GH10) xylanases. However, none of them is from an alkalophilic organism that can grow in alkaline conditions. We have determined the crystal structures at 2.2 Å of a GH10 extracellular endoxylanase (BSX) from an alkalophilic Bacillus sp. NG-27, for the native and the complex enzyme with xylosaccharides. The industrially important enzyme is optimally active and stable at 343 K and at a pH of 8.4. Comparison of the structure of BSX with those of other thermostable GH10 xylanases optimally active at acidic or close to neutral pH showed that the solvent-exposed acidic amino acids, Asp and Glu, are markedly enhanced in BSX, while solvent-exposed Asn was noticeably depleted. The BSX crystal structure when compared with putative three-dimensional homology models of other extracellular alkalophilic GH10 xylanases from alkalophilic organisms suggests that a protein surface rich in acidic residues may be an important feature common to these alkali thermostable enzymes. A comparison of the surface features of BSX and of halophilic proteins allowed us to predict the activity of BSX at high salt concentrations, which we verified through experiments. This offered us important lessons in the polyextremophilicity of proteins, where understanding the structural features of a protein stable in one set of extreme conditions provided clues about the activity of the protein in other extreme conditions. The work brings to the fore the role of the nature and composition of solvent-exposed residues in the adaptation of enzymes to polyextreme conditions, as in BSX. PMID:16823036
Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.
Dharmaiah, Srisathiyanarayanan; Bindu, Lakshman; Tran, Timothy H; Gillette, William K; Frank, Peter H; Ghirlando, Rodolfo; Nissley, Dwight V; Esposito, Dominic; McCormick, Frank; Stephen, Andrew G; Simanshu, Dhirendra K
2016-11-01
Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.
Wave propagation in a strongly nonlinear locally resonant granular crystal
NASA Astrophysics Data System (ADS)
Vorotnikov, K.; Starosvetsky, Y.; Theocharis, G.; Kevrekidis, P. G.
2018-02-01
In this work, we study the wave propagation in a recently proposed acoustic structure, the locally resonant granular crystal. This structure is composed of a one-dimensional granular crystal of hollow spherical particles in contact, containing linear resonators. The relevant model is presented and examined through a combination of analytical approximations (based on ODE and nonlinear map analysis) and of numerical results. The generic dynamics of the system involves a degradation of the well-known traveling pulse of the standard Hertzian chain of elastic beads. Nevertheless, the present system is richer, in that as the primary pulse decays, secondary ones emerge and eventually interfere with it creating modulated wavetrains. Remarkably, upon suitable choices of parameters, this interference "distills" a weakly nonlocal solitary wave (a "nanopteron"). This motivates the consideration of such nonlinear structures through a separate Fourier space technique, whose results suggest the existence of such entities not only with a single-side tail, but also with periodic tails on both ends. These tails are found to oscillate with the intrinsic oscillation frequency of the out-of-phase motion between the outer hollow bead and its internal linear attachment.
Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter
NASA Astrophysics Data System (ADS)
Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi
2018-03-01
To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.
Crystal chemistry of KCuMn3(VO4)3 in the context of detailed systematics of the alluaudite family
NASA Astrophysics Data System (ADS)
Yakubovich, O. V.; Kiryukhina, G. V.; Dimitrova, O. V.
2016-07-01
The crystal structure of new manganese potassium copper vanadate KCuMn3(VO4)3, which was prepared by the hydrothermal synthesis in the K2CO3-CuO-MnCl2-V2O5-H2O system, was studied by X-ray diffraction ( R = 0.0355): a = 12.396(1) Å, b = 12.944(1) Å, c = 6.9786(5) Å, β = 112.723(1)°, sp. gr. C2/ c, Z = 4, ρcalc = 3.938 g/cm3. A comparative analysis of the crystal-chemical features of the new representative of the alluaudite family and related structures of minerals and synthetic phosphates, arsenates, and vanadates of the general formula A(1) A(1)' A(1)″ A(2) A(2)' M(1) M(2)2( TO4)3 (where A are sites in the channels of the framework composed of MO6 octahedra and TO4 tetrahedra) was performed. A classification of these structures into subgroups according to the occupancy of A sites is suggested.
Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao
2003-01-22
A novel computational technique for modeling crystal formation has been developed that combines three-dimensional (3-D) molecular representation and detailed energetics calculations of molecular mechanics techniques with the less-sophisticated probabilistic approach used by statistical techniques to study systems containing millions of molecules undergoing billions of interactions. Because our model incorporates both the structure of and the interaction energies between participating molecules, it enables the 3-D shape and surface properties of these molecules to directly affect crystal formation. This increase in model complexity has been achieved while simultaneously increasing the number of molecules in simulations by several orders of magnitude over previous statistical models. We have applied this technique to study the inhibitory effects of antifreeze proteins (AFPs) on ice-crystal formation. Modeling involving both fish and insect AFPs has produced results consistent with experimental observations, including the replication of ice-etching patterns, ice-growth inhibition, and specific AFP-induced ice morphologies. Our work suggests that the degree of AFP activity results more from AFP ice-binding orientation than from AFP ice-binding strength. This technique could readily be adapted to study other crystal and crystal inhibitor systems, or to study other noncrystal systems that exhibit regularity in the structuring of their component molecules, such as those associated with the new nanotechnologies.
Coarse-grained modeling of crystal growth and polymorphism of a model pharmaceutical molecule.
Mandal, Taraknath; Marson, Ryan L; Larson, Ronald G
2016-10-04
We describe a systematic coarse-graining method to study crystallization and predict possible polymorphs of small organic molecules. In this method, a coarse-grained (CG) force field is obtained by inverse-Boltzmann iteration from the radial distribution function of atomistic simulations of the known crystal. With the force field obtained by this method, we show that CG simulations of the drug phenytoin predict growth of a crystalline slab from a melt of phenytoin, allowing determination of the fastest-growing surface, as well as giving the correct lattice parameters and crystal morphology. By applying meta-dynamics to the coarse-grained model, a new crystalline form of phenytoin (monoclinic, space group P2 1 ) was predicted which is different from the experimentally known crystal structure (orthorhombic, space group Pna2 1 ). Atomistic simulations and quantum calculations then showed the polymorph to be meta-stable at ambient temperature and pressure, and thermodynamically more stable than the conventional orthorhombic crystal at high pressure. The results suggest an efficient route to study crystal growth of small organic molecules that could also be useful for identification of possible polymorphs as well.
Crystal Structures of Human SIRT[subscript 3] Displaying Substrate-induced Conformational Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Lei; Wei, Wentao; Jiang, Yaobin
2009-11-04
SIRT3 is a major mitochondrial NAD{sup +}-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into themore » conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD+. In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD{sup +}. These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.« less
Spectral analysis of the structure of ultradispersed diamonds
NASA Astrophysics Data System (ADS)
Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.
2008-07-01
The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.
2009-08-28
The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal endmore » of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.« less
Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...
2015-05-01
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding
NASA Astrophysics Data System (ADS)
Volbeda, Anne; Dodd, Erin L.; Darnault, Claudine; Crack, Jason C.; Renoux, Oriane; Hutchings, Matthew I.; Le Brun, Nick E.; Fontecilla-Camps, Juan C.
2017-04-01
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe-4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe-4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove.
Pauli structures arising from confined particles interacting via a statistical potential
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman
2017-09-01
There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.
Bastos-Aristizabal, Sara; Kozlov, Guennadi; Gehring, Kalle
2014-01-01
Protein Disulfide Isomerase-Like protein of the Testis (PDILT) is a testis-specific member of the PDI family. PDILT displays similar domain architecture to PDIA1, the founding member of this protein family, but lacks catalytic cysteines needed for oxidoreduction reactions. This suggests special importance of chaperone activity of PDILT, but how it recognizes misfolded protein substrates is unknown. Here, we report the high-resolution crystal structure of the b′ domain of human PDILT. The structure reveals a conserved hydrophobic pocket, which is likely a principal substrate-binding site in PDILT. In the crystal, this pocket is occupied by side chains of tyrosine and tryptophan residues from another PDILT molecule, suggesting a preference for binding exposed aromatic residues in protein substrates. The lack of interaction of the b′ domain with the P-domains of calreticulin-3 and calmegin hints at a novel way of interaction between testis-specific lectin chaperones and PDILT. Further studies of this recently discovered PDI member would help to understand the important role that PDILT plays in the differentiation and maturation of spermatozoids. PMID:24662985
NASA Astrophysics Data System (ADS)
O'Driscoll, B.; Daly, J. S.; Emeleus, C. H.; Donaldson, C. H.
2007-12-01
Laterally extensive (~2 mm thick) chrome-spinel seams in the Rum Layered Suite, NW Scotland, occur at the junctions of several of the coupled peridotite-troctolite macro-rhythmic units that make up the bulk of the eastern part of the intrusion. A detailed petrographic study of the rocks immediately above and below two of these seams suggests that existing models for seam formation involving early crystallisation and gravitational settling of chrome-spinel crystals from a newly emplaced body of picritic magma may be flawed. Instead, the textural relationships between minerals suggest that olivine crystallisation in the peridotite above each of the seams occurred before that of most of the chrome-spinel. Reaction textures between olivine and chrome-spinel crystals are commonly observed, with plagioclase usually occurring as thin rims between both olivine and chrome-spinel where both are in close proximity. The textural evidence suggests a significant degree of olivine crystal-shape change; it seems that many of the olivine crystals immediately above the main seams may initially have had much more complex (harrisitic) crystal shapes before modification to simpler morphologies in a crystal mush. Plagioclase occurs in the peridotite as large oikocrysts up to several cm in size. Additionally, the chrome-spinel seams occur only in those units that display extensive evidence of syn-magmatic deformation of unconsolidated cumulate in the underlying troctolite, and the seams themselves often exhibit small-scale load structures. A model suggesting in-situ crystallisation of the chrome-spinel seams is proposed, whereby mixing of an evolved interstitial liquid with a primitive picritic melt occurred approximately at the crystal mush-magma interface. The former was released from the unconsolidated troctolite mush as a response to re-mobilization and chaotic slumping, possibly triggered by emplacement of some of the hot picrite into the crystal mush pile. Significant undercooling in the picrite due to emplacement-related cooling had already produced a crystal framework comprising complex skeletal olivine crystal morphologies with very fast growth rates. It is envisaged that the significantly modified olivine textures in the peridotite immediately above both seams can be attributed to upward- moving porosity waves of the same 'mixed' interstitial melt that precipitated the chrome-spinel seams. In addition to formation of the seams at the main unit junctions, 'necklace' or 'chain-like' distributions of chrome-spinel crystals around olivine crystals in the peridotite, as well as the large plagioclase oikocrysts, argue for the presence of a mobile interstitial melt with a protracted cooling history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
2016-04-15
This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less
Vogt, Leslie; Ertem, Mehmed Z.; Pal, Rhitankar; ...
2015-01-15
The oxygen-evolving complex of photosystem II can function with either Ca²⁺ or Sr²⁺ as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S₁) and in a series of reduced states (S₀, S₋₁, and S-₂). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca²⁺ or Sr²⁺ are most consistent with the S-₂ state, Mn₄[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca²⁺/Sr²⁺ substitutionmore » results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr²⁺ as the heterocation, suggesting that this water may play a critical role during water oxidation.« less
Temperature-driven Phase Transformation in Y3Co: Neutron Scattering and DFT Studies
NASA Astrophysics Data System (ADS)
Podlesnyak, A.; Ehlers, G.; Cao, H.; Matsuda, M.; Frontzek, M.; Zaharko, O.; Kazantsev, V. A.; Gubkin, A. F.; Baranov, N. V.
2013-03-01
The effects of a crystal structure deformation due to subtle atomic displacements have attracted much attention because they can result in colossal changes of the electronic and magnetic properties of solids. The R3Co binary intermetallic systems exhibit a number of complicated phenomena, including field-induced magnetic phase transitions (R=Er, Ho, Tb), giant magnetoresistance (R=Dy), a substantial magnetocaloric effect (R=Gd) and superconductivity (R=La). Contrary to previous studies that defined the ground state crystal structure of the entire R3Co series as orthorhombic Pnma, we find that Y3Co undergoes a structural phase transition upon cooling around Tc 160K. Density functional theory calculations reveal a dynamical instability of the Pnma structure of Y3Co. Employing inelastic neutron scattering measurements we find a strong damping of the (00 ξ) acoustic phonon mode below the critical temperature Tc. We suggest that some other members of the R3Co series (or even all of them) have ground state crystal symmetry lower than reported Pnma. This raises a question about the true magnetic structures and hence the influence of magnetic properties of the entire R3Co series. The research at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Crystal structure and theoretical studies of derivative of imidazo-1,2,4-triazine
NASA Astrophysics Data System (ADS)
Dybała, Izabela; Sztanke, Krzysztof
2016-09-01
In this study, we present the result of X-ray structure analysis of methyl [8-(3-chlorophenyl)-4-oxo-2,3,4,6,7,8-heksahydroimidazo[2,1-c][1,2,4]triazin-3-yl]acetate (1). The molecule conformation is flat, with a chlorophenyl substituent and the ester moiety lying in the plain of the heterobicyclic scaffold. Its conformation is stabilized by an intramolecular Nsbnd H…O hydrogen bond. Within the crystalline structure of 1, molecules associate with one another by weak Csbnd H…O, Csbnd H…Cl and Csbnd H…π bonds. The molecular and crystal structure of 1 was compared with the previously described structurally similar compound possessing the same bicyclic rigid core and similar chemical nature of the functional ester moiety. Very interesting differences in molecules geometry and association were observed. Non-covalent bonds within the crystals are additionally visualized by determination of Hirshfeld surfaces. Moreover, the quantum chemical calculation for 1 in the gas phase were carried out. The DFT calculation methods was used to optimize of molecule geometry and obtain molecular energy profiles with respect to selected torsion angles. The quantum chemical conformational analysis that was carried out for compound 1 in the gas phase suggests that in the solid state the molecules adopt the minimum energy conformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Jinlan; George, Nicholas P.; Duckett, Katrina L.
2010-05-25
Reactivation of repaired DNA replication forks is essential for complete duplication of bacterial genomes. However, not all bacteria encode homologs of the well-studied Escherichia coli DNA replication restart primosome proteins, suggesting that there might be distinct mechanistic differences among DNA replication restart pathways in diverse bacteria. Since reactivation of repaired DNA replication forks requires coordinated DNA and protein binding by DNA replication restart primosome proteins, we determined the crystal structure of Neisseria gonorrhoeae PriB at 2.7 {angstrom} resolution and investigated its ability to physically interact with DNA and PriA helicase. Comparison of the crystal structures of PriB from N. gonorrhoeaemore » and E. coli reveals a well-conserved homodimeric structure consisting of two oligosaccharide/oligonucleotide-binding (OB) folds. In spite of their overall structural similarity, there is significant species variation in the type and distribution of surface amino acid residues. This correlates with striking differences in the affinity with which each PriB homolog binds single-stranded DNA and PriA helicase. These results provide evidence that mechanisms of DNA replication restart are not identical across diverse species and that these pathways have likely become specialized to meet the needs of individual organisms.« less
Pérez-Cruz, María Ana; Elizalde-González, María de la Paz; Escudero, Roberto; Bernès, Sylvain; Silva-González, Rutilo; Reyes-Ortega, Yasmi
2015-10-01
A natural single crystal of the ferrimagnetic oxide FeCrO3, which was found in an opencast mine situated in the San Luis Potosí State in Mexico, has been characterized in order to elucidate some outstanding issues about the actual structure of this material. The single-crystal X-ray analysis unambiguously shows that transition metal cations are segregated in alternating layers normal to the threefold crystallographic axis, affording a structure isomorphous to that of ilmenite (FeTiO3), in the space group R3̅. The possible occurrence of cation antisite and vacancy defects is below the limit of detection available from X-ray data. Structural and magnetic results are in agreement with the coherent slow intergrowth of magnetic phases provided by the two antiferromagnetic corundum-type parent oxides Fe2O3 (hematite) and Cr2O3 (eskolaite). Our results are consistent with the most recent density functional theory (DFT) studies carried out on digital FeCrO3 [Sadat Nabi & Pentcheva (2011). Phys. Rev. B, 83, 214424], and suggest that synthetic samples of FeCrO3 might present a cation distribution different to that of the ilmenite structural type.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.
Maeda, Y
1994-01-10
Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.
Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav
2005-09-01
A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.
NASA Astrophysics Data System (ADS)
Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi
2015-03-01
In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.
Crystal structure of solid molecular hydrogen under high pressures
NASA Astrophysics Data System (ADS)
Cui, T.; Ma, Y.; Zou, G.
2002-11-01
In an effort to achieve a comprehensive understanding of the structure of dense H2, we have performed path-integral Monte Carlo simulations for three combinations of pressures and temperatures corresponding to three phases of solid hydrogen. Our results suggest three kinds of distribution of molecules: orientationally disordered hexagonal close packed (hcp), orientationally ordered hcp with Pa3-type local orientation order and orientationally ordered orthorhombic structure of Cmca symmetry, for the three phases.
Modeling the SHG activities of diverse protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J., E-mail: gsimpson@purdue.edu
2012-11-01
The origins of the diversity in the SHG signal from protein crystals are investigated and potential protein-crystal coverage by SHG microscopy is assessed. A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much ofmore » the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R., E-mail: garavito@msu.edu
2011-04-22
Highlights: {yields} Crystal structure of the intracellular domain of (pro)renin receptor (PRR-IC) as MBP fusion protein at 2.0 A (maltose-free) and 2.15 A (maltose-bound). {yields} MBP fusion protein is a dimer in crystals in the presence and absence of maltose. {yields} PRR-IC domain is responsible for the dimerization of the fusion protein. {yields} Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermolecular interactions, suggesting a role for the PRR-IC domain in PRR dimerization. -- Abstract: The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membranemore » protein PRR contains a large extracellular domain ({approx}310 amino acids), a single transmembrane domain ({approx}20 amino acids) and an intracellular domain ({approx}19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ({approx}30 amino acids), the IC domain is also involved in assembly of V{sub 0} portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 A (maltose-free) and 2.15 A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.
Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalasemore » (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.« less
Rhodopsin Photointermediates in 2D Crystals at Physiological Temperatures
Szundi, Istvan; Ruprecht, Jonathan J.; Epps, Jacqueline; Villa, Claudio; Swartz, Trevor E.; Lewis, James W.; Schertler, Gebhard F.X.; Kliger, David S.
2008-01-01
Bovine rhodopsin photointermediates formed in 2D rhodopsin crystal suspensions were studied by measuring the time dependent absorbance changes produced after excitation with 7 nanosecond laser pulses at 15, 25 and 35 °C. The crystalline environment favored the Meta I480 photointermediate, with its formation from Lumi beginning faster than it does in rhodopsin membrane suspensions at 35 °C and its decay to a 380 nm absorbing species being less complete than it is in the native membrane at all temperatures. Measurements performed at pH 5.5 in 2D crystals showed that the 380 nm absorbing product of Meta I480 decay did not display the anomalous pH dependence characteristic of classical Meta II in the native disk membrane. Crystal suspensions bleached at 35 °C and quenched to 19 °C showed that a rapid equilibrium existed on the ∼1 second time scale which suggests that the unprotonated predecessor of Meta II in the native membrane environment (sometimes called MIIa), forms in 2D rhodopsin crystals, but that the non-Schiff base proton uptake completing classical Meta II formation is blocked there. Thus, the 380 nm absorbance arises from an on-pathway intermediate in GPCR activation and does not result from early Schiff base hydrolysis. Kinetic modeling of the time-resolved absorbance data of the 2D crystals was generally consistent with such a mechanism, but details of kinetic spectral changes and the fact that the residuals of exponential fits were not as good as are obtained for rhodopsin in the native membrane suggested the photoexcited samples were heterogeneous. Variable fractional bleach due to the random orientation of linearly dichroic crystals relative to the linearly polarized laser was explored as a cause of heterogeneity but was found unlikely to fully account for it. The fact that the 380 nm product of photoexcitation of rhodopsin 2D crystals is on the physiological pathway of receptor activation suggests that determination of its structure would be of interest. PMID:16605265
Han, Cong; Pao, Kuan-Chuan; Kazlauskaite, Agne; Muqit, Miratul M K; Virdee, Satpal
2015-01-01
Ubiquitin phosphorylation is emerging as an important regulatory layer in the ubiquitin system. This is exemplified by the phosphorylation of ubiquitin on Ser65 by the Parkinson's disease-associated kinase PINK1, which mediates the activation of the E3 ligase Parkin. Additional phosphorylation sites on ubiquitin might also have important cellular roles. Here we report a versatile strategy for preparing phosphorylated ubiquitin. We biochemically and structurally characterise semisynthetic phospho-Ser65-ubiquitin. Unexpectedly, we observed disulfide bond formation between ubiquitin molecules, and hence a novel crystal form. The method outlined provides a direct approach to study the combinatorial effects of phosphorylation on ubiquitin function. Our analysis also suggests that disulfide engineering of ubiquitin could be a useful strategy for obtaining alternative crystal forms of ubiquitin species thereby facilitating structural validation. PMID:26010437
Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA
Rodríguez, A.Chapin; Stock, Daniela
2002-01-01
Reverse gyrase is the only topoisomerase known to positively supercoil DNA. The protein appears to be unique to hyperthermophiles, where its activity is believed to protect the genome from denaturation. The 120 kDa enzyme is the only member of the type I topoisomerase family that requires ATP, which is bound and hydrolysed by a helicase-like domain. We have determined the crystal structure of reverse gyrase from Archaeoglobus fulgidus in the presence and absence of nucleotide cofactor. The structure provides the first view of an intact supercoiling enzyme, explains mechanistic differences from other type I topoisomerases and suggests a model for how the two domains of the protein cooperate to positively supercoil DNA. Coordinates have been deposited in the Protein Data Bank under accession codes 1GKU and 1GL9. PMID:11823434
Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo
2008-04-01
We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.
New simulation model of multicomponent crystal growth and inhibition.
Wathen, Brent; Kuiper, Michael; Walker, Virginia; Jia, Zongchao
2004-04-02
We review a novel computational model for the study of crystal structures both on their own and in conjunction with inhibitor molecules. The model advances existing Monte Carlo (MC) simulation techniques by extending them from modeling 3D crystal surface patches to modeling entire 3D crystals, and by including the use of "complex" multicomponent molecules within the simulations. These advances makes it possible to incorporate the 3D shape and non-uniform surface properties of inhibitors into simulations, and to study what effect these inhibitor properties have on the growth of whole crystals containing up to tens of millions of molecules. The application of this extended MC model to the study of antifreeze proteins (AFPs) and their effects on ice formation is reported, including the success of the technique in achieving AFP-induced ice-growth inhibition with concurrent changes to ice morphology that mimic experimental results. Simulations of ice-growth inhibition suggest that the degree of inhibition afforded by an AFP is a function of its ice-binding position relative to the underlying anisotropic growth pattern of ice. This extended MC technique is applicable to other crystal and crystal-inhibitor systems, including more complex crystal systems such as clathrates.
Crystallization of the avian reovirus double-stranded RNA-binding and core protein σA
Hermo-Parrado, X. Lois; Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Vazquez-Iglesias, Lorena; Martínez-Costas, José; Benavente, Javier; van Raaij, Mark J.
2007-01-01
The avian reovirus protein σA plays a dual role: it is a structural protein forming part of the transcriptionally active core, but it has also been implicated in the resistance of the virus to interferon by strongly binding double-stranded RNA and thus inhibiting the double-stranded RNA-dependent protein kinase. The σA protein has been crystallized from solutions containing ammonium sulfate at pH values around 6. Crystals belonging to space group P1, with unit-cell parameters a = 103.2, b = 129.9, c = 144.0 Å, α = 93.8, β = 105.1, γ = 98.2° were grown and a complete data set has been collected to 2.3 Å resolution. The self-rotation function suggests that σA may form symmetric arrangements in the crystals. PMID:17565188
Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki
2017-01-25
Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.
Physical and Structural Studies on the Cryo-cooling of Insulin Crystals
NASA Technical Reports Server (NTRS)
Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.
2003-01-01
Reflection profiles were analyzed from microgravity-(mg) and earth-grown insulin crystals to measure mosaicity (h) and to reveal mosaic domain structure and composition. The effects of cryocooling on single and multi-domain crystals were compared. The effects of cryocooling on insulin structure were also re-examined. Microgravity crystals were larger, more homogeneous, and more perfect than earth crystals. Several mg crystals contained primarily a single mosaic domain with havg of 0.005deg. The earth crystals varied in quality and all contained multiple domains with havg of 0.031deg. Cryocooling caused a 43-fold increase in h for mg crystals (havg=0.217deg) and an %fold increase for earth crystals (havg=0.246deg). These results indicate that very well-ordered crystals are not completely protected from the stresses associated with cryocooling, especially when structural perturbations occur. However, there were differences in the reflection profiles. For multi-mosaic domain crystals, each domain individually broadened and separated from the other domains upon cryo-cooling. Cryo-cooling did not cause an increase in the number of domains. A crystal composed of a single domain retained this domain structure and the reflection profiles simply broadened. Therefore, an improved signal-to-noise ratio for each reflection was measured from cryo-cooled single domain crystals relative to cryo-cooled multi-domain crystals. This improved signal, along with the increase in crystal size, facilitated the measurement of the weaker high- resolution reflections. The observed broadening of reflection profiles indicates increased variation in unit cell dimensions which may be linked to cryo-cooling-associated structural changes and disorder.
Crystal structure of minoxidil at low temperature and polymorph prediction.
Martín-Islán, Africa P; Martín-Ramos, Daniel; Sainz-Díaz, C Ignacio
2008-02-01
An experimental and theoretical investigation on crystal forms of the popular and ubiquitous pharmaceutical Minoxidil is presented here. A new crystallization method is presented for Minoxidil (6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) in ethanol-poly(ethylene glycol), yielding crystals with good quality. The crystal structure is determined at low temperature, with a final R value of 0.035, corresponding to space group P2(1) (monoclinic) with cell dimensions a = 9.357(1) A, b = 8.231(1) A, c = 12.931(2) A, and beta = 90.353(4) degrees . Theoretical calculations of the molecular structure of Minoxidil are set forward using empirical force fields and quantum-mechanical methods. A theoretical prediction for Minoxidil crystal structure shows many possible polymorphs. The predicted crystal structures are compared with X-ray experimental data obtained in our laboratory, and the experimental crystal form is found to be one of the lowest energy polymorphs.
NASA Astrophysics Data System (ADS)
Salah, Najet; Hamdi, Besma; Bouzidia, Nabaa; Salah, Abdelhamid Ben
2017-12-01
A novel organic-inorganic hybrid sample [C6H10(NH3)2]Cu2Cl8 has been prepared under mild hydrothermal conditions and characterized by single crystal X-ray diffraction, Hirshfeld surface analysis, FT-IR,NMR and UV-Vis spectroscopies, differential scanning calorimetric and dielectric measurement. It is crystallized in the monoclinic system with P21/c space group. The cohesion and stabilization of the structure are provided by the hydrogen bond interactions, (Nsbnd H⋯Cl and Csbnd H⋯Cl), between [C6H10(NH3)2]2+ cation and [Cu2Cl8]2- anion. The Hirschfeld surface analysis has been performed to explore the behavior of these weak interactions. The presence of different functional groups and the nature of their vibrations were identified by FT-IR and Solid state NMR. The thermal study revealed that this compound undergoes two structural phase transitions around 353 and 376 K. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 331-399 K and 200 Hz-5 MHz, respectively. The AC conductivity is explained using the correlated barrier hopping model (CBH) conduction mechanism. The nature of DC conductivity variation suggests Arrhenius type of electrical conductivity. A relationship between crystal structure and ionic conductivity was established and discussed. Finally, the real and imaginary parts of the permittivity constant are analyzed with the Cole-Cole formalism and the optical spectra indicate that the compound has a direct band gap (3.14 eV) due to direct transition. The wide band gap is due to low defect concentration in the grown crystal, which is more useful for the laser/optical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com
Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less
NASA Astrophysics Data System (ADS)
Taniguchi, Hiroki; Tatewaki, Shingo; Yasui, Shintaro; Fujii, Yasuhiro; Yamaura, Jun-ichi; Terasaki, Ichiro
2018-04-01
This paper focuses on effects of isovalent La substitution on the crystal structure and dielectric properties of ferroelectric B i2Si O5 . Polycrystalline samples of (Bi1-xL ax ) 2Si O5 are synthesized by crystallization of Bi-Si-O and Bi-La-Si-O glasses with a composition range of 0 ≤x ≤0.1 . The crystal structure changes from monoclinic to tetragonal with increasing La-substitution rate x at room temperature. This structural variation stems from the change in orientation of Si O4 tetrahedra that form one-dimensional chains when they are in the ordered configuration, thus suggesting that lone-pair electrons play an important role in sustaining one-dimensional chains of Si O4 tetrahedra. Synchronizing with the disordering of Si O4 chains, ferroelectric phase transition temperature of (Bi1-xL ax ) 2Si O5 sharply decreases as x increases, and ferroelectricity finally vanishes at around x =0.03 . The present results demonstrate that lone-pair electrons of Bi play an important role in the ferroelectricity of B i2Si O5 through propping the ordered structure of one-dimensional Si O4 chains with stereochemical activity. Furthermore, an additional phase transition has been first discovered in the low-temperature region of (Bi1-xL ax ) 2Si O5 with x ≤0.01 , where the ordered one-dimensional Si O4 chains remain.
2017-01-01
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron–siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron–siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron–siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2–3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs. PMID:29095164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kussainova, Ardak M.; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; Akselrud, Lev G.
2016-01-15
The series of quaternary sulfides with general formula Ln{sub 2}CuMS{sub 5} (Ln=La, Ce; M=Sb, Bi) have been synthesized by solid-state reactions. Three representative members have been structurally characterized by single-crystal X-ray diffraction. La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46), Z=4, a=13.401(2) Å, b=7.592(1) Å, c=7.598(1) Å, V=773.1(3) Å{sup 3}). The bismuth analogs of composition La{sub 2}CuBiS{sub 5} and Ce{sub 2}CuBiS{sub 5} crystallize with the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62), Z=4). Lattice parameters for La{sub 2}CuBiS{sub 5}: a=11.9213(5) Å, b=3.9967(2) Å, c=17.0537(8) Å, V=812.56(7) Å{sup 3}; lattice parameters formore » Ce{sub 2}CuBiS{sub 5}: a=11.9179(15) Å, b=3.9596(5) Å, c=16.955(2) Å, V=800.13(17) Å{sup 3}). The similarities and the differences between the two structures are discussed. Electronic structure calculations for La{sub 2}CuSbS{sub 5} and La{sub 2}CuBiS{sub 5} are also presented; they suggest semiconducting behavior with energy gaps exceeding 1.7 eV. - Graphical abstract: La{sub 2}CuSbS{sub 5} crystallizes in a new structure type (space group Ima2 (no. 46). Its bismuth analog La{sub 2}CuBiS{sub 5} crystallizes in the La{sub 2}CuInSe{sub 5} structure type (space group Pnma (no. 62)). Z=4, a=11.9213(5) Å, b=3.9967(2) Å, c=17.0536(10) Å, V=813.53(10) Å{sup 3}). The structures are based on rare-earth metal atoms coordinated by S atoms in a trigonal-prismatic and/or square-antiprismatic fashion, Cu-centered tetrahedra, and pnictogen atoms in pyramidal or distorted octahedral coordination. - Highlights: • Ln{sub 2}CuSbS{sub 5} are complex quarternary phases crystallizing in their own structure type. • Ln{sub 2}CuSbS{sub 5} and Ce{sub 2}CuBiS{sub 5} are new compound in the respective ternary phase diagrams. • Ln{sub 2}CuSbS{sub 5} on one side, and Ln{sub 2}CuBiS{sub 5} on the other are not isotypic.« less
High-throughput crystallization screening.
Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei
2014-01-01
Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.
Guédin, Aurore; Lin, Linda Yingqi; Armane, Samir; Lacroix, Laurent; Mergny, Jean-Louis; Thore, Stéphane; Yatsunyk, Liliya A
2018-06-01
Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.
Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J
2018-05-09
Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.
Qin, Ling; Hiser, Carrie; Mulichak, Anne; Garavito, R. Michael; Ferguson-Miller, Shelagh
2006-01-01
Well ordered reproducible crystals of cytochrome c oxidase (CcO) from Rhodobacter sphaeroides yield a previously unreported structure at 2.0 Å resolution that contains the two catalytic subunits and a number of alkyl chains of lipids and detergents. Comparison with crystal structures of other bacterial and mammalian CcOs reveals that the positions occupied by native membrane lipids and detergent substitutes are highly conserved, along with amino acid residues in their vicinity, suggesting a more prevalent and specific role of lipid in membrane protein structure than often envisioned. Well defined detergent head groups (maltose) are found associated with aromatic residues in a manner similar to phospholipid head groups, likely contributing to the success of alkyl glycoside detergents in supporting membrane protein activity and crystallizability. Other significant features of this structure include the following: finding of a previously unreported crystal contact mediated by cadmium and an engineered histidine tag; documentation of the unique His–Tyr covalent linkage close to the active site; remarkable conservation of a chain of waters in one proton pathway (D-path); and discovery of an inhibitory cadmium-binding site at the entrance to another proton path (K-path). These observations provide important insight into CcO structure and mechanism, as well as the significance of bound lipid in membrane proteins. PMID:17050688
Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman
2005-06-01
Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.
Yoshida, Yusuke; Inoue, Katsuya; Kurmoo, Mohamedally
2009-01-05
We report the synthesis, crystal structure, and thermal and magnetic properties of the two-dimensional achiral soft ferrimagnet [Mn(II)(enH)(H(2)O)][Cr(III)(CN)(6)].H(2)O (1), en = 1,2-diaminoethane, as well as the recyclability of the dehydration and rehydration and their influence on the crystal structure and its magnetic properties. Unlike [Mn(S-pnH)(H(2)O)][Cr(CN)(6)].H(2)O (2S, pn = 1,2-diaminopropane), which is a chiral (P2(1)2(1)2(1)) enantiopure ferrimagnet (T(C) = 38 K), 1 crystallizes in the achiral orthorhombic Pcmn space group, having a similar two-dimensional square network of Mn-Cr with bridging cyanide, and 1 behaves also as a soft ferrimagnet (T(C) = 42 K). X-ray diffraction experiments on a single crystal of 1 indicate a transformation from a single crystal to an amorphous phase upon dehydrataion and partial recovery of its crystallinity upon rehydration. The dehydrated phase 1-DP exhibits long-range ordering at 75 K to a ferrimagnetic state and coercive field at 2 K of 100 Oe, which are a higher critical temperature and coercive field than for the virgin sample (H(C) = 60 Oe). Thermogravimetric analyses indicate that the crystallinity deteriorates upon hydration-dehydration cycling, with persistence toward the amorphous phase, as also seen by magnetization measurements. This effect is associated with an increase of statistical disorder inherent in the dehydration-rehydration process. X-ray powder diffraction suggests that 1-DP may retain order within the layers but loses coherence in the stacking of the layers.
Abascal-Palacios, Guillermo; Schindler, Christina; Rojas, Adriana L; Bonifacino, Juan S.; Hierro, Aitor
2016-01-01
Summary The Golgi-Associated Retrograde Protein (GARP) is a tethering complex involved in the fusion of endosome-derived transport vesicles to the trans-Golgi network through interaction with components of the Syntaxin 6/Syntaxin 16/Vti1a/VAMP4 SNARE complex. The mechanisms by which GARP and other tethering factors engage the SNARE fusion machinery are poorly understood. Herein we report the structural basis for the interaction of the human Ang2 subunit of GARP with Syntaxin 6 and the closely related Syntaxin 10. The crystal structure of Syntaxin 6 Habc domain in complex with a peptide from the N terminus of Ang2 shows a novel binding mode in which a di-tyrosine motif of Ang2 interacts with a highly conserved groove in Syntaxin 6. Structure-based mutational analyses validate the crystal structure and support the phylogenetic conservation of this interaction. The same binding determinants are found in other tethering proteins and syntaxins, suggesting a general interaction mechanism. PMID:23932592
Sun, Y J; Chou, C C; Chen, W S; Wu, R T; Meng, M; Hsiao, C D
1999-05-11
Phosphoglucose isomerase (PGI) plays a central role in both the glycolysis and the gluconeogenesis pathways. We present here the complete crystal structure of PGI from Bacillus stearothermophilus at 2.3-A resolution. We show that PGI has cell-motility-stimulating activity on mouse colon cancer cells similar to that of endogenous autocrine motility factor (AMF). PGI can also enhance neurite outgrowth on neuronal progenitor cells similar to that observed for neuroleukin. The results confirm that PGI is neuroleukin and AMF. PGI has an open twisted alpha/beta structural motif consisting of two globular domains and two protruding parts. Based on this substrate-free structure, together with the previously published biological, biochemical, and modeling results, we postulate a possible substrate-binding site that is located within the domains' interface for PGI and AMF. In addition, the structure provides evidence suggesting that the top part of the large domain together with one of the protruding loops might participate in inducing the neurotrophic activity.
Wu, Rui; Zhu, Cong; Du, Xiu-Jiang; Xiong, Li-Xia; Yu, Shu-Jing; Liu, Xing-Hai; Li, Zheng-Ming; Zhao, Wei-Guang
2012-09-11
Culex is an important mosquito as vectors for the transmission of serious diseases, such as filariasis, West Nile virus, dengue, yellow fever, chikungunya and other encephalitides. Nearly one billion people in the developing countries are at risk. In order to discover new bioactive molecules and pesticides acting on mosquito, we designed active amide structure and synthesized a series of novel diamide derivatives. A series of novel diamide derivatives were designed and synthesized. Their structures were characterized by 1 H NMR, FTIR and HRMS. The single crystal structure of compound 6n was determined to further elucidate the structure. Biological activities of these compounds were tested. Most of them exhibited higher mosquito larvicidal activity. Especially compound 6r displayed relatively good activity to reach 70% at 2 μg/mL. A practical synthetic route to amide derivatives by the reaction of amide with another acid is presented. This study suggests that the diamide derivatives exhibited good effective against mosquito.
Crystal structure of group II intron domain 1 reveals a template for RNA assembly
Zhao, Chen; Rajashankar, Kanagalaghatta R.; Marcia, Marco; ...
2015-10-26
Although the importance of large noncoding RNAs is increasingly appreciated, our understanding of their structures and architectural dynamics remains limited. In particular, we know little about RNA folding intermediates and how they facilitate the productive assembly of RNA tertiary structures. In this paper, we report the crystal structure of an obligate intermediate that is required during the earliest stages of group II intron folding. Composed of domain 1 from the Oceanobacillus iheyensis group II intron (266 nucleotides), this intermediate retains native-like features but adopts a compact conformation in which the active site cleft is closed. Transition between this closed andmore » the open (native) conformation is achieved through discrete rotations of hinge motifs in two regions of the molecule. Finally, the open state is then stabilized by sequential docking of downstream intron domains, suggesting a 'first come, first folded' strategy that may represent a generalizable pathway for assembly of large RNA and ribonucleoprotein structures.« less
NASA Astrophysics Data System (ADS)
Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou
In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.
Crystal Structure of the 3.8-MDa Respiratory Supermolecule Hemocyanin at 3.0 Å Resolution.
Gai, Zuoqi; Matsuno, Asuka; Kato, Koji; Kato, Sanae; Khan, Md Rafiqul Islam; Shimizu, Takeshi; Yoshioka, Takeya; Kato, Yuki; Kishimura, Hideki; Kanno, Gaku; Miyabe, Yoshikatsu; Terada, Tohru; Tanaka, Yoshikazu; Yao, Min
2015-12-01
Molluscan hemocyanin, a copper-containing oxygen transporter, is one of the largest known proteins. Although molluscan hemocyanins are currently applied as immunotherapeutic agents, their precise structure has not been determined because of their enormous size. Here, we have determined the first X-ray crystal structure of intact molluscan hemocyanin. The structure unveiled the architecture of the 3.8-MDa supermolecule composed of homologous functional units (FUs), wherein the dimers of FUs hierarchically associated to form the entire cylindrical decamer. Most of the specific inter-FU interactions were localized at narrow regions in the FU dimers, suggesting that rigid FU dimers formed by specific interactions assemble with flexibility. Furthermore, the roles of carbohydrates in assembly and allosteric effect, and conserved sulfur-containing residues in copper incorporation, were revealed. The precise structural information obtained in this study will accelerate our understanding of the molecular basis of hemocyanin and its future applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hou, Yong; Li, Jianwei; Li, Yi; Dong, Zhaoming; Xia, Qingyou; Yuan, Y Adam
2014-01-01
In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level. PMID:24639361
Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.
Cho, Uhn Soo; Xu, Wenqing
2007-01-04
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.
Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele
2013-01-01
Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.
Undergraduates improve upon published crystal structure in class assignment.
Horowitz, Scott; Koldewey, Philipp; Bardwell, James C
2014-01-01
Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the protein sequence. With minimal direction from the instructor on how the students should complete the assignment, the students fared remarkably well in this task, with over half the class able to reconstruct the original sequence with over 77% sequence identity, and with structures whose median ranked in the 91(st) percentile of all structures of comparable resolution in terms of structure quality. Fourteen percent of the students' structures produced Molprobity steric clash validation scores even better than that of the original structure, suggesting that multiple students achieved an improvement in the overall structure quality compared to the published structure. Students were able to delineate limiting case chemical environments, such as charged interactions or complete solvent exposure, but were less able to distinguish finer details of hydrogen bonding or hydrophobicity. Our results prompt several questions: why were students able to perform so well in their structural validation scores? How were some students able to outperform the 88% sequence identity mark that would constitute a perfect score, given the level of degenerate density or surface residues with poor density? And how can the methodology used by the best students inform the practices of professional X-ray crystallographers? Copyright © 2014 Wiley Periodicals, Inc.
{sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmening, Thomas; Eckert, Hellmut, E-mail: eckerth@uni-muenster.de; Fehse, Constanze M.
The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients andmore » the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.« less
Crystal Structure of VC0702 at 2.0 angstrom: A Conserved Hypothetical Protein from Vibrio Cholerae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; Forouhar, Farhad; Bussiere, Dirksen E.
2006-06-01
VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a putative three-gene operon containing the MbaA gene, which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0? and refined to Rwork=22.8% and Rfree=26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a=66.61 ?, b=88.118 ?, and c=118.35 ? with a homodimer in the asymmetric unit. VC0702 belongs to the Pfam DUF84 and COG1986 family of proteins. Sequence conservation within the DUF84 and COG1986 families wasmore » used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeshii, which has been identified as a novel NTPase. The NTP-binding site in Mj0226 is similarly located in comparison to the conserved patch of surface residues in VC0702. Furthermore, the NTP binds to MJ0226 in a cleft and deep cavity, features that are present in the VC0702 structure as well, suggesting that VC0702 may have a biochemical function involving NTP binding that is associated with a cellular function of regulating biofilm formation in Vibrio cholerae.« less
NASA Astrophysics Data System (ADS)
Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra
2017-12-01
Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.
Inorganic Crystal Structure Database (ICSD)
National Institute of Standards and Technology Data Gateway
SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase) The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Pu; Wang, Xiaofang; Wang, Tianshi
The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na 3V 2P 3–xB xO 12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na 3V 2P 3–xB xO 12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution of crystal and electronic structures and Na storage properties associated with various concentration of B. X-ray diffraction results indicate that the crystal structure of Na 3V 2P 3–xB xO 12 (0more » ≤ x ≤ 1/3) consisted of rhombohedral Na 3V 2(PO 4) 3 with tiny shrinkage of crystal lattice. X-ray absorption spectra and the calculated crystal structures all suggest that the detailed local structural distortion of substituted materials originates from the slight reduction of V–O distances. Na 3V 2P 3-1/6B 1/6O 12 significantly enhances the structural stability and electrochemical performance, giving remarkable enhanced capacity of 100 and 70 mAh g -1 when the C-rate increases to 5 C and 10 C. Spin-polarized density functional theory (DFT) calculation reveals that, as compared with the pristine Na 3V 2(PO 4) 3, the superior electrochemical performance of the substituted materials can be attributed to the emergence of new boundary states near the band gap, lower Na + diffusion energy barriers, and higher structure stability.« less
Almog, Orna; González, Ana; Godin, Noa; de Leeuw, Marina; Mekel, Marlene J; Klein, Daniela; Braun, Sergei; Shoham, Gil; Walter, Richard L
2009-02-01
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures. Copyright 2008 Wiley-Liss, Inc.
1992-06-25
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
NASA Technical Reports Server (NTRS)
1992-01-01
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
From molecule to solid: The prediction of organic crystal structures
NASA Astrophysics Data System (ADS)
Dzyabchenko, A. V.
2008-10-01
A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.
Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, Eddie
2003-01-01
We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
Crystals of Janus colloids at various interaction ranges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preisler, Z.; Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht; Vissers, T.
We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete withmore » the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.« less
Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.
Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G
2002-04-26
When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise
ERIC Educational Resources Information Center
Bindel, Thomas H.
2008-01-01
A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…
Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules.
Sowerby, S J; Heckl, W M; Petersen, G B
1996-11-01
Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Deepti; Rayaprol, S.; Siruguri, V.
We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himanen, J.; Goldgur, Y; Miao, H
2009-01-01
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules.more » This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions.« less
Jauch, Ralf; Ng, Calista K L; Narasimhan, Kamesh; Kolatkar, Prasanna R
2012-04-01
It has recently been proposed that the sequence preferences of DNA-binding TFs (transcription factors) can be well described by models that include the positional interdependence of the nucleotides of the target sites. Such binding models allow for multiple motifs to be invoked, such as principal and secondary motifs differing at two or more nucleotide positions. However, the structural mechanisms underlying the accommodation of such variant motifs by TFs remain elusive. In the present study we examine the crystal structure of the HMG (high-mobility group) domain of Sox4 [Sry (sex-determining region on the Y chromosome)-related HMG box 4] bound to DNA. By comparing this structure with previously solved structures of Sox17 and Sox2, we observed subtle conformational differences at the DNA-binding interface. Furthermore, using quantitative electrophoretic mobility-shift assays we validated the positional interdependence of two nucleotides and the presence of a secondary Sox motif in the affinity landscape of Sox4. These results suggest that a concerted rearrangement of two interface amino acids enables Sox4 to accommodate primary and secondary motifs. The structural adaptations lead to altered dinucleotide preferences that mutually reinforce each other. These analyses underline the complexity of the DNA recognition by TFs and provide an experimental validation for the conceptual framework of positional interdependence and secondary binding motifs.
Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals
Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...
2015-04-30
In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less
Navarro, Marcos Vicente de A. S.; Vierira, Débora F.; Nagem, Ronaldo A. P.; de Araújo, Ana Paula U.; Oliva, Maria Luiza V.; Garratt, Richard C.
2005-01-01
A Kunitz-type protease inhibitor (BbKI) found in Bauhinia bauhinioides seeds has been overexpressed in Escherichia coli and crystallized at 293 K using PEG 4000 as the precipitant. X-ray diffraction data have been collected to 1.87 Å resolution using an in-house X-ray generator. The crystals of the recombinant protein (rBbKI) belong to the orthorhombic space group P212121, with unit-cell parameters a = 46.70, b = 64.14, c = 59.24 Å. Calculation of the Matthews coefficient suggests the presence of one monomer of rBbKI in the asymmetric unit, with a corresponding solvent content of 51% (V M = 2.5 Å3 Da−1). Iodinated crystals were prepared and a derivative data set was also collected at 2.1 Å resolution. Crystals soaked for a few seconds in a cryogenic solution containing 0.5 M NaI were found to be reasonably isomorphous to the native crystals. Furthermore, the presence of iodide anions could be confirmed in the NaI-derivatized crystal. Data sets from native and derivative crystals are being evaluated for use in crystal structure determination by means of the SIRAS (single isomorphous replacement with anomalous scattering) method. PMID:16511193
Checa, Antonio G.; Cartwright, Julyan H. E.; Sánchez-Almazo, Isabel; Andrade, José P.; Ruiz-Raya, Francisco
2015-01-01
Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin–protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation. PMID:26086668
Topological edge states in ultra thin Bi(110) puckered crystal lattice
NASA Astrophysics Data System (ADS)
Wang, Baokai; Hsu, Chuanghan; Chang, Guoqing; Lin, Hsin; Bansil, Arun
We discuss the electronic structure of a 2-ML Bi(110) film with a crystal structure similar to that of black phosphorene. In the absence of Spin-Orbit coupling (SOC), the film is found to be a semimetal with two kinds of Dirac cones, which are classified by their locations in the Brillouin zone. All Dirac nodes are protected by crystal symmetry and carry non-zero winding numbers. When considering ribbons, along specific directions, projections of Dirac nodes serve as starting or ending points of edge bands depending on the sign of their carried winding number. After the inclusion of the SOC, all Dirac nodes are gapped out. Correspondingly, the edge states connecting Dirac nodes split and cross each other, and thus form a Dirac node at the boundary of the 1D Brillouin zone, which suggests that the system is a Quantum Spin Hall insulator. The nontrivial Quantum Spin Hall phase is also confirmed by counting the product of parities of the occupied bands at time-reversal invariant points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip
Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain saltmore » bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.« less
Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; ...
2015-10-27
Here, a new compound, Eu 3Ir 2In 15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μ eff) of this compound is 7.35 μ B/Eu ion with paramagnetic Curie temperature (θ p) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurementsmore » was confirmed by XANES measurements. The compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu 3Ir 2In 15 and hypothetical vacancy variant Eu 5Ir 4In 10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE 5T 4X 10 would exist with X as a group 13 elements.« less
Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B
2012-12-07
A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salvage of failed protein targets by reductive alkylation.
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
Salvage of Failed Protein Targets by Reductive Alkylation
Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej
2014-01-01
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeratunga, Saroja K.; Lovell, Scott; Yao, Huili
2010-03-16
The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with {approx}600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO{sub 4} solution (Fe soak) and in separate experiments after they had been soaked in an FeSO{sub 4} solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules,more » comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO{sub 4} solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe{sub (in)}, and external, Fe{sub (out)}, surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe{sup 2+} to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its 'gate-closed' conformation that enables coordination to a ferroxidase iron. A change to its 'gate-open', noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner.« less
Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds
Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C.; Orimo, Shin-ichi
2016-01-01
Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures. PMID:27032978
Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds.
Sato, Toyoto; Takagi, Shigeyuki; Deledda, Stefano; Hauback, Bjørn C; Orimo, Shin-ichi
2016-04-01
Crystal structure determination is essential for characterizing materials and their properties, and can be facilitated by various tools and indicators. For instance, the Goldschmidt tolerance factor (T) for perovskite compounds is acknowledged for evaluating crystal structures in terms of the ionic packing. However, its applicability is limited to perovskite compounds. Here, we report on extending the applicability of T to ionic compounds with arbitrary ionic arrangements and compositions. By focussing on the occupancy of constituent spherical ions in the crystal structure, we define the ionic filling fraction (IFF), which is obtained from the volumes of crystal structure and constituent ions. Ionic compounds, including perovskites, are arranged linearly by the IFF, providing consistent results with T. The linearity guides towards finding suitable unit cell and composition, thus tackling the main obstacle for determining new crystal structures. We demonstrate the utility of the IFF by solving the structure of three hydrides with new crystal structures.
From screen to structure with a harvestable microfluidic device.
Stojanoff, Vivian; Jakoncic, Jean; Oren, Deena A; Nagarajan, V; Poulsen, Jens-Christian Navarro; Adams-Cioaba, Melanie A; Bergfors, Terese; Sommer, Morten O A
2011-08-01
Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines.
Cheng, Yu-Chia; Lobo, Raul F; Sandler, Stanley I; Lenhoff, Abraham M
2006-05-05
The kinetics and thermodynamics of lysozyme precipitation in ammonium sulfate solutions at pH 4 and 8 and room temperature were studied. X-ray powder diffraction (XRD) was used to characterize the structure of lysozyme precipitates. It was found that, if sufficient time was allowed, microcrystals developed following an induction period after initial lysozyme precipitation, even up to ionic strengths of 8 m and at acidic pH, where lysozyme is refractory to crystallization in ammonium sulfate. The full set of precipitation and crystallization data allowed construction of a phase diagram of lysozyme, showing the ammonium sulfate dependence. It suggests that precipitation may reflect a frustrated metastable liquid-liquid phase separation, which would allow this process to be understood within the framework of the generic phase diagram for proteins. The results also demonstrate that XRD, more frequently used for characterizing inorganic and organic polycrystalline materials, is useful both in characterizing the presence of crystals in the dense phase and in verifying the crystal form of proteins.
Pressure-induced nano-crystallization of silicate garnets from glass
Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.
2016-01-01
Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Corey R.; Gebauer, Damara; Zhang, Hailong
2006-10-01
Proteolysis in situ by a protease secreted by a contaminating fungus is essential for the crystallization of yeast CPSF-100. The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3′-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion ofmore » an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted by the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.« less
Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.
He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel
2018-05-30
Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.
Organic-inorganic templates in biomineralization of shells, bone, teeth, and bacterial biofilms
NASA Astrophysics Data System (ADS)
de Stasio, Gelsomina Pupa
2005-03-01
Recent experiments with the Spectromicroscope for PHotoelectron Imaging of Nanostructure with X-rays (SPHINX)[1] on the biofilm formed by Fe-oxidizing bacteria in fresh, ground water, demonstrated that microbially extruded polysaccharide filaments provide the precipitation site for amorphous FeOOH filaments [2]. Upon aging the mineralized filaments crystallize to ferrihydrite (2-line FeOOH), with one curved pseudo-single crystal of akaganeite β-FeOOH), at the core of each filament. The crystals are only 2 nm wide and up to 10 micron long (aspect ratio 1:1000:1), and their structure and morphology is unprecedented. Furthermore, akaganeite should not form in fresh water, therefore a templation mechanism was hypothesized, and supported by SPHINX analysis of carbon XANES. The results indicate that after formation of the crystal fiber, the polysaccharide structure is also altered, and C1s spectra suggest that the COO^- group is involved in the templation mechanism. This was the first successful attempt to understand the organic-inorganic chemical interface in a biomineralized system. Many more templated biomineral systems can and will now be analyzed with this new approach. *Ultramicroscopy 99, 87-94 (2004). *Science 303, 1656-1658 (2004).
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
Structural and optical properties of WTe2 single crystals synthesized by DVT technique
NASA Astrophysics Data System (ADS)
Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.
2018-05-01
Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.
NASA Astrophysics Data System (ADS)
Bacchi, Alessia; Pelizzi, Giancarlo
1999-07-01
The antibiotic activity (via inhibition of DNA-dependent RNA polymerase, DDRP) of rifamycins has been correlated to the conformation of the ansa chain, which can be described by means of 17 torsion angles defined along the ansa backbone. It has been shown that favourable or unfavourable conformations of the ansa chain in rifamycin crystals are generally diagnostic of activity or inactivity against isolated DDRP. The principles of structure correlation suggest that the torsional variety observed in rifamycin crystals should mimic the dynamic flexibility of the ansa chain in solution. Twenty-six crystal structures of rifamycins are grouped into two classes (active and non-active). For each class the variance of the 17 ansa backbone torsion angles is analysed. Active compounds show a well-defined common pattern, while non-active molecules are more scattered, mainly due to steric constraints forcing the molecules into unfavourable conformations. The experimental distributions of torsion angles are compared to the torsional freedom of the ansa chain simulated by molecular dynamics calculations performed at different temperatures and conditions on rifamycin S and rifamycin O, which represent a typical active and a typical sterically constrained molecule, respectively. It is shown that the torsional variety found in the crystalline state samples the dynamic behaviour of the ansa chain for active compounds. The methods of circular statistics are illustrated to describe torsion angle distributions.
NASA Astrophysics Data System (ADS)
Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid
2018-01-01
Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).
NASA Astrophysics Data System (ADS)
Franklin, S.; Balasubramanian, T.; Nehru, K.; Kim, Youngmee
2009-06-01
The crystal structure of the title rac-propranolol salt, CHNO2+·NO3-, consists of two protonated propranolol residues and nitrate anions. Three virtually flat fragments, characteristics of most of the β-adrenolytics with oxy-methylene bridge are present in both the cations (A and B). The plane of the propranolol chain is twisted with respect to the plane of the aromatic ring in both the cations. Present study investigates the conformation and hydrogen bonding interactions, which play an important role in biological functions. A gauche conformation is observed for the oxo-methylene bridge of cation A, while a trans conformation prevails in cation B. These conformations are found in majority of β-blockers. Presence of twenty intermolecular hydrogen bonds mediating through the anions stabilizes the crystal packing. Vibration analysis and earlier theoretical predictions complement the structure analysed. From the UV-Vis spectral analysis for the crystal, the optical band gap is found to be Eg = 5.12 eV, where as the chloride salt has Eg = 3.81 eV. The increase in the band gap may be attributed by the increase in the number of intermolecular hydrogen bonds. Good optical transmittance in the entire visible region and the direct band gap property suggest that it is a suitable candidate for optical applications in UV region.
Structural differences between single crystal and polycrystalline UBe 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
Structural differences between single crystal and polycrystalline UBe 13
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...
2018-05-16
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser
NASA Astrophysics Data System (ADS)
Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.
2017-09-01
In this paper, accumulated crystallization of amorphous Ge2Sb2Te5 (a-GST) films induced by a multi-pulsed nanosecond (ns) excimer laser was investigated by x-ray diffraction (XRD), atomic force microscopy, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS) and a spectrophotometer. XRD analyses revealed that detectable crystallization was firstly observed in the preferred orientation (200), followed by the orientations (220) and (111) after two pulses. Optical contrast, determined by crystallinity as well as surface roughness, was found to retain a linear relation within the first three pulses. A layered growth mechanism from the top surface to the interior of a-GST films was used to explain the crystallization behavior induced by the multi-pulse ns laser. XPS analyses for bond rearrangement and electronic structure further suggested that the crystallization process was performed by generating new bonds of Ge-Te and Sb-Te after laser irradiations. This paper presents the potential of multi-level devices and tunable thermal emitters based on controllable crystallization of phase-change materials.
Connectivity of glass structure. Oxygen number
NASA Astrophysics Data System (ADS)
Medvedev, E. F.; Min'ko, N. I.
2018-03-01
With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonetti, Angelita; Marzi, Stefano; Fabbretti, Attilio
2013-06-01
The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2more » is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.« less
Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin
NASA Astrophysics Data System (ADS)
Wang, Yuan; Liang, Zuozhong
2017-12-01
Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.
Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR
Keedy, Daniel A.; van den Bedem, Henry; Sivak, David A.; Petsko, Gregory A.; Ringe, Dagmar; Wilson, Mark A.; Fraser, James S.
2014-01-01
Summary Most macromolecular X-ray structures are determined from cryocooled crystals, but it is unclear whether cryocooling distorts functionally relevant flexibility. Here we compare independently acquired pairs of high-resolution datasets of a model Michaelis complex of dihydrofolate reductase (DHFR), collected by separate groups at both room and cryogenic temperatures. These datasets allow us to isolate the differences between experimental procedures and between temperatures. Our analyses of multiconformer models and time-averaged ensembles suggest that cryocooling suppresses and otherwise modifies sidechain and mainchain conformational heterogeneity, quenching dynamic contact networks. Despite some idiosyncratic differences, most changes from room temperature to cryogenic temperature are conserved, and likely reflect temperature-dependent solvent remodeling. Both cryogenic datasets point to additional conformations not evident in the corresponding room-temperature datasets, suggesting that cryocooling does not merely trap pre-existing conformational heterogeneity. Our results demonstrate that crystal cryocooling consistently distorts the energy landscape of DHFR, a paragon for understanding functional protein dynamics. PMID:24882744
TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL
Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.
2009-01-01
Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943
Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd
2017-09-25
Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
NASA Astrophysics Data System (ADS)
Garcia, Humberto C.; Cunha, Ronaldo T.; Diniz, Renata; de Oliveira, Luiz Fernando C.
2012-02-01
In this study, the synthesis, spectroscopic properties (infrared and Raman) and crystal structures of two new compounds co-crystal and crystal named HASbpa (1) and [Co(bpa)(H2O)4]AS2ṡ4H2O (2) have been reported, where bpa is trans-1,2-bis(4-pyridyl)ethane, HAS is 4-aminosalicylic acid and AS- is aminosalicylate anion. The crystalline arrangement of the compound 1 exhibits a triclinic system with space group P1¯. The formation of a structure known as co-crystal, composed by building blocks in their neutral form; being the first work of this type involving the HAS and nitrogen ligand as bpa. For compound 2, a monoclinic system was observed with P21/c space group. The crystalline arrangement of the structure consisted of a covalent one-dimensional cationic [Co(bpa)(H2O)4]2+ chain, which interacts by hydrogen bonding, π-stacking and electrostatic interactions with aminosalicylate anions and water molecules that were trapped in the crystal. These interactions form supramolecular cavities denominated as pseudo honeycombs. For compound 1, the infrared spectrum revealed the presence of bands at 1643 and 1601 cm-1 assigned to the stretching mode of CO [ν(CO)] and CC/CN groups [ν(CC/CN)]. For the Raman spectrum, these same modes appear around 1644 and 1602 cm-1 related to HAS and bpa blocks, respectively. For compound 2, the largest displacement of the bands compared to free ligand suggested the formation of covalent bonds between bpa ligand and metallic site and loss of the proton in HAS molecule. In the infrared spectrum we can observe the presence of bands around 1635 and 1618 cm-1 attributed to the stretching ν(COO-) and ν(CC/CN), for the Raman spectrum these same modes appear around 1631 and 1619 cm-1 related to AS- and bpa ligand respectively.
In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?
Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G
2014-07-17
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Iuzzolino, Luca; Reilly, Anthony M; McCabe, Patrick; Price, Sarah L
2017-10-10
Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.
NASA Astrophysics Data System (ADS)
Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.
2017-09-01
The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.
Saminadin, P; Dautant, A; Mondon, M; Langlois D'estaintot, B; Courseille, C; Précigoux, G
2000-01-01
Doxorubicin is among the most widely used anthracycline in cancer chemotherapy. In an attempt to avoid the cardiotoxicity and drug resistance of doxorubicin therapy, several analogues were synthesized. The cyanomorpholinyl derivative is the most cytotoxic. They differ greatly from their parent compound in their biological and pharmacological properties, inducing cross-links in drug DNA complexes. The present study concerns N-cyanomethyl-N-(2-methoxyethyl)-daunomycin (CMDa), a synthetic analogue of cyanomorpholino-daunomycin. Compared to doxorubicin, CMDa displays a cytotoxic activity on L1210 leukemia cells at higher concentration but is effective on doxorubicin resistant cells. The results of fluorescence quenching experiments as well as the melting temperature (DeltaTm = 7.5 degrees C) studies are consistent with a drug molecule which intercalates between the DNA base pairs and stabilizes the DNA double helix. The crystal structure of CMDa complexed to the hexanucleotide d(CGATCG) has been determined at 1.5 A resolution. The complex crystallizes in the space group P41212 and is similar to other anthracycline-hexanucleotide complexes. In the crystal state, the observed densities indicate the formation of N-hydroxymethyl-N-(2-methoxyethyl)-daunomycin (HMDa) with the release of the cyano moiety without DNA alkylation. The formation of this degradation compound is discussed in relation with other drug modifications when binding to DNA. Comparison with two other drug-DNA crystal structures suggests a correlation between a slight change in DNA conformation and the nature of the amino sugar substituents at the N3' position located in the minor groove.
NASA Technical Reports Server (NTRS)
Egli, M.; Usman, N.; Rich, A.
1993-01-01
We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.
Subbarao, Udumula; Peter, Sebastian C
2012-06-04
High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.
Peptide crystal simulations reveal hidden dynamics
Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.
2013-01-01
Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449
Two distinct crystallization processes in supercooled liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tane, Masakazu, E-mail: mtane@sanken.osaka-u.ac.jp; Kimizuka, Hajime; Ichitsubo, Tetsu
2016-05-21
Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al{sub 2}O{sub 3} model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al{sub 2}O{sub 3} exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquidmore » does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.« less
Krishnaswamy, Shobhana; Shashidhar, Mysore S
2018-04-06
Intermolecular acyl transfer reactivity in several molecular crystals was studied, and the outcome of the reactivity was analyzed in the light of structural information obtained from the crystals of the reactants. Minor changes in the molecular structure resulted in significant variations in the noncovalent interactions and packing of molecules in the crystal lattice, which drastically affected the facility of the intermolecular acyl transfer reactivity in these crystals. Analysis of the reactivity vs crystal structure data revealed dependence of the reactivity on electrophile···nucleophile interactions and C-H···π interactions between the reacting molecules. The presence of these noncovalent interactions augmented the acyl transfer reactivity, while their absence hindered the reactivity of the molecules in the crystal. The validity of these correlations allows the prediction of intermolecular acyl transfer reactivity in crystals and co-crystals of unknown reactivity. This crystal structure-reactivity correlation parallels the molecular structure-reactivity correlation in solution-state reactions, widely accepted as organic functional group transformations, and sets the stage for the development of a similar approach for reactions in the solid state.
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.
Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J
2012-01-24
X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.
Structure and transport in organic semiconductor thin films
NASA Astrophysics Data System (ADS)
Vos, Sandra Elizabeth Fritz
Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.
Atahan-Evrenk, Sule; Aspuru-Guzik, Alán
2014-01-01
The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel,C.; Gebauer, D.; Zhang, H.
2006-01-01
The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted bymore » the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.« less
Segregation Phenomena on the Crystal Surface of Chemical Compounds
NASA Astrophysics Data System (ADS)
Tomashpol'skii, Yu. Ya.
2018-06-01
The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.
Segregation of liquid crystal mixtures in topological defects
Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...
2017-04-28
The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less
Abiotic ligation of DNA oligomers templated by their liquid crystal ordering
NASA Astrophysics Data System (ADS)
Fraccia, Tommaso P.; Smith, Gregory P.; Zanchetta, Giuliano; Paraboschi, Elvezia; Yi, Yougwooo; Walba, David M.; Dieci, Giorgio; Clark, Noel A.; Bellini, Tommaso
2015-03-01
It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.
Effects of Purification on the Crystallization of Lysozyme
NASA Technical Reports Server (NTRS)
Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.
1996-01-01
We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna
2017-10-01
A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.
Nanocrystallography measurements of early stage synthetic malaria pigment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilanian, Ruben A.; Streltsov, Victor; Coughlan, Hannah D.
The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data.more » If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.« less
NASA Astrophysics Data System (ADS)
Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret
2010-10-01
We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.
Simulation studies for surfaces and materials strength
NASA Technical Reports Server (NTRS)
Halicioglu, T.
1985-01-01
From intermolecular force studies, it is now known that the overall non-additive contribution to the lattice enegy is positive so that analysis based on only pairwise additivity suggests a shallower intermolecular potential than the true value. Two body contributions alone are also known to be categorically unable to even qualitatively describe some configurations of molecular clusters in the gas phase or the general relaxation and reconstruction of fcc crystal surfaces. In addition, the many-body contribution was shown to play a key role in the stability of certain crystal structures. In these recent analyses, a relatively simple potential energy function (PEF), comprising only a two-body Mie-type potential plus a three-body Axilrod-Teller-type potential, was found to be extremely effective. This same parametric PEF is applied to describe the bulk stability and surface energy for the diamond cubic structure. To test the stability condition, the FCC, BCC, diamond cubic, graphite and beta-tin structures were considered.