Sample records for crystalline phase composition

  1. Thermoset molecular composites

    DOEpatents

    Benicewicz, Brian C.; Douglas, Elliot P.; Hjelm, Jr., Rex P.

    1996-01-01

    A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.

  2. Formation of crystalline phase in the glass matrix of Zr-Co-Al glass-matrix composites and its effect on their mechanical properties

    NASA Astrophysics Data System (ADS)

    Kim, Woo Chul; Kim, Kang Chul; Na, Min Young; Jeong, Seok Hoan; Kim, Won Tae; Kim, Do Hyang

    2017-11-01

    The microstructural evolution and mechanical properties of Zr-Co-Al alloys, with compositions of (Zr50Co50)x (Zr56Co26Al18)1-x (x = 1/6, 2/6, 3/6, 4/6, 5/6, 1) and Zr54Co35Al11, (referred to as Z1, Z2, Z3, Z4, Z5, Z6, and Z4.5), were investigated. Alloys Z1-Z3 consisted of crystalline phases, while alloys Z4 and Z4.5 consisted of crystalline phase particles ( 3 vol% and 35 vol%, respectively) embedded within the glassy matrix. Alloys Z5 and Z6 consisted of a monolithic glass phase. The crystalline phase of alloys Z1-Z4.5 consisted of primary B2-ZrCo dendrite and an interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase. The B2-ZrCo dendritic phase exhibited a high work-hardening rate, which originated from the deformation-induced B2-to-B33 martensitic transformation. However, when the brittle interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase fraction increased, the work-hardening rate significantly decreased. The ductility of the glass-matrix composites was significantly impaired by the presence of the interdendritic eutectic phase in the crystalline phase. The results indicate that the design of the crystalline particle microstructure is important with regard to enhancing the plasticity of glass-matrix composites.

  3. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    NASA Technical Reports Server (NTRS)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  4. Crystal phase identification

    DOEpatents

    Michael, Joseph R.; Goehner, Raymond P.; Schlienger, Max E.

    2001-01-01

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  5. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  6. Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.

    PubMed

    Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris

    2017-07-10

    A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.

  7. Preparation and crystalline studies of PVDF hybrid composites

    NASA Astrophysics Data System (ADS)

    Chethan P., B.; Renukappa, N. M.; Sanjeev, Ganesh

    2018-04-01

    The conducting polymer composites have become increasingly important for electrical and electronic applications due to their flexibility, easy of processing, high strength and low cost. A flexible conducting polymer hybrid composite was prepared by melt mixing of nickel coated multi-walled carbon nanotubes (Ni-MWNT) and graphitized carbon nanofibres (GCNF) in Polyvinylidene fluoride (PVDF) matrix. The crystalline structures of the nano composites were studied by X-ray diffraction (XRD) method and showed characteristic peaks at 17.7°, 18.5°, 20° and 26.7° of 2θ. The β phase crystalline nature of the composite films, degree of crystallinity, melting temperature and crystallization behavior of the hybrid composites were studied using appropriate characterization techniques. The filler in the insulating polymer matrix plays crucial role to improve the crystallinity of the composites.

  8. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  9. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  10. Insights from the Lattice-Strain Evolution on Deformation Mechanisms in Metallic-Glass-Matrix Composites

    DOE PAGES

    Jia, Haoling; Zheng, Lili; Li, Weidong; ...

    2015-02-18

    In this paper, in situ high-energy synchrotron X-ray diffraction experiments and micromechanics-based finite element simulations have been conducted to examine the lattice-strain evolution in metallic-glass-matrix composites (MGMCs) with dendritic crystalline phases dispersed in the metallic-glass matrix. Significant plastic deformation can be observed prior to failure from the macroscopic stress–strain curves in these MGMCs. The entire lattice-strain evolution curves can be divided into elastic–elastic (denoting deformation behavior of matrix and inclusion, respectively), elastic–plastic, and plastic–plastic stages. Characteristics of these three stages are governed by the constitutive laws of the two phases (modeled by free-volume theory and crystal plasticity) and geometric informationmore » (crystalline phase morphology and distribution). The load-partitioning mechanisms have been revealed among various crystalline orientations and between the two phases, as determined by slip strain fields in crystalline phase and by strain localizations in matrix. Finally, implications on ductility enhancement of MGMCs are also discussed.« less

  11. Alloy and method of producing the same

    DOEpatents

    Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo

    2005-07-19

    In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented withinmore » flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.« less

  13. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    NASA Astrophysics Data System (ADS)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  14. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing

    DOE PAGES

    Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...

    2017-06-12

    The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less

  15. Viscoelastic damping in crystalline composites and alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel

    We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.

  16. Method for preparing polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  17. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  18. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    NASA Astrophysics Data System (ADS)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  19. Method for making an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  20. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  1. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng

    2018-06-01

    To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.

  3. Analytical Study on the Saturated Polarization Under Electric Field and Phase Equilibrium of Three-Phase Polycrystalline Ferroelectrics by Using the Generalized Inverse-Pole-Figure Model

    NASA Astrophysics Data System (ADS)

    Ju, Kyong-Sik; Ryo, Hyok-Su; Pak, Sung-Nam; Pak, Chang-Su; Ri, Sung-Guk; Ri, Dok-Hwan

    2018-07-01

    By using the generalized inverse-pole-figure model, the numbers of crystalline particles involved in different domain-switching near the triple tetragonal-rhombohedral-orthorhombic (T-R-O) points of three-phase polycrystalline ferroelectrics have been analytically calculated and domain-switching which can bring out phase transformations has been considered. Through polarization by an electric field, different numbers of crystalline particles can be involved in different phase transformations. According to the phase equilibrium conditions, the phase equilibrium compositions of the three phases coexisting near the T-R-O triple point have been evaluated from the results of the numbers of crystalline particles involved in different phase transformations.

  4. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  5. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  6. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzanti,G.; Guthrie, S.; Marangoni, A.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process.more » As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.« less

  7. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing

    PubMed Central

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-01-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μm to 5 μm) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites. PMID:27877687

  8. Controlling the length scale and distribution of the ductile phase in metallic glass composites through friction stir processing.

    PubMed

    Arora, Harpreet Singh; Mridha, Sanghita; Grewal, Harpreet Singh; Singh, Harpreet; Hofmann, Douglas C; Mukherjee, Sundeep

    2014-06-01

    We demonstrate the refinement and uniform distribution of the crystalline dendritic phase by friction stir processing (FSP) of titanium based in situ ductile-phase reinforced metallic glass composite. The average size of the dendrites was reduced by almost a factor of five (from 24 μ m to 5 μ m) for the highest tool rotational speed of 900 rpm. The large inter-connected dendrites become more fragmented with increased circularity after processing. The changes in thermal characteristics were measured by differential scanning calorimetry. The reduction in crystallization enthalpy after processing suggests partial devitrification due to the high strain plastic deformation. FSP resulted in increased hardness and modulus for both the amorphous matrix and the crystalline phase. This is explained by interaction of shear bands in amorphous matrix with the strain-hardened dendritic phase. Our approach offers a new strategy for microstructural design in metallic glass composites.

  9. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  10. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties

    PubMed Central

    Ban, Jianfeng; Zhu, Linjiang; Chen, Shaojun; Wang, Yiping

    2016-01-01

    To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. PMID:28773914

  11. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  12. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  13. Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

  14. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  15. Processing and characterization of Zr-based metallic glass by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Bae, Heehun

    Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.

  16. Update on the Chemical Composition Of Crystalline, Smectite, and Amorphous Components for Rocknest Soil and John Klein and Cumberland Mudstone Drill Fines at Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.; hide

    2015-01-01

    We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.

  17. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  18. Stimulation of processes of self-propagating high temperature synthesis in system Ti + Al at low temperatures by influence of γ-quanta

    NASA Astrophysics Data System (ADS)

    Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.

    2018-03-01

    In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.

  19. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  20. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  1. Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production

    DOEpatents

    McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.

    2003-10-28

    A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.

  2. Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.

    PubMed

    Parker, Alison; Marszewski, Michal; Jaroniec, Mietek

    2013-03-01

    Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.

  3. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.

  4. Liquid Crystalline Systems Based on Glyceryl Monooleate and Penetration Enhancers for Skin Delivery of Celecoxib: Characterization, In Vitro Drug Release, and In Vivo Studies.

    PubMed

    Dante, Mariane de Cássia Lima; Borgheti-Cardoso, Livia Neves; Fantini, Marcia Carvalho de Abreu; Praça, Fabíola Silva Garcia; Medina, Wanessa Silva Garcia; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2018-03-01

    Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial investigations, and perhaps more similar to poorly crystalline phases identified on Mars.

  6. The thermodynamic scale of inorganic crystalline metastability

    PubMed Central

    Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand

    2016-01-01

    The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514

  7. Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.

    2013-09-01

    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.

  8. Sintering and crystallization behavior of CaMgSi{sub 2}O{sub 6}-NaFeSi{sub 2}O{sub 6} based glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; Kansal, Ishu; Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia, 41100 Modena

    2009-11-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi{sub 2}O{sub 6}-10 mol % NaFeSi{sub 2}O{sub 6}. The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950more » deg. C in both air and N{sub 2} atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.« less

  9. A method for the quantitative determination of crystalline phases by X-ray

    NASA Technical Reports Server (NTRS)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  10. Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark

    2017-12-01

    In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.

  11. Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites

    PubMed Central

    Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.

    2016-01-01

    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315

  12. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  13. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.

    2016-01-01

    We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.

  15. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  16. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2014-07-08

    Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  17. Chemical and physical controls on the transformation of amorphous calcium carbonate into crystalline CaCO3 polymorphs

    NASA Astrophysics Data System (ADS)

    Blue, C. R.; Giuffre, A.; Mergelsberg, S.; Han, N.; De Yoreo, J. J.; Dove, P. M.

    2017-01-01

    Calcite and other crystalline polymorphs of CaCO3 can form by pathways involving amorphous calcium carbonate (ACC). Apparent inconsistencies in the literature indicate the relationships between ACC composition, local conditions, and the subsequent crystalline polymorphs are not yet established. This experimental study quantifies the control of solution composition on the transformation of ACC into crystalline polymorphs in the presence of magnesium. Using a mixed flow reactor to control solution chemistry, ACC was synthesized with variable Mg contents by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within the output suspension under stirred or quiescent conditions while characterizing the evolving solutions and solids. As the ACC transforms into a crystalline phase, the solutions record a polymorph-specific evolution of pH and Mg/Ca. The data provide a quantitative framework for predicting the initial polymorph that forms from ACC based upon the solution aMg2+/aCa2+ and aCO32-/aCa2+ and stirring versus quiescent conditions. This model reconciles discrepancies among previous studies that report on the nature of the polymorphs produced from ACC and supports the previous claim that monohydrocalcite may be an important, but overlooked, transient phase on the way to forming some aragonite and calcite deposits. By this construct, organic additives and extreme pH are not required to tune the composition and nature of the polymorph that forms. Our measurements show that the Mg content of ACC is recorded in the resulting calcite with a ≈1:1 dependence. By correlating composition of these calcite products with the Mgtot/Catot of the initial solutions, we find a ≈3:1 dependence that is approximately linear and general to whether calcite is formed via an ACC pathway or by the classical step-propagation process. Comparisons to calcite grown in synthetic seawater show a ≈1:1 dependence. The relationships suggest that the local Mg2+/Ca2+ at the time of precipitation determines the calcite composition, independent of whether growth occurs via an amorphous intermediate or classical pathway for a range of supersaturations and pH conditions. The findings reiterate the need to revisit the traditional picture of chemical and physical controls on CaCO3 polymorph selection. Mineralization by pathways involving ACC can lead to the formation of crystalline phases whose polymorphs and compositions are out of equilibrium with local growth media. As such, classical thermodynamic equilibria may not provide a reliable predictor of observed compositions.

  18. Component effects on crystallization of RE-containing aluminoborosilicate glass

    NASA Astrophysics Data System (ADS)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.

    2016-09-01

    Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce3BSi2O10), mullite (Al10Si2O19), and corundum (Al2O3). Cerianite (CeO2) was a common minor crystalline phase and Nd-silicate (Nd2Si2O7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO2 and B2O3 fractions increased and strongly increased with increasing fractions of RE oxides; Al2O3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Al-containing crystals.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.

    Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce 3BSi 2O 10), mullite (Al 10Si 2O 19), and corundum (Al 2O 3). Cerianite (CeOmore » 2) was a common minor crystalline phase and Nd-silicate (Nd 2Si 2O 7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO 2 and B 2O 3 fractions increased and strongly increased with increasing fractions of RE oxides; Al 2O 3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Alcontaining crystals.« less

  20. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    DOE PAGES

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; ...

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu 51Zr 14(β), CuZr(B 2), CuZr 2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition andmore » temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.« less

  1. Lateral organization of mixed, two-phosphatidylcholine liposomes as investigated by GPS, the slope of Laurdan generalized polarization spectra.

    PubMed

    Vallejo, Alba A; Velázquez, Jesús B; Fernández, Marta S

    2007-10-01

    The effect of the excitation or emission wavelengths on Laurdan generalized polarization (GP) can be evaluated by GPS, a quantitative, simplified determination of the GP spectrum slope, the thermotropic dependence of which allows the assessment of phospholipid lamellar membrane phase, as shown in a recent publication of our laboratory [J.B. Velázquez, M.S. Fernández, Arch. Biochem. Biophys. 455 (2006) 163-174]. In the present work, we applied Laurdan GPS to phase transition studies of mixed, two-phosphatidylcholine liposomes prepared from variable proportions of dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC, respectively). We have found that the GPS function reports a clear limit between the gel/liquid-crystalline phase coexistence region and the liquid-crystalline state, not only at a certain temperature T(c) for liposomes of constant composition submitted to temperature scans, but also at a defined mole fraction X(c), for two-component liposomes of variable composition at constant temperature. The T(c) or the X(c) values obtained from GPS vs. temperature or GPS vs. composition plots, respectively, allow the construction of a partial phase diagram for the DMPC-DPPC mixtures, showing the boundary between the two-phase coexisting region and the liquid-crystalline state. Likewise, at the onset of the transition region, i.e., the two-phase coexisting region as detected by GPS, it is possible to determine, although with less precision, a temperature T(o) or a mole fraction X(o) defining a boundary located below but near the limit between the gel and ripple phase, reported in the literature. These GPS results are consistent with the proposal by several authors that a fraction of L(alpha) phospholipids coexists with gel phospholipids in the rippled phase.

  2. Site specific mineral composition and microstructure of human supra-gingival dental calculus.

    PubMed

    Hayashizaki, Junko; Ban, Seiji; Nakagaki, Haruo; Okumura, Akihiko; Yoshii, Saori; Robinson, Colin

    2008-02-01

    Dental calculus has been implicated in the aetiology of several periodontal conditions. Its prevention and removal are therefore desirable clinical goals. While it is known that calculus is very variable in chemical composition, crystallinity and crystallite size little is known about site specific variability within a dentition and between individuals. With this in mind, a study was undertaken to investigate the comparative site specific nature and composition of human dental supra-gingival dental calculus obtained from 66 male patients visiting for their dental check-up using fluorescent X-ray spectroscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. The supra-gingival dental calculus formed on the lingual surfaces of lower anterior teeth and the buccal surfaces of upper molar teeth were classified into four types based on calcium phosphate phases present. There was significant difference in composition of the crystal phase types between lower and upper teeth (p<0.01). There was no significant difference in crystal size between dental calculus on anterior or molar teeth of all samples. The degree of crystallinity of dental calculus formed on the upper molar teeth was higher than that formed on the lower anterior teeth (p<0.01). The CO(3)(2-) contents in dental calculus formed on the lower anterior teeth were higher than on upper molar teeth (p<0.05) which might explain the difference in crystallinity. Magnesium and Si contents and Ca:P ratio on the other hand showed no significant difference between lower and upper teeth. It was concluded that the crystal phases, crystallinity and CO(3)(2-) contents of human dental supra-gingival dental calculus is related to its location in the mouth.

  3. Sialon ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, Michael H.; Park, Blair H.

    1994-01-01

    A method of fabricating a SiAlON ceramic body includes: a) combining quantities of Si.sub.3 N.sub.4, Al.sub.2 O.sub.3 and CeO.sub.2 to produce a mixture; b) forming the mixture into a desired body shape; c) heating the body to a densification temperature of from about 1550.degree. C. to about 1850.degree. C.; c) maintaining the body at the densification temperature for a period of time effective to densify the body; d) cooling the densified body to a devitrification temperature of from about 1200.degree. C. to about 1400.degree. C.; and e) maintaining the densified body at the devitrification temperature for a period of time effective to produce a .beta.'-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the .beta.'-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: a) an amorphous phase; and b) a crystalline phase, the crystalline phase comprising .beta.'-SiAlON having lattice substituted elemental or compound form Ce.

  4. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  5. [Revisiting the chemical diversity in prostatic calculi: a SEM and FT-IR investigation].

    PubMed

    Dessombz, A; Méria, P; Bazin, D; Foy, E; Rouzière, S; Weil, R; Daudon, M

    2011-12-01

    Revisiting the chemical diversity of the crystalline phases of prostatic calculi by means of SEM and FT-IR analysis. A set of 32 prostatic calculi has been studied by FT-IR and SEM. FT-IR analysis has determined the chemical composition of each prostatic calculus and the SEM observation has described the morphology of the calculi surfaces and layers. Infrared analysis revealed that 90.7% of the stones were mainly composed of calcium phosphates. However, several mineral phases previously not reported in prostatic calculi were observed, as brushite or octocalcium phosphate pentahydrate. Prostatic calculi exhibited a diversity of crystalline composition and morphology. As previously reported for urinary calculi, relationships between composition and morphology of prostatic stones and étiopathogenic conditions could be of interest in clinical practice. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Liu, Longfei; Yang, Jun

    2017-12-01

    Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.

  7. Glass transition and composite formation in InF{sub 3}-containing oxyfluoroniobate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, N. N.; Ignatieva, L. N.; Marchenko, Yu. V.

    2016-05-18

    The glasses in the system MnNbOF{sub 5}-BaF{sub 2}-InF{sub 3} have been firstly synthesized and studied. The thermal parameters of these glasses are analyzed. It was stated that glass of the composition 40MnNbOF{sub 5}-40BaF{sub 2}-20InF{sub 3} is the most thermal stable in the system under study. By X-ray analysis the compositions of the crystalline phases obtained at the glass thermal treatment were determined: the main phases are Ba{sub 3}In{sub 2}F{sub 12} and BaNbOF{sub 5}. By Raman and IR spectra analysis it was stated that the networks of glasses in the system are built by the structural type of the glasses inmore » NbO{sub 2}F-BaF{sub 2} system: (NbO{sub n}F{sub m}) polyhedra joined oxygen bridges. Indium trifluoride forms InF{sub 6} polyhedra, which are embeded between oxyfluoroniobate ions, forming a common networks or forms its own layers from InF{sub 6} polyhedra. IR-spectroscopy method showed that at devitrification of the sample 30MnNbOF{sub 5}-50BaF{sub 2}-20InF{sub 3} the band position and shape change in going from glass state to crystalline. The bands in the range 900–700 cm{sup −1} shift into the low-frequency range and transformed into narrow peaks characteristic for the crystalline state. It was determined that for this sample the IR-spectroscopy method fixes the presence of the crystalline phases at 340°C without time of exposure, despite the fact that X-ray analysis shows an amorphous state for this sample at the same temperature. It was suggested, that controlling the composition and conditions of annealing of the glasses it can be obtain the transparent glass-ceramics of definite composition.« less

  8. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  9. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  10. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  11. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  12. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  13. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.

    PubMed

    Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R

    2009-07-01

    A novel bioactive porous apatite-wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite-wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young's modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite-wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties.

  14. Hf--Co--B alloys as permanent magnet materials

    DOEpatents

    McGuire, Michael Alan; Rios, Orlando; Ghimire, Nirmal Jeevi

    2017-01-24

    An alloy composition is composed essentially of Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0

  15. Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection

    NASA Technical Reports Server (NTRS)

    Raina, K. K.; Narayanan, S.; Pandey, R. K.

    1992-01-01

    Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19O(x) and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the LPE experiments. The temperature regime of 850 to 830 C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100 percent reflectivity in infrared regions at liquid nitrogen temperature.

  16. Laboratory Investigation of the Growth and Crystal Structure of Nitric Acid Hydrates by Transmission Electron Microscopy (TEM)

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    A great deal of recent laboratory work has focussed on the characterization of the nitric acid hydrates, thought to be present in type I Polar Stratospheric Clouds (PSCs). Phase relationships and vapor pressure measurements (1-3) and infrared characterizations (4-5) have been made. However, the observed properties of crystalline solids (composition, melting point, vapor pressure, surface reactivity, thermodynamic stability, extent of solid solution with other components, etc.) are controlled by their crystal structure. The only means of unequivocal structural identification for crystalline solids is diffraction (using electrons, X-rays, neutrons, etc.). Other observed properties of crystalline solids, such as their infrared spectra, their vapor pressure as a function of temperature, etc. yield only indirect information about what phases are present, their relative proportions, or whether they are crystalline or amorphous.

  17. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    PubMed

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of zircon-based tricolor pigments on the color, microstructure, flexural strength and translucency of a novel dental lithium disilicate glass-ceramic.

    PubMed

    Yuan, Kun; Wang, Fu; Gao, Jing; Sun, Xiang; Deng, Zai-Xi; Wang, Hui; Jin, Lei; Chen, Ji-Hua

    2014-01-01

    The purpose of this study was to investigate the effect of zircon-based tricolor pigments (praseodymium zircon yellow, ferrum zircon red, and vanadium zircon blue) on the color, thermal property, crystalline phase composition, microstructure, flexural strength, and translucency of a novel dental lithium disilicate glass-ceramic. The pigments were added to the glass frit, milled, pressed, and sintered. Ninety monochrome samples were prepared and the colors were analyzed. The effect of the pigments on thermal property, crystalline phase composition, and microstructure were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM), respectively. Addition of the pigments resulted in the acquisition of subtractive primary colors as well as tooth-like colors, and did not demonstrate significant effects on the thermal property, crystalline phase composition, microstructure, and flexural strength of the experimental glass-ceramic. Although significant differences (p < 0.01) were observed between the translucencies of the uncolored and 1.0 wt % zircon-based pigment colored ceramics, the translucencies of the latter were sufficient to fabricate dental restorations. These results indicate that the zircon-based tricolor pigments can be used with dental lithium disilicate glass-ceramic to produce abundant and predictable tooth-like colors without significant adverse effects, if mixed in the right proportions. Copyright © 2013 Wiley Periodicals, Inc.

  19. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    PubMed

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Control of composition and crystallinity in hydroxyapatite films deposited by electron cyclotron resonance plasma sputtering

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei; Ueno, Yuko

    2014-01-01

    Hydroxyapatite (HAp) films were deposited by electron cyclotron resonance plasma sputtering under a simultaneous flow of H2O vapor gas. Crystallization during sputter-deposition at elevated temperatures and solid-phase crystallization of amorphous films were compared in terms of film properties. When HAp films were deposited with Ar sputtering gas at temperatures above 460 °C, CaO byproducts precipitated with HAp crystallites. Using Xe instead of Ar resolved the compositional problem, yielding a single HAp phase. Preferentially c-axis-oriented HAp films were obtained at substrate temperatures between 460 and 500 °C and H2O pressures higher than 1×10-2 Pa. The absorption signal of the asymmetric stretching mode of the PO43- unit (ν3) in the Fourier-transform infrared absorption (FT-IR) spectra was the narrowest for films as-crystallized during deposition with Xe, but widest for solid-phase crystallized films. While the symmetric stretching mode of PO43- (ν1) is theoretically IR-inactive, this signal emerged in the FT-IR spectra of solid-phase crystallized films, but was absent for as-crystallized films, indicating superior crystallinity for the latter. The Raman scattering signal corresponding to ν1 PO43- sensitively reflected this crystallinity. The surface hardness of as-crystallized films evaluated by a pencil hardness test was higher than that of solid-phase crystallized films.

  1. X-ray diffraction analysis of hydroxyapatite-coated in different plasma gas atmosphere on Ti and Ti-6Al-4V

    PubMed Central

    Kotian, Ravindra; Rao, P. Prasad; Madhyastha, Prashanthi

    2017-01-01

    Objective: The aim is to study the effect of plasma working gas on composition, crystallinity, and microstructure of hydroxyapatite (HA) coated on Ti and Ti-6Al-4V metal substrates. Materials and Methods: Ti and Ti-6Al-4V metal substrates were coated with HA by plasma spray using four plasma gas atmospheres of argon, argon/hydrogen, nitrogen, and nitrogen/hydrogen. The degree of crystallinity, the phases present, and microstructure of HA coating were characterized using X-ray diffraction and scanning electron microscopy. Results: Variation in crystallinity and the microstructure of HA coating on plasma gas atmosphere was observed. Micro-cracks due to thermal stresses and shift in the 2θ angle of HA compared to feedstock was seen. Conclusion: Plasma gas atmosphere has a significant influence on composition, crystallinity, and micro-cracks of HA-coated dental implants. PMID:29279668

  2. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    PubMed

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute in a low molecular weight amorphous matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The influence of voxel size on atom probe tomography data.

    PubMed

    Torres, K L; Daniil, M; Willard, M A; Thompson, G B

    2011-05-01

    A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Vermeulen, Paul. A.; Momand, Jamo; Kooi, Bart J.

    2014-07-01

    The reversible amorphous-crystalline phase change in a chalcogenide material, specifically the Se1-xTex alloy, has been investigated for the first time using ultrafast differential scanning calorimetry. Heating rates and cooling rates up to 5000 K/s were used. Repeated reversible amorphous-crystalline phase switching was achieved by consecutively melting, melt-quenching, and recrystallizing upon heating. Using a well-conditioned method, the composition of a single sample was allowed to shift slowly from 15 at. %Te to 60 at. %Te, eliminating sample-to-sample variability from the measurements. Using Energy Dispersive X-ray Spectroscopy composition analysis, the onset of melting for different Te-concentrations was confirmed to coincide with the literature solidus line, validating the use of the onset of melting Tm as a composition indicator. The glass transition Tg and crystallization temperature Tc could be determined accurately, allowing the construction of extended phase diagrams. It was found that Tm and Tg increase (but Tg/Tm decrease slightly) with increasing Te-concentration. Contrarily, the Tc decreases substantially, indicating that the amorphous phase becomes progressively unfavorable. This coincides well with the observation that the critical quench rate to prevent crystallization increases about three orders of magnitude with increasing Te concentration. Due to the employment of a large range of heating rates, non-Arrhenius behavior was detected, indicating that the undercooled liquid SeTe is a fragile liquid. The activation energy of crystallization was found to increase 0.5-0.6 eV when the Te concentration increases from 15 to 30 at. % Te, but it ceases to increase when approaching 50 at. % Te.

  5. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  6. Czochralski growth of LaPd2Al2 single crystals

    NASA Astrophysics Data System (ADS)

    Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.

    2017-10-01

    The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.

  7. Chemical resistance and cleanability of glazed surfaces

    NASA Astrophysics Data System (ADS)

    Hupa, Leena; Bergman, Roger; Fröberg, Linda; Vane-Tempest, Stina; Hupa, Mikko; Kronberg, Thomas; Pesonen-Leinonen, Eija; Sjöberg, Anna-Maija

    2005-06-01

    Adhesion of soil on glazed surfaces and their cleanability depends on chemical composition, phase composition, and roughness of the surface. The surface can be glossy consisting mainly of a smooth glassy phase. A matt and rough surface consists of a glassy phase and one or more crystalline phases. The origin and composition of the crystalline phases affect the chemical resistance and the cleanability of the surface. Fifteen experimental glossy and matt glazes were soaked in a slightly alkaline cleaning agent solution. The surfaces were spin-coated with sebum, i.e. a soil component typical for sanitary facilities. After wiping out the soil film in a controlled manner, the surface conditions and the soil left were evaluated with colour measurements, SEM/EDXA and COM. The results show that wollastonite-type crystals in the glaze surfaces were attacked in aqueous solutions containing typical cleaning agents. This corrosion led to significant decrease in the cleanability of the surface. The other crystal types observed, i.e. diopside and quartz crystals were not corroded, and the cleanability of glazes containing only these crystals was not changed in the cleaning agent exposures. Also the glassy phase was found to be attacked in some formulations leading to a somewhat decreased cleanability. The repeated soiling and cleaning procedures indicated that soil is accumulated on rough surfaces and surfaces which were clearly corroded by the cleaning agent.

  8. Interplay Between Thin Film Ferroelectric Composition, Microstructure and Microwave Phase Shifter Performance

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Frederick W.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Miranda, Felix A.

    2003-01-01

    One of the keys to successfully incorporating ferroelectric films into Ku-band (12 to 18 GHz) phase shifters is to establish the composition, microstructure, and thickness required to meet the tuning needs, and tailor the film properties to meet these needs. Optimal performance is obtained when the film composition and device design are such that the device performance is limited by odd mode dielectric losses, and these losses are minimized as much as possible while still maintaining adequate tunability. The parameters required to maintain device performance will vary slightly depending on composition, but we can conclude that the best tuning-to-loss figures of merit (K-factor) are obtained when there is minimal variation between the in-plane and out-of-plane lattice parameters, and the full-width half maximum values of the BSTO (002) peaks are less than approximately 0.04 deg. We have observed that for phase shifters in which the ferroelectric crystalline quality and thickness are almost identical, higher losses are observed in films with higher BaISr ratios. The best performance was observed in phase shifters with Ba:Sr = 30:70. The superiority of this composition was attributed to several interacting factors: the B a: Sr ratio was such that the Curie temperature (180 K) was far removed from room temperature, the crystalline quality of the film was excellent, and there was virtually no difference between the inplane and out-of-plane lattice parameters of the film.

  9. Strong temperature-dependent crystallization, phase transition, optical and electrical characteristics of p-type CuAlO2 thin films.

    PubMed

    Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng

    2015-01-07

    We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals.

  10. Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong

    2017-11-01

    To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.

  11. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  12. Crystallization Kinetics of a Solid Oxide Fuel Cell Seal Glass by Differential Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Gamble, Eleanor A.

    2005-01-01

    Crystallization kinetics of a barium calcium aluminosilicate glass (BCAS), a sealant material for planar solid oxide fuel cells, have been investigated by differential thermal analysis (DTA). From variation of DTA peak maximum temperature with heating rate, the activation energy for glass crystallization was calculated to be 259 kJ/mol. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by powder x-ray diffraction. Microstructure and chemical composition of the crystalline phases were investigated by scanning electron microscopy and energy dispersive spectroscopic (EDS) analysis. BaSiO3 and hexacelsian (BaAl2Si2O8) were the primary crystalline phases whereas monoclinic celsian (BaAl2Si2O8) and (Ba(x), Ca(y))SiO4 were also detected as minor phases. Needle-shaped BaSiO3 crystals are formed first, followed by the formation of other phases at longer times of heat treatments. The glass does not fully crystallize even after long term heat treatments at 750 to 900 C.

  13. Biologically controlled minerals as potential indicators of life

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E.

    1991-01-01

    Minerals can be produced and deposited either by abiotic or biologic means. Regardless of their origin, mineral crystals reflect the environment conditions (e.g., temperature, pressure, chemical composition, and redox potential) present during crystal formation. Biologically-produced mineral crystals are grown or reworked under the control of their host organism and reflect an environment different from the abiotic environment. In addition, minerals of either biologic or abiotic origin have great longevities. For these reasons, biologically produced minerals have been proposed as biomarkers. Biomarkers are key morphological, chemical, and isotopic signatures of living systems that can be used to determine if life processes have occurred. Studies of biologically controlled minerals produced by the protist, Paramecium tetraurelia, were initiated since techniques have already been developed to culture them and isolate their crystalline material, and methods are already in place to analyze this material. Two direct crystalline phases were identified. One phase, whose chemical composition is high in Mg, was identified as struvite. The second phase, whose chemical composition is high in Ca, has not been previously found occurring naturally and may be considered a newly discovered material. Analyses are underway to determine the characteristics of these minerals in order to compare them with characteristics of these minerals in order to compare them with characteristics of minerals formed abiotically, but with the same chemical composition.

  14. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  15. Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics.

    PubMed

    Sola, D; Balda, R; Peña, J I; Fernández, J

    2012-05-07

    In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of Nd3+ ions in biocompatible glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 1 and 2 wt% of Nd2O3. The samples were obtained by the laser floating zone technique at different growth rates between 50 and 500 mm/h. The microstructural analysis shows that a growth rate increase or a rod diameter decrease leads the system to a structural arrangement from three (two crystalline and one amorphous) to two phases (one crystalline and one amorphous). Electron backscattering diffraction analysis shows the presence of Ca2SiO4 and apatite-like crystalline phases. Site-selective laser spectroscopy in the (4)I(9/2)→(4)F(3/2)/(4)F(5/2) transitions confirms that Nd(3+) ions are incorporated in crystalline and amorphous phases in these glass-ceramic samples. In particular, the presence of Ca(2)SiO(4) crystalline phase in the samples grown at low rates, which has an excellent in vitro bioactivity, can be unambiguously identified from the excitation spectra and lifetime measurements of the (4)F(3/2) state of Nd(3+) ions.

  16. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.

    PubMed

    Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C

    2015-08-05

    Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.

  17. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  18. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less

  19. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and Z 2 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Song, Zhi-Gang; Li, Shu-Shen; Wei, Su-Huai; Luo, Jun-Wei

    2018-05-01

    Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, but the transition may also occur between different classes of topological Dirac phases. However, it is a fundamental challenge to realize quantum transition between Z2 nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because Z2 TI and TCI are hardly both co-exist in a single material due to their contradictory requirement on the number of band inversions. The Z2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas, the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Here, take PbSnTe2 alloy as an example, we show that at proper alloy composition the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z2 TI phase when the alloy is ordered from a random phase into a stable CuPt phase. Our results suggest that atomic-ordering provides a new platform to switch between different topological phases.

  20. Formation of Ti-Al-Cr-B-N coatings by ion-magnetron sputtering of composite targets

    NASA Astrophysics Data System (ADS)

    Sergeev, Oleg V.; Kalashnikov, Mark P.; Voronov, Andrey V.; Sergeev, Victor P.; Panin, Victor E.

    2017-12-01

    The research addresses the influence of bombardment by high-energy ions (Cr + B)+ with a low fluence 4 × 1017 cm-2 on the tribological and mechanical properties of Ti-Al-N coatings. The wear resistance decreases 2.6 times whereas the microhardness decreases 1.2 times. The structural-phase state and the chemical composition of the surface layer of the modified coating are determined. The research is carried out by transmission and scanning of the electron microscopy and the secondary ion mass spectrometry. In the ion-modified coating layer the average concentration of titanium, aluminum and nitrogen decreases and those of chromium and boron increase when at a fluence of 4 × 1017 cm-2 the maximum values of Cr and B reach 16 and 23 at %, respectively, and the minimum values of Ti, Al and N amount to 15, 7 and 39 at %. In this layer the columnar structure is broken; its volume is divided into the alternative local nanosize zone-crystalline and amorphous. The phase composition of the crystalline regions is represented by TiN and AlN phases and a new CrB4 phase. The observed decrease of the tribomechanical properties can be due to both the amorphization of the surface layer and the transformation of a high-strength phase in a brittle one.

  1. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  2. Electronic properties of crystalline Ge1-xSbxTey thin films

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Volpe, Flavio; Longo, Massimo; Wiemer, Claudia; Salicio, Olivier; Abrutis, Adulfas

    2012-09-01

    Ge1-xSbxTey thin films, grown by metalorganic and hot-wire liquid injection chemical vapor deposition in different crystalline phases, are investigated to determine resistivity, carrier density, and carrier mobility in the 4.2-300 K temperature range. It is found that all these chalcogenides exhibit p-type conduction, high carrier density (>2 . 1020 cm-3), and no carrier freeze-out, regardless of composition. Low-temperature mobility data show that both chemical composition and growth technique affect the defect density and, in turn, the carrier scattering mechanisms. In this regard, charge carrier mobility is analyzed according to semi-empirical scattering models and an interpretation is provided.

  3. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOEpatents

    Gin, Douglas L.; Fischer, Walter M.; Gray, David H.; Smith, Ryan C.

    1998-01-01

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material.

  4. Dicyanamide Salts that Adopt Smectic, Columnar, or Bicontinuous Cubic Liquid-Crystalline Mesophases.

    PubMed

    Park, Geonhui; Goossens, Karel; Shin, Tae Joo; Bielawski, Christopher W

    2018-04-25

    Although dicyanamide (i.e., [N(CN) 2 ] - ) has been commonly used to obtain low-viscosity, halogen-free, room-temperature ionic liquids, liquid-crystalline salts containing such anions have remained virtually unexplored. Here we report a series of amphiphilic dicyanamide salts that, depending on their structures and compositions, adopt smectic, columnar, or bicontinuous cubic thermotropic liquid-crystalline mesophases, even at room temperature in some cases. Their thermal properties were explored by polarized light optical microscopy, differential scanning calorimetry, thermogravimetric analysis (including evolved gas analysis), and variable-temperature synchrotron X-ray diffraction. Comparison of the thermal phase characteristics of these new liquid-crystalline salts featuring "V-shaped" [N(CN) 2 ] - anions with those of structural analogues containing [SCN] - , [BF 4 ] - , [PF 6 ] - , or [CF 3 SO 3 ] - anions indicated that not only the size of the counterion but also its shape should be considered in the development of mesomorphic salts. Collectively, these discoveries may be expected to facilitate the design of thermotropic ionic liquid crystals that form inverted-type bicontinuous cubic and other sophisticated liquid-crystalline phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  6. An All-Organic Composite System for Resistive Change Memory via the Self-Assembly of Plastic-Crystalline Molecules.

    PubMed

    Cha, An-Na; Lee, Sang-A; Bae, Sukang; Lee, Sang Hyun; Lee, Dong Su; Wang, Gunuk; Kim, Tae-Wook

    2017-01-25

    An all-organic composite system was introduced as an active component for organic resistive memory applications. The active layer was prepared by mixing a highly polar plastic-crystalline organic molecule (succinonitrile, SN) into an insulating polymer (poly(methyl methacrylate), PMMA). As increasing concentrations of SN from 0 to 3.0 wt % were added to solutions of different concentrations of PMMA, we observed distinguishable microscopic surface structures on blended films of SN and PMMA at certain concentrations after the spin-casting process. The structures were organic dormant volcanos composed of micron-scale PMMA craters and disk type SN lava. Atomic force microscopy (AFM), cross-sectional transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometer (EDX) analysis showed that these structures were located in the middle of the film. Self-assembly of the plastic-crystalline molecules resulted in the phase separation of the SN:PMMA mixture during solvent evaporation. The organic craters remained at the surface after the spin-casting process, indicative of the formation of an all-organic composite film. Because one organic crater contains one SN disk, our system has a coplanar monolayer disk composite system, indicative of the simplest composite type of organic memory system. Current-voltage (I-V) characteristics of the composite films with organic craters revealed that our all-organic composite system showed unipolar type resistive switching behavior. From logarithmic I-V characteristics, we found that the current flow was governed by space charge limited current (SCLC). From these results, we believe that a plastic-crystalline molecule-polymer composite system is one of the most reliable ways to develop organic composite systems as potential candidates for the active components of organic resistive memory applications.

  7. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  8. Carbonate mineralization via an amorphous calcium carbonate (ACC) pathway: Tuning polymorph selection by Mg, pH, and mixing environment

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Blue, C.; Mergelsberg, S. T.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2017-12-01

    Mineral formation by nonclassical processes is widespread with many pathways that include aggregation of nanoparticles, oriented attachment of fully formed crystals, and sequential nucleation/transformation of amorphous phases (De Yoreo et al., 2015, Science). Field observations indicate amorphous calcium carbonate (ACC) can be the initial precipitate when local conditions promote high supersaturations for short time periods. Examples include microbial mats, marine porewaters that undergo pulses of increased alkalinity, closed basin lakes, and sabkhas. The crystalline products exhibit diverse morphologies and complex elemental and isotopic signatures. This study quantifies relationships between solution composition and the crystalline polymorphs that transform from ACC (Blue et al., GCA, 2017). Our experimental design synthesized ACC under controlled conditions for a suite of compositions by tuning input pH, Mg/Ca, and total carbonate concentration. ACC products were allowed to transform within output suspensions under stirred or quiescent mixing while characterizing the polymorph and composition of evolving solutions and solids. We find that ACC transforms to crystalline polymorphs with a systematic relationship to solution composition to give a quantitative framework based upon solution aMg2+/aCa2+ and aCO32-/aCa2+. We also measure a polymorph-specific evolution of pH and Mg/Ca during the transformation that indicates the initial polymorph to form. Pathway is further modulated by stirring versus quiescent conditions. The findings reconcile discrepancies among previous studies of ACC to crystalline products and supports claims that monohydrocalcite may be an overlooked, transient phase during formation of some aragonite and calcite deposits. Organic additives and extreme pH are not required to tune composition and polymorph. Insights from this study reiterate the need to revisit long-standing dogmas regarding controls on CaCO3 polymorph selection. Classical models assume thermodynamic equilibria but cannot provide a reliable predictor of compositions when kinetic factors are driving mineralization. Nonclassical pathways to mineralization may be the missing link to interpreting unusual CaCO3 polymorphs, compositions and textures in modern and ancient carbonates.

  9. Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system

    NASA Astrophysics Data System (ADS)

    Slavov, S.; Jiao, Z.

    2018-03-01

    Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.

  10. Thermodynamic effects of calcium and iron oxides on crystal phase formation in synthetic gasifier slags containing from 0 to 27wt.% V 2O 3

    DOE PAGES

    Nakano, Jinichiro; Duchesne, Marc; Bennett, James; ...

    2014-11-15

    Thermodynamic phase equilibria in synthetic slags (Al 2O 3–CaO–FeO–SiO 2–V 2O 3) were investigated with 0–27 wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500 °C in a 64 vol.% CO/36 vol.% CO 2 atmosphere (Po 2 ≈ 10 –8 atm at 1500 °C) for 72 h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity regionmore » expanded and a composition range exhibiting crystals was reduced. The mullite (Al 6Si 2O 13) crystalline phase was not present in the slags above 9 wt.% FeO while the karelianite (V 2O 3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Furthermore, based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.« less

  11. Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.

    PubMed

    Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R

    2018-05-28

    In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

  12. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    NASA Technical Reports Server (NTRS)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  13. Phase separation, crystallization and polyamorphism in the Y2O3 Al2O3 system

    NASA Astrophysics Data System (ADS)

    Skinner, Lawrie B.; Barnes, Adrian C.; Salmon, Philip S.; Crichton, Wilson A.

    2008-05-01

    A detailed study of glass formation from aerodynamically levitated liquids in the (Y2O3)x(Al2O3)1-x system for the composition range 0.21<=x<=0.41 was undertaken by using pyrometric, optical imaging and x-ray diffraction methods. Homogeneous and clear single-phase glasses were produced over the composition range 0.27 \\lesssim x \\lesssim 0.33 . For Y2O3-rich compositions (0.33 \\lesssim x \\le 0.375 ), cloudy materials were produced which contain inclusions of crystalline yttrium aluminium garnet (YAG) of diameter up to 40 µm in a glassy matrix. For Y2O3-poor compositions around x = 0.24, cloudy materials were also produced, but it was not possible to deduce whether this resulted from (i) sub-micron inclusions of a nano-crystalline or glassy material in a glassy matrix or (ii) a glass formed by spinodal decomposition. For x = 0.21, however, the sample cloudiness results from crystallization into at least two phases comprising yttrium aluminium perovskite and alumina. The associated pyrometric cooling curve shows slow recalescence events with a continuous and slow evolution of excess heat which contrasts with the sharp recalescence events observed for the crystallization of YAG at compositions near x = 0.375. The materials that are the most likely candidates for demonstrating homogeneous nucleation of a second liquid phase occur around x = 0.25, which corresponds to the limit for formation of a continuous random network of corner-shared AlO4 tetrahedra.

  14. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada

    USGS Publications Warehouse

    White, Art F.; Claassen, H.C.; Benson, Larry V.

    1980-01-01

    Geochemistry of ground water associated with the Tertiary tuffs within Rainier Mesa, southern Nevada, was investigated to determine the relative importance of glass dissolution in controlling water chemistry. Water samples were obtained both from interstitial pores in core sections and from free-flowing fractures. Cation com- positions showed that calcium and magnesium decreased as a function of depth in the mesa, as sodium increased. The maximum effect occurs within alteration zones containing clinoptilolite and montmorillonite, suggesting these minerals effectively remove bivalent cations from the system. Comparisons are made between compositions of ground waters found within Rainier Mesa that apparently have not reacted with secondary minerals and compositions of waters produced by experimental dissolution of vitric and crystalline tufts which comprise the principal aquifers in the area. The two tuff phases have the same bulk chemistry but produce aqueous solutions of different chemistry. Rapid parabolic dissolution of sodium and silica from, and the retention of, potassium within the vitric phase verify previous predictions concerning water compositions associated with vitric volcanic rocks. Parabolic dissolution of the crystalline phase results in solutions high in calcium and magnesium and low in silica. Extrapolation of the parabolic dissolution mechanism for the vitric tuff to long times successfully reproduces, at com- parable pH, cation ratios existing in Rainier Mesa ground water. Comparison of mass- transfer rates of the vitric and crystalline tuffs indicates that the apparent higher glass-surface to aqueous-volume ratio associated with the vitric rocks may account for dominance of the glass reaction.

  15. Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces.

    PubMed

    Rydén, Louise; Omar, Omar; Johansson, Anna; Jimbo, Ryo; Palmquist, Anders; Thomsen, Peter

    2017-01-01

    It has been suggested that surface modification with a thin hydroxyapatite (HA) coating enhances the osseointegration of titanium implants. However, there is insufficient information about the biological processes involved in the HA-induced response. This study aimed to investigate the inflammatory cell response to titanium implants with either amorphous or crystalline thin HA. Human mononuclear cells were cultured on titanium discs with a machined surface or with a thin, 0.1 μm, amorphous or crystalline HA coating. Cells were cultured for 24 and 96 h, with and without lipopolysaccharide (LPS) stimulation. The surfaces were characterized with respect to chemistry, phase composition, wettability and topography. Biological analyses included the percentage of implant-adherent cells and the secretion of pro-inflammatory cytokine (TNF-α) and growth factors (BMP-2 and TGF-β1). Crystalline HA revealed a smooth surface, whereas the amorphous HA displayed a porous structure, at nano-scale, and a hydrophobic surface. Higher TNF-α secretion and a higher ratio of adherent cells were demonstrated for the amorphous HA compared with the crystalline HA. TGF-β1 secretion was detected in all groups, but without any difference. No BMP-2 secretion was detected in any of the groups. The addition of LPS resulted in a significant increase in TNF-α in all groups, whereas TGF-β1 was not affected. Taken together, the results show that thin HA coatings with similar micro-roughness but a different phase composition, nano-scale roughness and wettability are associated with different monocyte responses. In the absence of strong inflammatory stimuli, crystalline hydroxyapatite elicits a lower inflammatory response compared with amorphous hydroxyapatite.

  16. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojia; Peng, Guirong; Zhan, Zaiji

    2017-12-01

    Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

  17. Liquid crystalline order in mucus

    NASA Technical Reports Server (NTRS)

    Viney, C.; Huber, A. E.; Verdugo, P.

    1993-01-01

    Mucus plays an exceptionally wide range of important biological roles. It operates as a protective, exchange, and transport medium in the digestive, respiratory, and reproductive systems of humans and other vertebrates. Mucus is a polymer hydrogel. It is secreted as discrete packages (secretory granules) by specialized secretory cells. Mucus hydrogel is stored in a condensed state inside the secretory granules. Depending upon the architecture of their constituent macromolecules and on the composition of the solvent, polymer gels can form liquid crystalline microstructures, with orientational order being exhibited over optically resolvable distances. Individual mucin molecules consist of alternating rigid segments (heavily glycosylated; hydrophilic) and flexible segments (nonglycosylated; hydrophobic). Polymer molecules consisting of rigid units linked by flexible spacers are frequently associated with liquid crystalline behavior, which again raises the possibility that mucus could form anisotropic fluid phases. Suggestions that mucins may be self-associating in dilute solution have previously been challenged on the basis of sedimentation-equilibrium studies performed on mucus in which potential sites of association were competitively blocked with inhibitors. However, the formation of stable liquid crystalline phases does not depend on the existence of inter- or intramolecular associations; these phases can form on the basis of steric considerations alone.

  18. Induced amphotropic and thermotropic ionic liquid crystallinity in phosphonium halides: "lubrication" by hydroxyl groups.

    PubMed

    Ma, Kefeng; Somashekhar, B S; Gowda, G A Nagana; Khetrapal, C L; Weiss, Richard G

    2008-03-18

    The influence of covalently attaching hydroxymethylene to the methyl groups of methyl-tri-n-alkylphosphonium halides (where the alkyl chains are decyl, tetradecyl, or octadecyl and the halide is chloride or bromide) or adding methanol as a solute to the salts on their solid, liquid-crystalline (smectic A2), and isotropic phases has been investigated using a variety of experimental techniques. These structural and compositional changes are found to induce liquid crystallinity in some cases and to enhance the temperature range and lower the onset temperature of the liquid-crystalline phases in some others. The results are interpreted in terms of the lengths of the three n-alkyl chains attached to the phosphorus cation, the nature of the halide anion, the influence of H-bonding interactions at the head group regions of the layered phases, and other solvent-solute interactions. The fact that at least 1 molar equiv of methanol must be added to effect complete (isothermal) conversion of a solid methyl-tri-n-alkylphosphonium salt to a liquid crystal demonstrates a direct and strong association between individual methanol molecules and the phosphonium salts. Possible applications of such systems are suggested.

  19. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  20. High-Temperature Self-Healing and Re-Adhering Geothermal Well Cement Composites

    NASA Astrophysics Data System (ADS)

    Pyatina, T.; Sugama, T.; Boodhan, Y.; Nazarov, L.

    2017-12-01

    Self-healing cementitious materials are particularly attractive for the cases where damaged areas are difficult to locate and reach. High-temperature geothermal wells with aggressive environments impose most difficult conditions on cements that must ensure durable zonal isolation under repeated thermal, chemical and mechanical stresses. The present work evaluates matrix and carbon steel (CS) - cement interface self-healing and re-adhering properties of various inorganic cementitious composites under steam, alkali carbonate or brine environments at 270-300oC applicable to geothermal wells. The composite materials included blends based on Ordinary Portland Cement (OPC) and natural zeolites and alkali or phosphate activated composites of Calcium Aluminate Cement (CAC) with fly ash, class F. Class G cement blend with crystalline silica was used as a baseline. Compressive-strength and bond-strength recoveries were examined to evaluate self-healing and re-adhering properties of the composites after repeated crush tests followed by 5-day healing periods in these environments. The optical and scanning electron microscopes, X-ray diffraction, Fourier Transform infrared, Raman spectroscopy and EDX measurements were used to identify phases participating in the strengths recoveries and cracks filling processes. Amorphous silica-rich- and small-size crystalline phases played an important role in the healing of the tested composites in all environments. Possible ways to enhance self-healing properties of cementitious composites under conditions of geothermal wells were identified.

  1. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  2. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  3. Thermal Diffusivity of High-Density Polyethylene Samples of Different Crystallinity Evaluated by Indirect Transmission Photoacoustics

    NASA Astrophysics Data System (ADS)

    Nesic, M.; Popovic, M.; Rabasovic, M.; Milicevic, D.; Suljovrujic, E.; Markushev, D.; Stojanovic, Z.

    2018-02-01

    In this work, thermal diffusivity of crystalline high-density polyethylene samples of various thickness, and prepared using different procedures, was evaluated by transmission gas-microphone frequency photoacoustics. The samples' composition analysis and their degree of crystallinity were determined from the wide-angle X-ray diffraction, which confirmed that high-density polyethylene samples, obtained by slow and fast cooling, were equivalent in composition but with different degrees of crystallinity. Structural analysis, performed by differential scanning calorimetry, demonstrated that all of the used samples had different levels of crystallinity, depending not only on the preparing procedure, but also on sample thickness. Therefore, in order to evaluate the samples' thermal diffusivity, it was necessary to modify standard photoacoustic fitting procedures (based on the normalization of photoacoustic amplitude and phase characteristics on two thickness levels) for the interpretation of photoacoustic measurements. The calculated values of thermal diffusivity were in the range of the expected literature values. Besides that, the obtained results indicate the unexpected correlation between the values of thermal diffusivity and thermal conductivity with the degree of crystallinity of the investigated geometrically thin samples. The results indicate the necessity of additional investigation of energy transport in macromolecular systems, as well as the possible employment of the photoacoustic techniques in order to clarify its mechanism.

  4. Lens protein composition, glycation and high molecular weight aggregation in aging rats.

    PubMed

    Swamy, M S; Abraham, E C

    1987-10-01

    Because of minimal or no turnover, lens proteins are subjected to substantial post-translational modifications which in turn disrupt lens architecture and change the optical properties leading to senile cataract formation. Progressive glycation is believed to have the potential to initiate the changes that are conducive to lens opacification. Fisher 344 rats were systematically followed from juvenile to older and aged phases of their life to study the relationship between lens glycation and high molecular weight (HMW) aggregate formation as well as quantitative and qualitative changes in lens crystallins. Levels of glycated proteins were quantified by affinity chromatography. Changes in lens crystallin composition and HMW aggregate formation were monitored by molecular sieve HPLC, further confirmed by SDS-PAGE and IEF techniques. As the age advances HMW and insoluble proteins increase with a concomitant disappearance of gamma-crystallins from soluble fraction. This disappearance of gamma-crystallins coincided with increased glycation (approximately 2-fold higher in insoluble fraction) and decreased sulfhydryl groups from soluble fraction. It appears that lens protein glycation, disappearance of gamma-crystallins and sulfhydryls from soluble fraction and increase of insoluble fraction and HMW aggregate are interrelated.

  5. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko,; David, J [Naperville, IL

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  6. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Yung, K. C.; Choy, H. S.; Xiao, T. Y.; Cai, Z. X.

    2018-06-01

    Laser polishing of 3D printed metal components has drawn great interest in view of its potential applications in the dental implant industries. In this study, corrosion resistance, surface composition and crystalline structure of CoCr alloys were investigated. The corrosion resistance, micromorphology, composition, phase transformations and crystalline structures of samples were characterized using an electrochemical analyzer, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The results indicate that high laser powers and low object distances within a certain range can facilitate the formation of complex oxide films, which exhibits high corrosion resistance. Further, object distances have a significant influence on cooling rates during the solidification of the melt pool in laser polishing, and fast cooling generates vast amounts of vacancies and defects, which result in the crystalline phase transformation from γ to ε. Consequently, the formed oxides play an important role in corrosion resistance on the outer layer, and inner layer with γ phase also helps keep the CoCr alloys in a stable structure with high resistant to corrosion. The two process parameters in laser polishing, laser power and object distances, are demonstrated as being important for controlling the surface microstructures and corrosion resistance of the additive manufactured CoCr alloy components.

  7. Chemical Weathering on a Cold and Wet Ancient Mars: New Insights from a Glacial Mars Analog Site

    NASA Astrophysics Data System (ADS)

    Scudder, N.; Horgan, B. H. N.; Rutledge, A. M.; Rampe, E. B.

    2016-12-01

    If cold climates prevailed on ancient Mars, we should expect to see corroborating mineralogical evidence preserved in the geologic record. However, the extent to which the diverse alteration mineralogy observed on Mars can be explained by cold climate weathering is currently unknown, as the alteration phases that result from weathering by snow and ice are poorly understood. If cold climate weathering produces distinct alteration signatures, they may be a useful climate indicator on Mars. On Earth, poorly crystalline or short order silicates, such as allophane, tend to dominate in alpine and arctic soils where weathering mainly occurs through rapid seasonal melting of ice and snow. This mineralogy is distinct from the crystalline phyllosilicates that are common in more temperate climates. Thus, we hypothesize that high abundances of poorly crystalline material could indicate cold climate weathering. Here we report new results from a field campaign at the mafic and glaciated Three Sisters volcanic complex in Oregon, USA, to determine the mineralogy and chemistry of cold climate weathering in a Mars analog environment. We find that high abundances of poorly crystalline phases are generated in this environment and that these phases may be detectable using orbital spectroscopy. Ongoing chemical and mineralogical analyses of glacial till and sediments from glacier-fed lakes and streams will allow us to determine the specific distribution and composition of mineral phases in Mars-relevant glacial environments. Poorly crystalline phases have been detected on Mars: modeling of TES data suggests a regionally distributed allophane component, while MER and MSL results indicate up to 40-50% amorphous components in rocks and sediments at Gusev and Gale Craters. We hypothesize that these could be the result of weathering by ice and snow. However, it is not clear that more crystalline alteration phases observed elsewhere on Mars could be formed under a globally cold climate.

  8. Process of making carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Kowbel, Witold (Inventor); Withers, James C. (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor); Loutfy, Raouf O. (Inventor)

    2000-01-01

    A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.

  9. Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films

    NASA Astrophysics Data System (ADS)

    Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.

    2012-08-01

    Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.

  10. Sustainable thermoelectric materials fabricated by using Cu2Sn1-xZnxS3 nanoparticles as building blocks

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Shijimaya, Chiko; Takahashi, Mari; Miyata, Masanobu; Mott, Derrick; Koyano, Mikio; Ohta, Michihiro; Akatsuka, Takeo; Ono, Hironobu; Maenosono, Shinya

    2017-12-01

    Uniform Cu2Sn1-xZnxS3 (x = 0-0.2) nanoparticles (NPs) with a characteristic size of about 40 nm were chemically synthesized. The primary crystal phase of the NPs was wurtzite (WZ) with a mean crystalline size of about 20 nm. The NPs were sintered to form nanostructured pellets with different compositions preserving the composition and grain size of the original NPs by the pulse electric current sintering technique. The pellets had a zinc blende (ZB) structure with a residual WZ phase, and the mean crystalline size was found to remain virtually unchanged for all pellets. Among all samples, the pellets of Cu2Sn0.95Zn0.05S3 and Cu2Sn0.85Zn0.15S3 exhibited the highest ZT value (0.37 at 670 K) which is 10 times higher than that of a non-nanostructured Cu2SnS3 bulk crystal thanks to effective phonon scattering by nanograins, the phase-pure ZB crystal structure, and the increase in hole carrier density by Zn doping.

  11. Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.

    2014-09-01

    Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.

  12. Entropy-stabilized oxides

    PubMed Central

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-01-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623

  13. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  14. Photoluminescent emission of Pr 3+ ions in different zirconia crystalline forms

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Alejo-Armenta, C.; García-Hipólito, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.; Falcony, C.

    2008-08-01

    Polycrystalline praseodymium doped-zirconia powders were synthesized by crystallization of a saturated solution and annealed in air at T a = 950 °C. Monoclinic, tetragonal and cubic crystalline phases of zirconia were obtained. EDS studies showed homogeneous chemical composition over all the powders particles and chemical elemental contents in good agreement with the incorporation of Pr 3+ ion in Zr 4+ sites. XRD patterns showed stabilization of tetragonal and cubic phases at 1.28 and 2.87 at.% of Pr 3+ doping concentrations, respectively. Both unit cells expand when Pr 3+ content increases. All samples showed a crystallite size lower than 27 nm. Diffuse reflectance studies exhibited the presence of the 4f5d absorption band of Pr 3+, and absorption peaks in 440-610 nm region associated with 4f inter-level electronic transitions in Pr 3+ ion. Low temperature (20 K) photo-luminescent spectroscopic measurements over excitation of 488 nm for praseodymium doped zirconia, showed multiple emission peaks in the 520-900 nm range of the electromagnetic spectrum, associated with typical 4f inter-level electronic transition in Pr 3+. Incorporation of Pr 3+ in more than one zirconia crystalline phase and the incorporation in cubic C 2 sites, were observed. Zirconia powders presented significant differences in its emission spectra as a function of the type of crystalline phase compounds.

  15. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites.

    PubMed

    Lim, Jung Seop; Park, Ku-il; Chung, Gun Soo; Kim, Jong Hoon

    2013-05-01

    In this study, composites of semicrystalline, biodegradable polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-HHx) were prepared by direct melt compounding. The physical and thermal properties of the composites were investigated as a function of the composition ratio. Differential scanning calorimetry analysis indicated that PLA and PHB-HHx formed immiscible composites over the observed range of composition. The crystallization of PLA was gradually suppressed by increasing proportions of PHB-HHx. Dynamic mechanical analysis results confirmed that the innate ductility of PHB-HHX and its inhibiting effect on PLA crystallization improved the stiffness of the composite compared to those of neat PLA. The infrared spectra of the immiscible PLA/PHB-HHx composites at two crystallization temperatures (30 °C, 130 °C) were obtained and presented. At 30 °C, PHB-HHx existed as crystalline domains in the PLA matrix, while, amorphous phase of molten PHB-HHx was diffused within the crystalline phase of PLA at 130 °C. The interaction between PHB-HHX and PLA could not be elucidated from the temperature data. Mechanical tests showed that the addition of PHB-HHx improves ductility of PLA/PHB-HHx composite. Morphological analysis revealed that small proportions of PHB-HHx exhibited less tendency to aggregate, which resulted in greater plastic deformation and improved toughness. From this study, PLA blended with small portions of PHB-HHx may further expand the use of bio-friendly resources in a variety of applications such as flexible films, food packaging and something like that. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanostructures having crystalline and amorphous phases

    DOEpatents

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  18. Thermal Energy Transfer Through All Ceramic Restorations

    DTIC Science & Technology

    2016-06-01

    particles, but newer generations have reduced the size and narrowed the range of particles in the matrix . This evolution in ceramics improved the...crystalline second phase. These ceramics have a lithium silicate glass matrix with approximately 70% lithium-disilicate crystal fill. The micron size and... composition category described by Giordano and McLaren are the Interpenetrating Phase Ceramics . These ceramics were developed as an alternative to the

  19. Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; McBrearty, Ian; Ott, R. T.

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al 5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al 90Sm 10 alloys.

  20. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  1. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  2. Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in [Phase 3 Memory,] 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radchenko, I.; Tippabhotla, S. K.; Tamura, N.

    2016-10-21

    Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronicsmore » will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.« less

  3. Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator

    DOE PAGES

    Neupane, Madhab; Xu, Su-Yang; Sankar, R.; ...

    2015-08-20

    Here we report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb 1more » $${-}$$xSnxSe, as a function of various material parameters including composition x, temperature T , and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states’ response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi 2Se 3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb 1$${-}$$xSnxSe are a valuable materials guide to realize new topological phenomena.« less

  4. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  5. Chemical and structural arrangement of the trigonal phase in GeSbTe thin films.

    PubMed

    Mio, Antonio M; Privitera, Stefania M S; Bragaglia, Valeria; Arciprete, Fabrizio; Bongiorno, Corrado; Calarco, Raffaella; Rimini, Emanuele

    2017-02-10

    The thermal and electrical properties of phase change materials, mainly GeSbTe alloys, in the crystalline state strongly depend on their phase and on the associated degree of order. The switching of Ge atoms in superlattice structures with trigonal phase has been recently proposed to develop memories with reduced switching energy, in which two differently ordered crystalline phases are the logic states. A detailed knowledge of the stacking plane sequence, of the local composition and of the vacancy distribution is therefore crucial in order to understand the underlying mechanism of phase transformations in the crystalline state and to evaluate the retention properties. This information is provided, as reported in this paper, by scanning transmission electron microscopy analysis of polycrystalline and epitaxial Ge 2 Sb 2 Te 5 thin samples, using the Z-contrast high-angle annular dark field method. Electron diffraction clearly confirms the presence of compositional mixing with stacking blocks of 11, 9 or 7 planes corresponding to Ge 3 Sb 2 Te 6 , Ge 2 Sb 2 Te 5 , and GeSb 2 Te 4 , alloys respectively in the same trigonal phase. By increasing the degree of order (according to the annealing temperature, the growth condition, etc) the spread in the statistical distribution of the blocks reduces and the distribution of the atoms in the cation planes also changes from a homogenous Ge/Sb mixing towards a Sb-enrichment in the planes closest to the van der Waals gaps. Therefore we show that the trigonal phase of Ge 2 Sb 2 Te 5 , the most studied chalcogenide for phase-change memories, is actually obtained in different configurations depending on the distribution of the stacking blocks (7-9-11 planes) and on the atomic occupation (Ge/Sb) at the cation planes. These results give an insight in the factors determining the stability of the trigonal phase and suggest a dynamic path evolution that could have a key role in the switching mechanism of interfacial phase change memories and in their data retention.

  6. Magnetic studies of melt spun NdFeAl-C alloys

    NASA Astrophysics Data System (ADS)

    Rodríguez Torres, C. E.; Cabrera, A. F.; Sánchez, F. H.; Billoni, O. V.; Urreta, S. E.; Fabietti, L. M.

    2004-12-01

    Alloys with compositions Nd 60-xC xFe 30Al 10 ( x=0, 1, 5 and 10) were processed by melt spinning at a tangential speed of 5 m/s. The as-cast ribbons were characterized by X-ray diffraction, Mössbauer Effect spectroscopy and their room temperature hysteresis loops. The substitution of Nd by C is found to affect the phase selection, from mainly DHCP-Nd for x=0 to DHCP-Nd /FCC-Nd for the other ones. Mössbauer spectra of all the as-cast samples indicate that Fe is present in crystalline magnetic phases as well as in a paramagnetic one. The major crystalline phase was identified as a μ-type (or A1) metastable phase, which is reported to have a large anisotropy field and a relatively high saturation polarization. Interstitial C stabilizes the μ-type phase and improves its average hyperfine field. The magnetic measurements display an increase of coercivity and remanence with the C concentration.

  7. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  8. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Alsomore » disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.« less

  9. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOEpatents

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  10. Glass formation and crystallization in high-temperature glass-ceramics and Si3N4

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The softening of glassy grain boundaries in ceramic matrix composites and Si3N4 at high temperatures reduces mechanical strength and the upper-use temperature. By crystallizing this glass to a more refractory crystalline phase, a material which performs at higher temperatures may result. Three systems were examined: a cordierite composition with ZrO2 as a nucleating agent; celsian compositions; and yttrium silicate glasses both in bulk and intergranular in Si3N4. For the cordierite compositions, a series of metastable phases was obtained. The crystallization of these compositions was summarized in terms of metastable ternary isothermal sections. Zircon formed at the expense of ZrO2 and spinel. In SiC composites, the transformations were slower. In celsian, two polymorphs were crystallized. One phase, hexacelsian, which always crystallized, even when metastable, had an undesirable volume change. The other phase, celsian, was very difficult to crystallize. In yttrium silicate bulk glasses, similar in composition to the intergranular glass in Si3N4, a number of polymorphs of Y2Si2O7 were crystallized. The conditions under which these polymorphs formed are compared with crystallization in Si3N4.

  11. Effects of germanium and nitrogen incorporation on crystallization of N-doped Ge2+xSb2Te5 (x = 0,1) thin films for phase-change memory

    NASA Astrophysics Data System (ADS)

    Cheng, Limin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Peng, Cheng; Yao, Dongning; Liu, Bo; Xu, Ling

    2013-01-01

    The phase-change behavior and microstructure changes of N-doped Ge3Sb2Te5 [N-GST(3/2/5)] and Ge2Sb2Te5 [GST(2/2/5)] films during the phase transition from an amorphous to a crystalline phase were studied using in situ temperature-dependent sheet resistance measurements, X-ray diffraction, and transmission electron microscopy. The optical band gaps of N-GST(3/2/5) films are higher than that of GST(2/2/5) film in both the amorphous and face-centered-cubic (fcc) phases. Ge nitride formation by X-ray photoelectron spectroscopy analysis increased the optical band gap and suppressed crystalline grain growth, resulting in an increase in the crystallization temperature and resistance in the fcc phase. As a result, the Ge- and N-doped GST(2/2/5) composite films can be considered as a promising material for phase-change memory application because of improved thermal stability and reduced power consumption.

  12. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.

    PubMed

    Cui, Wenguo; Li, Xiaohong; Zhou, Shaobing; Weng, Jie

    2007-09-15

    Development of nanocomposites of hydroxyapatite (HA) and polylactic acid (PLA) is attractive, as the advantageous properties of the two types of materials can be combined to suit better the mechanical and biological demands for biomedical uses. To solve the problematic issue of agglomeration of HA crystallites in the PLA matrix, a novel method is introduced in the present study to use electrospun nanofibers as the reaction confinement for composite fabrication. Poly(DL-lactide) ultrafine fibers with calcium nitrate entrapment were prepared by electrospinning and then incubated in phosphate solution to form in situ calcium phosphate on the polymer matrix. The formation of nonstoichiometric nanostructured HA and well dispersion of HA particles on the electrospun fibers were observed. Higher crystalline HA phase was indicated in samples after sintering at 1200 degrees C. The formation of the calcium-phosphate phase was dependent upon the precipitation conditions, and the effects of the incubation time, temperature, and the pH values of the incubation medium were investigated on the spontaneous precipitation and amorphous-crystalline transformation of HA in the current study. Considering the biodegradability of matrix polymer and the crystallinity and uniform dispersal of HA, optimal conditions for composite preparation were incubating calcium-containing ultrafine fibers at 37 degrees C in pH 7.4 or at 25 degrees C in pH 9.0 of diammonium hydrogen phosphate solutions for 7 days. Around 25%-34% of mineral contents can be synthesized in the resulting composites, which was higher than the theoretical value due to the nonstoichiometric HA formed in the composite, and the fiber degradation and partial calcium nitrate involved in the HA formation. Copyright 2007 Wiley Periodicals, Inc.

  13. Linking Spectral Features with Composition, Crystallinity, and Roughness Properties of Silica and Implications for Candidate Hydrothermal Systems on Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; McDowell, M. L.; Berger, J. A.; Cady, S. L.; Knauth, L. P.

    2011-12-01

    We have collected visible to near infrared reflectance (VNIR, ~0.4 - 2.5 um), thermal infrared emissivity (TIR, ~5 - 45 um), SEM, XRD, surface roughness, and petrographic data for 18 silica samples. These rocks (e.g., replacement chert, geyserite, opal-A/-CT) represent a variety of geologic formation environments, including hydrothermal, and have XRD-determined crystallinities ranging from <1 to >10 according to the quartz crystallinity index. Our findings are relevant to the interpretation of orbital and in situ spectral observations of crystalline or amorphous silica on the Martian surface, some of which may have formed in hydrothermal systems. Almost all of our samples' VNIR spectra contain discernible bands. The most common features are related to hydration (H2O and/or OH) of silica (e.g., at ~1.4, 1.9, and 2.2 um). The visibility and strength of these bands is not always constant between spectra from different areas of a sample. Other features include those of carbonate, phyllosilicate, and iron oxide impurities. All of our amorphous silica samples have hydration features in the VNIR, but we note that the absorptions around ~2.2 um can be very weak in amorphous samples relative to features at other wavelengths and relative to ~2.2-um features observed in Martian data, suggesting that some amorphous silica on Mars could go undetected. Deposits containing significant anhydrous, crystalline silica (chert) may be assumed to lack features in the VNIR, but many of our cherts have spectral features and could be misidentified as materials dominated by what is a minor contaminant. Thermal infrared spectra of chert and opaline silica differ from each other as a result of the loss of long-range Si-O order in increasingly amorphous samples. Our samples display a clear trend in TIR band shapes where features attributable to crystalline quartz and amorphous silica are blended in samples with intermediate crystallinities. Most diagnostic TIR spectral features observable in laboratory data typically are recognizable in hyperspectral remote sensing data. These features are more difficult to distinguish (or are not included) at multispectral resolutions, but in nearly all uncontaminated samples, the positions of Si-O emissivity minima shift towards longer wavelengths with decreasing crystallinity. Contaminating phases with strong VNIR spectral features are observed in some of the TIR spectra but have a negligible effect in others, suggesting that TIR spectroscopy helps constrain the abundances of these phases. In addition to compositional and crystallinity information, our laboratory data demonstrate that TIR spectra can be used to deduce important information on silica phases' texture and orientation. If used in combination, VNIR and TIR spectroscopy can detect and characterize silica phases, allowing us to estimate conditions of silica formation, e.g., high- or low-temperature aqueous systems.

  14. Ab initio study of the composite phase diagram of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Yu. A.; Sokolovskiy, V. V.; Zagrebin, M. A.; Buchelnikov, V. D.; Zayak, A. T.

    2017-07-01

    The magnetic and structural properties of a series of nonstoichiometric Ni-Mn-Ga Heusler alloys are theoretically investigated in terms of the density functional theory. Nonstoichiometry is formed in the coherent potential approximation. Concentration dependences of the equilibrium lattice parameter, the bulk modulus, and the total magnetic moment are obtained and projected onto the ternary phase diagram of the alloys. The stable crystalline structures and the magnetic configurations of the austenitic phase are determined.

  15. Synthesis and Characterization of Zr-BASED Amorphous and Crystalline Composite Coating on Ti Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Tang, D. M.; Zhang, D. C.; Peng, W.; Luo, Z. C.; Wu, X. Q.; Wang, Y. M.; Lin, J. G.

    2014-02-01

    A thin strip of a Zr-based alloy with a composition of Zr60Cu25Fe5Al10 (in atom percent) was used as a raw material, and the composite coatings containing Zr-based amorphous phase and crystallites on Ti substrate were fabricated by a one-step laser cladding method without protection. The microstructure, phase constitution, microhardness and wear properties of the coatings were investigated. The results indicate that the microstructure of the coatings is strongly dependent on the laser scanning speed under the conditions of the laser power of 1300 W and laser beam diameter of 6 mm, and the composite coating mainly containing amorphous phase with a small amount of the crystallites can be obtained at the laser scanning speed of 10 mm/s. The composite coating exhibits much higher microhardness than the pure Ti substrate, and thus it behaves superior wear resistance in comparison with the substrate.

  16. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility

    PubMed Central

    Du, Lin; Yang, Xiaohui; Li, Wenqiang; Luo, Xuhui; Wu, Hao; Zhang, Jiaqing; Tu, Mei

    2017-01-01

    In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells. PMID:28149528

  17. Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4.

    PubMed

    Fagerlund, S; Massera, J; Moritz, N; Hupa, L; Hupa, M

    2012-07-01

    This work studied the influence of sintering temperature on the phase composition, compression strength and in vitro properties of implants made of bioactive glass S53P4. The implants were sintered within the temperature range 600-1000°C. Over the whole temperature range studied, consolidation took place mainly via viscous flow sintering, even though there was partial surface crystallization. The mechanical strength of the implants was low but increased with the sintering temperature, from 0.7 MPa at 635°C to 10 MPa at 1000°C. Changes in the composition of simulated body fluid (SBF), the immersion solution, were evaluated by pH measurements and ion analysis using inductively coupled plasma optical emission spectrometry. The development of a calcium phosphate layer on the implant surfaces was verified using scanning electron microscopy-electron-dispersive X-ray analysis. When immersed in SBF, a calcium phosphate layer formed on all the samples, but the structure of this layer was affected by the surface crystalline phases. Hydroxyapatite formed more readily on amorphous and partially crystalline implants containing both primary Na(2)O·CaO·2SiO(2) and secondary Na(2)Ca(4)(PO(4))(2)SiO(4) crystals than on implants containing only primary crystals. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Influence of non-covalent modification of multiwalled carbon nanotubes on the crystallization behaviour of binary blends of polypropylene and polyamide 6.

    PubMed

    Mukhopadhyay, Nabaneeta; Panwar, Ajay S; Kumar, Gulshan; Samajdar, I; Bhattacharyya, Arup R

    2015-02-14

    Blends of polypropylene (PP) and polyamide 6 (PA6) with multiwalled carbon nanotubes (MWNTs) were prepared using different processing strategies in a twin-screw micro-compounder. The effect of MWNTs on the crystallization behaviour of the PP phase and the PA6 phase of the blend has been investigated through non-isothermal crystallization studies by differential scanning calorimetric analysis. Furthermore, the effect of the addition of the compatibilizer (PP-g-MA) and the modification of MWNTs (m-MWNTs) with a non-covalent organic modifier (Li-salt of 6 amino hexanoic acid, Li-AHA) has also been studied in context to the crystallization behaviour of the PP and PA6 phase in the blend. The crystallization studies have indicated a significant increase in bulk crystallization temperature of the PP phase in the blend in the presence of MWNTs. Moreover, the formation of 'trans-lamellar crystalline' structure consisting of PA6 'trans-crystalline lamellae' on MWNTs surface was facilitated in the case of blends prepared via 'protocol 2' as compared to the corresponding blends prepared via 'protocol 1'. Wide angle X-ray diffraction analysis has showed the existence of a β-polymorph of the PP phase due to incorporation of the PA6 phase in the blend. Addition of MWNTs in the blends has facilitated further β-crystalline structure formation of the PP phase. In the presence of m-MWNTs, a higher β-fraction was observed in the PP phase as compared to the blend with pristine MWNTs. Addition of PP-g-MA has suppressed the β-phase formation in the PP phase in the blend. X-ray bulk texture analysis revealed that incorporation of PA6 as well as pristine/modified MWNTs has influenced the extent of orientation of the PP chains towards specific crystalline planes in various blend compositions of PP and PA6.

  19. Spacer length controlled lamello-columnar to oblique-columnar mesophase transition in liquid crystalline DNA - discotic cationic lipid complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Cui, Li; Miao, Jianjun

    2006-03-01

    A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.

  20. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  1. Structure-property relationships in semicrystalline copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into ionomers to achieve high ion content and in turn desirable physical properties. We assess the compatibility of various types of metal soaps with E/(M)AA ionomers, and investigate how the soap modifies the ionomers' structure and properties. The mechanical properties and phase behavior of these hybrids, which are found to differ significantly depending on the neutralizing cation type and crystallinizability of the metal soap, are traced back to various levels of molecular coassembly involving the hydrocarbon chains and/or the ionic groups of both entities.

  2. Residual glass and crystalline phases in a barium disilicate glass–ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Marcel C.C.; Botta, Walter J.; Kaufmann, Michael J.

    2015-12-15

    Investigations about the presence of residual glass are scarce, despite its fundamental role in the crystallization kinetics and luminescent properties of barium disilicate glass–ceramics (BaO·2SiO{sub 2}–BS{sub 2}) with a quasi-stoichiometric composition. Non-isothermal (DTA/DSC) experiments have demonstrated that BS{sub 2} presents a polymorphic transformation, where the h-BS{sub 2} (monoclinic structure) phase is completely transformed in l-BS{sub 2} (orthorhombic structure) at temperatures higher than 1020 °C (10 °C/min). In this study, BS{sub 2} monolithic samples were heat-treated at 1000 °C (BS2-10) and 1100 °C (BS2-11) in a DSC furnace at a heating rate of 10 °C/min. In addition, the crystalline and amorphousmore » phases were characterized and quantified by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) experiments, respectively. Although the complete polymorphic transformation from h-BS2 to l-BS2 was achieved at 1100 °C, our results demonstrated that BS2-11 contains a minor, albeit not negligible, amount of residual glass. - Highlights: • The crystalline and amorphous phases in a barium disilicate glass were characterized and quantified by XRD and TEM. • The BS2-10 sample was constituted by two main crystalline phases, which consists of 2 polymorphic forms: h-BS2 and l-BS2. • The orthorhombic BS2 phase (l-BS2) was predominant at 1100 °C. • The complete polymorphic transformation from h-BS2 to l-BS2 was achieved at 1100 °C. • Nevertheless, our XRD and TEM results demonstrated that BS2-11 contains a minor amount of residual glass.« less

  3. Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; McBrearty, Ian; Ott, R T

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  4. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.

    PubMed

    Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M

    2016-12-01

    It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.

  5. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects

    PubMed Central

    Titus, Michael S.; Rhein, Robert K.; Wells, Peter B.; Dodge, Philip C.; Viswanathan, Gopal Babu; Mills, Michael J.; Van der Ven, Anton; Pollock, Tresa M.

    2016-01-01

    It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4–atomic-layer–thick phase, where segregation has occurred, compared to the approximately 35–atomic-layer–thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties. PMID:28028543

  6. Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y.

    2018-05-01

    In the present work, spindle-shaped ZnO and reduced graphene oxide sheets were successfully synthesized by a hydrothermal method and then ZnO/r-GO composite was prepared by a direct solution mixing method. Various characterization results confirmed the interior and surface decoration of spindle-shaped ZnO on the reduced graphene oxide sheets. The phase formation, crystalline structure, morphology, surface states and optical properties were characterized using Powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The X-ray diffraction analysis showed the formation of the hexagonal wurtzite crystalline structure of ZnO with high crystalline quality. The band gap of the ZnO/r-GO composite was found to be low (3.03eV) compared to the band gap of spindle shaped ZnO (3.13 eV), as calculated from optical studies. The spindle-like morphology of the single crystalline ZnO was clearly shown in the electron microscopic images. The chemical bonding and surface states of the samples were studied using XPS measurement. Moreover, a possible growth mechanism for the ZnO spindle was proposed. The catalytic activity of the as-synthesized samples was evaluated for the photodegradation of methylene blue under visible light irradiation. Among the synthesized samples, the ZnO/r-GO composite showed higher degradation efficiency of 93% and successfully reused for four consecutive run without any activity loss.

  7. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because the local melt fraction is too low to form a mobile magma. The model results are consistent with geochemical data suggesting that lower crustal magma reservoirs supply silicic and mafic melts to arc volcanoes, but intermediate magmas are formed by mixing in shallower reservoirs. We suggest here that lower crustal magma chambers primarily form in response to changes in bulk composition caused by melt migration and chemical reaction in a mush reservoir. This process is different to the conventional and widely applied models of magma chamber formation. Similar processes are likely to operate in shallow mush reservoirs, but will likely be further complicated by the presence of volatile phases, and mixing of different melt compositions sourced from deeper mush reservoirs.

  8. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    PubMed

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC 0→1440 min ) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  9. Glass-Derived Superconductive Ceramic

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1992-01-01

    Critical superconducting-transition temperature of 107.2 K observed in specimen made by annealing glass of composition Bi1.5Pb0.5Sr2Ca2Cu3Ox for 243 h at 840 degrees C. PbO found to lower melting temperature and viscosity of glass, possibly by acting as fluxing agent. Suggested partial substitution of lead into bismuth oxide planes of crystalline phase having Tc of 110 K stabilizes this phase and facilitates formation of it.

  10. Enhanced mechanical energy harvesting ability of electrospun poly(vinylidene fluoride)/hectorite clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahman, Wahida; Ghosh, Sujoy Kumar; Middya, Tapas Ranjan; Mandal, Dipankar

    2018-04-01

    We report on enhanced piezoelectric properties of poly (vinylidene fluoride) (PVDF)/hectorite nano-clay composites prepared by electrospinning process. The investigation on the effects of the nano-filler in the crystalline phase and piezoelectric properties reveals dramatic enhancement of piezoelectric β-phase (95%) due to synergistic effect of electrospinning and nano-clay loading. As a result, the prepared nanocomposite possesses higher mechanical energy harvesting ability than that of pure PVDF.

  11. Effect of cryogenic treatment on nickel-titanium endodontic instruments

    PubMed Central

    Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.

    2005-01-01

    Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471

  12. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  13. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.

    PubMed

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.

  14. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects.

    PubMed

    Jiang, Yumin; Ou, Jun; Zhang, Zhanhe; Qin, Qing-Hua

    2011-03-01

    In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.

  15. Demixing by a Nematic Mean Field: Coarse-Grained Simulations of Liquid Crystalline Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Hernández, Abelardo; Hur, Su-Mi; Armas-Pérez, Julio

    2017-03-01

    Liquid crystalline polymers exhibit a particular richness of behaviors that stems from their rigidity and their macromolecular nature. On the one hand, the orientational interaction between liquid-crystalline motifs promotes their alignment, thereby leading to the emergence of nematic phases. On the other hand, the large number of configurations associated with polymer chains favors formation of isotropic phases, with chain stiffness becoming the factor that tips the balance. In this work, a soft coarse-grained model is introduced to explore the interplay of chain stiffness, molecular weight and orientational coupling, and their role on the isotropic-nematic transition in homopolymer melts. We alsomore » study the structure of polymer mixtures composed of stiff and flexible polymeric molecules. We consider the effects of blend composition, persistence length, molecular weight and orientational coupling strength on the melt structure at the nano-and mesoscopic levels. Conditions are found where the systems separate into two phases, one isotropic and the other nematic. We confirm the existence of non-equilibrium states that exhibit sought-after percolating nematic domains, which are of interest for applications in organic photovoltaic and electronic devices.« less

  16. Bulk and Thin Film Synthesis of Compositionally Variant Entropy-stabilized Oxides.

    PubMed

    Sivakumar, Sai; Zwier, Elizabeth; Meisenheimer, Peter Benjamin; Heron, John T

    2018-05-29

    Here, we present a procedure for the synthesis of bulk and thin film multicomponent (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (Co variant) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (Cu variant) entropy-stabilized oxides. Phase pure and chemically homogeneous (Mg0.25(1-x)CoxNi0.25(1-x)Cu0.25(1-x)Zn0.25(1-x))O (x = 0.20, 0.27, 0.33) and (Mg0.25(1-x)Co0.25(1-x)Ni0.25(1-x)CuxZn0.25(1-x))O (x = 0.11, 0.27) ceramic pellets are synthesized and used in the deposition of ultra-high quality, phase pure, single crystalline thin films of the target stoichiometry. A detailed methodology for the deposition of smooth, chemically homogeneous, entropy-stabilized oxide thin films by pulsed laser deposition on (001)-oriented MgO substrates is described. The phase and crystallinity of bulk and thin film materials are confirmed using X-ray diffraction. Composition and chemical homogeneity are confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The surface topography of thin films is measured with scanning probe microscopy. The synthesis of high quality, single crystalline, entropy-stabilized oxide thin films enables the study of interface, size, strain, and disorder effects on the properties in this new class of highly disordered oxide materials.

  17. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  18. Formation of hybrid nanocomposites polymethylolacrylamide/silver

    NASA Astrophysics Data System (ADS)

    Kolzunova, L. G.; Shchitovskaya, E. V.; Rodzik, I. G.

    2018-05-01

    In this study, polymethylolacrylamide/silver composites have been formed by incorporating silver nanoparticles into the pre-electrosynthesized polymer film. The composites were formed in a two-step process involving the sorption of silver nitrate by a polymer matrix followed by chemical reduction of Ag-ions. The presence of crystalline silver phase in the polymer was confirmed by X-ray phase analysis (XRD), plasmon resonance and scanning electron microscopy (SEM). The small-angle X-ray scattering (SAXS) method has obtained the distribution functions of silver particles over radii. It is established that the content of silver in composites without chitosan is 10-15 times higher than with its additive. The dependences of cyclic voltammetry in pure phosphate buffer (pH 6.86) and in the presence of hydrogen peroxide were obtained. It has been shown that polymer/silver composites exhibit selectivity to hydrogen peroxide.

  19. Effect of Fe(II)/Ce(III) dosage ratio on the structure and anion adsorptive removal of hydrothermally precipitated composites: Insights from EXAFS/XANES, XRD and FTIR.

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna

    2017-02-01

    In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer.

    PubMed

    Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-04-18

    Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.

  1. Magnetization enhancement due to incorporation of non-magnetic nitrogen content in (Co{sub 84}Zr{sub 16})N{sub x} nano-composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jitendra, E-mail: jitendra@ceeri.ernet.in; Akhtar, Jamil; Academy of Scientific and Innovative Research, New Delhi 110001

    We report the magnetic, electronic, and structural properties of nano-composite (Co{sub 84}Zr{sub 16})N{sub x} or CZN films prepared by reactive co-sputter deposition method. As-deposited CZN films have shown enhancement in magnetization (M{sub s}) with incorporation of nitrogen content, which is related to the evolution of nano-composite phase. X-ray diffraction study has confirmed poly-crystalline growth of CZN films with fcc(331) and fcc(422) phases. High-resolution transmission electron microscope study reveals that CZN films are composed of ordered and crystalline ferromagnetic Co nano-clusters, which are embedded in the nano-composite matrix. Photoemission measurements show the change in the intensity near the Fermi level mostmore » likely due to defects and shift in the core-levels binding energy with nitrogen concentration. Raman spectroscopy data show an increase in the intensity of the Raman lines with nitrogen concentration upto 20%. However, the intensity is significantly lower for 30% sample. This indicates that less nitrogen or defect states are being substituted into the lattice above 20% and is consistent with the observed magnetic behavior. Our studies indicate that defects induced due to the incorporation of non-magnetic nitrogen content play a key role to enhance the magnetization.« less

  2. Synthesis of PANi-SiO2 Nanocomposite with In-Situ Polymerization Method: Nanoparticle Silica (NPS) Amorphous and Crystalline Phase

    NASA Astrophysics Data System (ADS)

    Munasir; Luvita, N. R. D.; Kusumawati, D. H.; Putri, N. P.; Triwikantoro; Supardi, Z. A. I.

    2018-03-01

    Silica which is synthesized from natural materials such as Bancar Tuban’s sand composited with Polyaniline (PANi), where the silica used are silica has an amorphous phase and cristobalite phase. In this research, the composite method used is in- situ polymerization, which is silica entered during the fabrication of PANi, then automatically silica will be substitute into the chain bonding of PANi. The aim of this research is to find out the results of a composite process using in-situ methods as well as differences in the morphology of PANi/a- SiO2 and PANi/c-SiO2. For the characterization of samples tested in the form of FTIR to determine the functional groups of the composite and SEM to determine the morphology of the sample. From the test results of FTIR are known composite possibility has occurred because there are several functional groups belonging to silica also functional groups belonging polyaniline, functional group that’s happened in wave numbers were almost identical between PANi/a-SiO2 and PANi/c-SiO2, but there are little differences were seen in the form of a graph generated from the peak and intensity that occurred charts for PANi/c-SiO2 has peak more pointed or sharp compared to PANi/a-SiO2 because that bond of crystal is strong, stiff and has a larger particle size than the amorphous composite. Then from the data of SEM seen clearly their morphological differences between PANi/a-SiO2 and PANi/c-SiO2 where polyaniline is composited with amorphous silica will have a fault that is not uniform or irregular different from PANi/c -SiO2 has a regular fault and this is corresponding with the nature of the typical structure of amorphous and crystalline.

  3. Effects of Material Properties on Sedimentation and Aggregation of Titanium Dioxide Nanoparticles of Anatase and Rutile in the Aqueous Phase

    EPA Science Inventory

    This study investigated the sedimentation and aggregation kinetics of titanium dioxide (TiO2) nanoparticles with varying material properties (i.e., crystallinity, morphology, and chemical compositions). Used in the study were various types of commercially available TiO2 nanoparti...

  4. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOEpatents

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  5. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOEpatents

    Kim, Choong Paul [Northridge, CA; Hays, Charles C [Pasadena, CA; Johnson, William L [Pasadena, CA

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  6. Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye

    2016-09-01

    Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  8. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    DOE PAGES

    Allan, Phoebe K.; Griffin, John M.; Darwiche, Ali; ...

    2016-01-29

    We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less

  9. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    PubMed Central

    2016-01-01

    Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  10. A new sol-gel process for producing Na(2)O-containing bioactive glass ceramics.

    PubMed

    Chen, Qi-Zhi; Li, Yuan; Jin, Li-Yu; Quinn, Julian M W; Komesaroff, Paul A

    2010-10-01

    The sol-gel process of producing SiO(2)-CaO bioactive glasses is well established, but problems remain with the poor mechanical properties of the amorphous form and the bioinertness of its crystalline counterpart. These properties may be improved by incorporating Na(2)O into bioactive glasses, which can result in the formation of a hard yet biodegradable crystalline phase from bioactive glasses when sintered. However, production of Na(2)O-containing bioactive glasses by sol-gel methods has proved to be difficult. This work reports a new sol-gel process for the production of Na(2)O-containing bioactive glass ceramics, potentially enabling their use as medical implantation materials. Fine powders of 45S5 (a Na(2)O-containing composition) glass ceramic have for the first time been successfully synthesized using the sol-gel technique in aqueous solution under ambient conditions, with the mean particle size being approximately 5 microm. A comparative study of sol-gel derived S70C30 (a Na(2)O-free composition) and 45S5 glass ceramic materials revealed that the latter possesses a number of features desirable in biomaterials used for bone tissue engineering, including (i) the crystalline phase Na(2)Ca(2)Si(3)O(9) that couples good mechanical strength with satisfactory biodegradability, (ii) formation of hydroxyapatite, which may promote good bone bonding and (iii) cytocompatibility. In contrast, the sol-gel derived S70C30 glass ceramic consisted of a virtually inert crystalline phase CaSiO(3). Moreover, amorphous S70C30 largely transited to CaCO(3) with minor hydroxyapatite when immersed in simulated body fluid under standard tissue culture conditions. In conclusion, sol-gel derived Na(2)O-containing glass ceramics have significant advantages over related Na(2)O-free materials, having a greatly improved combination of mechanical capability and biological absorbability. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. A direct correlation of x-ray diffraction orientation distributions to the in-plane stiffness of semi-crystalline organic semiconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bingxiao; Awartani, Omar; O'Connor, Brendan

    2016-05-02

    Large charge mobilities of semi-crystalline organic semiconducting films could be obtained by mechanically aligning the material phases of the film with the loading axis. A key element is to utilize the inherent stiffness of the material for optimal or desired alignment. However, experimentally determining the moduli of semi-crystalline organic thin films for different loading directions is difficult, if not impossible, due to film thickness and material anisotropy. In this paper, we address these challenges by presenting an approach based on combining a composite mechanics stiffness orientation formulation with a Gaussian statistical distribution to directly estimate the in-plane stiffness (transverse isotropy)more » of aligned semi-crystalline polymer films based on crystalline orientation distributions obtained by X-ray diffraction experimentally at different applied strains. Our predicted results indicate that the in-plane stiffness of an annealing film was initially isotropic, and then it evolved to transverse isotropy with increasing mechanical strains. This study underscores the significance of accounting for the crystalline orientation distributions of the film to obtain an accurate understanding and prediction of the elastic anisotropy of semi-crystalline polymer films.« less

  12. Crystallization studies and dielectric properties of (Ba0.7Sr0.3)TiO3 in bariumaluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Divya, P. V.; Vignesh, G.; Kumar, V.

    2007-12-01

    Ferroelectric glass-ceramics with a basic composition (1 - y)(Ba0.70Sr0.30)TiO3 : y(BaO : Al2O3 : 2SiO2) have been synthesized by the sol-gel method. The major crystalline phase is the perovskite. The crystallization of the ferroelectric phase in the glass matrix have been studied using differential thermal analysis and x-ray diffraction and the kinetic parameters characterizing the crystallization have been determined using an Arrhenius model. Glass contents <= 5 mol% promoted liquid phase sintering, which reduced the sintering temperature to 1250 °C. The dielectric permittivity of the glass-ceramic samples decreased and the ferroelectric-paraelectric phase transition became more diffuse with increasing glass content. The dielectric connectivity of the ferroelectric phase in the composite have also been investigated and are reported.

  13. Crystal Analysis of Multi Phase Calcium Phosphate Nanoparticles Containing Different amount of Magnesium

    NASA Astrophysics Data System (ADS)

    Gozalian, Afsaneh; Behnamghader, Ali Asghar; Moshkforoush, Arash

    In this study, Mg doped hydroxyapatite [(Ca, Mg)10(PO4)6(OH)2] and β-tricalcium phosphate nanoparticles were synthesized via sol gel method. Triethyl phosphite, calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were used as P, Ca and Mg precursors. The ratio of (Ca+Mg)/P and the amount of magnesium (x) were kept constant at 1.67 and ranging x = 0 up to 3 in molecular formula of Ca10-xMgx (PO4)6(OH)2, respectively. Phase composition and chemical structure were performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Phase percentages, crystallite size, degree of crystallinity and lattice parameters were investigated. The presence of magnesium led to form the Mg doped tricalcium phosphate (β-TCMP) and Mg doped hydroxyapatite (Mg-HA). Based on the results of this study, lattice parameters, degree of crystallinity and crystallite size decreased with magnesium content. In addition, with increasing magnesium content, the amount of CaO phase decreased whereas the amount of MgO phase increased significantly. Obtained results can be used for new biomaterials design.

  14. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    PubMed

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  15. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  16. Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie

    2016-10-01

    The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.

  17. Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids

    DOE PAGES

    Rudraraju, Shiva; Van der Ven, Anton; Garikipati, Krishna

    2016-06-10

    Here, we present a phenomenological treatment of diffusion-driven martensitic phase transformations in multi-component crystalline solids that arise from non-convex free energies in mechanical and chemical variables. The treatment describes diffusional phase transformations that are accompanied by symmetry-breaking structural changes of the crystal unit cell and reveals the importance of a mechanochemical spinodal, defined as the region in strain-composition space, where the free-energy density function is non-convex. The approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. The governing equations describing mechanochemical spinodal decomposition aremore » variationally derived from a free-energy density function that accounts for interfacial energy via gradients of the rapidly varying strain and composition fields. A robust computational framework for treating the coupled, higher-order diffusion and nonlinear strain gradient elasticity problems is presented. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. An evaluation of available experimental phase diagrams and first-principles free energies suggests that mechanochemical spinodal decomposition should occur in metal hydrides such as ZrH 2-2c. The rich physics that ensues is explored in several numerical examples in two and three dimensions, and the relevance of the mechanism is discussed in the context of important electrode materials for Li-ion batteries and high-temperature ceramics.« less

  18. Synthesis and characterization of polymeric V2O5/AlO(OH) with nanopores on alumina support.

    PubMed

    Ahmad, A L; Abd Shukor, S R; Leo, C P

    2006-12-01

    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.

  19. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  20. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  1. Advances in covalent organic frameworks in separation science.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping

    2018-03-23

    Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Multifunctional cerium-based nanomaterials and methods for producing the same

    DOEpatents

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  3. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  4. Experimental input for the design of metallic glass/crystalline composites

    NASA Astrophysics Data System (ADS)

    Hutchinson, Nicholas Willis

    Bulk metallic glasses often exhibit exceptional strength and large elastic strains, but the structural applications of bulk metallic glasses are limited by their extremely low tensile ductility. Below the glass transition temperature of the alloy, plastic deformation occurs primarily in narrow shear bands, which propagate unimpeded through the monolithic glass structure, resulting in catastrophic failure under tensile loading. A number of studies have added crystalline reinforcements to the glassy matrix in an effort to block shear band propagation and increase ductility. The reinforcements in these bulk metallic glass matrix composites (BMGMC's) can be added as ex situ particles or fibers infiltrated by the glass-forming liquid [1], or can be formed in situ, either via devitrification of the glass during post-processing [2] or as a second phase that precipitates from the melt during solidification [3]. The size, distribution, and mechanical properties of the reinforcement phase have significant impact on the ductility of the composite. However, surprisingly little quantitative microstructural information is available for BMGMC's, particularly those formed by precipitation from the melt. In this work, we examine two in situ BMGMC's in which a ductile crystalline phase precipitates during solidification of the melt, resulting in a complex dendritic structure embedded in a continuous glass matrix. A 3D serial sectioning process was used to image the microstructure at regular intervals by removing slices of material using a dual beam focused ion-scanning electron microscope (FIB). Due to the complex nature of the microstructure, measurements of key features were conducted using a 3D measurement method that was developed for this purpose. Experiments were also conducted to provide experimental input for the development and tuning of finite element models. Changes in the elastic modulus of the composite were evaluated over a range of stresses that encompassed the yield point of the composite. An interesting increase in the modulus was observed prior to yielding. The work is concluded with a study of the accumulation of strain within the composite microstructure during tensile loading. The strain was determined and evaluated by a digital image correlation method. [1] R. B. Dandliker, R. D. Conner, and W. L. Johnson, "Melt infiltration casting of bulk metallic-glass matrix composites," J. Mater. Res., vol. 13, no. 10, pp. 2896--2901, 1998. [2] J. Eckert, J. Das, S. Pauly, and C. Duhamel, "Mechanical Properties of Bulk Metallic Glasses and Composites," J. Mater. Res., vol. 22, no. 2, pp. 285--301, 2007. [3] D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, "Designing metallic glass matrix composites with high toughness and tensile ductility.," Nature, vol. 451, no. 7182, pp. 1085--9, Feb. 2008.

  5. Zinc-doped cerium oxide nanoparticles: Sol-gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects

    NASA Astrophysics Data System (ADS)

    Akbari, Alireza; Khammar, Mansoureh; Taherzadeh, Danial; Rajabian, Arezoo; Khorsand Zak, Ali; Darroudi, Majid

    2017-12-01

    Zinc-doped cerium oxide nanoparticles (Zn-doped CeO2-NPs) with Ce1-xZnxO2 composition, where x equals to 0.0, 0.01, 0.03, and 0.05 are synthesized through a green based sol-gel method from nitrate precursors and gelatin at the fixed calcination temperature of 600 °C maintained for 2 h. The powder X-ray diffraction (PXRD) patterns displayed the single-crystalline structure of these particular samples, which seemed to be completely indexed with the cubic fluorite phase. The evolution of crystalline phases in Ce1-xZnxO2 are assured by the observed broadening in PXRD peaks, while the field emission scanning electron microscopy (FE-SEM) images revealed that the spherical-shaped single-crystalline NPs do exist and confirmed the size estimations that were obtained from the Scherrer's equation. A dose dependent toxicity with non-toxic effects of concentrations up to 31.25 μg/ml is illustrated through the In vitro cytotoxicity studies regarding Neuro2A cells.

  6. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    PubMed

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  7. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  8. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings.

    PubMed

    Yu, L-G; Khor, K A; Li, H; Cheang, P

    2003-07-01

    The crystalline phases and degree of crystallinity in plasma sprayed calcium phosphate coatings on Ti substrates are crucial factors that influence the biological interactions of the materials in vivo. In this study, plasma sprayed hydroxyapatite (HA) coatings underwent post-spray treatment by the spark plasma sintering (SPS) technique at 500 degrees C, 600 degrees C, and 700 degrees C for duration of 5 and 30 min. The activity of the HA coatings before and after SPS are evaluated in vitro in a simulated body fluid. The surface microstructure, crystallinity, and phase composition of each coating is characterized by scanning electron microscopy and X-ray diffractometry before, and after in vitro incubation. Results show that the plasma sprayed coatings treated for 5 min in SPS demonstrated increased proportion of beta-TCP phase with a preferred-orientation in the (214) plane, and the content of beta-TCP phase corresponded to SPS temperature, up to 700 degrees C. SPS treatment at 700 degrees C for 30 min enhanced the HA content in the plasma spray coating as well. The HA coatings treated in SPS for 5 min revealed rapid surface morphological changes during in vitro incubation (up to 12 days), indicating that the surface activity is enhanced by the SPS treatment. The thickest apatite layer was found in the coating treated by SPS at 700 degrees C for 5 min.

  9. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  10. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.

  11. Synthesis and crystalline properties of CdS incorporated polyvinylidene fluoride (PVDF) composite film

    NASA Astrophysics Data System (ADS)

    Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh

    2018-05-01

    This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.

  12. High-Pressure γ-CaMgSi2O6: Does Penta-Coordinated Silicon Exist in the Earth's Mantle?

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Kiefer, Boris; Bina, Craig R.; Zhang, Dongzhou; Dera, Przemeslaw K.

    2017-11-01

    In situ X-ray diffraction experiments with natural Fe- and Al- bearing diopside single crystals and density functional theory (DFT) calculations on diopside end-member composition indicate the existence of a new high-pressure γ-diopside polymorph with rare penta-coordinated silicon. On compression α-diopside transforms to the γ-phase at ˜50 GPa, which in turn, on decompression is observed to convert to the known β-phase below 47 GPa. The new γ-diopside polymorph constitutes another recent example of penta-coordinated silicon (VSi) in overcompressed metastable crystalline silicates, suggesting that VSi may exist in the transition zone and the uppermost lower mantle in appreciable quantities, not only in silicate glass and melts but also in crystalline phases contained in the coldest parts of subducted stagnant slabs. VSi may have significant influences on buoyancy, wave velocity anomalies, deformation mechanisms, chemical reactivity of silicate rocks, and seismicity within the slab.

  13. Molybdenum Carbamate Nanosheets as a New Class of Potential Phase Change Materials.

    PubMed

    Zhukovskyi, Maksym; Plashnitsa, Vladimir; Petchsang, Nattasamon; Ruth, Anthony; Bajpai, Anshumaan; Vietmeyer, Felix; Wang, Yuanxing; Brennan, Michael; Pang, Yunsong; Werellapatha, Kalpani; Bunker, Bruce; Chattopadhyay, Soma; Luo, Tengfei; Janko, Boldizsar; Fay, Patrick; Kuno, Masaru

    2017-06-14

    We report for the first time the synthesis of large, free-standing, Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states.

  14. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    NASA Astrophysics Data System (ADS)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  15. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    DOE PAGES

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less

  16. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  17. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  18. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    NASA Astrophysics Data System (ADS)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  19. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S.

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRDmore » diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.« less

  20. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  1. Crystallization kinetics of Mg–Cu–Yb–Ca–Ag metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsarkov, Andrey A., E-mail: tsarkov@misis.ru; WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577; Zanaeva, Erzhena N.

    The paper presents research into a Mg–Cu–Yb system based metallic glassy alloys. Metallic glasses were prepared using induction melting and further injection on a spinning copper wheel. The effect of alloying by Ag and Ca on the glass forming ability and the kinetics of crystallization of Mg–Cu–Yb system based alloys were studied. The differential scanning calorimeter and X-ray diffractometer were used to investigate the kinetics of crystallization and the phase composition of the samples. An indicator of glass forming ability, effective activation energy of crystallization, and enthalpy of mixing were calculated. An increase of the Ca and Ag content hasmore » a positive effect on the glass forming ability, the effective activation energy of crystallization, and the enthalpy of mixing. The highest indicators of the glass forming ability and the thermal stability were found for alloys that contain both alloying elements. The Ag addition suppresses precipitation of the Mg{sub 2}Cu phase during crystallization. A dual-phase glassy-nanocrystalline Mg structure was obtained in Mg{sub 65}Cu{sub 25}Yb{sub 10} and Mg{sub 59.5}Cu{sub 22.9}Yb{sub 11}Ag{sub 6.6} alloys after annealing. Bulk samples with a composite glassy-crystalline structure were obtained in Mg{sub 59.5}Cu{sub 22.9}Yb{sub 11}Ag{sub 6.6} and Mg{sub 64}Cu{sub 21}Yb{sub 9.5}Ag{sub 5.5} alloys. A thermodynamic database for the Mg–Cu–Yb–Ca–Ag system was created to compare the process of crystallization of alloys with polythermal sections of the Mg–Cu–Yb–Ca–Ag phase diagram. - Highlights: • New alloy compositions based on Mg–Cu–Yb system were developed and investigated. • Increasing content of Ag and Ca leads to improving GFA. • Bulk samples with a composite glassy-crystalline structure were obtained. • Thermodynamic database for Mg–Cu–Yb–Ca–Ag system was created.« less

  2. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  3. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage

    PubMed Central

    Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

    2013-01-01

    A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated. PMID:23712069

  4. Basalt Weathering in a Cold and Icy Climate: Three Sisters, Oregon as an Analog for Early Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Horgan, B.; Smith, R. J.; Scudder, N. A.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-01-01

    There is abundant evidence for liquid water on early Mars, but the debate remains whether early Mars was warm and wet or cold and icy with punctuated periods of melting. To further investigate the hypothesis of a cold and icy early Mars, we collected rocks and sediments from the Collier and Diller glacial valleys in the Three Sisters volcanic complex in Oregon. We analyzed rocks and sediments with X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible, short-wave infrared (VSWIR) and thermal-IR (TIR) spectroscopies to characterize chemical weathering and sediment transport through the valleys. Here, we focus on the composition and mineralogy of the weathering products and how they compare to those identified on the martian surface. Phyllosilicates (smectite), zeolites, and poorly crystalline phases were discovered in pro- and supra-glacial sediments, whereas Si-rich regelation films were found on hand samples and boulders in the proglacial valleys. Most phyllosilicates and zeolites are likely detrital, originating from hydrothermally altered units on North Sister. TEM-EDS analyses of the <2 um size fraction of glacial flour samples demonstrate a variety of poorly crystalline (i.e., no long-range crystallographic order) phases: iron oxides, devitrified volcanic glass, and Fe-Si-Al phases. The CheMin XRD on the Curiosity rover in Gale crater has identified significant amounts of X-ray amorphous materials in all samples measured to date. The amorphous component is likely a combination of silicates, iron oxides, and sulfates. Although we have not yet observed amorphous sulfate in the samples from Three Sisters, the variety of poorly crystalline weathering products found at this site is consistent with the variable composition of the X-ray amorphous component identified by CheMin. We suggest that these amorphous phases on Mars could have formed in a similarly cold and icy environment.

  5. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    NASA Technical Reports Server (NTRS)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  6. Synthesis and structural analysis of Fe doped TiO2 nanoparticles using Williamson Hall and Scherer Model

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Labhane, P. K.; Huse, V. R.; Gaikwad, K. D.; Chaudhari, A. L.

    2018-05-01

    The nanoparticles of Pure and doped Ti1-xFexO were synthesized by modified co-precipitation method successfully with nominal composite of x=0.0, 0.01, 0.03 and 0.05 at room temperature. The precursors were further calcined at 500°C for 6hrs in muffle furnace which results in the formation of different TiO2 phase compositions. The structural analysis carried out by XRD (Bruker D8 Cu-Kα1). X-ray peak broadening analysis was used to evaluate the crystalline sizes, the lattice parameters, atomic packing fraction, c/a ratio, X-ray density and Volume of unit cell. The Williamson Hall analysis is used to find grain size and Strain of prepared TiO2 nano particles. Crystalline TiO2 with a Tetragonal Anatase phase is confirmed by XRD results. The grain size of pure and Fe doped samples were found in the range of 10nm to 18nm. All the physical parameters of anatase tetragonal TiO2 nanoparticles were calculated more precisely using modified W-H plot a uniform deformation model (UDM). The results calculated from both the techniques were approximately similar.

  7. Processing and properties of ceramic matrix-polymer composites for dental applications

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored. Strengths and toughnesses were not severely degraded by immersion in simulated body fluids up to 30 days. The composite elastic modulus approached that of hard tissues and its wear behavior with opposing tooth was excellent. Growth of apatite over the entire composite surface was achieved in SBF. Growth of apatite in human whole saliva was achieved on the bioactive glass surface, but not on the composite surface.

  8. Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite

    NASA Astrophysics Data System (ADS)

    Salimi, M. N. Ahmad; Chin, H. S.

    2017-10-01

    The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.

  9. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  10. Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)-CaCu3Ti4O12 (CCTO) Composite

    NASA Astrophysics Data System (ADS)

    Mallmann, E. J. J.; Silva, M. A. S.; Sombra, A. S. B.; Botelho, M. A.; Mazzetto, S. E.; de Menezes, A. S.; Almeida, A. F. L.; Fechine, P. B. A.

    2015-01-01

    The main object of this work is to study two materials with giant dielectric constants: CaCu3Ti4O12 (CCTO) and Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC). CBTC1- x -CCTO x composites were also obtained to create a new dielectric material with dielectric properties between these two phases. Structural properties were studied by x-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and dielectric measurements. CCTO showed a cubic phase and CBTC an orthorhombic phase. An interesting result was that the dielectric constant ( K) did not follow the rule of the mixture of Lichtnecker, and this happened due to the presence of other phases of its crystalline structure, which decreases the value of K when compared to the predicted values of Lichtnecker. It was also found that the dielectric properties of the composite are very promising for use in microelectronics, according to the miniaturization factor, which is crucial for those applications.

  11. Shear thinning behaviors in magmas

    NASA Astrophysics Data System (ADS)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour of the partly crystallized melt. This new dataset can be used to model the behaviour of lavas during magma rise in conduits and lava flow on Earth surface and other planetary bodies. F. Vetere et al., (2017) Experimental constraints on the rheology, eruption and emplacement dynamics of lavas from Mercury Northern Volcanic Plains". JGR-Planets DOI: 10.1002/2016JE005181

  12. Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film.

    PubMed

    Huang, Ruomeng; Kissling, Gabriela P; Jolleys, Andrew; Bartlett, Philip N; Hector, Andrew L; Levason, William; Reid, Gillian; De Groot, C H 'Kees'

    2015-12-01

    We report the properties of a series of electrodeposited Ge-Sb-Te alloys with various compositions. It is shown that the Sb/Ge ratio can be varied in a controlled way by changing the electrodeposition potential. This method opens up the prospect of depositing Ge-Sb-Te super-lattice structures by electrodeposition. Material and electrical characteristics of various compositions have been investigated in detail, showing up to three orders of magnitude resistance ratio between the amorphous and crystalline states and endurance up to 1000 cycles.

  13. Phase-Change Memory Properties of Electrodeposited Ge-Sb-Te Thin Film

    NASA Astrophysics Data System (ADS)

    Huang, Ruomeng; Kissling, Gabriela P.; Jolleys, Andrew; Bartlett, Philip N.; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. `Kees'

    2015-11-01

    We report the properties of a series of electrodeposited Ge-Sb-Te alloys with various compositions. It is shown that the Sb/Ge ratio can be varied in a controlled way by changing the electrodeposition potential. This method opens up the prospect of depositing Ge-Sb-Te super-lattice structures by electrodeposition. Material and electrical characteristics of various compositions have been investigated in detail, showing up to three orders of magnitude resistance ratio between the amorphous and crystalline states and endurance up to 1000 cycles.

  14. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  15. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  16. Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.

    2001-10-01

    Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.

  17. Organic-Inorganic Composites Toward Biomaterial Application.

    PubMed

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.

  18. Ultra-soft magnetic properties and correlated phase analysis by {sup 57}Fe Mössbauer spectroscopy of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjura Hoque, S.; Liba, S. I.; Akhter, Shireen

    2016-02-15

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe{sub 74}Cu{sub 0.8}Nb{sub 2.7}Si{sub 15.5}B{sub 7} was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark fieldmore » (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.« less

  19. Ultra-soft magnetic properties and correlated phase analysis by 57Fe Mössbauer spectroscopy of Fe74Cu0.8Nb2.7Si15.5B7 alloy

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Liba, S. I.; Anirban, A.; Choudhury, Shamima; Akhter, Shireen

    2016-02-01

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe74Cu0.8Nb2.7Si15.5B7 was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark field (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.

  20. Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C₃N₄ Composite for Hydrocarbon Oxidation.

    PubMed

    Chen, Ke; Chai, Zhigang; Li, Cong; Shi, Liurong; Liu, Mengxi; Xie, Qin; Zhang, Yanfeng; Xu, Dongsheng; Manivannan, Ayyakkannu; Liu, Zhongfan

    2016-03-22

    Mass production of high-quality graphene flakes is important for commercial applications. Graphene microsheets have been produced on an industrial scale by chemical and liquid-phase exfoliation of graphite. However, strong-interaction-induced interlayer aggregation usually leads to the degradation of their intrinsic properties. Moreover, the crystallinity or layer-thickness controllability is not so perfect to fulfill the requirement for advanced technologies. Herein, we report a quartz-powder-derived chemical vapor deposition growth of three-dimensional (3D) high-quality graphene flakes and demonstrate the fabrication and application of graphene/g-C3N4 composites. The graphene flakes obtained after the removal of growth substrates exhibit the 3D curved microstructure, controllable layer thickness, good crystallinity, as well as weak interlayer interactions suitable for preventing the interlayer stacking. Benefiting from this, we achieved the direct synthesis of g-C3N4 on purified graphene flakes to form the uniform graphene/g-C3N4 composite, which provides efficient electron transfer interfaces to boost its catalytic oxidation activity of cycloalkane with relatively high yield, good selectivity, and reliable stability.

  1. Synthesis, structural, characterization and dielectric spectroscopy of PVDF - BaTiO3 polymer composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. S.; Belavi, P. B.; Khadke, U. V.

    2018-05-01

    In this paper we report the method of synthesis of ferroelectric polymer Polyvinyldene fluoride (PVDF) and Barium Titanate (BaTiO3) composite self supporting thin films and its dielectric response. BaTiO3 was synthesized by solid state reaction method. The PVDF - BaTiO3 polymer composites with various concentrations were synthesized by solution mixing method using Dimethylformadide (DMF) as a solvent. The phase transformation and surface methodology of the prepared composites were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) respectively. The XRD pattern confirms the formation of tetragonal pervoskite structure of ferroelectric phase. The XRD pattern shows the proper mixing of BaTiO3 particles intestinally and found to be improving its crystallinity with increase of BaTiO3 composition in the PVDF matrix. The dielectric properties of the composites as a function of frequency were computed using impedance analyzer. The dielectric constant decreases with increase of frequency shows the Maxwell - Wagner type of interfacial polarization in accordance with Koop's phenomenological theory.

  2. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    PubMed

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  3. Pressure-Induced Phase Transitions in GeTe-Rich Ge-Sb-Te Alloys across the Rhombohedral-to-Cubic Transitions.

    PubMed

    Krbal, Milos; Bartak, Jaroslav; Kolar, Jakub; Prytuliak, Anastasiia; Kolobov, Alexander V; Fons, Paul; Bezacier, Lucile; Hanfland, Michael; Tominaga, Junji

    2017-07-17

    We demonstrate that pressure-induced amorphization in Ge-Sb-Te alloys across the ferroelectric-paraelectric transition can be represented as a mixture of coherently distorted rhombohedral Ge 8 Sb 2 Te 11 and randomly distorted cubic Ge 4 Sb 2 Te 7 and high-temperature Ge 8 Sb 2 Te 11 phases. While coherent distortion in Ge 8 Sb 2 Te 11 does not prevent the crystalline state from collapsing into its amorphous counterpart in a similar manner to pure GeTe, the pressure-amorphized Ge 8 Sb 2 Te 11 phase begins to revert to the crystalline cubic phase at ∼9 GPa in contrast to Ge 4 Sb 2 Te 7 , which remains amorphous under ambient conditions when gradually decompressed from 40 GPa. Moreover, experimentally, it was observed that pressure-induced amorphization in Ge 8 Sb 2 Te 11 is a temperature-dependent process. Ge 8 Sb 2 Te 11 transforms into the amorphous phase at ∼27.5 and 25.2 GPa at room temperature and 408 K, respectively, and completely amorphizes at 32 GPa at 408 K, while some crystalline texture could be seen until 38 GPa (the last measurement point) at room temperature. To understand the origins of the temperature dependence of the pressure-induced amorphization process, density functional theory calculations were performed for compositions along the (GeTe) x - (Sb 2 Te 3 ) 1-x tie line under large hydrostatic pressures. The calculated results agreed well with the experimental data.

  4. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma

    NASA Astrophysics Data System (ADS)

    Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.

    2010-12-01

    Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix composition and thermodynamic conditions could facilitate a transformation to more crystalline iron phases and increase metal bioavailability. While preliminary data from in-creek aggregates show no clear trend in mineralogical composition with downstream transport, only the furthest downstream samples have 2-line ferrihydrite in amounts detectable by XRD.

  6. Ion Implantation Metallurgy: A Study of the Composition, Structure and Corrosion Behavior of Surface Alloys Formed by Ion Implantation.

    DTIC Science & Technology

    1980-04-01

    spots are due to the " phase ). Dark field imaging of the a" phase shows a large density of small precipitates uniformly distributed in the ferrite . In...density of defect structures and small precipitates of Fe 16N2 (a"). Although there exists some evidence of martensitic transformation in aged speci...implantation into 304 stainless steel ha-s been shown to produce a micro- crystalline surface alloy saturated with P. Combined electrochemical and XPS studies

  7. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul

    2016-04-19

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less

  8. A cost-effective process to prepare VO{sub 2} (M) powder and films with superior thermochromic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiudi; Zhang, Hua; Chai, Guanqi

    2014-03-01

    Graphical abstract: Combining codeposition and short time post annealing, VO{sub 2} (M) with high quality and excellent phase transition performance is obtained. After mixing the VO{sub 2} powder with acrylic resin, the composite films deposited on glass show superior visible transmission and solar modulation, which can be used as an excellent candidate of low cost smart window in energy saving field. - Highlights: • The VO{sub 2} powder obtained by short time thermolysis method is high purity and crystallinity with superior phase transition performance. • The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w =more » 0.4 at%. • After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite films is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. • Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4%, which means that it is a potential candidate as smart windows. - Abstract: VO{sub 2} powder with superior phase transition performance was prepared by convenient thermolysis method. The results illustrated that VO{sub 2} powder show high purity and crystallinity. VO{sub 2} particles are transformed from cluster to quasi-sphere with the increase of annealing temperature. The DSC analysis proves that VO{sub 2} show superior phase transition performance around 68 °C. The phase transition temperature can be reduced to 33.5 °C by 1.8 at% tungsten doping. The maximum decreasing efficiency of phase transition temperature is about −30 K/at% with w = 0.4 at%. After mixing VO{sub 2} powder with acrylic resin, the maximal visible transmission of the composite thin films on glass is 48% and the transmission modulation at 2000 nm is 37.3% with phase transition temperature of 66.2 °C. Though the phase transition performance is weakened by tungsten doping, the film prepared by 1.3 at% tungsten doped VO{sub 2} still show superior transmission modulation about 26.4% at 2000 nm, which means that it is a potential candidate as smart windows.« less

  9. Crystallized alkali-silica gel in concrete from the late 1890s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Karl; Gress, David; Van Dam, Tom

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less

  10. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; MacLachlan, Mark J.

    2017-12-01

    Tactoids are liquid crystalline microdroplets that spontaneously nucleate from isotropic dispersions, and transform into macroscopic anisotropic phases. These intermediate structures have been found in a range of molecular, polymeric and colloidal liquid crystals. Typically only studied by polarized optical microscopy, these ordered but easily deformable microdroplets are now emerging as interesting components for structural investigations and developing new materials. In this review, we highlight the structure, property and transformation of tactoids in different compositions, but especially cellulose nanocrystals. We have selected references that illustrate the diversity and most exciting developments in tactoid research, while capturing the historical development of this field. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  11. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  12. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  13. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    PubMed

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  14. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction.

    PubMed

    Kováčik, Andrej; Vogel, Alexander; Adler, Juliane; Pullmannová, Petra; Vávrová, Kateřina; Huster, Daniel

    2018-05-01

    In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2 H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2 H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Consequences of the superstrong nature of chalcogenide glass-forming liquids at select compositions

    NASA Astrophysics Data System (ADS)

    Gunasekera, Kapila; Bhosle, Siddhesh; Boolchand, Punit; Micoulaut, Matthieu

    2014-03-01

    Growth of homogeneous melts of stoichiometric compositions of chalcogenides is facilitated by underlying crystalline phases. Such is not the case for non-stoichiometric melt compositions in which, for example, variation of fragility (m) from complex specific heat measurements show global minimum at an extremely low value (m =14.8(0.5)) in the 21.5% Tg over days, we have observed a slowdown of melt-homogenization by the super-strong melt compositions, 21.5%

  16. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals.

    PubMed

    Liu, Qingkun; Campbell, Michael G; Evans, Julian S; Smalyukh, Ivan I

    2014-11-12

    Nematic-like and helicoidally orientational self-assemblies of gold nanorods co-dispersed with cellulose nanocrystals to form liquid crystalline phases are developed. Polarization-sensitive extinction spectra and two-photon luminescence imaging are used to characterize orientations and spatial distributions of gold nanorods. Cholesteric-isotropic phase coexistence and continuous domains of single-phase regions are observed and qualitatively discussed on the basis of entropic and electrostatic interactions in co-dispersions of rigid rods of different aspect ratios. Potential applications include biologically compatible plasmonic composite nanomaterials for solar biofuel production and polarization-sensitive plasmonic papers and fabrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Confocal raman microscopy as a non-invasive tool to investigate the phase composition of frozen complex cryopreservation media.

    PubMed

    Kreiner-Møller, A; Stracke, F; Zimmermann, H

    2013-01-01

    Various cryoprotective agents (CPA) are added to cell media in order to avoid cell injury during cryo preservation. The resulting complex environment of the preserved cell, consisting of crystalline and liquid phases can however not be investigated non-invasively by established methods in cryobiology. This study shows how scanning confocal Raman microscopy can non-invasively extract information on chemical composition, phase domain and distribution at cryogenic temperatures. The formation of the salt hydrate, hydrohalite NaCl∙H2O, in solutions comprised of phosphate buffered saline (PBS) and dimethyl sulphoxide (DMSO) is studied in particular. Scanning confocal Raman microscopy can be used to unambiguously identify hydrohalite in a medium containing DMSO and saline. The confocal Raman microscopy imaging along with differential scanning calorimetric measurements further show that the hydrohalite is formed without eutectic formation. This method also allows for discrimination between closely packed hydrohalite crystals that are oriented differently.

  18. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  19. Low-temperature formation of crystalline Si:H/Ge:H heterostructures by plasma-enhanced CVD in combination with Ni-nanodots seeding nucleation

    NASA Astrophysics Data System (ADS)

    Lu, Yimin; Makihara, Katsunori; Takeuchi, Daichi; Ikeda, Mitsuhisa; Ohta, Akio; Miyazaki, Seiichi

    2017-06-01

    Hydrogenated microcrystalline (µc) Si/Ge heterostructures were prepared on quartz substrates by plasma-enhanced chemical vapor deposition (CVD) from VHF inductively coupled plasma of SiH4 just after GeH4 employing Ni nanodots (NDs) as seeds for crystalline nucleation. The crystallinity of the films and the progress of grain growth were characterized by Raman scattering spectroscopy and atomic force microscopy (AFM), respectively. When the Ge films were grown on Ni-NDs at 250 °C, the growth of µc-Ge films with crystallinity as high as 80% was realized without an amorphous phase near the Ge film/quartz substrate interface. After the subsequent Si film deposition at 250 °C, fine grains were formed in the early stages of film growth on µc-Ge films with compositional mixing (µc-Si0.85Ge0.15:H) caused by the release of large lattice mismatch between c-Si and c-Ge. With further increase in Si:H film thickness, the formation of large grain structures accompanied by fine grains was promoted. These results suggest that crystalline Si/Ge heterojunctions can be used for efficient carrier collection in solar cell application.

  20. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.

    PubMed

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2015-09-01

    One α-tricalcium phosphate (α-TCP) powder was either calcined at 500°C to obtain fully crystalline α-TCP or milled for different durations to obtain α-TCP powders containing various amounts of X-ray amorphous tricalcium phosphate (ATCP). These powders containing between 0 and 71wt.% ATCP and up to 2.0±0.1wt.% β-TCP as minor phase were then hydrated in 0.1M Na2HPO4 aqueous solution and the resulting heat flows were measured by isothermal calorimetry. Additionally, the evolution of the phase composition during hydration was determined by in situ XRD combined with the G-factor method, an external standard method which facilitates the indirect quantification of amorphous phases. Maximum ATCP hydration was reached after about 1h, while that of crystalline α-TCP hydration occurred between 4 and 11h, depending on the ATCP content. An enthalpy of formation of -4065±6kJ/mol (T=23°C) was calculated for ATCP (Ca3(PO4)2), while for crystalline α-TCP (α-Ca3(PO4)2) a value of -4113±6kJ/mol (T=23°C) was determined. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    NASA Astrophysics Data System (ADS)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  2. X-ray diffraction and SEM study of kidney stones in Israel: quantitative analysis, crystallite size determination, and statistical characterization.

    PubMed

    Uvarov, Vladimir; Popov, Inna; Shapur, Nandakishore; Abdin, Tamer; Gofrit, Ofer N; Pode, Dov; Duvdevani, Mordechai

    2011-12-01

    Urinary calculi have been recognized as one of the most painful medical disorders. Tenable knowledge of the phase composition of the stones is very important to elucidate an underlying etiology of the stone disease. We report here the results of quantitative X-ray diffraction phase analysis performed on 278 kidney stones from the 275 patients treated at the Department of Urology of Hadassah Hebrew University Hospital (Jerusalem, Israel). Quantification of biominerals in multicomponent samples was performed using the normalized reference intensity ratio method. According to the observed phase compositions, all the tested stones were classified into five chemical groups: oxalates (43.2%), phosphates (7.7%), urates (10.3%), cystines (2.9%), and stones composed of a mixture of different minerals (35.9%). A detailed analysis of each allocated chemical group is presented along with the crystallite size calculations for all the observed crystalline phases. The obtained results have been compared with the published data originated from different geographical regions. Morphology and spatial distribution of the phases identified in the kidney stones were studied with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). This type of detailed study of phase composition and structural characteristics of the kidney stones was performed in Israel for the first time.

  3. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2015-10-27

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  4. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.

  5. Gauging Spatial Symmetries and the Classification of Topological Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Thorngren, Ryan; Else, Dominic V.

    2018-01-01

    We put the theory of interacting topological crystalline phases on a systematic footing. These are topological phases protected by space-group symmetries. Our central tool is an elucidation of what it means to "gauge" such symmetries. We introduce the notion of a crystalline topological liquid and argue that most (and perhaps all) phases of interest are likely to satisfy this criterion. We prove a crystalline equivalence principle, which states that in Euclidean space, crystalline topological liquids with symmetry group G are in one-to-one correspondence with topological phases protected by the same symmetry G , but acting internally, where if an element of G is orientation reversing, it is realized as an antiunitary symmetry in the internal symmetry group. As an example, we explicitly compute, using group cohomology, a partial classification of bosonic symmetry-protected topological phases protected by crystalline symmetries in (3 +1 ) dimensions for 227 of the 230 space groups. For the 65 space groups not containing orientation-reversing elements (Sohncke groups), there are no cobordism invariants that may contribute phases beyond group cohomology, so we conjecture that our classification is complete.

  6. Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions.

    PubMed

    Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P

    2013-01-07

    Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.

  7. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, Phoebe K.; Griffin, John M.; Darwiche, Ali

    We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, Phoebe K.; Griffin, John M.; Darwiche, Ali

    Operando pair distribution function (PDF) analysis and ex situ Na-23 magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from Na-23 ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electro-chemically; a-Na3-xSb (x approximate to 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, amore » highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3-xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphofis network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3-xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3-xSb without the formation of a-Na3-xSb. a-Na3-xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature Na-23 NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less

  10. ESR Measurement Of Crystallinity In Semicrystalline Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    Photogenerated free radicals decay at different rates in crystalline and amorphous phases. Degree of crystallinity in polymer having both crystalline and amorphous phases measured indirectly by technique based in part on electron-spin-resonance (ESR) spectroscopy. Accuracy of crystallinity determined by new technique equals or exceeds similar determinations by differential scanning calorimetry, wide-angle x-ray scattering, or measurement of density.

  11. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders

    NASA Astrophysics Data System (ADS)

    Latifi, S. M.; Fathi, M. H.; Golozar, M. A.

    One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

  13. Nonlinear optical properties of metal alkanoate composites with hybrid core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Rudenko, V.; Tolochko, A.; Zhulai, D.; Klimusheva, G.; Mirnaya, T.; Yaremchuk, G.; Asaula, V.

    2018-02-01

    New composites with hybrid CdSe/ZnS and Au/CdSe nanoparticles (NPs) were chemically synthesized in the thermotropic liquid crystalline phase (smectic A) of cadmium octanoate. Features of structure and nonlinear optical properties of glassy cadmium octanoate composites with hybrid core/shell NPs were studied using small-angle X-ray scattering method and Z-scan technique. Experimental optical setup (Z-scan) is based on a Nd: YAG laser, generating 9 ns pulses with a repetition rate of 0,5 Hz on a wavelength of 532 nm. The effects of the influence of hybrid NPs on the nonlinear optical properties of nanocomposites are considered in this study.

  14. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms anmore » L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.« less

  15. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    NASA Astrophysics Data System (ADS)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  16. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    PubMed

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure.

  17. Phase Constitution in Sr and Mg doped LaGaO3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.

    Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less

  18. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less

  19. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    PubMed

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p<0.05). A-TiO 2 and M-TiO 2 films presented superior photocatalytic activity than R-TiO 2 (p<0.05). M-TiO 2 revealed the greatest antibacterial activity followed by A-TiO 2 (≈99.9% and 99% of bacterial reduction, respectively) (p<0.001 vs. control). R-TiO 2 had no antibacterial activity (p>0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  20. Studies of Brazilian meteorites. III - Origin and history of the Angra dos Reis achondrite

    NASA Technical Reports Server (NTRS)

    Prinz, M.; Keil, K.; Hlava, P. F.; Berkley, J. L.; Gomes, C. B.; Curvello, W. S.

    1977-01-01

    The mineral composition of the Angra dos Reis meteorite, which fell in 1869, is described. This achondrite contains phases reported in a meteorite for the first time. Petrofabric analysis shows that fassaite has a preferred orientation and lineation, which is interpreted as being due to cumulus processes, possibly the effect of post-depositional magmatic current flow or laminar flow of a crystalline mush. The mineral chemistry indicates crystallization from a highly silica-undersaturated melt at low pressure. Several aspects of the mineral composition are discussed with reference to the implications of crystallization conditions.

  1. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are in range and this talk will provide an update on data collected with the CheMin instrument.

  2. Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure

    NASA Astrophysics Data System (ADS)

    Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.

    2016-02-01

    The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.

  3. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.

    PubMed

    Simon-Deckers, A; Gouget, B; Mayne-L'hermite, M; Herlin-Boime, N; Reynaud, C; Carrière, M

    2008-11-20

    If released in the environment, nanomaterials might be inhaled by populations and cause damage to the deepest regions of the respiratory tract, i.e., the alveolar compartment. To model this situation, we studied the response of A549 human pneumocytes after exposure to aluminium oxide or titanium oxide nanoparticles, and to multi-walled carbon nanotubes. The influence of size, crystalline structure and chemical composition was investigated. After a detailed identification of nanomaterial physico-chemical characteristics, cells were exposed in vitro and viability and intracellular accumulation were assessed. In our conditions, carbon nanotubes were more toxic than metal oxide nanoparticles. Our results confirmed that both nanotubes and nanoparticles are able to rapidly enter into cells, and distribute in the cytoplasm and intracellular vesicles. Among nanoparticles, we demonstrate significant difference in biological response as a function of size, crystalline phase and chemical composition. Their toxicity was globally lower than nanotubes toxicity. Among nanotubes, the length did not influence cytotoxicity, neither the presence of metal catalyst impurities.

  4. Study of Zn-Pb ore tailings and their potential in cement technology

    NASA Astrophysics Data System (ADS)

    Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.

    2018-03-01

    This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.

  5. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  6. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo

    2017-10-01

    Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.

  7. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d (110) ) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH 3 NH 3 PbI 3-x Cl x perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH 3 NH 3 PbI 3-x Cl x g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO 2 -based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH 3 NH 3 PbI 3-x Cl x perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  8. Visible Wavelength Spectroscopy of Ferric Minerals: A Key Tool for Identification of Ancient Martian Aqueous Environments

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Bell, J. F., III; Morris, Richard V.

    2000-01-01

    The mineralogic signatures of past aqueous alteration of a basaltic Martian crust may include iron oxides and oxyhydroxides, zeolites, carbonates, phyllosilicates, and silica. The identities, relative abundances, and crystallinities of the phases formed in a particular environment depend on physicochemical conditions. At one extreme, hot spring environments may be characterized by smectite-chlorite to talc-kaolinite silicate assemblages, plus crystalline ferric oxides dominated by hematite. However, most environments, including cold springs, pedogenic layers, and ponded surface water, are expected to deposit iron oxides and oxyhydroxides, carbonates, and smectite-dominated phyllosilicates. A substantial fraction of the ferric iron is expected to occur in nanophase form, with the exact mineralogy strongly influenced by Eh-pH conditions. Detection of these phases has been an objective of a large body of terrestrial telescopic, Mars orbital, and landed spectral investigations and in situ compositional measurements. However, clear identifications of many of these phases is lacking. Neither carbonate nor silica has been unequivocally detected by any method. Although phyllosilicates may occur near the limit of detection by remote sensing, in general they appear to occur in only poorly crystalline form. In contrast, compelling evidence for ferric iron minerals has been gathered by recent telescopic investigations, the Imager for Mars Pathfinder (IMP), and the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor (MGS). These data yield two crucial findings: (1) In the global, high spatial resolution TES data set, highly crystalline ferric iron (as coarse-grained 'gray' hematite) has been recognized but with only very limited spatial occurrence and (2) Low-resolution telescopic reflectance spectroscopy, very limited orbital reflectance spectroscopy, and landed multispectral imaging provide strong indications that at least two broad classes of ferric iron minerals are commonplace in non-dust covered regions.

  9. Study of piezoelectric filler on the properties of PZT-PVDF composites

    NASA Astrophysics Data System (ADS)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  10. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  11. Study the effect of mechanical alloying parameters on synthesis of Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayesteh, Payam, E-mail: shayesteh.payam@gmail.com; Mirdamadi, Shamseddin; Razavi, Hossein

    2014-01-01

    Graphical abstract: - Highlights: • Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite synthesized through MA. • Effect of BPR, rotating speed, milling time and PCA concentration investigated. • After annealing at 1100 °C crystalline phase were appeared. • Williamson–Hall analysis was used in order to study the grain size of nano composite. - Abstract: In this study, Cr{sub 2}Nb–20 vol.% Al{sub 2}O{sub 3} nanocomposite was prepared successfully by mechanochemical reaction between Al, Nb and Cr{sub 2}O{sub 3} powders. Amorphization of powder occurred during mechanical alloying because of high energy collisions between powders and steel balls in milling container which transfer high degreemore » of energy to powders. Therefore, annealing was needed to form crystalline phases. The influence of different mechanical alloying parameters such as BPR, rotating speed, milling time and PCA concentration on synthesis of composite material were investigated. After mechanical alloying, the powder was encapsulated in quartz and then annealed at 1100 °C for 3 h. After annealing, 3 different phases were appeared (Cr{sub 2}Nb (cubic), Cr{sub 2}Nb (hexagonal) and α-Al{sub 2}O{sub 3}). The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)« less

  12. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  13. Phase Evaluation in Al2O3 Fiber-Reinforced Ti2AlC During Sintering in the 1300 degrees C-1500 degrees C Temperature Range

    DTIC Science & Technology

    2011-01-01

    composition: 97% Al2O3 and 3% SiO2] fibers. In both cases, the fibers were chopped with a razor blade into 5 cm lengths. Mixing of the powder and...the presence of XRD amorphous Ti- aluminides (see below) or other phases cannot be ruled out at this juncture. When the XRD spectrum of the as-received...not shown). No peaks belonging to any Ti- aluminide were found suggesting them to be amorphous or at most nano-crystalline. A typical TEM micrograph of

  14. Formation of Silicate Grains in Circumstellar Environments: Experiment, Theory and Observations

    NASA Technical Reports Server (NTRS)

    Castleman, A., Jr.; Reber, A.; Clayborne, P.; Reveles, J.; Khanna, S.; Ali, A.

    2006-01-01

    Amongst chemical reactions (1) in the molecular universe (2), condensation reaction is probably the most poorly understood. The condensation of a solid from its components in the gas phase occurs in many parts of our galaxy such as stellar mass outflows, the terrestrial region of protoplanetary disks and in primordial solar nebula (3). But how does the transition occur from molecules to intermediate clusters to macroscopic grains? The major focus of the present work is the identification of chemical condensation reaction pathways that lead to the formation of stoichiometry, composition and crystallinity of cosmic silicates from vapor phase species.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yajing; Chen, Yan; Chen, Kepi

    In this study, the effects of doping with GeO 2 on the synthesis temperature, phase structure and morphology of (K 0.5Na 0.5)NbO 3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO 2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

  16. Synchrotron-based XRD from rat bone of different age groups.

    PubMed

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    PubMed

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  19. Morphology and crystalline phase study of electrospun TiO2 SiO2 nanofibres

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Kim, Hakyong; Kim, Chulki; Khil, Myungseob; Park, Soojin

    2003-05-01

    Nanofibres of TiO2-SiO2 (Ti:Si = 50: 50 mol%) with diameters of 50-400 nm were prepared by calcining electrospun nanofibres of polyvinyl acetate (PVac)/titania-silica composite as precursor. These PVac/titania-silica hybrid nanofibres were obtained from a homogenous solution of PVac with a sol-gel of titanium isopropoxide (TiP) and tetraethoxysilane by using the electrospinning technique. The nanofibres were characterized by scanning electron microscopy (SEM), wide-angle x-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy and Brunauer-Emmett-Teller (BET) surface area. SEM, WAXD and FTIR results indicated that the morphology and crystalline phase of TiO2-SiO2 nanofibres were strongly influenced by the calcination temperature and the content of titania and silica in the nanofibres. Additionally, the BET results showed that the surface area of TiO2-SiO2 nanofibres was decreased with increasing calcination temperature and the content of titania and silica in nanofibres.

  20. Synthesis and characterization of PbTiO3 based glass ceramics

    NASA Astrophysics Data System (ADS)

    Shankar, J.; Rani, G. Neeraja; Mamatha, B.; Deshpande, V. K.

    2017-05-01

    Glass samples with composition (50 - X) PbO - XCaO - 25 TiO2 - 25 B2O3 (where = 0, .5, 10 and 15 mol %) were prepared using conventional quenching technique. It was observed that with the addition of alkaline earth oxides to lead borate glass containing TiO2 alters the network (conversion of BO3 to BO4) increasing the rigidity of the glass which enhances the Tg. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The density values of glass ceramic samples are higher than those of corresponding glass samples. It was observed that there was good correlation between the density and CTE results of the glass-ceramics. The XRD results in the glass ceramics revealed the formation of tetragonal lead titanate as a major crystalline phase and Ca3Ti2O7 as minor crystalline phase. The ferroelectric nature of all the glass ceramic samples is confirmed by P - E hysteresis measurements.

  1. [Biological activity evaluation of porous HA ceramics using NH4 HCO3/PVA as pore-creating agents].

    PubMed

    Wang, Songquan; Zhang, Dekun

    2010-12-01

    Porous HA ceramics were prepared by using NH4 HCO3/PVA as pore-formed material along with biological glass as intensifier, and these ceramics were immersed in Locke's Physiological Saline and Simulate Body Fluid (SBF). The changes of phase composition, grain size and crystallinity of porous HA ceramics before and after immersion were investigated by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The biological activity was evaluated. The porous HA ceramics showed various degrees of decomposition after immersion in the two solution systems, but there was no evident change in respect to crystallinity. Besides, the impact of different degrees of solution systems on the change of grain size and planar preferred orientation was observed. The TCP phase of the ceramics immersed in Locke's Physiological Saline decomposed and there was no crystal growth on the surface of ceramics; however, the grain size of ceramics immersed in SBF became refined in certain degree and the surface of ceramics took on the new crystal growth.

  2. Effect of sintering process and additives on the properties of cordierite based ceramics

    NASA Astrophysics Data System (ADS)

    Rundans, M.; Sperberga, I.; Sedmale, G.; Stinkulis, G.

    2013-12-01

    It is possible to obtain cordierite ceramics with high temperature synthesis using both synthetic and raw natural materials. This paper discusses the possibilities to obtain cordierite ceramics, replacing part of required oxides with raw materials from various Latvian deposits of dolomite and clay. The obtained raw cordierite powders were ground in two modes (3 and 12 hours) and fired at 1200 °C. Ceramic samples were characterized by hydrostatic weighting method; crystalline phase composition was studied by XRD. Obtained samples were evaluated by their mechanical (compressive) strength and linear coefficient of thermal expansion (CTE). Thermal shock resistance was tested using water quenching method and afterwards evaluated by using ultrasonic method to test changes in Young's modulus of elasticity. Results show that increase in grinding time causes samples to densify and promote formation of cordierite crystalline phase which corresponds to increase in total compressive strength and decrease of CTE values. CTE values of samples ground for 12 hours conform to that of obtained in other researches.

  3. Local structure of the crystalline and amorphous states of Ga2Te3 phase-change alloy without resonant bonding: A combined x-ray absorption and ab initio study

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Krbal, M.; Mitrofanov, K.; Tominaga, J.; Uruga, T.

    2017-02-01

    Phase-change memories are usually associated with GeTe-Sb2Te3 quasibinary alloys, where the large optical contrast between the crystalline and amorphous phases is attributed to the formation of resonant bonds in the crystalline phase, which has a rocksalt-like structure. The recent findings that tetrahedrally bonded Ga2Te3 possesses a similarly large property contrast and very low thermal conductivity in the crystalline phase and undergoes low-energy switching [H. Zhu et al., Appl. Phys. Lett. 97, 083504 (2010), 10.1063/1.3483762; K. Kurosaki et al., Appl. Phys. Lett. 93, 012101 (2008), 10.1063/1.2940591] challenge the existing paradigm. In this work we report on the local structure of the crystalline and amorphous phases of Ga2Te3 obtained from x-ray absorption measurements and ab initio simulations. Based on the obtained results, a model of phase change in Ga2Te3 is proposed. We argue that efficient switching in Ga2Te3 is due to the presence of primary and secondary bonding in the crystalline phase originating from the high concentration of Ga vacancies, whereas the structural stability of both phases is ensured by polyvalency of Te atoms due to the presence of lone-pair electrons and the formation of like-atom bonds in the amorphous phase.

  4. Superconductivity in a Misfit Phase That Combines the Topological Crystalline Insulator Pb 1-xSn xSe with the CDW-Bearing Transition Metal Dichalcogenide TiSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, H.; Yan, K.; Pletikosic, I.

    We report the characterization of the misfit compound (Pb 1-xSn xSe 2)1.16(TiSe 2) 2 for 0 ≤ x ≤ 0.6, in which a [100] rocksalt-structure bilayer of Pb1-xSnxSe, which is a topological crystalline insulator in bulk form, alternates with a double layer of the normally nonsuperconducting transition metal dichalcogenide TiSe 2. The x dependence of Tc displays a weak dome-like shape with a maximum Tc of 4.5 K at x = 0.2; there is only a subtle change in Tc at the composition where the trivial to topological transition occurs in bulk Pb1-xSnxSe. We present the characterization of the superconductormore » at x = 0.4, for which the bulk Pb1-xSnxSe phase is in the topological crystalline insulator regime. For this material, the Sommerfeld parameter γ = 11.06 mJ mol -1 K -2, the Debye temperature Θ D = 161 K, the normalized specific heat jump value ΔC/γT c = 1.38 and the electron-phonon constant value γ ep = 0.72, suggesting that (Pb 0.6Sn 0.4Se) 1.16(TiSe 2) 2 is a BCS-type weak coupling superconductor. This material may be of interest for probing the interaction of superconductivity with the surface states of a topological crystalline insulator.« less

  5. Superconductivity in a Misfit Phase That Combines the Topological Crystalline Insulator Pb 1-xSn xSe with the CDW-Bearing Transition Metal Dichalcogenide TiSe 2

    DOE PAGES

    Luo, H.; Yan, K.; Pletikosic, I.; ...

    2016-05-13

    We report the characterization of the misfit compound (Pb 1-xSn xSe 2)1.16(TiSe 2) 2 for 0 ≤ x ≤ 0.6, in which a [100] rocksalt-structure bilayer of Pb1-xSnxSe, which is a topological crystalline insulator in bulk form, alternates with a double layer of the normally nonsuperconducting transition metal dichalcogenide TiSe 2. The x dependence of Tc displays a weak dome-like shape with a maximum Tc of 4.5 K at x = 0.2; there is only a subtle change in Tc at the composition where the trivial to topological transition occurs in bulk Pb1-xSnxSe. We present the characterization of the superconductormore » at x = 0.4, for which the bulk Pb1-xSnxSe phase is in the topological crystalline insulator regime. For this material, the Sommerfeld parameter γ = 11.06 mJ mol -1 K -2, the Debye temperature Θ D = 161 K, the normalized specific heat jump value ΔC/γT c = 1.38 and the electron-phonon constant value γ ep = 0.72, suggesting that (Pb 0.6Sn 0.4Se) 1.16(TiSe 2) 2 is a BCS-type weak coupling superconductor. This material may be of interest for probing the interaction of superconductivity with the surface states of a topological crystalline insulator.« less

  6. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites.

    PubMed

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Dolors Baró, Maria; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr 48 Cu 48 -  x Al 4 M x (M ≡ Fe or Co, x  = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr 48 Cu 48 Al 4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x  = 0.5 (5.5% in Zr 48 Cu 47.5 Al 4 Co 0.5 and 6.2% in Zr 48 Cu 47.5 Al 4 Fe 0.5 ) is considerably larger than for Zr 48 Cu 48 Al 4 or the alloys with x  = 1. Slight variations in the Young's modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  7. Drastic influence of minor Fe or Co additions on the glass forming ability, martensitic transformations and mechanical properties of shape memory Zr-Cu-Al bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    González, Sergio; Pérez, Pablo; Rossinyol, Emma; Suriñach, Santiago; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2014-06-01

    The microstructure and mechanical properties of Zr48Cu48 - x Al4M x (M ≡ Fe or Co, x = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent Zr48Cu48Al4 material. Addition of Fe and Co promotes the transformation from austenite to martensite during the course of nanoindentation or compression experiments, resulting in an enhancement of plasticity. However, the presence of Fe or Co also reduces the glass forming ability, ultimately causing a worsening of the mechanical properties. Owing to the interplay between these two effects, the compressive plasticity for alloys with x = 0.5 (5.5% in Zr48Cu47.5Al4Co0.5 and 6.2% in Zr48Cu47.5Al4Fe0.5) is considerably larger than for Zr48Cu48Al4 or the alloys with x = 1. Slight variations in the Young’s modulus (around 5-10%) and significant changes in the yield stress (up to 25%) are also observed depending on the composition. The different microstructural factors that have an influence on the mechanical behavior of these composites are investigated in detail: (i) co-existence of amorphous and crystalline phases in the as-cast state, (ii) nature of the crystalline phases (austenite versus martensite content), and (iii) propensity for the austenite to undergo a mechanically-driven martensitic transformation during plastic deformation. Evidence for intragranular nanotwins likely generated in the course of the austenite-martensite transformation is provided by transmission electron microscopy. Our results reveal that fine-tuning of the composition of the Zr-Cu-Al-(Fe,Co) system is crucial in order to optimize the mechanical performance of these bulk MG composites, to make them suitable materials for structural applications.

  8. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NOx abatement

    NASA Astrophysics Data System (ADS)

    Tobaldi, D. M.; Pullar, R. C.; Gualtieri, A. F.; Otero-Irurueta, G.; Singh, M. K.; Seabra, M. P.; Labrincha, J. A.

    2015-11-01

    Titanium dioxide (TiO2) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO2 has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO2 to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO2 lattice using our green sol-gel nanosynthesis method, used to create 10 nm TiO2 NPs. Two parallel routes were studied to produce nitrogen-modified TiO2 nanoparticles (NPs), using HNO3+NH3 (acid-precipitated base-peptised) and NH4OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NOx) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NOx abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO2 NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed on the photocatalyst surface; (ii) growth of crystalline domain sizes with decrease in specific surface area; (iii) onset and progress of the ART; (iv) the increasing instability of the nitrogen in the titania lattice.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Righettoni, Marco; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensormore » applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.« less

  10. Piezoelectric response and electrical properties of Pb(Zr1-xTix)O3 thin films: The role of imprint and composition

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Mocuta, C.; Escoubas, S.; Merabet, A.; Texier, M.; Lima, E. C.; Araujo, E. B.; Kholkin, A. L.; Thomas, O.

    2017-10-01

    The compositional dependence of the piezoelectric properties of self-polarized PbZr1-xTixO3 (PZT) thin films deposited on Pt/TiO2/SiO2/Si substrates (x = 0.47, 0.49 and 0.50) was investigated by in situ synchrotron X-ray diffraction and electrical measurements. The latter evidenced an imprint effect in the studied PZT films, which is pronounced for films with the composition of x = 0.50 and tends to disappear for x = 0.47. These findings were confirmed by in situ X-ray diffraction along the crystalline [100] and [110] directions of the films with different compositions revealing asymmetric butterfly loops of the piezoelectric strain as a function of the electric field; the asymmetry is more pronounced for the PZT film with a composition of x = 0.50, thus indicating a higher built-in electric field. The enhancement of the dielectric permittivity and the effective piezoelectric coefficient at compositions around the morphotropic phase boundary were interpreted in terms of the polarization rotation mechanism and the monoclinic phase in the studied PZT thin films.

  11. Phase transformations in amorphous fullerite C60 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, V. V.; Somenkov, V. A.; Filonenko, V. P.

    2015-08-01

    First phase transformations of amorphous fullerite C60 at high temperatures (up to 1800 K) and high pressures (up to 8 GPa) have been investigated and compared with the previous studies on the crystalline fullerite. The study was conducted using neutron diffraction and Raman spectroscopy. The amorphous fullerite was obtained by ball-milling. We have shown that under thermobaric treatment no crystallization of amorphous fullerite into С60 molecular modification is observed, and it transforms into amorphous-like or crystalline graphite. A kinetic diagram of phase transformation of amorphous fullerite in temperature-pressure coordinates was constructed for the first time. Unlike in crystalline fullerite, no crystalline polymerized phases were formed under thermobaric treatment on amorphous fullerite. We found that amorphous fullerite turned out to be less resistant to thermobaric treatment, and amorphous-like or crystalline graphite were formed at lower temperatures than in crystalline fullerite.

  12. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  13. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  14. Structural phase study in un-patterned and patterned PVDF semi-crystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in

    2014-04-24

    This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity andmore » quality of the films.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersedmore » in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.« less

  16. Synthesis of novel sulfosalt materials with curved crystalline habits

    NASA Astrophysics Data System (ADS)

    Crawford, Guy Moore

    Minerals and man-made materials with circular crystalline habit are very rare. A group of the complex iron-containing sulfosalt minerals exhibit a non-commensurate layered crystalline structure and are found with curved crystals. Cylindrite, named because of its cylindrical crystal habit, is the most easily recognized member of the group. The other members of the family, franckeite, incaite and potosiite, have similar compositions and are all lamellar. The two incommensurate interpenetrating sublattices have different but definite structures. One sublattice is PbS-type pseudotetragonal and the other SnS 2-type pseudohexagonal. Iron is found in both sublattices. The detailed crystal structures of these minerals remains unsolved. With the exception of a few phase studies, little is known about the chemistry of the minerals or the mechanism that prompts the formation of these misfit-layered materials. As sulfides, these minerals are of interest for their potential electronic and magnetic applications. A series of synthesis reactions were carried out to examine the effects on the properties and structures of the sulfosalts that are induced by the substitutions into the crystal lattice. Other transition metals were substituted in the place of iron in the incommensurate minerals, and selenium and tellurium replaced sulfur in cylindrite. The structure and properties were evaluated by environmental scanning electron microscopy, X-ray diffraction and differential thermal analysis. Curved and lamellar features were observed in several phases of the synthetic substitutional products. No correlations were immediately evident relating the composition to the propensity to form curved features.* *This dissertation is multimedia (contains text and other applications not available in printed format). The CD requires the following system application: Microsoft Office.

  17. Effect of Yttrium Addition on the Microstructure and Mechanical Properties of Cu-Rich Nano-phase Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; He, Jibai; Luan, Guoqing; Ke, Mingpeng; Fang, Haoyan; Lu, Jianduo

    2018-03-01

    Due to the brittle problem of Cu-rich nano-phase strengthened ferritic steel (CNSFS) after air aging, the effect of Y addition in CNSFS was systemically investigated in the present work. The microstructure, tensile fracture morphology and oxide layer of the steels were surveyed by optical microscope and scanning electron microscope. Transmission electron microscope with the combination of energy-dispersive x-ray spectroscopy and selected area electron diffraction was used to analyze the morphology, size, number density, chemical compositions and crystal structure for nano-crystalline precipitates. Microstructural examinations of the nano-crystalline precipitates show that Cu-rich precipitates and Y compounds in the range of 2-10 and 50-100 nm, respectively, form in the Y-containing steel; meanwhile, the average size of nano-crystalline precipitates in Y-containing steel is larger, but the number density is lower, and the ferritic grains are refined. Furthermore, the tensile strength and ductility of Y-containing steel after air aging are improved, whereas the tensile strength is enhanced and the ductility decreased after vacuum aging. The drag effect of Y makes the oxide layer thinner and be compacted. Tensile properties of CNSFS after air aging are improved due to the refined grains, antioxidation and purification by the addition of Y.

  18. Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules

    USGS Publications Warehouse

    Glassley, W.E.; Piper, D.Z.

    1978-01-01

    Fractionation of Co and Sc between garnets, olivines, and clino- and orthopyroxenes, separated from a suite of Salt Lake Crater ultramafic nodules that equilibrated at the same T and P, is strongly dependent on Fe contents. This observation suggests that petrogenetic equilibrium models of partial melting and crystal fractionation must take into account effects of magma composition, if they are to describe quantitatively geochemical evolutionary trends. ?? 1978.

  19. Study of marbles from Middle Atlas (Morocco): elemental, mineralogical and structural analysis

    NASA Astrophysics Data System (ADS)

    Khrissi, S.; Bejjit, L.; Haddad, M.; Falguères, C.; Ait Lyazidi, S.; El Amraoui, M.

    2018-05-01

    A series of marbles sampled from the region of Middle Atlas (Morocco), are characterized by different complementary spectroscopic techniques. X-Ray fluorescence is used to determine elemental composition of rock while X-Ray diffraction and the Raman spectroscopy are used to determine major crystalline phases (calcite and dolomite) and minor ones (quartz).The samples display typical EPR spectra of Mn2+ in calcite and reveal the presence of Fe3+ ions.

  20. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    NASA Astrophysics Data System (ADS)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  1. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Dane F.

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity],more » a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O 2 cannot be ignored, especially for the FHR, in which environment the product, SiO 2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.« less

  2. The composition of secondary amorphous phases under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.

    2017-12-01

    X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.

  3. Visualising phase change in a brushite-based calcium phosphate ceramic

    PubMed Central

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-01-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s – Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media. PMID:27604149

  4. Visualising phase change in a brushite-based calcium phosphate ceramic

    NASA Astrophysics Data System (ADS)

    Bannerman, A.; Williams, R. L.; Cox, S. C.; Grover, L. M.

    2016-09-01

    The resorption of brushite-based bone cements has been shown to be highly unpredictable, with strong dependence on a number of conditions. One of the major factors is phase transformation, with change to more stable phases such as hydroxyapatite affecting the rate of resorption. Despite its importance, the analysis of phase transformation has been largely undertaken using methods that only detect crystalline composition and give no information on the spatial distribution of the phases. In this study confocal Raman microscopy was used to map cross-sections of brushite cylinders aged in Phosphate Buffered Saline, Foetal Bovine Serum, Dulbecco’s - Minimum Essential Medium (with and without serum). Image maps showed the importance of ageing medium on the phase composition throughout the ceramic structure. When aged without serum, there was dissolution of the brushite phase concomitant to the deposition of octacalcium phosphate (OCP) around the periphery of the sample. The deposition of OCP was detectable within five days and reduced the rate of brushite dissolution from the material. The use of serum, even at a concentration of 10vol% prevented phase transformation. This paper demonstrates the value of confocal Raman microscopy in monitoring phase change in biocements; it also demonstrates the problems with assessing material degradation in non-serum containing media.

  5. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.

    PubMed Central

    Xiang, T X; Anderson, B D

    1997-01-01

    Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account. PMID:8994607

  6. Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen

    Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.

  7. Modeling multicomponent ion exchange equilibrium utilizing hydrous crystalline silicotitanates by a multiple interactive ion exchange site model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Z.; Anthony, R.G.; Miller, J.E.

    1997-06-01

    An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less

  8. Indium Gallium Zinc Oxide: Phase Formation and Crystallization Kinetics during Millisecond Laser Spike Annealing

    NASA Astrophysics Data System (ADS)

    Lynch, David Michael

    Flat panel displays have become ubiquitous, enabling products from highresolution cell phones to ultra-large television panels. Amorphous silicon (a- Si) has been the industry workhorse as the active semiconductor in pixeladdressing transistors due to its uniformity and low production costs. However, a-Si can no longer support larger and higher-resolution displays, and new materials with higher electron mobilities are required. Amorphous indium gallium zinc oxide (a-IGZO), which retains the uniformity and low cost of amorphous films, has emerged as a viable candidate due to its enhanced transport properties. However, a-IGZO devices suffer from long-term instabilities--the origins of which are not yet fully understood--causing a drift in switching characteristics over time and affecting product lifetime. More recently, devices fabricated from textured nanocrystalline IGZO, termed c-axis aligned crystalline (CAAC), have demonstrated superior stability. Unfortunately, little is known regarding the phase formation and crystallization kinetics of either the CAAC structure or in the broader ternary IGZO system. Crystallinity and texture of CAAC IGZO films deposited by RF reactive sputtering were studied and characterized over a wide range of deposition conditions. The characteristic CAAC (0 0 9) peak at 2theta = 30° was observed by X-ray diffraction, and nanocrystalline domain texture was determined using a general area detector diffraction system (GADDS). Highly ordered CAAC films were obtained near the InGaZnO4 composition at a substrate temperature of 310 °C and in a 10%O2/90% Ar sputtering ambient. High-resolution transmission electron microscopy (HRTEM) confirmed the formation of CAAC and identified 2-3 nm domains coherently aligned over large ranges extending beyond the field of view (15 nm x 15 nm). Cross-section HRTEM of the CAAC/substrate interface shows formation of an initially disordered IGZO layer prior to CAAC formation, suggesting a nucleation mechanism similar to ZnO thin films. A classical nucleation and growth model is proposed and compared to alternative models proposed in literature. Extending this study of CAAC IGZO, the formation and growth of crystalline IGZO over a wide composition range and processing conditions were explored. IGZO itself is one composition of a class of homologous structures in the pseudo-binary InGaO3(ZnO)m system. For integer m, the equilibrium structure is known and well-characterized; however, for non-integer m, disorder must exist and the kinetics of the structural development remain almost completely unknown. A high-throughput (combinatorial) approach utilizing co-sputter deposition, millisecond timescale thermal gradient laser annealing, and spatially-resolved characterization using microbeam wide-angle X-ray scattering was used to probe the structural evolution as a function of temperature, time, and composition. As-deposited films were amorphous in the InGaO3- rich composition range, becoming crystalline (wurtzite) with increasing ZnO content. Under millisecond heating, films evolved toward the equilibrium layered structure consisting of nearly pure In2O3 layers with (Ga, Zn)Ox interlayers. Composition deviations (non-integer m) are discussed within a model of cationic disorder in both the In2O3 layers and the (Ga, Zn)O x layers. Crystal-tocrystal transformations in the high-ZnO region are discussed within the context of a new growth model for these homologous structures. This deeper understanding of the nature of crystalline IGZO will help to enable the successful implementation of CAAC IGZO for high-performance display applications.

  9. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.

    2007-09-01

    The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.

  10. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  11. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  13. Ti-Si-C thin films produced by magnetron sputtering: correlation between physical properties, mechanical properties and tribological behavior.

    PubMed

    Cunha, L; Vaz, F; Moura, C; Munteanu, D; Ionescu, C; Rivière, J P; Le Bourhis, E

    2010-04-01

    Ti-Si-C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney's equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase (alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCI TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10(3) omega/sq for low non-metal concentration, up to 10(6) omega/sq for the highest metalloid concentration. A strong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings.

  14. Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics.

    PubMed

    Denry, I L; Holloway, J A; Nakkula, R J; Walters, J D

    2005-10-01

    Niobium oxide has been shown to improve biocompatibility and promote bioactivity. The purpose of this study was to evaluate the effect of niobium oxide additions on the microstructure and thermal properties of fluorapatite glass-ceramics for biomedical applications. Four glass-ceramic compositions with increasing amounts of niobium oxide from 0 to 5 wt % were prepared. The glass compositions were melted at 1,525 degrees C for 3 h, quenched, ground, melted again at 1,525 degrees C for 3 h and furnace cooled. The coefficient of thermal expansion was measured by dilatometry. The crystallization behavior was evaluated by differential thermal analysis. The nature of the crystalline phases was investigated by X-ray diffraction. The microstructure was studied by SEM. In addition, the cytotoxicity of the ceramics was evaluated according to the ASTM standard F895--84. The results from X-ray diffraction analyses showed that fluorapatite was the major crystalline phase in all glass-ceramics. Differential thermal analyses revealed that fluorapatite crystallization occurred between 800 and 934 degrees C depending on the composition. The coefficient of thermal expansion varied from 7.6 to 9.4 x 10(-6)/ degrees C. The microstructure after heat treatment at 975 degrees C for 30 min consisted of submicroscopic fluorapatite crystals (200--300 nm) for all niobium-containing glass-ceramics, whereas the niobium-free glass-ceramic contained needle-shaped fluorapatite crystals, 2 microm in length. None of the glass-ceramics tested exhibited any cytotoxic activity as tested by ASTM standard F895--84. (c) 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2005.

  15. Tamoxifen-model membrane interactions: an FT-IR study

    NASA Astrophysics Data System (ADS)

    Boyar, Handan; Severcan, Feride

    1997-06-01

    The temperature- and concentration-induced effects of tamoxifen (TAM) on dipalmitoyl phosphatidylcholine (DPPC) model membranes were investigated by the Fourier transform-infrared (FT-IR) spectroscopic technique. An investigation of the C-H stretching region and the CO mode reveals that the inclusion of TAM changes the physical properties of the DPPC multibilayers by (i) shifting the main phase transition to lower temperatures; (ii) broadening the transition profile slightly; (iii) disordering the system in the gel and in the liquid crystalline phases; (iv) increasing the dynamics in the gel phase and decreasing the dynamics of the acyl chains in the liquid crystalline phase; (v) increasing the mobility of the terminal methyl group region of the bilayer in the gel phase and decreasing it in the liquid crystalline phase; (vi) increasing the frequency of the CO stretching mode both in the gel and in the liquid crystalline phases, i.e. non-bonding with carbonyl groups.

  16. Nanomembrane structures having mixed crystalline orientations and compositions

    DOEpatents

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  17. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  18. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  19. The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.

    2014-07-01

    The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.

  20. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  1. Modified Bridgman-Stockbarger growth and characterization of LiInSe{sub 2} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, P., E-mail: ramasamyp@ssn.edu.in; Magesh, M., E-mail: ramasamyp@ssn.edu.in; Arunkumar, A., E-mail: ramasamyp@ssn.edu.in

    2014-04-24

    The LiInSe{sub 2} polycrystalline materials were successfully synthesized from melt and temperature oscillation method. 8 mm diameter and 32 mm length single crystal was grown from Bridgman-Stockbarger method with steady ampoule rotation. Crystalline phase was confirmed by powder XRD pattern. Thermo gravimetric and differential thermal analysis confirms that the melting point of the grown crystal is 897°C. Rutherford backscattering analysis (RBS) gives the crystal composition as Li{sub 0.8}In{sub 1.16}Se{sub 2.04}. The crystalline perfection of the grown crystal was analyzed by High resolution X-ray diffraction measurements (HRXRD). The electrical properties of the grown crystal were analyzed by Hall effect measurements andmore » it confirms the n-type semiconducting nature.« less

  2. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  3. [Nano-hydroxyapatite/collagen composite for bone repair].

    PubMed

    Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei

    2002-04-01

    To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.

  4. One-, two- and three-phase viscosity treatments for basaltic lava flows

    PubMed Central

    Harris, Andrew J. L.; Allen, John S.

    2009-01-01

    Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456

  5. An Investigation of the Effects of Metallurgical and/or Testing Variables on the Acoustic Emission from Crystalline Materials.

    DTIC Science & Technology

    1982-09-01

    alloy , a number of minor phases have been reported (Thompson and Brooks, 1975). The precipitates expected after the heat treatments used in this study... precipitate or inclusion fracture, twin formation, martensite to create detectable acoustic emission. In alloy formation, dislocation motion, and... precipitate anticipated for each heat The nominal composition of 2219 is given in Table 2. It is treatment. essentially a binary aluminium- copper alloy

  6. Nano-crystalline phase evolution and structural modification in Co/V substituted Li2O-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Dahiya, M. S.; Hooda, A.; Agarwal, A.; Khasa, S.

    2018-05-01

    Co/V substituted Li2O-Bi2O3-B2O3 glasses having composition 7CoO•23Li2O•20Bi2O3•50B2O3(CLBB) and xCoO•(30-x)Li2O•20Bi2O3•50B2O3(x = 0.0, 2.0, 5.0, 7.0 and 10.0 mol%, CVLBB1-5 respectively) developed via melt- quench route. The effect of annealing on structural properties of prepared samples was investigated by using XRD patterns and FTIR spectroscopy. Glasses annealed at 400˚C remained amorphous whereas glasses annealed at 500˚C changes from glasses to glass ceramics. The different crystalline phases i.e. Bi2(V0.9Co0.1)O5.25, LiCoVO4, V2O5 & Bi2(VO5) evolve on annealing at 500°C for 6 hours confirmed from the corresponding XRD patterns. The crystallite size of prepared samples were found to vary as 38-60nm This indicated that CoO and V2O5 introduced in matrix act as crystallizing agents and cause structural modification as studied by the FTIR spectra for all heat treated compositions.

  7. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)(n)F, n = 1.0-2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-08-23

    The effects of the HF composition, n, in 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C(12)MIm(FH)(n)F, n = 1.0-2.3) on their physicochemical and structural properties have been investigated using infrared spectroscopy, thermal analysis, polarized optical microscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. The phase diagram of C(12)MIm(FH)(n)F (n vs transition temperature) suggests that C(12)MIm(FH)(n)F is a mixed crystal system that has a boundary around n = 1.9. For all compositions, a liquid crystalline mesophase with a smectic A interdigitated bilayer structure is observed. The temperature range of the mesophase decreases with increasing n value (from 61.8 °C for C(12)MIm(FH)(1.0)F to 37.0 °C for C(12)MIm(FH)(2.3)F). The layer spacing of the smectic structure decreases with increasing n value or increasing temperature. Two structural types with different layer spacings are observed in the crystalline phase (type I, 1.0 ≤ n ≤ 1.9, and type II, 1.9 ≤ n ≤ 2.3). Ionic conductivities parallel and perpendicular to the smectic layers (σ(||) and σ([perpendicular])) increase with increasing n value, whereas the anisotropy of the ionic conductivities (σ(||)/σ([perpendicular])) is independent of the n value, since the thickness of the insulating sheet formed by the dodecyl group remains nearly unchanged.

  8. Microscopic studies of polycrystalline nanoparticle growth in free space

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2017-06-01

    We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.

  9. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis

    DOE PAGES

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; ...

    2016-07-19

    Here, cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fastmore » pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.« less

  10. Magnetotransport properties of microstructured AlCu2Mn Heusler alloy thin films in the amorphous and crystalline phase

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, José; Stiller, Markus; Esquinazi, Pablo D.; Quispe-Marcatoma, Justiniano; Häussler, Peter

    2018-06-01

    We have studied the resistance, magnetoresistance and Hall effect of AlCu2Mn Heusler alloy thin films prepared by flash evaporation on substrates cooled at 4He liquid temperature. The as-prepared samples were amorphous and were annealed stepwise to induce the transformation to the crystalline phase. The amorphous phase is metastable up to above room temperature and the transition to the crystalline phase was observed by means of resistance measurements. Using transmission electron microscopy, we have determined the structure factor S (K) and the pair correlation function g (r) , both results indicate that amorphous AlCu2Mn is an electronic stabilized phase. The X-ray diffraction of the crystallized film shows peaks corresponding to the well ordered L21 phase. The resistance shows a negative temperature coefficient in both phases. The magnetoresistance (MR) is negative in both phases, yet larger in the crystalline state compared to the amorphous one. The magnetic properties were studied further by anomalous Hall effect measurements, which were present in both phases. In the amorphous state, the anomalous Hall effect disappears at temperatures below 175 K and is present up to above room temperature in the case of crystalline AlCu2Mn.

  11. High crystalline Cu2ZnSnS4 semiconductor prepared from low toxicity ethanol-based precursors

    NASA Astrophysics Data System (ADS)

    Munir, Badrul; Prastyo, Bayu Eko; Nurjaya, Dwi Marta; Muslih, Ersan Yudhapratama; Alfauzan, Sahri Karim

    2017-01-01

    At this moment, we present a new, cost-effective, and environmentally friendly method of preparing a high crystalline Cu2ZnSnS4 (CZTS) absorber layer for thin film solar cells using ethanol-based solutions. Ethanolamine (ETA) and 2-mercaptopropionic acid (MPA) were studied as a stabilizer and to improve wetting ability of the precursors during the deposition process. Cu2ZnSnS4 precursors are deposited onto soda lime glass using spin coater in different molar of cations in the precursor. The effects of a precursor system, ethanol-ETA-MPA, and ethanol-MPA, on the structure, morphology, composition and optical properties of CZTS thin films have been investigated in details. X-ray diffraction and energy-dispersive X-ray spectroscopy analyses confirmed the successful fabrication of high crystalline Cu2ZnSnS4 kesterite phase. The crystallinity of CZTS is continue increasing before reaching 2.2 molar cations of the ethanol-MPA precursors. The crystallinity of ethanol-ETA-MPA precursors remains similar in the experiment using 1.2 molar and 1.6 molars. The highest crystallinity was achieved using 2 molar cations of the ethanol-MPA precursor. Its band gap energy is found to be around 1.4 eV. The SEM micrographs of CZTS film shows the average grain size around 1.5 µm and some porosity which indicated the room of improvement. The high-crystallinity CZTS achieved in the present study brings a low-cost absorber semiconductor one step closer to practical use.

  12. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  13. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  14. Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum

    PubMed Central

    Leiske, Danielle L.; Leiske, Christopher I.; Leiske, Daniel R.; Toney, Michael F.; Senchyna, Michelle; Ketelson, Howard A.; Meadows, David L.; Fuller, Gerald G.

    2012-01-01

    Meibomian lipids are the primary component of the lipid layer of the tear film. Composed primarily of a mixture of lipids, meibum exhibits a range of melt temperatures. Compositional changes that occur with disease may alter the temperature at which meibum melts. Here we explore how the mechanical properties and structure of meibum from healthy subjects depend on temperature. Interfacial films of meibum were highly viscoelastic at 17°C, but as the films were heated to 30°C the surface moduli decreased by more than two orders of magnitude. Brewster angle microscopy revealed the presence of micron-scale inhomogeneities in meibum films at higher temperatures. Crystalline structure was probed by small angle x-ray scattering of bulk meibum, which showed evidence of a majority crystalline structure in all samples with lamellar spacing of 49 Å that melted at 34°C. A minority structure was observed in some samples with d-spacing at 110 Å that persisted up to 40°C. The melting of crystalline phases accompanied by a reduction in interfacial viscosity and elasticity has implications in meibum behavior in the tear film. If the melt temperature of meibum was altered significantly from disease-induced compositional changes, the resultant change in viscosity could alter secretion of lipids from meibomian glands, or tear-film stabilization properties of the lipid layer. PMID:22339874

  15. Heavy ion irradiation effects of brannerite-type ceramics

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, L. M.; Lumpkin, G. R.; Ewing, R. C.

    2002-05-01

    Brannerite, UTi 2O 6, occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α-decay events of Pu, a 1 MeV Kr + irradiation on UTi 2O 6, ThTi 2O 6, CeTi 2O 6 and a more complex material, composed of Ca-containing brannerite and pyrochlore, was performed over a temperature range of 25-1020 K. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi 2O 6; 990 K, ThTi 2O 6; 1020 K, CeTi 2O 6. The systematic increase in radiation resistance from Ce-, Th- to U-brannerite is related to the difference of mean atomic mass of A-site cation in the structure. As compared with the pyrochlore structure-type, brannerite phases are more susceptible to ion irradiation-induced amorphization. The effects of structure and chemical compositions on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed.

  16. Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode.

    PubMed

    Mikhaylov, Alexey A; Medvedev, Alexander G; Grishanov, Dmitry A; Sladkevich, Sergey; Gun, Jenny; Prikhodchenko, Petr V; Xu, Zhichuan J; Nagasubramanian, Arun; Srinivasan, Madhavi; Lev, Ovadia

    2018-02-27

    Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V 3 O 7 , VO 2 ) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V 3 O 7 @GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g -1 at 3000 mA g -1 vs 300 mAh g -1 at 100 mA g -1 ) due to the nanomorphology of the vanadium oxide.

  17. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender

    PubMed Central

    Wang, Youyong; Song, Yongming; Du, Jun; Xi, Zhenhao; Wang, Qingwen

    2017-01-01

    Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident. PMID:28846604

  18. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferencesmore » of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.« less

  19. Crystal Chemistry of Three-component White Dwarfs and Neutron Star Crusts: Phase Stability, Phase Stratification, and Physical Properties

    NASA Astrophysics Data System (ADS)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H.

    2016-02-01

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  20. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effective role of deposition duration on the growth of V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Saini, Sujit Kumar; Singh, Megha; Reddy, G. B.

    2016-05-01

    In this report, vanadium pentoxide nanostructured thin films (NSTs) with nanoplates (NPs) have synthesized on Ni coated glass substrate employing plasma assisted sublimation process (PASP), as a function of deposition/growth durations. The effect of deposition durations on the morphological, structural, vibrational, and compositional properties have been investigated one by one. The structural and vibrational studies endorsed that the grown NPs have only orthorhombic phase, no other sub oxide phases are recorded in the limit of resolution. The morphological results of all samples using SEM, revealed that the features, coverage density, and alignments of NPs are greatly controlled by deposition duration and the best sample is obtained for 25 min (S2). Further, the more insight information is accomplished by HRTEM/SAED on the best featured sample, which confirmed the single crystalline nature of NPs. The XPS result again confirmed the compositional purity and the nearly stoichiometric nature of NPs.

  2. Investigation of ZrO/sub 2//mullite solid solution by energy dispersive X-ray spectroscopy and electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinger, T.R.; Krishnam, K.M.; Moya, J.S.

    1984-10-01

    A mullite/15 vol.%ZrO/sub 2/ composite was analyzed using the techniques of microdiffraction and energy dispersive X-ray spectroscopy (EDXS). The EDXS results indicate that there is a significantly high solid solubility of mullite in zirconia and zirconia in mullite; microdiffraction results suggest that ordering occurs in the ZrO/sub 2/(ss) phase based on the presence of forbidden reflections for the P 2/sub 1//c space group of monoclinic zirconia. The presence of a secondary phase at the grain boundaries, either amorphous or crystalline, has not been generally detected throughout the bulk. The results provide experimental evidence for the hypothesis of Moya and Osendimore » that the increased toughness and flexural strength of these composites are related to solid solution effects rather than to transformation or microcrack toughening mechanisms.« less

  3. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    PubMed

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  4. Local bonding structure of tellurium and antimony in the phase change chalcogenides germanium-antimony-tellurium: A nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Bobela, David C.

    Recent technological applications of some chalcogenide materials, compounds containing a group VI atom, have prompted studies of the local atomic structure of the amorphous phase. In the case of Ge2Sb2Te 5, metastability in the local bonding structure is responsible for its usefulness as a phase-change memory material. There is no consensus on the exact phase-change mechanism, which is partly due to the inadequacy of standard scattering techniques to probe the structure of the amorphous phase. Nuclear magnetic resonance methods, on the other hand, are well suited to study local structural order even in the absence of a periodic lattice. In this technique, structural information is encoded as an oscillating voltage caused by the nuclear spin. For the tellurium isotope, 125Te (spin = 1/2 in the ground state), the dominant interaction comes from the core and valence electrons that carry angular momentum. This interaction is helpful in identifying Te sites of different local coordination since the number of neighboring atoms should markedly change the local electronic structure. The antimony isotope 125Sb has a spin = 5/2 in the ground state and possesses an asymmetric nuclear charge. This quadrupole moment will interact with an electric field gradient at the nuclear site, which is provided by an asymmetric electron cloud surrounding the nucleus. The frequency-space spectra will reflect the strength of the interaction as well as the symmetry of the local electronic environment. This work investigates the nuclear magnetic resonance spectrum of 125Te and 125Sb in the crystalline and amorphous forms of several GexSbyTe 1-x-y compounds where 0 < (x, y) < 1. Results from the crystalline phase 125Te data show a trend in the spectral position that can be related to the tellurium bonded to three and six neighbors. In the amorphous phase, the same trend is observed, and the nuclear magnetic resonance fingerprint of two-fold and three-fold coordinated tellurium is obtained. It is concluded, based upon this comparison that the Te atoms see a dramatically different bonding environment depending on which phase the lattice has. The 125Sb data for the crystalline phase indicate electric field gradients that are consistent with similarly bonded quadrupolar nuclei, such as Sb atoms in crystalline Sb or five-fold coordinated Sb in crystalline MnSb. The NMR data exemplify the consequences of combinatorial disorder on the spectra via the absence of certain line-shape features. In the amorphous phase, the electric field gradients are approximately seven times larger, and the fingerprints of both highly-symmetric and asymmetric antimony sites emerge. Details of field gradient, i.e. the magnitude and symmetry, are remarkably similar to those found in Sb containing compounds where the Sb sites are three-fold pyramidal, such as in crystalline Sb2X3 where X = O, S, or Se. The observations from the NMR data provide a critical litmus test for recent structural models of the amorphous phase. In particular, the amorphous phase data provides clear evidence that the Te atoms are two-fold and three-fold coordinated while the Sb atoms are most likely bonded in three-fold pyramidal configurations. These observations imply a structural model of the amorphous phase that agrees best with a models based upon the "8 minus n", or "8-n" rule for chemical bonding in amorphous semiconductors. Thus, the lattice of these compounds is arranged such that the constituent elements have enough bonds, on average, to satisfy their valence requirement. The implications of the NMR data on theoretical modeling data are immediate. Theoretical models of these systems must possess some aspect of the "8-n" mentality. With this idea as a foundation for physically realistic representations of the amorphous phase, the origin of the phase-change mechanism may be unraveled, which will ultimately speed the process of compositional optimization of phase-change materials.

  5. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  6. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  7. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase composition and therefore affects the magnetic properties. Phase diagrams for the Zr-Co system show that the Zr2Co11 phase is stable to a temperature of 1272°C, at which point the Zr6Co23 phase is the most favorable. However, this thesis shows that the Zr6Co23 phase forms at room temperature during high energy mechanical milling and at annealing temperatures as low as 600°C. Since high energy mechanical milling was not a potential method to creating single crystalline particles, hydrogen embrittlement was investigated. Hydrochloric acid was used to induce hydrogen embrittlement in the Zr2Co11 alloy, modifying the fracture characteristics of the alloy causing it to occur primarily along grain boundaries resulting in single crystalline particles with remanent magnetization enhancement.

  8. Analysis of synthetic profile of CZTS as photovoltaic material obtained with variations of titanium and TiN

    NASA Astrophysics Data System (ADS)

    Muñoz, M.; Vera, E.; Gómez, J.; Pineda, Y.

    2017-12-01

    Semiconductor type Cu2ZnTiS4 (CZTiS) and Cu2ZnSnS4 (CZTS),were synthetized starting from a hydrothermal route from precursor powders such as copper, zinc, tin, titanium isopropoxide and tiocarbammide metal nitrates dissolved in deionized water in concentrations of 1molL-1. Dosed and placed in a steel autoclave equipped with a Teflon jacket under magnetic stirring (150rpm) and at a temperature of 300°C for 24 hours in order to promote the formation of the respective ceramic phases. Segregates have been repeatedly washed with ethanol at all times until obtaining crystalline-looking solids. Subsequently, in order to promote the production of pure crystalline phases, the materials were subjected to a second reaction stage in a tubular furnace at 400°C in flow (50mLmin-1) for the purpose of Reduce the concentration of secondary phases of sulphides. The characterization of the CZTiS and CZTS materials was performed by X-ray Diffraction (XRD) and Raman spectroscopy where the presence of Kesterite type crystalline structures was confirmed in the two materials revealing that the effect of titanium with a higher ionic radius than tin produces a distortion in the cell of the CZTiS material compared to the report for the CZTS system. The results of Scanning Electron Microscopy (SEM), confirm the regular aggregates obtained with composition consistent with the proposal theoretically and validated by Energy-Dispersion X-ray Spectroscopy (EDX) techniques and comparison between secondary emission spectra and Retro-dispersed.

  9. X-Ray Absorption Spectroscopy of Fe-Substituted Allophane and Imogolite

    NASA Astrophysics Data System (ADS)

    Baker, L. L.; Strawn, D. G.; Nickerson, R. D.; McDaniel, P.

    2011-12-01

    Martian rocks and sediments contain weathering products including clay minerals formed as a result of interaction between rocks and water, and these materials can act as important indicators of past surface conditions on Mars. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals, including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which may affect their spectral and physical properties as well as their eventual recrystallization products. Detection and quantification of such minerals in natural environments on Earth is difficult due to their variable chemical composition and lack of long-range crystalline order. Their accurate detection and quantification on Mars requires a better understanding of how composition affects their spectral properties and evolution to more crystalline phases. Aluminosilicate nanoparticles of varying composition were synthesized with isomorphically substituted Fe at Fe:Al ratios of 1:100. Allophanes were synthesized with Al:Si ratios of 2:1, 1:1, and 1:3. The substituted Fe was probed using Fe K-edge X-ray absorption fine structure spectroscopy (XAFS). The XAFS spectrum contains information about the molecular environment surrounding the target atom, and is an ideal technique for studying poorly crystalline materials that are difficult to characterize using bulk methods such as XRD. The near-edge (XANES) and extended (EXAFS) portions of the XAFS spectrum were examined, and allophane backscattering paths were fit using coordinates for a modified nanoball model (1). XANES spectra rule out ferrihydrite in the synthetic samples, suggesting all Fe was incorporated into the aluminosilicate structure. The XAFS results suggest that Fe substituted into the allophane structure is present as Fe(III) in octahedral coordination in a well-ordered sheet. Some Fe substitution in tetrahedral sites occurs in allophane with Al:Si = 2:1, but not in higher-Si compositions. These results support the nanoball model for allophane (1) based on a rolled octahedral sheet and indicate that sheet is well ordered. They do not support proposed models of an incomplete octahedral sheet in high-Si allophanes. Analysis of Fe distribution suggests considerable Fe clustering in the octahedral sheet which increases with sample aging. This clustering could lead to eventual nucleation of a separate Fe (oxyhydr)oxide phase. (1) Creton et al. (2008) J Phys Chem C 112, 358.

  10. Estimation of crystallinity in a model thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1986-01-01

    Crystallinities as low as 16 percent have been estimated by determination of the interplanar spacing on PET/carbonaceous filament composites with resin content of aobut 25 percent w/w using wide-angle X-ray scattering (WAXS) in the angular range 2 theta = 16-18 deg. The diffraction pattern of the carbonaceous reinforcements masks the major reflections of the resin, and the resin content and the crystallinity are kept low to make the simulation reasonable.

  11. Magnetron Sputtering as a Fabrication Method for a Biodegradable Fe32Mn Alloy

    PubMed Central

    Jurgeleit, Till; Quandt, Eckhard; Zamponi, Christiane

    2017-01-01

    Biodegradable metals are a topic of great interest and Fe-based materials are prominent examples. The research task is to find a suitable compromise between mechanical, corrosion, and magnetic properties. For this purpose, investigations regarding alternative fabrication processes are important. In the present study, magnetron sputtering technology in combination with UV-lithography was used in order to fabricate freestanding, microstructured Fe32Mn films. To adjust the microstructure and crystalline phase composition with respect to the requirements, the foils were post-deposition annealed under a reducing atmosphere. The microstructure and crystalline phase composition were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, for mechanical characterization, uniaxial tensile tests were performed. The in vitro corrosion rates were determined by electrochemical polarization measurements in pseudo-physiological solution. Additionally, the magnetic properties were measured via vibrating sample magnetometry. The foils showed a fine-grained structure and a tensile strength of 712 MPa, which is approximately a factor of two higher compared to the sputtered pure Fe reference material. The yield strength was observed to be even higher than values reported in literature for alloys with similar composition. Against expectations, the corrosion rates were found to be lower in comparison to pure Fe. Since the annealed foils exist in the austenitic, and antiferromagnetic γ-phase, an additional advantage of the FeMn foils is the low magnetic saturation polarization of 0.003 T, compared to Fe with 1.978 T. This value is even lower compared to the SS 316L steel acting as a gold standard for implants, and thus enhances the MRI compatibility of the material. The study demonstrates that magnetron sputtering in combination with UV-lithography is a new concept for the fabrication of already in situ geometrically structured FeMn-based foils with promising mechanical and magnetic properties. PMID:29057837

  12. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.

    PubMed

    Landis, W J

    1979-01-01

    The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.

  13. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam.

    PubMed

    Maruta, Michito; Matsuya, Shigeki; Nakamura, Seiji; Ishikawa, Kunio

    2011-01-01

    Carbonate apatite (CO(3)Ap) foam may be an ideal bone substitute as it is sidelined to cancellous bone with respect to its chemical composition and structure. However, CO(3)Ap foam fabricated using α-tricalcium phosphate foam showed limited mechanical strength. In the present study, feasibility of the fabrication of calcite which could be a precursor of CO(3)Ap was studied. Calcite foam was successfully fabricated by the so-called "ceramic foam" method using calcium hydroxide coated polyurethane foam under CO(2)+O(2) atmosphere. Then the calcite foam was immersed in Na(2)HPO(4) aqueous solution for phase transformation based on dissolution-precipitation reaction. When CaO-free calcite foam was immersed in Na(2)HPO(4) solution, low-crystalline CO(3)Ap foam with 93-96% porosity and fully interconnected porous structure was fabricated. The compressive strength of the foam was 25.6 ± 6 kPa. In light of these results, we concluded that the properties of the precursor foam were key factors for the fabrication of CO(3)Ap foams.

  14. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    PubMed Central

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  15. Dynamic and Structure of Polymer-Cellulose Composite Electrolyte for Li-ion Battery

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Maranas, Janna

    Crystalline PEO6LiX complex is a tunnel-like polymer/salt structure that promotes fast Li motion. The application is limited because high ion conductivity is only observed with short molecular weight PEO, as the molecular weight increase, tunnels are misaligned and the conductivity is decreased. High aspect ratio nanofillers based on cellulose nanowhiskers are hypothesized to promote the formation of tunnel structures. Compared with unfilled electrolyte, the room temperature ion conductivity increased as much as 1100% in filled electrolyte. With wide angle x-ray scattering (WAXS), we observe that the structure transitions from amorphous phase to crystalline phase as we add cellulose nanowhiskers and this is because the interaction between cellulose surface and polymer chain enhances the crystallization. From the temperature dependence of conductivity, the calculated Li+ hopping activation energy is shown to be lower in acidic cellulose nanowhisker filled samples. Our quasi-elastic neutron scattering (QENS) indicates with acidic surface, the rotation of PEO6 channels are more stabilized and this could be the origin of the low activation energy and high conductivity

  16. Comprehensive Property Characterization of Nanotube Buckypaper-Reinforced Composite Materials

    DTIC Science & Technology

    2004-04-01

    Kim, S. G., Rinzler, A. G., and Colbert , D. T., "Crystalline Ropes of Metallic Carbon Nanotubes," Science, 1996, Volume 273, No. 5274, pp. 483-487. [7...Nikolaev, P. Bronikowski, M. J., Bradley, R. K., Colbert , D. T., Smith, K. A., and Smalley, R. E., "Gas-phase Catalytic Growth of Single-walled Carbon...Casavant, M. J., Liu, J., Colbert , D. T., Smith, K. A., and Smalley, R. E., "Elastic Strain of Freely Suspended Single-wall Carbon Nanotube Ropes

  17. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  18. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures.

    PubMed

    Seisenbaeva, Gulaim A; Kessler, Vadim G

    2014-06-21

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.

  19. A simple transferable adaptive potential to study phase separation in large-scale xMgO-(1-x)SiO2 binary glasses.

    PubMed

    Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried

    2015-10-21

    A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.

  20. Partitioning of dopant cations between β-tricalcium phosphate and fluorapatite

    NASA Astrophysics Data System (ADS)

    Jay, E. E.; Mallinson, P. M.; Fong, S. K.; Metcalfe, B. L.; Grimes, R. W.

    2011-07-01

    Mixed crystalline phase composite ceramics offer the possibility of partitioning defect species between the phases as well as occupancy of specific sites within a given phase. Here we use atomic scale simulations to study the site preference of an extensive range of divalent and trivalent substitutional ions across the five cation sites in β-tricalcium phosphate ( β-TCP) and the two cations sites in fluorapatite (FAp). This study indicates that in β-TCP small dopant species occupy the smaller of the five cation sites and vice versa. Conversely, in FAp, small divalent species occupy the nominally larger Ca(1) site while larger cations occupy the Ca(2) site. Partition energies between the two phases indicate that divalent species strongly segregate to β-TCP as do Al 3+ and Ga 3+, whereas all other (larger) trivalent ions exhibit little preference.

  1. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  2. Topological phases protected by point group symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hao; Huang, Sheng -Jie; Fu, Liang

    We consider symmetry-protected topological (SPT) phases with crystalline point group symmetry, dubbed point group SPT (pgSPT) phases. We show that such phases can be understood in terms of lower-dimensional topological phases with on-site symmetry and that they can be constructed as stacks and arrays of these lower-dimensional states. This provides the basis for a general framework to classify and characterize bosonic and fermionic pgSPT phases, which can be applied for arbitrary crystalline point group symmetry and in arbitrary spatial dimensions. We develop and illustrate this framework by means of a few examples, focusing on three-dimensional states. We classify bosonic pgSPTmore » phases and fermionic topological crystalline superconductors with Z P 2 (reflection) symmetry, electronic topological crystalline insulators (TCIs) with U(1)×Z P 2 symmetry, and bosonic pgSPT phases with C 2v symmetry, which is generated by two perpendicular mirror reflections. We also study surface properties, with a focus on gapped, topologically ordered surface states. For electronic TCIs, we find a Z 8 × Z 2 classification, where the Z 8 corresponds to known states obtained from noninteracting electrons, and the Z 2 corresponds to a “strongly correlated” TCI that requires strong interactions in the bulk. Lastly, our approach may also point the way toward a general theory of symmetry-enriched topological phases with crystalline point group symmetry.« less

  3. Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites.

    PubMed

    Tatsumi, Mio; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2012-05-14

    An attempt was made to synthesize novel composites comprising poly(2-hydroxyethyl methacrylate) (PHEMA) and cellulose nanocrystallites (CNC) (acid-treated cotton microfibrils) from suspensions of CNC in an aqueous 2-hydroxyethyl methacrylate (HEMA) monomer solution. The starting suspensions (∼5 wt % CNC) separated into an isotropic upper phase and an anisotropic bottom one in the course of quiescent standing. By way of polymerization of HEMA in different phase situations of the suspensions, we obtained films of three polymer composites, PHEMA-CNC(iso), PHEMA-CNC(aniso), and PHEMA-CNC(mix), coming from the isotropic phase, anisotropic phase, and embryonic nonseparating mixture, respectively. All the composites were transparent and, more or less, birefringent under a polarized optical microscope. A fingerprint texture typical of cholesteric liquid crystals of longer pitch spread widely in PHEMA-CNC(aniso) but rather locally appeared in PHEMA-CNC(iso). Any of the CNC incorporations into the PHEMA matrix improved the original thermal and mechanical properties of this amorphous polymer material. In dynamic mechanical measurements, the locking-in of the respective CNC assemblies gave rise to an increase in the glass-state modulus E' of PHEMA as well as a marked suppression of the E'-falling at temperatures higher than T(g) (≈ 110 °C) of the vinyl polymer. It was also observed for the composites that their modulus E' rerose in a range of about 150-190 °C, which was attributable to a secondary cross-linking formation between PHEMA chains mediated by the acidic CNC filler. The mechanical reinforcement effect of the CNC dispersions was ensured in a tensile test, whereby PHEMA-CNC(aniso) was found to surpass the other two composites in stiffness and strength.

  4. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  5. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  6. Electrorheological effect and electro-optical properties of side-on liquid crystalline polysiloxane in a nematic solvent.

    PubMed

    Kaneko, Kosuke; Oto, Kodai; Kawai, Toshiaki; Choi, Hyunseok; Kikuchi, Hirotsugu; Nakamura, Naotake

    2013-08-26

    The electrorheological (ER) effect and the electro-optical properties of a ''side-on'' liquid crystalline polysiloxane (PS) are investigated. A large ER effect is observed and the response to the shear stress of neat PS in the nematic phase is shown to be affected by the shear rate. PS is also mixed with a low-molar nematic liquid crystal (5CB) in order to improve the response behavior to the applied electric field. The rheological properties of such mixtures are highly dependent on the concentration of 5CB. The composites respond faster to the applied electric field and have improved electro-optical properties. This study offers a new perspective on the development of liquid crystal materials for the ER effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin; Scarpulla, Michael A.

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  8. High-mobility field-effect transistor based on crystalline ZnSnO3 thin films

    NASA Astrophysics Data System (ADS)

    Minato, Hiroya; Fujiwara, Kohei; Tsukazaki, Atsushi

    2018-05-01

    We propose crystalline ZnSnO3 as a new channel material for field-effect transistors. By molecular-beam epitaxy on LiNbO3(0001) substrates, we synthesized films of ZnSnO3, which crystallizes in the LiNbO3-type polar structure. Field-effect transistors on ZnSnO3 exhibit n-type operation with field-effect mobility of as high as 45 cm2V-1s-1 at room temperature. Systematic examination of the transistor operation for channels with different Zn/Sn compositional ratios revealed that the observed high-mobility reflects the nature of stoichiometric ZnSnO3 phase. Moreover, we found an indication of coupling of transistor characteristics with intrinsic spontaneous polarization in ZnSnO3, potentially leading to a distinct type of polarization-induced conduction.

  9. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE PAGES

    Alberi, Kirstin; Scarpulla, Michael A.

    2017-11-22

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  10. Aerogel materials with periodic structures imprinted with cellulose nanocrystals.

    PubMed

    Xu, Yi-Tao; Dai, Yiling; Nguyen, Thanh-Dinh; Hamad, Wadood Y; MacLachlan, Mark J

    2018-02-22

    Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.

  11. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Stamp forming optimization for formability and crystallinity

    NASA Astrophysics Data System (ADS)

    Donderwinkel, T. G.; Rietman, B.; Haanappel, S. P.; Akkerman, R.

    2016-10-01

    The stamp forming process is well suited for high volume production of thermoplastic composite parts. The process can be characterized as highly non-isothermal as it involves local quench-cooling of a molten thermoplastic composite blank where it makes contact with colder tooling. The formability of the thermoplastic composite depends on the viscoelastic material behavior of the matrix material, which is sensitive to temperature and degree of crystallinity. An experimental study was performed to determine the effect of temperature and crystallinity on the storage modulus during cooling for a woven glass fiber polyamide-6 composite material. An increase of two decades in modulus was observed during crystallization. As this will significantly impede the blank formability, the onset of crystallization effectively governs the time available for forming. Besides the experimental work, a numerical model is developed to study the temperature and crystallinity throughout the stamp forming process. A process window can be determined by feeding the model with the experimentally obtained data on crystallization.

  13. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur; ...

    2018-01-01

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  14. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  15. Temperature Dependent Surface Structures and Electronic Properties of Organic-Inorganic Hybrid Perovskite Single Crystals

    NASA Astrophysics Data System (ADS)

    Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.

  16. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of themore » crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.« less

  17. Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Crsbnd C films

    NASA Astrophysics Data System (ADS)

    Nygren, Kristian; Andersson, Matilda; Högström, Jonas; Fredriksson, Wendy; Edström, Kristina; Nyholm, Leif; Jansson, Ulf

    2014-06-01

    It is known that mechanical and tribological properties of transition metal carbide films can be tailored by adding an amorphous carbon (a-C) phase, thus making them nanocomposites. This paper addresses deposition, microstructure, and for the first time oxidation resistance of magnetron sputtered nanocomposite Crsbnd C/a-C films with emphasis on studies of both phases. By varying the deposition temperature between 20 and 700 °C and alternating the film composition, it was possible to deposit amorphous, nanocomposite, and crystalline Crsbnd C films containing about 70% C and 30% Cr, or 40% C and 60% Cr. The films deposited at temperatures below 300 °C were X-ray amorphous and 500 °C was required to grow crystalline phases. Chronoamperometric polarization at +0.6 V vs. Ag/AgCl (sat. KCl) in hot 1 mM H2SO4 resulted in oxidation of Crsbnd C, yielding Cr2O3 and C, as well as oxidation of C. The oxidation resistance is shown to depend on the deposition temperature and the presence of the a-C phase. Physical characterization of film surfaces show that very thin C/Cr2O3/Crsbnd C layers develop on the present material, which can be used to improve the oxidation resistance of, e.g. stainless steel electrodes.

  18. Simultaneous separation of taxon-specific crystallins from Mule duck and characterization of their enzymatic activities and structures.

    PubMed

    Wang, Chih-Hsien; Huang, Chia-Chi; Chen, Wenlung

    2017-05-15

    Methods to obtain pure proteins in large amounts are indispensible in protein research. We report here a large-scale/simultaneous isolation of taxon-specific crystallins (ɛ- and δ-crystallin) from the eye lenses of Mule duck. We also investigate the compositions, enzymatic activities, and structures of these purified taxon-specific proteins. A relatively mild method of ion-exchange chromatography was developed to fractionate ɛ-crystallin and δ-crystallin in large amount, ca. ∼6.60mg/g-lens and ∼41.0mg/g-lens, respectively. Both crystallins were identified by electrophoresis, HPLC, and MALDI-TOF-MS. ɛ-Crystallin, with native composition of M r 142kDa, consisted of two subunits of 35kDa and 36kDa, while δ-Crystallin, with native molecular mass of 200kDa, comprised single subunit of M r ∼50kDa. Both ɛ- and δ-crystallin were tetramers. The former showed lactate dehydrogenase (LDH) activity, while the latter appeared slightly active in an argininosuccinate lyase (ASL) assay. Raman spectroscopic results indicated that the secondary structures of ɛ- and δ-crystallin were predominantly α-helix as evidenced by the vibrational stretching of amide III over 1260cm -1 and amide I at 1255cm -1 , in greatly contrast to the anti-parallel β-sheet of α- and β-crystallin as demonstrated by amide III at 1238cm -1 and amide I at 1672cm -1 . The microenvironments of aromatic amino acids and the status of thiol groups also vary in different crystallins. The compositions, enzyme activities, and structures of the ɛ- and δ-crystalline of Mule duck are different from those of Muscovy duck (Cairina moschata) or Kaiya duck (Anas Platyrhynchos var. domestica), which reflect faithfully species specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    PubMed

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  20. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  1. Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gibbons, Michael

    Metallic glasses represent a relatively new class of materials that have demonstrated enormous potential for functional and structural applications due to the unique set of properties attributed to them as a result of the disordered isotropic structure with metallically bonded elements. Amorphous metals benefit from the strong nature of the metallic bonds, but lack the crystallographic structure and polycrystalline nature of traditional metals which unsurprisingly has huge implications on the material properties, as all deformation mechanisms associated with a lattice are suppressed. This results in excellent strength, a high elastic strain limit, exceptional hardness, and improved corrosion and wear resistance. "Bulk" metallic glasses (BMG) represent the amorphous metals which can be produced at the cm length-scale, thus greatly expanding their applicability for structural applications. However, due to the catastrophic nature of the failure produced upon yielding, monolithic metallic glasses are seldomly used for structural applications. Bulk metallic glass-matrix composites (BMGMCs), however, are able to combine the excellent strength, hardness, and elastic strain limit of amorphous metallic glass with a ductile crystalline phase to achieve extraordinary toughness with minimal degradation in strength. In order to explore the mechanical interactions between the amorphous and crystalline phases, a full-field micromechanical model which couples the free-volume based constitutive behavior for the matrix phase with standard rate-dependent crystal plasticity for the dendrites, and its implementation via an elastic-viscoplastic Fast-Fourier Transform (FFT) solver. The model is calibrated to macroscale stress-strain data for Ti-Zr-V-Cu-Be BMGMCs with varying composition and furthermore by comparing the deformation behavior associated with the shear bands predicted by the model, to the artifacts observed from characterization microscopy analysis on the same failed BMGMC tensile specimens in which the macroscopic composite behavior predicted by the model was validated with. The FFT-based deformation modeling is then exercised to study the nature and origin of shear bands in metallic glass composites. Synthetic 3D microstructures were produced using images of real BMGMCs, and then subjected to uniaxial tension deformation simulations. The findings indicate that in BMGMCs, local inhomogeneities in the glass phase are less influential on the mechanical performance than the contrast in individual phase properties and the spatial distribution of the microstructure. Due to the strong contrast in mechanical properties between the phases, highly heterogeneous stress fields develop, contributing to regionally confined free-volume generation, localized flow and softening in the glass. These softened regions can link and plastic flow then rapidly localizes into a thin shear band with planar like geometry. The availability of finely resolved (spatially and temporally) 3D deformation maps allow for the determination of the mechanism corresponding with these macroscopic stick-slip oscillations apparent in the stress-strain curves. In addition to shedding light on the nature of shear banding in bulk metallic glass-matrix composites, this work also demonstrates the feasibility of using a spectral-based continuum-scale model to efficiently predict the microstructure and individual phase properties that lead to new materials, superior to those found using only experimental techniques.

  2. MODEL AND CELL MEMBRANE PARTITIONING OF PERFLUOROOCTANESULFONATE IS INDEPENDENT OF THE LIPID CHAIN LENGTH

    PubMed Central

    Xie, Wei; Ludewig, Gabriele; Wang, Kai; Lehmler, Hans-Joachim

    2009-01-01

    Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS caused a concentration-dependent decrease of the main phase transition temperature (Tm) and an increased peak width (ΔTw) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC > DPPC > DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4 × 104 to 8.8 × 104. PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid crystalline phase) of the lipid assembly. PMID:19932010

  3. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    PubMed

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  4. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    PubMed

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  5. Surfactant-assisted morphological studies of α-Al2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Shah, Janki; Ranjan, Mukesh; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    The present study deals with the synthesis and characterization of aluminum oxide (Al2O3) nanopowders, it is very useful material as dielectric, ceramic and catalyst. The high-quality nanopowders were obtained by adding surfactants urea and sodium acetate. Further, all characterizations are done for with (urea and sodium acetate) and without surfactant. X-ray diffraction was used to characterize phase formation and the crystallite size of powder while, FTIR gives information about the particle composition and surface intermediates. X-ray diffraction spectra revealed the synthesized nanoparticles phase transformation were γ-Al2O3 to α-Al2O3 phase. Furthermore, the addition of urea and sodium acetate significantly reduced the crystalline size of α-Al2O3 nanoparticles from 43.94 nm to 35.12 nm respectively.

  6. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  7. Mineralogical, Spectral, and Compositional Changes During Heating of Hydrous Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Matsuoka, M.; Yamashita, S.; Sato, Y.; Mogi, K.; Enokido, Y.; Nakata, A.; Okumura, S.; Furukawa, Y.; Zolensky, M.

    2017-01-01

    Hydrous carbonaceous chondrites experienced hydration and subsequent dehydration by heating, which resulted in a variety of mineralogical and spectral features [e. g., 1-6]. The degree of heating is classified according to heating stage (HS) II to IV based on mineralogy of phyllosilicates [2], because they change, with elevating temperature, to poorly crystal-line phases and subsequently to aggregates of small secondary anhydrous silicates of mainly olivine. Heating of hydrous carbonaceous chondrites also causes spectral changes and volatile loss [3-6]. Experimental heating of Murchison CM chondrite showed flattening of whole visible-near infrared spectra, especially weakening of the 3µm band strength [1, 4, 7]. In order to understand mineralogical, spectral, and compositional changes during heating of hydrous carbonaceous chondrites, we have carried out systematic investigation of mineralogy, reflectance spectra, and volatile composition of hydrated and dehydrated carbonaceous chondrites as well as experimentally-heated hydrous carbonaceous chondrites. In addition, we investigated reflectance spectra of tochilinite that is a major phase of CM chondrites and has a low dehydration temperature (250degC).

  8. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  9. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1981-04-20

    A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.

  10. Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr

    NASA Astrophysics Data System (ADS)

    Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

    2013-06-01

    Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).

  11. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols.

    PubMed

    Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina

    2006-11-01

    The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.

  12. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    PubMed

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  13. Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules.

    PubMed

    Cheng, Gang; Stadler, Florian J

    2015-01-15

    Considerable efforts have focused on functional TiO2@carbonaceous hybrid nanostructured materials (TiO2@C) to satisfy the future requirements of environmental photocatalysis and energy storage using these advanced materials. In this study, we developed a two-step solution-phase reaction to prepare hybrid TiO2@C with tuneable structure and composition from the hydrothermal carbonization (HTC) of glucose. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) were used to determine the crystallite size, composition, and phase purity. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM) showed that the morphology of the as-synthesized TiO2@C hybrids could be controlled by varying the amount of glucose, also acting as the carbon source. Based on the observations made with different glucose concentrations, a formation mechanism of nanoparticulate and nanoporous TiO2@C hybrids was proposed. In addition, the as-synthesized TiO2@C hybrids with different compositions and structures showed enhanced adsorption of visible light and improved dye-adsorption capacity, which supported their potential use as photocatalysts with good activity. This new synthetic approach, using a nanoprecursor, provides a simple and versatile way to prepare TiO2@C hybrids with tuneable composition, structures, and properties, and is expected to lead to a family of composites with designed properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    PubMed

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  15. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  16. Improvement in synthesis of (K 0.5Na 0.5)NbO 3 powders by Ge 4+ acceptor doping

    DOE PAGES

    Zhao, Yajing; Chen, Yan; Chen, Kepi

    2016-11-17

    In this study, the effects of doping with GeO 2 on the synthesis temperature, phase structure and morphology of (K 0.5Na 0.5)NbO 3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO 2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

  17. Amorphization reaction in thin films of elemental Cu and Y

    NASA Astrophysics Data System (ADS)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  18. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trulove, Paul C.; Foley, Matthew P.

    2012-09-30

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF 3SO 3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that couldmore » be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li + ions in a Li-ion battery.« less

  19. [Study on chemical compositions and crystallinity changes of bamboo treated with gamma rays].

    PubMed

    Sun, Feng-Bo; Jiang, Ze-hui; Fei, Ben-hua; Lu, Fang; Yu, Zi-xuan; Chang, Xiang-zhen

    2011-07-01

    The structures and qualities of main chemical compositions in cell wall of bamboo treated with gamma rays were tested by nuclear magnetic resonance spectrometer (NMR) and X-ray Diffraction (XRD). The result indicated that the bamboo crystallinity increased at the beginning of irradiation process, while the crystallinity reduced when the irradiation dose was raised to about 100 kGy. During the whole irradiation process, hemicellulose degraded, and with the irradiation doses increased the non-phenolic lignin changed to the phenolic.

  20. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  1. Structural and optical characterization of pure Si-rich nitride thin films

    NASA Astrophysics Data System (ADS)

    Debieu, Olivier; Nalini, Ramesh Pratibha; Cardin, Julien; Portier, Xavier; Perrière, Jacques; Gourbilleau, Fabrice

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiN x>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiN x<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiN x>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiN x>0.9 could be then due to a size effect of Si-np but having an amorphous phase.

  2. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  3. New Cu-Free Ti-Based Composites with Residual Amorphous Matrix

    PubMed Central

    Nicoara, Mircea; Locovei, Cosmin; Șerban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai

    2016-01-01

    Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases. PMID:28773455

  4. Composite materials for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  5. Investigation of Mixed-Type Craters and the Role of Bifluoride Additives to Produce Zirconia-Toughened Alumina-Based PEO Coating

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Zeeshan; Shin, Seong Hun; Ahmad, Tanveer; Koo, Bon Heun

    2018-05-01

    Al2O3-ZrO2 composite ceramic coatings were prepared on Al6061 aluminum alloy by plasma electrolytic oxidation in Na3PO4-K2ZrF6-Na2SiF6-based alkaline electrolyte. Optimum processing time for the coating formation was found to be 50 min. Cross section and surface morphology of the coatings were analyzed using scanning electron microscope. From the phase and elemental composition analysis, the presence of m-ZrO2 and t-ZrO2 phases was confirmed. It was further observed that the peak intensities of t-ZrO2 and α-Al2O3 phases increased with processing time, which was attributed to the enhanced crystallinity caused by the efficient sintering conditions. Corrosion properties were investigated by potentiodynamic polarization test in 3.5 wt.% NaCl solution. The results showed high improvement in corrosion rate with minimum recorded value 0.25 mmy (mm/year) and corrosion current 0.15 × 10-6 A/cm2.

  6. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  7. Miscibility Studies on Polymer Blends Modified with Phytochemicals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2009-03-01

    The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.

  8. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  9. Synthesis and evaluation of bioceramics for orthopedics and tissue culture applications

    NASA Astrophysics Data System (ADS)

    Demirkiran, Hande

    Hydroxyapatite is the most well known phosphate in the biologically active phosphate ceramic family by virtue of its similarity to natural bone mineral. Among all bioglass compositions BioglassRTM45S5 is one of the most bioactive glasses. This study initially started by adding different amounts (1, 2.5, 5, 10, and 25 wt.%) of BioglassRTM45S5 to synthetic hydroxyapatite in order to improve the bioactivity of these bioceramics. The chemistries formed by sintering and their effect on different material properties including bioactivity were identified by using various techniques, such as powder and thin film x-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption near edge spectroscopy, compression test, and nano indentation. All the results demonstrated that 10 and 25 wt.% BioglassRTM45S5 addition to hydroxyapatite and sintering at 1200°C for 4 hours yield new compositions with main Ca 5(PO4)2SiO4 and Na3Ca 6(PO4)5 crystalline phases dispersed in silicate glassy matrices, respectively. In addition, in vitro bioactivity tests such as bone like apatite formation in simulated body fluid and bone marrow stromal cell culture have shown that the crystalline and amorphous phases have an important role on improving bioactivity of these bioceramic compositions. Besides, compression test and nano indentation has given important information on compression strength and nano structure properties of these newly composed bioceramic materials and the bone like apatite layers formed on them, respectively. Finally, the effect of silicate addition on both formation and bioactivity of Na3Ca6(PO4)5 bioceramics were shown. These findings and different techniques used assisted to develop a phenomenological approach to demonstrate how the novel bioceramic compositions were composed and aid improving bioactivity of known bioceramic materials.

  10. The molecular refractive function of lens γ-crystallins

    PubMed Central

    Zhao, Huaying; Brown, Patrick H.; Magone, M. Teresa; Schuck, Peter

    2011-01-01

    γ-crystallins constitute the major protein component in the nucleus of the vertebrate eye lens. Present at very high concentrations, they exhibit extreme solubility and thermodynamic stability to prevent scattering of light and the formation of cataracts. However, functions beyond this structural role have remained mostly unclear. Here, we calculate molecular refractive index increments of crystallins. We show that all lens γ-crystallins have evolved a significantly elevated molecular refractive index increment, which is far above those of most proteins, including non-lens members of the βγ-crystallin family from different species. The same trait has evolved in parallel in crystallins of different phyla, including in the S-crystallins of cephalopods. A high refractive index increment can lower the crystallin concentration required to achieve a suitable refractive power of the lens, and thereby reduce their propensity to aggregate and form cataract. To produce a significant increase of the refractive index increment, a substantial global shift in the amino acid composition is required, which can naturally explain the highly unusual amino acid composition of γ-crystallins and their functional homologues. This function provides a new perspective for interpreting their molecular structure. PMID:21684289

  11. The molecular refractive function of lens γ-Crystallins.

    PubMed

    Zhao, Huaying; Brown, Patrick H; Magone, M Teresa; Schuck, Peter

    2011-08-19

    γ-Crystallins constitute the major protein component in the nucleus of the vertebrate eye lens. Present at very high concentrations, they exhibit extreme solubility and thermodynamic stability to prevent scattering of light and formation of cataracts. However, functions beyond this structural role have remained mostly unclear. Here, we calculate molecular refractive index increments of crystallins. We show that all lens γ-crystallins have evolved a significantly elevated molecular refractive index increment, which is far above those of most proteins, including nonlens members of the βγ-crystallin family from different species. The same trait has evolved in parallel in crystallins of different phyla, including S-crystallins of cephalopods. A high refractive index increment can lower the crystallin concentration required to achieve a suitable refractive power of the lens and thereby reduce their propensity to aggregate and form cataracts. To produce a significant increase in the refractive index increment, a substantial global shift in amino acid composition is required, which can naturally explain the highly unusual amino acid composition of γ-crystallins and their functional homologues. This function provides a new perspective for interpreting their molecular structure. Copyright © 2011. Published by Elsevier Ltd.

  12. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    PubMed

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials

    PubMed Central

    Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.

    2016-01-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069

  14. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE PAGES

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...

    2016-11-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  15. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  16. Self-assembled phase-change nanowire for nonvolatile electronic memory

    NASA Astrophysics Data System (ADS)

    Jung, Yeonwoong

    One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.

  17. Programmable Phase Transitions in a Photonic Microgel System: Linking Soft Interactions to a Temporal pH Gradient.

    PubMed

    Go, Dennis; Rommel, Dirk; Chen, Lisa; Shi, Feng; Sprakel, Joris; Kuehne, Alexander J C

    2017-02-28

    Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.

  18. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    PubMed

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  19. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    PubMed Central

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-01-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials. PMID:27892519

  20. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  1. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGES

    Zhou, S. H.; Liu, C.; Yao, Y. X.; ...

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  2. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Y.; Morita, T.; Morimoto, Y.

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  3. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  4. Methods Of Fabricating Nanosturctures And Nanowires And Devices Fabricated Therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2006-02-07

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  5. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  6. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  7. Gravitational Wave Signatures of Crystalline Color Superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Lap-Ming

    Deconfined quark matter may exist in a crystalline color-superconducing phase in the interiors of compact stars. One of the special properties of this exotic phase of matter is that it is extremely rigid and the corresponding shear modulus can be up to 1000 times larger than that of the neutron-star crust. In this paper, we review how the extreme rigidity of this crystalline phase of quark matter can lead to unique gravitational-wave signatures that may be detectable by the current or the next-generation gravitational-wave detectors.

  8. Blends of POSS-PEO(n=4)(8) and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries.

    PubMed

    Zhang, Hanjun; Kulkarni, Sunil; Wunder, Stephanie L

    2007-04-12

    Solid polymer electrolyte blends were prepared with POSS-PEO(n=4)8 (3K), poly(ethylene oxide) (PEO(600K)), and LiClO4 at different salt concentrations (O/Li = 8/1, 12/1, and 16/1). POSS-PEO(n=4)8/LiClO4 is amorphous at all O/Li investigated, whereas PEO(600K) is amorphous only for O/Li = 8/1 and semicrystalline for O/Li = 12/1 and 16/1. The tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)(8) that could be incorporated into the blends, so that the greatest incorporation of POSS-PEO(n=4)(8) occurred for O/Li = 8/1. Blends of POSS-PEO(n=4)(8)/PEO(600K)/LiClO4 (O/Li = 8/1 and 12/1) microphase separated into two amorphous phases, a low T(g) phase of composition 85% POSS-PEO(n=4)(8)/15% PEO(600K) and a high T(g) phase of composition 29% POSS-PEO(n=4)(8)/71% PEO(600K). For O/Li = 16/1, the blends contained crystalline (pure PEO(600K)), and two amorphous phases, one rich in POSS-PEO(n=4)(8) and one rich in PEO(600K). Microphase, rather than macrophase separation was believed to occur as a result of Li(+)/ether oxygen cross-link sites. The conductivity of the blends depended on their composition. As expected, crystallinity decreased the conductivity of the blends. For the amorphous blends, when the low T(g) (80/20) phase was the continuous phase, the conductivity was intermediate between that of pure PEO(600K) and POSS-PEO(n=4)(8). When the high T(g) (70/30, 50/50, 30/70, and 20/80) phase was the continuous phase, the conductivity of the blend and PEO(600K) were identical, and lower than that for the POSS-PEO(n=4)(8) over the whole temperature range (10-90 degrees C). This suggests that the motions of the POSS-PEO(n=4)(8) were slowed down by the dynamics of the long chain PEO(600K) and that the minor, low Tg phase was not interconnected and thus did not contribute to enhanced conductivity. At temperatures above T(m) of PEO(600K), addition of the POSS-PEO(n=4)(8) did not result in conductivity improvement. The highest RT conductivity, 8 x 10(-6) S/cm, was obtained for a 60% POSS-PEO(n=4)(8)/40% PEO(600K)/LiClO4 (O/Li = 12/1) blend.

  9. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  10. Efficient blue emission from ambient processed all-inorganic CsPbBr2Cl perovskite cubes

    NASA Astrophysics Data System (ADS)

    Paul, T.; Chatterjee, B. K.; Maiti, S.; Besra, N.; Thakur, S.; Sarkar, S.; Chanda, K.; Das, A.; Sardar, K.; Chattopadhyay, K. K.

    2018-04-01

    The recent resurgence of photovoltaic research has empowered all inorganic perovskite materials to take the center stage thus leading to a plethora of interesting results. Here, via a facile room-temperature synthesis protocol high quality cesium lead halide perovskite (CsPbBr2Cl) cubes has been realized. Surface morphology and crystallinity of the synthesized sample were investigated by FESEM and XRD respectively. To attain detail information of its chemical composition EDX analysis and elemental mapping were carried out. These single crystalline cubes crystallize in orthorhombic phase and exhibit strong photoluminescence emission at 482 nm with narrow FWHM value (˜18nm) and photoluminescence decay time of 10.44 ns. We believe, this facile synthesis protocol will pave the way for realization other perovskite cube and thereby their usage in several optoelectronic arena like as lasing, LEDs and photo detector etc.

  11. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  12. Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh; Barati, Mansoor

    2018-04-01

    The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.

  13. Synchrotron Study on Crystallization Kinetics of Milk Fat under Shear Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzanti, G.; Marangoni, A; Idziak, S

    A detailed synchrotron X-ray diffraction study on the kinetics of crystallization of anhydrous milk fat (AMF) and milk fat triacylglycerols (MFT) was done in a Couette cell at 17 C, 17.5 C and 20 C under shear rates between 0 and 2880 s-1. We observed shear-induced acceleration of the transition from phase ? to ?? and the presence of crystalline orientation, but no effect of shear on the onset time of phase ? was observed. A two stage regime was observed for the growth of phase ??. The first stage follows a series-parallel system of differential equations describing the conversionmore » between liquid and crystalline phases. The second stage follows a diffusion-controlled regime. These mechanisms are consistent with the crystalline orientation, the growth of the crystalline domains and the observed displacement of the diffraction peak positions. The absence of the polar lipids explains the faster kinetics of MFT.« less

  14. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  15. Disorder-induced localization in crystalline phase-change materials.

    PubMed

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  16. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Crystallization behaviour of hydroxide cobalt carbonates by aging: Environmental implications.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Angeles; Jimenez, Amalia

    2014-05-01

    Cobalt is a naturally occurring element widely distributed in water, sediments and air that is essential for living species, since it is a component of B12 vitamin and it is also a strategic and critical element used in a number of commercial, industrial and military applications. However, relatively high accumulations of cobalt in environment can be toxic for human and animal health. Cobalt usually occurs as Co2+ and Co3+ in aqueous solutions, where Co2+ is the most soluble and hence its mobility in water is higher. The study of the precipitation of cobalt carbonates is of great interest due to the abundance of carbonate minerals in contact with surface water and groundwater which can be polluted with Co2+. Previous works have demonstrated that the formation of Co-bearing calcium carbonates and Co-rich low crystallinity phases takes place at ambient conditions. With the aim of investigating the crystallization behavior of Co- bearing carbonates at ambient temperature, macroscopic batch-type experiments have been carried out by mixing aqueous solutions of CoCl2 (0.05M) and Na2CO3 (0.05M) during increasing reaction times (5 minutes and 1, 5, 24, 48, 96, 168, 720 and 1440 hours). The main goals of this work were (i) to analyse the physicochemical evolution of the system and (ii) to study the evolution of the crystallinity of the solid phases during aging. After a given reaction period, pH, alkalinity and dissolved Co2+ in the aqueous solutions were analysed. The evolution of the morphology and chemical composition of the solids with aging time was examined by SEM and TEM. The precipitates were also analyzed by X-ray powder diffraction (XRD) and the crystallinity degree was followed by the intensity and the full width at high medium (FWHM) of the main peaks. The results show that a low crystallinity phase was obtained at the very beginning of aging. This phase evolves progressively to form hydroxide carbonate cobalt (Co2CO3(OH)2) which crystallize with the spatial group P21/a (monoclinic system) after about 4 days. At the same time, the most important fall of cobalt content takes place, but pH and alkalinity values do not show significant changes. The evolution of the aqueous solutions is closely related to the increases of crystallinity degree. TEM study confirms the evolution of the shape of crystals, which exhibit platelet morphology at the end of aging time.

  18. Composition and structure of acid leached LiMn 2-yTi yO 4 (0.2≤ y≤1.5) spinels

    NASA Astrophysics Data System (ADS)

    Avdeev, Georgi; Amarilla, José Manuel; Rojo, José María; Petrov, Kostadin; Rojas, Rosa María

    2009-12-01

    Lithium manganese titanium spinels, LiMn 2-yTi yO 4, (0.2≤ y≤1.5) have been synthesized by solid-state reaction between TiO 2 (anatase), Li 2CO 3 and MnCO 3. Li + was leached from the powdered reaction products by treatment in excess of 0.2 N HCl at 85 °C for 6 h, under reflux. The elemental composition of the acidic solution and solid residues of leaching has been determined by complexometric titration, atomic absorption spectroscopy and X-ray fluorescence analysis. Powder X-ray diffraction was used for structural characterization of the crystalline fraction of the solid residues. It has been found that the amount of Li + leached from LiMn 2-yTi yO 4 decreases monotonically with increasing y in the interval 0.2≤ y≤1.0 and abruptly drops to negligibly small values for y>1.0. The content of Mn and Li in the liquid phase and of Mn and Ti in the solid (amorphous plus crystalline) residue, were related to the composition and cation distribution in the pristine compounds. A new formal chemical equation describing the process of leaching and a mechanism of the structural transformation undergone by the initial solids as a result of Li + removal has been proposed.

  19. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  20. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  1. Electron beam crystallization of Te 1-xSe x films

    NASA Astrophysics Data System (ADS)

    Vermaak, J. S.; Raubenheimer, D.

    1987-11-01

    In situ transmission electron microscopy has been used to study the effect of high energy electrons on the amorphous-to-crystalline phase transformation, the isothermal growth rates, as well as the structure and orientation of the recrystallized Te 0.7Se 0.3 thin films. It is shown that the beam effect is not a pure thermal effect. It is proposed that the electron beam initiates nucleation and promotes growth by the interaction of the high energy electrons with the van der Waals type bonds between the short composite Te-Se chains.

  2. Preparation of YBa2Cu3O7 High Tc Superconducting Coatings by Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Danroc, J.; Lacombe, J.

    The following sections are included: * INTRODUCTION * THE COMPOUND YBa2Cu3O7-δ * Structure * Critical temperature * Critical current density * Phase equilibria in the YBaCuO system * PREPARATION OF YBa2Cu3O7 COATINGS * General organisation of the preparation process * The powder * Hot plasma spraying of YBa2Cu3O7 * The post-spraying thermal treatment * CHARACTERISTICS OF THE YBa2Cu3O7-δ COATINGS * Chemical composition * Crystalline structure * Morphology of the coatings * Electrical and magnetic characteristics * Conclusion * REFERENCES

  3. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  4. Liquid crystalline ordering and charge transport in semiconducting materials.

    PubMed

    Pisula, Wojciech; Zorn, Matthias; Chang, Ji Young; Müllen, Klaus; Zentel, Rudolf

    2009-07-16

    Organic semiconducting materials offer the advantage of solution processability into flexible films. In most cases, their drawback is based on their low charge carrier mobility, which is directly related to the packing of the molecules both on local (amorphous versus crystalline) and on macroscopic (grain boundaries) length scales. Liquid crystalline ordering offers the possibility of circumventing this problem. An advanced concept comprises: i) the application of materials with different liquid crystalline phases, ii) the orientation of a low viscosity high temperature phase, and, iii) the transfer of the macroscopic orientation during cooling to a highly ordered (at best, crystalline-like) phase at room temperature. At the same time, the desired orientation for the application (OLED or field-effect transistor) can be obtained. This review presents the use of molecules with discotic, calamitic and sanidic phases and discusses the sensitivity of the phases with regard to defects depending on the dimensionality of the ordered structure (columns: 1D, smectic layers and sanidic phases: 2D). It presents ways to systematically improve charge carrier mobility by proper variation of the electronic and steric (packing) structure of the constituting molecules and to reach charge carrier mobilities that are close to and comparable to amorphous silicon, with values of 0.1 to 0.7 cm(2)  · V(-1)  · s(-1) . In this context, the significance of cross-linking to stabilize the orientation and liquid crystalline behavior of inorganic/organic hybrids is also discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Glass-derived superconducting ceramics with zero resistance at 107 K in the Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) system

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-01-01

    A melt of composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) was fast quenched to form a glass. This was subsequently air annealed and the influence of annealing time and temperature on the formation of various crystalline phases was investigated. X-ray powder diffraction indicate that none of the resulting samples were single phase. However, for an annealing temperature of 840 C, the volume fraction of the high Tc phase (isostructural with Bi2Sr2Ca2Cu3O10) increased with annealing time. A specimen annealed at this temperature for 243 h followed by slow cooling showed a sharp transition and Tc (R = 0) = 107.2 K.

  6. Synergistic stabilization of metastable Fe{sub 23}B{sub 6} and γ-Fe in undercooled Fe{sub 83}B{sub 17}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.

    2015-06-15

    Previous investigations of undercooled liquid Fe{sub 83}B{sub 17} near the eutectic composition have found that metastable crystalline phases, such as Fe{sub 23}B{sub 6}, can be formed and persist down to ambient temperature even for rather modest cooling rates. Using time-resolved high-energy x-ray diffraction on electrostatically levitated samples of Fe{sub 83}B{sub 17}, we demonstrate that the Fe{sub 23}B{sub 6} metastable phase and fcc γ-Fe grow coherently from the undercooled Fe{sub 83}B{sub 17} liquid and effectively suppress the formation of the equilibrium Fe{sub 2}B + bcc α-Fe phases. The stabilization of γ-Fe offers another opportunity for experimental investigations of magnetism in metastable fcc iron.

  7. Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability.

    PubMed

    Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2011-08-01

    The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.

  8. Two-dimensional limit of crystalline order in perovskite membrane films

    PubMed Central

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; Marshall, Ann F.; Hikita, Yasuyuki; Cui, Yi; Hwang, Harold Y.

    2017-01-01

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO3 membrane lattice collapses below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. The transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices. PMID:29167822

  9. Two-dimensional limit of crystalline order in perovskite membrane films

    DOE PAGES

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di; ...

    2017-11-17

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  10. The Influence of Fe2O3 Addition on the Tio2 Structure and Photoactivity Properties

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Prasetyawati, L.; Saputri, L. N. M. Z.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The influence of Fe2O3 addition on the TiO2 structure and photoactivity properties have been studied. The addition of Fe2O3 on the TiO2 done by TiO2-Fe2O3 synthesized with variation of annealing temperature. The result showed that peak of anatase TiO2 at 2θ = 25.35° and Fe2O3 at 2θ = 54.20°. The XRD of TiO2 show annealing temperature at 400°C is anatase phase and the composite with annealing at temperature 150°C, 300°C, 400°C and 500°C is crystalline anatase phase, due to the addition of Fe2O3. Photodegradation of Rhodamin B with TiO2 at 400°C annealing temperature showed optimum degradation 36.2 %, and the composite with annealing at 400°C showed optimum degradation 44.3% for 300 minutes irradiation.

  11. Synthesis of sponge-like hydrophobic NiBi3 surface by 200 keV Ar ion implantation

    NASA Astrophysics Data System (ADS)

    Siva, Vantari; Datta, D. P.; Chatterjee, S.; Varma, S.; Kanjilal, D.; Sahoo, Pratap K.

    2017-07-01

    Sponge-like nanostructures develop under Ar-ion implantation of a Ni-Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi3 phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.

  12. One-step large scale gas phase synthesis of Mn2 + doped ZnS nanoparticles in reducing flames

    NASA Astrophysics Data System (ADS)

    Athanassiou, E. K.; Grass, R. N.; Stark, W. J.

    2010-05-01

    Metal sulfide nanoparticles have attracted considerable interest because of their unique semiconducting and electronic properties. In order to prepare these fascinating materials at an industrial scale, however, solvent-free, dry processes would be most advantageous. In the present work, we demonstrate how traditional oxide nanoparticle synthesis in flames can be extended to sulfides if we apply a careful control on flame gas composition and sulfur content. The ultra-fast (<1 ms) gas phase kinetics at elevated temperatures allow direct sulfidization of metals in flames (\\mathrm {MO}_{x} \\Rightarrow \\mathrm {MS}_{x} ). As a representative example, we prepared air-stable Mn2 + doped zinc sulfide nanoparticles. Post-sintering of the initially polycrystalline nanopowder resulted in a material of high crystallinity and improved photoluminescence. An analysis of the thermodynamics, gas composition, and kinetics in these reducing flames indicates that the here-presented extension of flame synthesis provides access to a broad range of metal sulfide nanoparticles and offers an alternative to non-oxide phosphor preparation.

  13. Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol.

    PubMed

    Siddiqa, Asima; Masih, Dilshad; Anjum, Dalaver; Siddiq, Muhammad

    2015-11-01

    Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process. Copyright © 2015. Published by Elsevier B.V.

  14. The Microstructural Design of Trimodal Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Ma, Kaka; Yang, Hanry; Li, Meijuan; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-06-01

    Trimodal composites, consisting of nanocrystalline or ultrafine grains (UFGs), coarse grains (CGs), and ceramic particles, were originally formulated to achieve combinations of physical and mechanical properties that are unattainable with the individual phases, such as strength, ductility, and high-strain-rate deformation. The concept of a trimodal structure is both scientifically novel as well as technologically promising because it provides multiple controllable degrees of freedom that allow for extensive microstructure design. The UFGs provide efficient obstacles for dislocation movement, such as grain boundaries and other crystalline defects. The size, distribution, and spatial arrangement of the CGs can be controlled to provide plasticity during deformation. The size, morphology, and distribution of the reinforcement particles can be tailored to attain various engineering and physical properties. Moreover, the interfaces that form among the various phases also help determine the overall behavior of the trimodal composites. In this article, a review is provided to discuss the selection and design of each component in trimodal Al composites. The toughening and strengthening mechanisms in the trimodal composite structure are discussed, paying particular attention to strategies that can be implemented to tailor microstructures for optimal mechanical behavior. Recent results obtained with high-performance trimodal Al composites that contain nanometric reinforcements are also discussed to highlight the ability to control particle-matrix interface characteristics. Finally, a perspective is provided on potential approaches that can be explored to develop the next generation of trimodal composites, and interesting scientific paradigms that evolve from the proposed design strategies are discussed.

  15. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia

    PubMed Central

    Fiume, Elisa; Miola, Marta; Leone, Federica; Onida, Barbara; Laviano, Francesco; Gerbaldo, Roberto; Verné, Enrica

    2018-01-01

    This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing) on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry) and microstructural (X-ray diffraction) viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g) and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere) during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment. PMID:29361763

  16. Toward understanding the lithiation/delithiation process in Fe 0.5TiOPO 4/C electrode material for lithium-ion batteries

    DOE PAGES

    Lasri, Karima; Mahmoud, Abdelfattah; Saadoune, Ismael; ...

    2015-11-28

    We used Fe 0.5TiOPO 4/C composite as anode material for LIB and exhibits excellent cycling performance when the electrode is cycled in two different voltage ranges [3.0-1.3V] and [3.0- 0.02V] where different insertion mechanisms were involved. Based on in situ X-ray diffraction, in situ XANES spectroscopy results, and various electrochemical analyses at high and low voltage cut-off, we found that Fe 0.5TiOPO 4/C electrode materials still maintains its structure crystallinity after cycling between [3.0-1.3V] showing formation of new phase at the end of first discharge, with a reversible capacity of 100 mAhg-1 after 50 cycles at C/5 rate. Moreover, atmore » highly lithiated states, [3.0-0.02V] voltage range, a reduction decomposition reaction highlights the Li-insertion/extraction behaviors, and low phase crystallinity is observed during cycling, in addition an excellent rate behavior and a reversible capacity of 250 mAhg - 1 can still be maintained after 50 cycles at high cycling rate 5C.« less

  17. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    PubMed

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  18. Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials.

    PubMed

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios

    2017-10-30

    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.

  19. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  20. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.

    PubMed

    Gissinger, Jacob R; Pramanik, Chandrani; Newcomb, Bradley; Kumar, Satish; Heinz, Hendrik

    2018-01-10

    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composites are used as precursors for ultrastrong and lightweight carbon fibers. However, insights into the structure at the nanoscale and the relationships to mechanical and thermal properties have remained difficult to obtain. In this study, molecular dynamics simulation with accurate potentials and available experimental data were used to describe the influence of different degrees of PAN preorientation and CNT diameter on the atomic-scale structure and properties of the composites. The inclusion of CNTs in the polymer matrix is favored for an intermediate degree of PAN orientation and small CNT diameter whereas high PAN crystallinity and larger CNT diameter disfavor CNT inclusion. The glass transition at the CNT/PAN interface involves the release of rotational degrees of freedom of the polymer backbone and increased mobility of the protruding nitrile side groups in contact with the carbon nanotubes. The glass-transition temperature of the composite increases in correlation with the amount of CNT/polymer interfacial area per unit volume, i.e., in the presence of CNTs, for higher CNT volume fraction,  and inversely with CNT diameter. The increase in glass-transition temperature upon CNT addition is larger for PAN of lower crystallinity than for PAN of higher crystallinity. Interfacial shear strengths of the composites are higher for CNTs of smaller diameter and for PAN with preorientation, in correlation with more favorable CNT inclusion energies. The lowest interfacial shear strength was observed in amorphous PAN for the same CNT diameter. PAN with ∼75% crystallinity exhibited hexagonal patterns of nitrile groups near and far from the CNT interface which could influence carbonization into regular graphitic structures. The results illustrate the feasibility of near-quantitative insights into macroscale properties of polymer/CNT composites from simulations of nanometer-scale composite domains. Guidance is most effective when key assumptions in experiment and simulation are closely aligned, such as exfoliation versus bundling of CNTs, size, type, potential defects of CNTs, and precise measures for polymer crystallinity.

  1. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  2. High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Chen, Shuting; Yao, Kui; Eng Hock Tay, Francis; Lu, Li

    2011-10-01

    Dense α-phase blend films of vinylidene fluoride (VDF) oligomer and poly(vinylidene fluoride) (PVDF) of various compositions were prepared from chemical solution deposition. The dielectric constant of the films was unexpectedly lower, and the mechanical strength was higher than either of the two components, leading to high electromechanical dielectric breakdown strength (>850 MV/m vs. 300˜500 MV/m for typical PVDF-based films). The properties were attributed to the unique blend structure with high crystallinity and densely packed rigid amorphous phase incorporating long and short chains. A maximum polarization of 162 mC/m2 and a large electric energy density up to 27.3 J/cm3 were obtained.

  3. Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Doolittle, W. Alan

    2017-04-01

    The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-phase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 °C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO2, LiNbO2, Li3NbO4, LiNbO3, and LiNb3O8 have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.

  4. Thermal collapse and hierarchy of polymorphs in a faujasite-type zeolite and its analogous melt-quenched glass

    NASA Astrophysics Data System (ADS)

    Palenta, Theresia; Fuhrmann, Sindy; Greaves, G. Neville; Schwieger, Wilhelm; Wondraczek, Lothar

    2015-02-01

    We examine the route of structural collapse and re-crystallization of faujasite-type (Na,K)-LSX zeolite. As the first step, a rather stable amorphous high density phase HDAcollapse is generated through an order-disorder transition from the original zeolite via a low density phase LDAcollapse, at around 790 °C. We find that the overall amorphization is driven by an increase in the bond angle distribution within T-O-T and a change in ring statistics to 6-membered TO4 (T = Si4+, Al3+) rings at the expense of 4-membered rings. The HDAamorph transforms into crystalline nepheline, though, through an intermediate metastable carnegieite phase. In comparison, the melt-derived glass of similar composition, HDAMQ, crystallizes directly into the nepheline phase without the occurrence of intermediate carnegieite. This is attributed to the higher structural order of the faujasite-derived HDAcollapse which prefers the re-crystallization into the highly symmetric carnegieite phase before transformation into nepheline with lower symmetry.

  5. The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires.

    PubMed

    Choi, Yeon Sik; Kim, Sung Kyun; Williams, Findlay; Calahorra, Yonatan; Elliott, James A; Kar-Narayan, Sohini

    2018-06-19

    Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.

  6. Combinatorial microfluidic droplet engineering for biomimetic material synthesis

    PubMed Central

    Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.

    2016-01-01

    Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine. PMID:27730209

  7. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2

    PubMed Central

    Shi, Shih-Chen

    2016-01-01

    Biopolymers reinforced with nanoparticle (NP) additives are widely used in tribological applications. In this study, the effect of NP additives on the tribological properties of a green lubricant hydroxypropyl methylcellulose (HPMC) composite was investigated. The IF-MoS2 NPs were prepared using the newly developed gas phase sulfidation method to form a multilayered, polyhedral structure. The number of layers and crystallinity of IF-MoS2 increased with sulfidation time and temperature. The dispersity of NPs in the HPMC was investigated using Raman and EDS mapping and showed great uniformity. The use of NPs with HPMC enhanced the tribological performance of the composites as expected. The analysis of the worn surface shows that the friction behavior of the HPMC composite with added NPs is very sensitive to the NP structure. The wear mechanisms vary with NP structure and depend on their lubricating behaviors. PMID:28773976

  8. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.

    PubMed

    Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela

    2017-04-09

    The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.

  9. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  10. Phase states and thermomorphologic, thermotropic, and magnetomorphologic properties of lyotropic mesophases: Sodium lauryl sulphate-water-1-decanol liquid-crystalline system

    NASA Astrophysics Data System (ADS)

    Özden, Pınar; Nesrullajev, Arif; Oktik, Şener

    2010-12-01

    Phase states in sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system have been investigated for different temperature ranges. The dependence of triangle phase diagram types, phase boundaries, and sequence of lyotropic mesophases vs temperature has been found. The thermomorphologic, thermotropic, and magnetomorphologic properties of hexagonal E, lamellar D, nematic-calamitic NC , nematic-discotic ND , and biaxial nematic Nbx mesophases have been studied in detail. Dynamics of transformations of magnetically induced textures has been investigated. Peculiarities of typical and magnetically induced textures have been investigated in detail. Triangle phase diagrams of sodium lauryl sulphate-water-1-decanol lyotropic liquid-crystalline system for different temperatures and typical and magnetically induced textures of E, D, NC , ND , and Nbx mesophases are presented.

  11. Phase behavior of colloidal dimers and hydrodynamic instabilities in binary mixtures

    NASA Astrophysics Data System (ADS)

    Milinkovic, K.

    2013-05-01

    We use computer simulations to study colloidal suspensions comprised of either bidisperse spherical particles or monodisperse dimer particles. The two main simulation techniques employed are a hybrid between molecular dynamics and stochastic rotation dynamics (MD-SRD), and a Monte Carlo (MC) algorithm. MD-SRD allows us to take Brownian motion and hydrodynamic interactions into account, while we use MC simulations to study equilibrium phase behavior. The first part of this thesis is dedicated to studying the Rayleigh-Taylor-like hydrodynamic instabilities which form in binary colloidal mixtures. Configurations with initially inhomogeneous distributions of colloidal species let to sediment in confinement will undergo the instability, and here we have studied the formation, evolution and the structural organization of the colloids within the instability as a function of the properties of the binary mixture. We found that the distribution of the colloids within the instability does not depend significantly on the composition of the mixtures, but does depend greatly on the relative magnitudes of the particle Peclet numbers. To follow the time evolution of the instability formation we calculated the spatial colloid velocity correlation functions, observing alternating regions in which the particle sedimentation velocities are correlated and anticorrelated. These observations are consistent with the network-like structures which are characteristic for Rayleigh-Taylor instabilities. We also calculated the growth rates of the unstable modes both from our simulation data and theoretically, finding good agreement between the obtained results. The second part of this thesis focuses on the phase behavior of monodisperse dimer systems. We first studied the phase behavior of hard snowman-shaped particles which consist of tangential hard spheres with different diameters. We used Monte Carlo simulations and free energy calculations to obtain the phase diagram as a function of the sphere diameter ratio, predicting stable isotropic fluid, plastic crystal and aperiodic crystalline phases. The crystalline phases found to be stable for a given diameter ratio at high densities correspond to the close packed structures of equimolar binary hard-sphere mixtures with the same diameter ratio. However, we also predict several crystal-crystal phase transitions, such that the best packed structures are stable at higher densities, while those with a higher degree of degeneracy are stable at lower densities. To explore the effects of degeneracy entropy on the phase behavior of dimer particles, we calculated the phase diagram of hard asymmetric dumbbells. These particles consist of two spheres with fixed diameters and varying center-to-center separation. We predicted stable isotropic fluid, plastic crystal, and periodic NaCl-based and both periodic and aperiodic CrB-based crystalline phases, and found that reducing the sphere separation results in the aperiodic crystalline phases of snowman-shaped particles becoming destabilized. Finally, we have also studied the phase behavior of dumbbell particles interacting with hard-core repulsive Yukawa potentials. We found that dumbbells with sufficiently long-ranged interactions crystallize spontaneously into plastic crystals in which the particle centers of mass are located on average on a BCC crystal lattice. The auto- and spatial orientational correlation functions reveal no significant hindrance of the particle rotations even for the shortest ranged interactions studied.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Xiaodong; Wu, Hong, E-mail: wuhong927@126.com

    Metallic glass composite coatings Ti{sub 45}Cu{sub 41}Ni{sub 9}Zr{sub 5} and Ti{sub 45}Cu{sub 41}Ni{sub 6}Zr{sub 5}Sn{sub 3} (at.%) on a Ti-30Nb-5Ta-7Zr (wt.%) (TNTZ) alloy were prepared by laser cladding. The microstructures of the coatings were characterized by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analyzer (EDXA), and transmission electron microscopy (TEM). Results indicated that the coatings have an amorphous structure embedded with a few nanocrystalline phases and dendrites. A partial substitution of Ni by Sn can improve the glass forming ability of Ti-base metallic glass system, and induce the formation of nano-sized Ni{sub 2}SnTimore » phase during the cyclic laser heating. The tribological behavior of both the substrate and the coatings was investigated in detail. A significant improvement in both the hardness and the wear resistance of the coatings was achieved with the addition of Sn. The relationship between the wear resistance and the microstructures of the coatings was discussed. - Highlights: •Ti-based metallic glass composite coatings were prepared by laser cladding. •The wear resistance is greatly improved by laser cladding of composite coatings. •Substitution of Ni by Sn increases GFA and wear resistance of the coatings. •A good balance of crystalline/amorphous phases improves the wear resistance. •Adhesive wear serves as the dominant wear mechanism of the composite coatings.« less

  13. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats

    PubMed Central

    Kopylova, Lyudmila V.; Cherepanov, Ivan V.; Snytnikova, Olga A.; Rumyantseva, Yuliya V.; Kolosova, Nataliya G.; Sagdeev, Renad Z.

    2011-01-01

    Purpose To determine the age-related and the cataract-specific changes in the crystallin composition in lenses of accelerated-senescence OXYS (cataract model) and Wistar (control) rats. Methods The water soluble (WS) and insoluble (WIS) fractions of the lens proteins were separated; the identity and relative abundance of each crystallin in WS fraction were determined with the use of two-dimensional electrophoresis (2-DE) and Matrix-Assisted Laser Desorption Ionization – Time Of Flight (MALDI-TOF) mass spectrometry. All statistical calculations were performed using the software package Statistica 6.0 by factor dispersion analysis (ANOVA/MANOVA) and Newman-Keuls post-hoc test for comparison of group mean values. Results The WIS protein content increased significantly in the aged animal lenses; the WIS/WS ratio increases in approximately 8 times to the age of 62 weeks. The interstrain difference was insignificant in this experiment. 2-DE maps of the young rat lenses (3 weeks) showed single spots for each lens protein while in older lenses (12 and 62 weeks) each crystallin was presented by several spots. The abundance of γA-γF-crystallins in WS fraction significantly decreases with age. A significant increase in the percentage abundance was also found for α-crystallins and βB2-crystallin from 3 to 12 weeks. The major differences between Wistar and OXYS lenses are the faster decay of the content of γA-γF-crystallins in OXYS lenses, and the significant decrease of unmodified αA-crystallin abundance in old OXYS lenses. Conclusions The presented results demonstrate that the increase of the water-insoluble (WIS) protein fraction is rather age-specific than cataract-specific phenomenon. The major age-related changes in WS protein composition are the fast insolubilization of γ-crystallins, and the increase of αB- and βB2-crystallin abundance. The main interstrain differences, which could be attributed to the cataract-specific processes, are the faster decay of the content of γ-crystallins and the significant decrease of unmodified αA-crystallin abundance in the OXYS lenses. PMID:21677790

  14. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.

  15. Using galvanostatic electroforming of Bi 1–xSb x nanowires to control composition, crystallinity, and orientation

    DOE PAGES

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; ...

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi 1–xSb x nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI 3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl 3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl 3 bath, the electroformed nanowire arraysmore » were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi 0.75 Sb 0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi 0.70Sb 0.30.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seung Sae; Yu, Jung Ho; Lu, Di

    Long-range order and phase transitions in two-dimensional (2D) systems—such as magnetism, superconductivity, and crystallinity—have been important research topics for decades. The issue of 2D crystalline order has reemerged recently, with the development of exfoliated atomic crystals. Understanding the dimensional limit of crystalline phases, with different types of bonding and synthetic techniques, is at the foundation of low-dimensional materials design. We study ultrathin membranes of SrTiO 3, an archetypal perovskite oxide with isotropic (3D) bonding. Atomically controlled membranes are released after synthesis by dissolving an underlying epitaxial layer. Although all unreleased films are initially single-crystalline, the SrTiO 3 membrane lattice collapsesmore » below a critical thickness (5 unit cells). This crossover from algebraic to exponential decay of the crystalline coherence length is analogous to the 2D topological Berezinskii-Kosterlitz-Thouless (BKT) transition. Finally, the transition is likely driven by chemical bond breaking at the 2D layer-3D bulk interface, defining an effective dimensional phase boundary for coherent crystalline lattices.« less

  17. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    PubMed

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Vitrified chiral-nematic liquid crystalline films for selective reflection and circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsis, D.; Chen, P.H.M.; Mastrangelo, J.C.

    Nematic and left-handed chiral-nematic liquid crystals comprising methoxybiphenylbenzoate and (S)-(-)-1-phenylethylamine pendants to a cyclohexane core were synthesized and characterized. Although pristine samples were found to be polycrystalline, thermal quenching following heating to and annealing at elevated temperatures permitted the molecular orders characteristic of liquid crystalline mesomorphism to be frozen in the glassy state. Left at room temperature for 6 months, the vitrified liquid crystalline films showed no evidence of recrystallization. An orientational order parameter of 0.65 was determined with linear dichroism of a vitrified nematic film doped with Exalite 428 at a mole fraction of 0.0025. Birefringence dispersion of amore » blank vitrified nematic film was determined using a phase-difference method complemented by Abbe refractometry. A series of vitrified chiral-nematic films were prepared to demonstrate selective reflection and circular polarization with a spectral region tunable from blue to the infrared region by varying the chemical composition. The experimentally measured circular polarization spectra were found to agree with the Good-Karali theory in which all four system parameters were determined a priori: optical birefringence, average refractive index, selective reflection wavelength, and film thickness.« less

  19. Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2018-02-01

    We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.

  20. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    PubMed

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

Top