Samlan, C T; Viswanathan, Nirmal K
2018-01-31
Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.
X-ray evaluation of crystals for stellar spectrometers
NASA Technical Reports Server (NTRS)
Alexandropolos, N. G. (Editor)
1974-01-01
The report consists of three parts. The first part is an analysis of the principles involved in X-ray crystal evaluation and how they are applied to a number of crystals. The principles of crystal evaluation analysis as they apply to the special problems of X-ray astronomy are presented. A number of crystals were evaluated, and the energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (001) KAP, and (001) RAP are reported. The second part is a compilation of the diffraction properties of a number of crystals as reported by other authors. In the third part some technical details of a triple crystal spectrometer built by the author at Polytechnic Institute of Brooklyn are given. This spectrometer seems to be a most appropriate instrument for evaluation of crystal properties. (Modified author abstract)
NASA Astrophysics Data System (ADS)
Djikaev, Yuri S.; Ruckenstein, Eli
2017-04-01
Using the formalism of classical thermodynamics in the framework of the classical nucleation theory, we derive an expression for the reversible work W* of formation of a binary crystal nucleus in a liquid binary solution of non-stoichiometric composition (incongruent crystallization). Applied to the crystallization of aqueous nitric acid droplets, the new expression more adequately takes account of the effects of nitric acid vapor compared to the conventional expression of MacKenzie, Kulmala, Laaksonen, and Vesala (MKLV) [J. Geophys. Res.: Atmos. 102, 19729 (1997)]. The predictions of both MKLV and modified expressions for the average liquid-solid interfacial tension σls of nitric acid dihydrate (NAD) crystals are compared by using existing experimental data on the incongruent crystallization of aqueous nitric acid droplets of composition relevant to polar stratospheric clouds (PSCs). The predictions for σls based on the MKLV expression are higher by about 5% compared to predictions based on our modified expression. This results in similar differences between the predictions of both expressions for the solid-vapor interfacial tension σsv of NAD crystal nuclei. The latter can be obtained by using the method based on the analysis of experimental data on crystal nucleation rates in aqueous nitric acid droplets; it exploits the dominance of the surface-stimulated mode of crystal nucleation in small droplets and its negligibility in large ones. Applying that method to existing experimental data, our expression for the free energy of formation provides an estimate for σsv of NAD in the range ≈92 dyn/cm to ≈100 dyn/cm, while the MKLV expression predicts it in the range ≈95 dyn/cm to ≈105 dyn/cm. The predictions of both expressions for W* become identical for the case of congruent crystallization; this was also demonstrated by applying our method for determining σsv to the nucleation of nitric acid trihydrate crystals in PSC droplets of stoichiometric composition.
The application of inverse Broyden's algorithm for modeling of crack growth in iron crystals.
Telichev, Igor; Vinogradov, Oleg
2011-07-01
In the present paper we demonstrate the use of inverse Broyden's algorithm (IBA) in the simulation of fracture in single iron crystals. The iron crystal structure is treated as a truss system, while the forces between the atoms situated at the nodes are defined by modified Morse inter-atomic potentials. The evolution of lattice structure is interpreted as a sequence of equilibrium states corresponding to the history of applied load/deformation, where each equilibrium state is found using an iterative procedure based on IBA. The results presented demonstrate the success of applying the IBA technique for modeling the mechanisms of elastic, plastic and fracture behavior of single iron crystals.
Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2016-01-01
A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.
Chen, Jianxiang; Wu, Defeng; Tam, Kam C; Pan, Keren; Zheng, Zhigong
2017-02-10
Ring-opening polymerization of l-lactide from cellulose nanocrystal (CNC) surface yielded polylactide-grafted CNC (CNC-g-PLA). The structure and chemical composition of the CNC-g-PLA were characterized by FT-IR, 1 H NMR, XPS and XRD. The crystallization behavior and lamellar structure of poly(β-hydroxybutyrate) (PHB) in the presence of pristine CNC and CNC-g-PLA were elucidated via DSC and SAXS, and Babinet's reciprocity theory was applied. Crystallization kinetics were further analyzed using Ozawa, Mo and Kissinger models. In the presence of pristine CNC, nucleation of PHB crystals led to an increase in the crystallization temperature (T c ) of PHB; while CNC-g-PLA acted as antinucleation agent, resulting in a remarkable reduction in T c of PHB. Accordingly, the composite with pristine CNC possessed a higher crystallization rate than neat PHB, while CNC-g-PLA displayed the lowest crystallization rate. However, the lamellar structure of PHB was not affected by the presence of pristine and modified CNCs, and almost identical crystallization activation energies as the neat PHB were observed, indicating that nucleation is dominant during PHB crystallization, instead of crystal growth. This study offers a promising approach of using pristine and modified CNCs to control the crystallization of biodegradable aliphatic polyesters. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Longhi, J.
1977-01-01
A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.
Resonant photonic States in coupled heterostructure photonic crystal waveguides.
Cox, Jd; Sabarinathan, J; Singh, Mr
2010-02-09
In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.
Tercjak, Agnieszka; Gutierrez, Junkal; Ocando, Connie; Mondragon, Iñaki
2010-03-16
Conductive properties of different thermosetting materials modified with nematic 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) liquid crystal and rutile TiO(2) nanoparticles were successfully studied by means of tunneling atomic force miscroscopy (TUNA). Taking into account the liquid crystal state of the HBC at room temperature, depending on both the HBC content and the presence of TiO(2) nanoparticles, designed materials showed different TUNA currents passed through the sample. The addition of TiO(2) nanoparticles into the systems multiply the detected current if compared to the thermosetting systems without TiO(2) nanoparticles and simultaneously stabilized the current passed through the sample, making the process reversible since the absolute current values were almost the same applying both negative and positive voltage. Moreover, thermosetting systems modified with liquid crystals with and without TiO(2) nanoparticles are photoluminescence switchable materials as a function of temperature gradient during repeatable heating/cooling cycle. Conductive properties of switchable photoluminescence thermosetting systems based on liquid crystals can allow them to find potential application in the field of photoresponsive devices, with a high contrast ratio between transparent and opaque states.
Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers
NASA Astrophysics Data System (ADS)
Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan
2018-04-01
Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.
NASA Astrophysics Data System (ADS)
Zhao, Wenhan; Liu, Lijun
2017-01-01
The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.
Arita, Toshihiko
2010-10-01
Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.
NASA Astrophysics Data System (ADS)
Salem-Sugui, S., Jr.; Alvarenga, A. D.; Luo, H.-Q.; Zhang, R.; Gong, D.-L.
2017-01-01
We analysed the flux-flow region of isofield magnetoresistivity data obtained on three crystals of {{BaFe}}2-x Ni x As2 with T c ˜ 20 K for three different geometries relative to the angle formed between the applied magnetic field and the c-axis of the crystals. The field dependent activation energy, U 0, was obtained from the thermal assisted flux-flow (TAFF) and modified vortex-glass models, which were compared with the values of U 0 obtained from flux-creep available in the literature. We observed that the U 0 obtained from the TAFF model show deviations among the different crystals, while the correspondent glass lines obtained from the vortex-glass model are virtually coincident. It is shown that the data is well explained by the modified vortex-glass model, allowing extract of values of T g, the glass transition temperature, and {T}* , a temperature which scales with the mean field critical temperature {T}{{c}}(H). The resulting glass lines obey the anisotropic Ginzburg-Landau theory and are well fitted by a theory developed in the literature by considering the effect of disorder.
Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco
2003-03-01
A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.
Olafson, Katy N; Nguyen, Tam Q; Vekilov, Peter G; Rimer, Jeffrey D
2017-10-04
A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Li; Hwang, Peter; Witkowska, H. Ewa; Liu, Haichuan; Li, Wu
2014-01-01
Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin–crystal interactions and amelogenin–proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter. PMID:24188774
Single crystal growth and characterization of pure and sodium-modified copper tartrate
NASA Astrophysics Data System (ADS)
Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.
2008-12-01
Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.
Heterogeneous Nucleation of Dicalcium Phosphate Dihydrate on Modified Silica Surfaces
Miller, Carrie; Komunjer, Ljepša; Hlady, Vladimir
2012-01-01
Heterogeneous nucleation of dicalcium phosphate dihydrate, CaHPO4•2H2O (DCPD) was studied on untreated planar fused silica and on three modified silica surfaces: octadecylsilyl (OTS) modified silica, human serum albumin treated OTS silica, and UV-oxidized 3-mercaptopropyltriethoxysilyl (MTS) modified silica. The supersaturation ratio of calcium and phosphate solution with respect to DCPD was kept below ~10. The nucleated crystals were observed 24 hours and one week after initial contact between supersaturated solutions and substrate surfaces using bright field and reflectance interference contrast microscopy. No DCPD crystals nucleated on albumin-treated OTS-silica. Majority of the DCDP crystals formed on the other modified silica surfaces appeared to be morphologically similar irrespective of the nature of nucleating substrate. Reflectance interference contrast microscopy provided a proof that the majority of the crystals on these substrates do not develop an extended contact with the substrate surface. The images showed that the most extended contact planes were between the DCPD crystals and MTS modified silica surface. The crystals nucleated on OTS-treated and untreated silica surfaces showed only few or none well-developed contact planes. PMID:25264399
Dual-Responsive SPMA-Modified Polymer Photonic Crystals and Their Dynamic Display Patterns.
Gao, Zewen; Gao, Dongsheng; Huang, Chao; Zhang, Hanbing; Guo, Jinbao; Wei, Jie
2018-05-28
Light and electrothermal responsive polymer photonic crystals (PCs) modified with 1'-acryloyl chloride-3',3'-dimethyl-6-nitro-spiro(2H-1-benzopyran-2,2'-indoline) (SPMA) are proposed, and their dynamic display patterns are achieved through the combination of the SPMA-modified PCs and a patterned graphite layer. These PCs exhibit fluorescence under UV light irradiation because of the isomerization of the SPMA, which is restricted in the shell of the polymer colloidal spheres. After a voltage is applied to the patterned graphite layer, the fluorescence of PCs in the specific area disappears, and dynamic display patterns are obtained. Under UV light irradiation, the PCs change from the "partial-fluorescence" state to the initial "fluorescence" state, and the patterns disappear. Using this technique, the PC pattern "M L N" on the glass substrate and PC patterns from "0" to "9" on the paper substrate are fabricated. Thus, these dual-responsive PCs have potential applications in information recording, anticounterfeiting, dynamic display, and photoelectric devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.
Fracture of crystals and subsequent frictional heating are associated with formation of hot spots in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and fracture mechanisms in PBXs manufactured using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene (HTPB) binder. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speedmore » synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. In conclusion, the obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.« less
Electro-optic Modulation in Single-crystal Film of DAST Measured at 1.55 microns
NASA Astrophysics Data System (ADS)
Titus, Jitto; Swamy, Rajendra; Govindan Kutty, Srivatsa; Khatavkar, Sanchit; Thakur, Mrinal
2003-03-01
Exceptionally large electro-optic coefficient and high-speed modulation at 750 nm in DAST single-crystal film has been recently reported.[1] In this presentation, our measurement of electro-optic modulation in DAST single-crystal film at 1.55 microns will be discussed. The single-crystal film was prepared by the modified shear method. The modulation measurement was performed in the transverse configuration using the field-induced birefringence method. A semiconductor laser was used for this experiment. The light beam was propagated perpendicular to the film and the modulation was recorded for an ac field applied along the dipole axis on the film. About 6.5at a low field leading to a magnitude of the electro-optic coefficient (r11) of about 200 pm/V at 1.55 microns. 1. M. Thakur, A. Mishra, J. Titus and A.C. Ahyi, APL, 81 3738 (2002).
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
Electro-optic modulation at 1.4 GHz using single-crystal film of DAST
NASA Astrophysics Data System (ADS)
Ahyi, Ayayi; Titus, Jitto; Thakur, Mrinal
2002-03-01
Electro-optic modulation at 4 kHz using single-crystal film of DAST has been recently reported.^1 The measurement was made in the transverse configuration with the light beam propagating perpendicular to the film while electric field was applied in the plane of the film - along the dipole axis. In this presentation, we will discuss results of electro-optic modulation in DAST single-crystal films at significantly higher speed (0.1 - 1.4 GHz). Single-crystal films of DAST with excellent optical quality were prepared by modified shear method. The electro-optic modulation was measured using the technique of field-induced birefringence and the signal was recorded by a spectrum analyzer. Light (λ = 750 nm) propagated perpendicular to the film (thickness ~ 3 μm). We have observed excellent signal-to-noise ratio at these high frequencies, along with a low insertion loss. The voltage we applied is only ~ 1 volt across a gap of 15 μm and the observed signal-to-noise ratio is comparable to that of guided-wave electro-optic modulators. 1. M. Thakur, J. Xu, A. Bhowmik and M. Thakur, Appl. Phys. Lett., 74 635
Growth and nonlinear optical characterization of organic single crystal films
NASA Astrophysics Data System (ADS)
Zhou, Ligui
1997-12-01
Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.
A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals
NASA Astrophysics Data System (ADS)
Kwak, Junha John
Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.
Kinetic resolution of racemic mixtures in gel media
NASA Astrophysics Data System (ADS)
Petrova, Rositza Iordanova
The goal of this research was to investigate the effect of chiral gels on the chiral crystal nucleation and growth and assess the gels' potential as media for kinetic separation of racemic mixtures. The morphologies of asparagine monohydrate and sodium bromate crystals grown in different gel media were examined in order to discern the effect of gel structure and density on the relative growth rates of those materials. Different crystal habits were observed when the gel chemical composition, density and solute concentration were varied. These studies showed that the physical properties of the gel, such as gel density and pore size, as well as its chemical composition affect the crystal habit. The method of kinetic resolution in gel media was first applied to sodium chlorate, which is achiral in solution but crystallizes in a chiral space group. Crystallization in agarose gels yielded an enantiomorphic bias, the direction and magnitude of which could be affected by changing the temperature or by the addition of an achiral cosolvent. Aqueous gels at 6°C produced crystalline mixtures enriched with the d-enantiomorph, while crystallization under MeOH diffusion favored l-crystals. Optimized conditions yielded e.e. of 53% of l-enantiomorph. The method was next applied to the organic molecular crystals of asparagine monohydrate and threonine. Asparagine monohydrate growth in aqueous agarose and iota-carrageenan gels produced crystal mixtures enriched with D-enantiomer. The degree of resolution was higher when the total amount of asparagine crystallized was low. The success of the resolution depends strongly on the concentrations of solute and the geling substance. Growth from agarose gels yielded e.e. of 44% under optimized conditions. The same method was applied to the resolution of Thr, albeit with modest success. In an effort to improve the resolution of asparagine monohydrate, agarose was synthetically modified by esterifying its side chains with homochiral asparagyl groups and used as a kinetic resolution media. The crystallization from L-Asn-agarose favored crystallization of L-enantiomer (28% e.e.), while D-Asn-agarose favored D-enantiomer (40% e.e.). The degree of resolution was sensitive to the concentrations of the gel and the total amount of crystallized asparagine, but the media was no better than that in pure agarose.
NASA Astrophysics Data System (ADS)
Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong
2013-06-01
Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.
Control of hydrodynamic cavitation using ultrasonic
NASA Astrophysics Data System (ADS)
Chatterjee, Dhiman; Arakeri, Vijay H.
2003-11-01
Hydrodynamic cavitation is known to have many harmful effects like surface damage and generation of noise. We investigated the use of ultrasonics to control traveling bubble cavitation. Ultrasonic pressure field, produced by a piezoelectric crystal, was applied to modify the nuclei size distribution. Effects of continuous-wave (CW) and pulsed excitations were studied. At low dissolved gas content the CW-mode performed better than the pulsed one, whereas for high gas content the pulsed one was more effective. The dominant mechanisms were Bjerknes force and rectified diffusion in these two cases. Simultaneous excitation by two crystals in CW and pulsed modes was seen to control cavitation better.
Rechargeable solid state neutron detector and visible radiation indicator
Stowe, Ashley C.; Wiggins, Brenden; Burger, Arnold
2017-05-23
A radiation detection device, including: a support structure; and a chalcopyrite crystal coupled to the support structure; wherein, when the chalcopyrite crystal is exposed to radiation, a visible spectrum of the chalcopyrite crystal changes from an initial color to a modified color. The visible spectrum of the chalcopyrite crystal is changed back from the modified color to the initial color by annealing the chalcopyrite crystal at an elevated temperature below a melting point of the chalcopyrite crystal over time. The chalcopyrite crystal is optionally a .sup.6LiInSe.sub.2 crystal. The radiation is comprised of neutrons that decrease the .sup.6Li concentration of the chalcopyrite crystal via a .sup.6Li(n,.alpha.) reaction. The initial color is yellow and the modified color is one of orange and red. The annealing temperature is between about 450 degrees C. and about 650 degrees C. and the annealing time is between about 12 hrs and about 36 hrs.
High speed X-ray phase contrast imaging of energetic composites under dynamic compression
NASA Astrophysics Data System (ADS)
Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; Mares, Jesus O.; Casey, Alex D.; Gunduz, I. Emre; Hudspeth, Matthew; Claus, Benjamin; Sun, Tao; Fezzaa, Kamel; Son, Steven F.; Chen, Weinong W.
2016-09-01
Fracture of crystals and frictional heating are associated with the formation of "hot spots" (localized heating) in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and the fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and the fracture mechanisms in PBXs composed of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene binder doped with iron (III) oxide. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speed synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. The obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.
High speed X-ray phase contrast imaging of energetic composites under dynamic compression
Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.; ...
2016-09-26
Fracture of crystals and subsequent frictional heating are associated with formation of hot spots in energetic composites such as polymer bonded explosives (PBXs). Traditional high speed optical imaging methods cannot be used to study the dynamic sub-surface deformation and fracture behavior of such materials due to their opaque nature. In this study, high speed synchrotron X-ray experiments are conducted to visualize the in situ deformation and fracture mechanisms in PBXs manufactured using octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals and hydroxyl-terminated polybutadiene (HTPB) binder. A modified Kolsky bar apparatus was used to apply controlled dynamic compression on the PBX specimens, and a high speedmore » synchrotron X-ray phase contrast imaging (PCI) setup was used to record the in situ deformation and failure in the specimens. The experiments show that synchrotron X-ray PCI provides a sufficient contrast between the HMX crystals and the doped binder, even at ultrafast recording rates. Under dynamic compression, most of the cracking in the crystals was observed to be due to the tensile stress generated by the diametral compression applied from the contacts between the crystals. Tensile stress driven cracking was also observed for some of the crystals due to the transverse deformation of the binder and superior bonding between the crystal and the binder. In conclusion, the obtained results are vital to develop improved understanding and to validate the macroscopic and mesoscopic numerical models for energetic composites so that eventually hot spot formation can be predicted.« less
DNA-mediated nanoparticle crystallization into Wulff polyhedra
NASA Astrophysics Data System (ADS)
Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.; Schmucker, Abrin L.; Pals, Bridget C.; de La Cruz, Monica Olvera; Mirkin, Chad A.
2014-01-01
Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.
Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede
2014-04-24
Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.
Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.
Setoodeh, A R; Farahmand, H
2018-01-24
In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.
The study of VOPc thin film transistors on modified substrates
NASA Astrophysics Data System (ADS)
Song, De; Xu, Qi; Cheng, Hongcang; Li, Bao-zeng; Shang, Yubin
2018-02-01
The vanadyl phthalocyanine (VOPc) organic thin film transistors (OTFTs) were fabricated on the various organosilane self-assembled monolayer (SAM) modified substrates. And the effect of the surface properties on the performance of these transistors was studied. The atomic force morphologies and X-ray diffraction (XRD) spectrums of vanadyl phthalocyanine films on different SAM-modified surfaces were studied. They reveal that the terminal functional groups of organosilane affect the growth of VOPc film and device performance. The VOPc film on octadecyltrichlorosilane (OTS) modified substrate has larger crystal size and effective crystal thickness than those on phenyltrichlorosilane (PTS), 1H,1H,2H,2H-Perfluorodec-yltrichlorosilane (FDTS) as well as non-modified substrate, which contributes the mobility of corresponding device several and several dozen times relative to other ones. The effective crystal thickness and crystal grain size of VOPc film on PTS is between that on OTS treated and that on non-modified substrate due to the stronger attractive force between VOPc and SiO2. The VOPc films' performance and effective crystal thickness on FDTS treated are worse than that on PTS due to the existents of attractive force between -CF3 and VOPc.
Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Fauler, Alex; Fiederle, Michael; Duffar, Thierry; Dieguez, Ernesto; Zanotti, Lucio; Zappettini, Andrea; Roosen, GÉrald
2009-08-01
The phenomenon of ldquodewettingrdquo associated with the Vertical Bridgman (VB) crystal growth technique leads to the growth of a crystal without contact with the crucible. One dramatic consequence of this modified VB process is the reduction of structural defects within the crystal. It has been observed in several microgravity experiments for different semiconductor crystals. This work is concentrated on the growth of high resistivity (Cd,Zn)Te:In (CZT) crystals by achieving the phenomenon of dewetting under microgravity condition and its application in the processing of CZT detectors. Two Cd0.9Zn0.1Te:In crystals were grown in space on the Russian FOTON satellite in the POLIZON-M facility in September 2007 (mission M3). At the end of the preliminary melting phase of one crystal, a Rotating Magnetic Field (RMF) was applied in order to reduce the typical tellurium clusters within the melt before the pulling. The other crystal was superheated with 20 K above the melting point before the pulling. A third reference crystal has been grown on the ground in similar thermal conditions. Profiles measurements of the space grown crystals surface gave the evidence of a successful dewetting during the crystal growth. Characterization methods such as IR microscopy and CoReMa have been performed on the three crystals. CZT detectors have been processed from the grown part of the different crystals. The influence of the dewetting on the material quality and the detector properties completes the study.
Modified Acousto-Optic Adaptive Processor (Mod-AOAP)
1992-12-01
International Science Center, who assisted in the design of the mod-AOAP using the photorefractive crystal; George Brost of RL/OCPA, who provided many...cancellation. Discussions with George Brost and John Hong indicate the instabilities are greater when only applying a DC field. Other system...m); "% Diffraction eff. according to George -> Huignard "% Values taken from Fred Vachss-Photorefractive > "% Transfer Function k=2*pi/50-6; % Grating
Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.
Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan
2016-08-01
The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too.
Non-Commutative Rational Yang-Baxter Maps
NASA Astrophysics Data System (ADS)
Doliwa, Adam
2014-03-01
Starting from multidimensional consistency of non-commutative lattice-modified Gel'fand-Dikii systems, we present the corresponding solutions of the functional (set-theoretic) Yang-Baxter equation, which are non-commutative versions of the maps arising from geometric crystals. Our approach works under additional condition of centrality of certain products of non-commuting variables. Then we apply such a restriction on the level of the Gel'fand-Dikii systems what allows to obtain non-autonomous (but with central non-autonomous factors) versions of the equations. In particular, we recover known non-commutative version of Hirota's lattice sine-Gordon equation, and we present an integrable non-commutative and non-autonomous lattice modified Boussinesq equation.
Study of Linear and Nonlinear Waves in Plasma Crystals Using the Box_Tree Code
NASA Astrophysics Data System (ADS)
Qiao, K.; Hyde, T.; Barge, L.
Dusty plasma systems play an important role in both astrophysical and planetary environments (protostellar clouds, planetary ring systems and magnetospheres, cometary environments) and laboratory settings (plasma processing or nanofabrication). Recent research has focussed on defining (both theoretically and experimentally) the different types of wave mode propagations, which are possible within plasma crystals. This is an important topic since several of the fundamental quantities for characterizing such crystals can be obtained directly from an analysis of the wave propagation/dispersion. This paper will discuss a num rical model fore 2D-monolayer plasma crystals, which was established using a modified box tree code. Different wave modes were examined by adding a time dependent potential to the code designed to simulate a laser radiation perturbation as has been applied in many experiments. Both linear waves (for example, longitudinal and transverse dust lattice waves) and nonlinear waves (solitary waves) are examined. The output data will also be compared with the results of corresponding experiments and discussed.
Manipulating Semicrystalline Polymers in Confinement.
Shingne, Nitin; Geuss, Markus; Thurn-Albrecht, Thomas; Schmidt, Hans-Werner; Mijangos, Carmen; Steinhart, Martin; Martín, Jaime
2017-08-17
Because final properties of nanoscale polymeric structures are largely determined by the solid-state microstructure of the confined polymer, it is imperative not only to understand how the microstructure of polymers develops under nanoscale confinement but also to establish means to manipulate it. Here we present a series of processing strategies, adapted from methods used in bulk polymer processing, that allow us to control the solidification of polymer nanostructures. First, we show that supramolecular nucleating agents can be readily used to modify the crystallization kinetics of confined poly(vinylidene fluoride) (PVDF). In addition, we demonstrate that microstructural features that are not traditionally affected by nucleating agents, such as the orientation of crystals, can be tuned with the crystallization temperature applied. Interestingly, we also show that high crystallization temperatures and long annealing periods induce the formation of the γ modification of PVDF, hence enabling the simple production of ferro/piezoelectric nanostructures. We anticipate that the approaches presented here can open up a plethora of new possibilities for the processing of polymer-based nanostructures with tailored properties and functionalities.
Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.
García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel
2015-01-01
The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.
Crystallization modifiers in lipid systems.
Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter
2015-07-01
Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms with crystallization of fats and oils.
Synthesis and Crystal Structure of 2’-Se-modified guanosine Containing DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salon, J.; Sheng, J; Gan, J
Selenium modification of nucleic acids is of great importance in X-ray crystal structure determination and functional study of nucleic acids. Herein, we describe a convenient synthesis of a new building block, the 2{prime}-SeMe-modified guanosine (G{sub Se}) phosphoramidite, and report the first incorporation of the 2{prime}-Se-G moiety into DNA. The X-ray crystal structure of the 2{prime}-Se-modified octamer DNA (5{prime}-GTG{sub Se}TACAC-3{prime}) was determined at a resolution of 1.20 {angstrom}. We also found that the 2{prime}-Se modification points to the minor groove and that the modified and native structures are virtually identical. Furthermore, we observed that the 2{prime}-Se-G modification can significantly facilitate themore » crystal growth with respect to the corresponding native DNA.« less
2010-01-01
0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...body screening effect. In addition, a radial cutoff function is also applied to reduce calculation time . The MEAM for an alloy system is based on the...moduli Real materials are usually polycrystalline aggregates of randomly oriented single-crystal grains, each exhibiting single-crystalline elastic
Modified DHTT Equipment for Crystallization Studies of Mold Slags
NASA Astrophysics Data System (ADS)
Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud
2018-04-01
The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.
NASA Astrophysics Data System (ADS)
Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank
2017-10-01
The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.
2006-03-31
crystals by the flux method and modified Bridgman technique, the growth results were hardly reproducible, and the quality of the crystals was still a serious... growth . 2.2.1.2.2) Solution Bridgman Growth A modified Bridgman method using excess of PbO as solvent was developed for the growth of PZNT91/9 crystals ...of growth , the grown crystal can be rotated via the A120 3 rod which was driven by a motor at a speed of 0 to 30 rmp. Figure 15(b) gives the
Behling, Katja; Eichert, André; Fürste, Jens P; Betzel, Christian; Erdmann, Volker A; Förster, Charlotte
2009-08-01
Modified nucleic acids are of great interest with respect to their nuclease resistance and enhanced thermostability. In therapeutical and diagnostic applications, such molecules can substitute for labile natural nucleic acids that are targeted against particular diseases or applied in gene therapy. The so-called 'locked nucleic acids' contain modified sugar moieties such as 2'-O,4'-C-methylene-bridged beta-D-ribofuranose and are known to be very stable nucleic acid derivatives. The structure of locked nucleic acids in single or multiple LNA-substituted natural nucleic acids and in LNA-DNA or LNA-RNA heteroduplexes has been well investigated, but the X-ray structure of an ;all-locked' nucleic acid double helix has not been described to date. Here, the crystallization and X-ray diffraction data analysis of an 'all-locked' nucleic acid helix, which was designed as an LNA originating from a tRNA(Ser) microhelix RNA structure, is presented. The crystals belonged to space group C2, with unit-cell parameters a = 77.91, b = 40.74, c = 30.06 A, beta = 91.02 degrees . A high-resolution and a low-resolution data set were recorded, with the high-resolution data showing diffraction to 1.9 A resolution. The crystals contained two double helices per asymmetric unit, with a Matthews coefficient of 2.48 A(3) Da(-1) and a solvent content of 66.49% for the merged data.
Kaminska, E; Tarnacka, M; Wlodarczyk, P; Jurkiewicz, K; Kolodziejczyk, K; Dulski, M; Haznar-Garbacz, D; Hawelek, L; Kaminski, K; Wlodarczyk, A; Paluch, M
2015-08-03
Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.
NASA Astrophysics Data System (ADS)
Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro
2010-02-01
We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.
El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
NASA Astrophysics Data System (ADS)
Kuzmanov, P. M.; Popov, S. I.; Yovkov, L. V.; Dimitrova, R. N.; Cherepanov, A. N.; Manolov, V. K.
2017-10-01
Modified with nano-powders (NP), AlSi7Mg aluminum alloy, P265GH steel and GG25 gray cast iron, have been investigated. Thermal and metallographic analyses have been made. For modified AlSi7Mg alloy, reduction of overcooling and duration of crystallization at the initial crystallization and their increase at eutectic crystallization have been found. For cast iron GG25, reduction of overcooling at crystallization was established and for P265GH steel, overcooling was not recorded, only a change in the slope of the temperature dependence. The thermal effects obtained in the crystallization correspond to the refinement of micro- and macrostructures. A mathematical model for crystallization of samples for thermal analysis has been developed and solved.
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; ...
2014-12-24
We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd 1-xMn xTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd 1-xMn xTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are freemore » from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less
Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei
2011-01-04
In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.
Growth of zinc selenide single crystals by physical vapor transport in microgravity
NASA Technical Reports Server (NTRS)
Rosenberger, Franz
1993-01-01
The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.
Electro-optic Modulation Using a DAST Single-crystal Film in a Fabry-Perot Cavity
NASA Astrophysics Data System (ADS)
Kutty, S. P.
2005-03-01
In this paper, we report a multiple-pass electro-optic modulator using a single- crystal film of 4'-dimethyamino-N-methyl-4-stilbazolium tosylate (DAST) placed inside a Fabry-Perot cavity. The single-crystal film was prepared using the modified shear method. Electro-optic modulation was achieved at 633 nm using field-induced birefringence in the cross polarized geometry including the Fabry-Perot cavity. The modulation due to the electro-optic effect was recorded as a function of phase while the phase was controlled by moving one of the mirrors in the cavity. The observed modulation was high (80 percent) for a low field (0.5V/micron) applied along the charge transfer axis on the film. Similar modulation using the Fabry-Perot cavity with a lower modulation depth was observed involving electroabsorption at 633 nm. Electroabsorption in the DAST film has been recently reported [1]. These are important results considering applications in photonics. [1] ``Electroabsorption in single-crystal film of a second-order optical material,'' R. K. Swamy, S. P. Kutty, J. Titus, S. Khatavkar, and M. Thakur, APL, Vol. 85, 4025, (2004).
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
Crystal growth and characterization of Hg-based chalcogenide compounds (Conference Presentation)
NASA Astrophysics Data System (ADS)
He, Yihui; Lin, Wenwen; Syrigos, Jonathan C.; Wang, Peng Li; Islam, Saiful M.; McCall, Kyle M.; Kostina, Svetlana S.; Liu, Zhifu; Wessels, Bruce W.; Kanatzidis, Mercouri G.
2016-09-01
In this work, two Hg-based chalcogenides were investigated in detail to reveal their potential capability of radiation detection at room temperature (RT). Cs2Hg6S7, with a bandgap of 1.63 eV, which is designed by the dimensional reduction theory proposed by our group, were prepared and characterized. α-HgS, with a bandgap of 2.10 eV, as a precursor used for the ternary compound synthesis, was also proposed and further investigated. For Cs2Hg6S7, the crystals tended to crystallize into needle form with small grains. Here, the conditions of Bridgman melt growth were optimized to obtain relatively large single crystals. The slight excess of Cs2S as a fluxing agent during growth was found to facilitate better crystallization and large grains. Interestingly, no inclusion or secondary phase was found in the as-grown single crystals. The improvement of bulk resistivity from 10^6 Ωcm to 10^8 Ωcm was also achieved through the control of stoichiometry during crystal growth. For α-HgS crystals, both physical vapor transport and chemical vapor transport methods have been applied. By modifying the transport temperature and transport agent, single crystal with size about 3x1.5 mm^2 was grown with resistivity higher than 10^11 Ωcm. Photoluminescence (PL) revealed that multiple peaks observed in the 1.6-2.3 eV range and excitonic peak from for α-HgS single crystals were observed indicating good crystalline quality. Finally, the planar detectors for both crystals were tested under Co57 gamma ray source. Both of the crystals showed reasonable gamma ray response, while α-HgS crystals could respond at a relatively higher counting rate.
Modified floating-zone growth of organic single crystals
NASA Astrophysics Data System (ADS)
Kou, S.; Chen, C. P.
1994-04-01
For organic materials floating-zone crystal growth is superior to other melt growth processes in two significant respects: (1) the absence of crucible-induced mechanical damage and (2) minimum heating-induced chemical degradation. Due to the rather low surface tension of organic melts, however, floating-zone crystal growth under normal gravity has not been possible so far but microgravity is ideal for such a purpose. With the help of a modified floating-zone technique, organic single crystals of small cross-sections were test grown first under normal gravity. These small crystals were round and rectangular single crystals of benzil and salol, up to about 7 cm long and 6 mm in diameter or 9 mm × 3 mm in cross-section.
Nonlinear Optical Phenomena in Solids
1981-02-01
December 1980, organized according to research objectives: a. Objective: Grow five crystals of Hg].Cdx.Te by the modified Bridgman (quench/anneal) method...objectives of the contract are listed below: a. Grow five 2rystals of Hgl _ ,Cd T e by the modified Bridgman (quench/anneal) method. b. Determine the...composicinn and purity profiles of the crystals . c. Prepare spin-flip Raman laser cavities from selected sections of the crystals . d. Evaluate the utility of
Growth and characterization of AgGa0.5In0.5Se2 single crystals by modified vertical Bridgman method
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-05-01
AgGa0.5In0.5Se2 single crystal was grown using a double wall quartz ampoule with accelerated crucible rotation technique by modified vertical Bridgman method. The structural perfection was measured using HRXRD. The grown single crystal composition was measured using ICP-OES analysis and compositional uniformities were measured using Raman spectroscopy analysis. Photoconductivity measurements confirm the positive photoconducting nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shou-Yi; Wang, Jian, E-mail: wangjian@nwnu.edu.cn; Wang, Gang
2015-08-15
Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure showsmore » the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.« less
DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications
Cheng, Xiaodong
2017-01-01
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine—5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine—have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine—N4-methylcytosine and N6-methyladenine—are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA. PMID:27826845
In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance
Kim, Byoung Chul; Yamamoto, Takuji; Kim, Young Han
2015-01-01
A quartz crystal microbalance (QCM) was utilized to measure the water content in ethanol. For the improvement of measurement sensitivity, the QCM was modified by applying zeolite particles on the surface with poly(methyl methacrylate) (PMMA) binder. The measurement performance was examined with ethanol of 1% to 5% water content in circulation. The experimental results showed that the frequency drop of the QCM was related with the water content though there was some deviation. The sensitivity of the zeolite-coated QCM was sufficient to be implemented in water content determination, and a higher ratio of silicon to aluminum in the molecular structure of the zeolite gave better performance. The coated surface was inspected by microscopy to show the distribution of zeolite particles and PMMA spread. PMID:26516859
Continuous API-crystal coating via coacervation in a tubular reactor.
Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G
2014-11-20
We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.
Magneto-photonic crystal optical sensors with sensitive covers
NASA Astrophysics Data System (ADS)
Dissanayake, Neluka; Levy, Miguel; Chakravarty, A.; Heiden, P. A.; Chen, N.; Fratello, V. J.
2011-08-01
We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold- with gold-nanoparticles covers.
A combined bottom-up/top-down approach to prepare a sterile injectable nanosuspension.
Hu, Xi; Chen, Xi; Zhang, Ling; Lin, Xia; Zhang, Yu; Tang, Xing; Wang, Yanjiao
2014-09-10
To prepare a uniform nanosuspension of strongly hydrophobic riboflavin laurate (RFL) allowing sterile filtration, physical modification (bottom-up) was combined with high-pressure homogenization (top-down) method. Unlike other bottom-up approaches, physical modification with surfactants (TPGS and PL-100) by lyophilization controlled crystallization and compensated for the poor wettability of RFL. On one hand, crystal growth and aggregation during freezing was restricted by a stabilizer-layer adsorbed on the drug surface by hydrophobic interaction. On the other hand, subsequent crystallization of drug in the sublimation process was limited to the interstitial spaces between solvent crystals. After lyophilization, modified drug with a smaller particle size and better wettability was obtained. When adding surfactant solution, water molecules passed between the hydrophilic groups of surface active molecules and activated the polymer chains allowing them to stretch into water. The coarse suspension was crushed into a nanosuspension (MP=162 nm) by high-pressure homogenization. For long term stability, lyophilization was applied again to solidify the nanosuspension (sorbitol as cryoprotectant). A slight crystal growth to about 600 nm was obtained to allow slow release for a sustained effect after muscular administration. Moreover, no paw-licking responses and very slight muscular inflammation demonstrated the excellent biocompatibility of this long-acting RFL injection. Copyright © 2014 Elsevier B.V. All rights reserved.
ZnTeO{sub 3} crystal growth by a modified Bridgman technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawash, Jalal M., E-mail: nawashj@uww.edu; Lynn, Kelvin G.
2014-12-15
Highlights: • ZnTeO{sub 3} single crystals were grown for the first time by a modified Bridgman method. • The growth is still possible in a system that lacks congruent melting. • A growth is best when melt is exposed to a steeper axial thermal gradient. • Optical and electrical properties were investigated for the grown crystals. - Abstract: Zinc Tellurite (ZnTeO{sub 3}) crystals were grown for the first time using a modified Bridgman method with a 2.5 kHz radio frequency (RF) furnace. Single crystal growth of ZnTeO{sub 3} was hindered by many complicating factors, such as the evaporation of TeO{submore » 2} above 700 °C and the formation of more than one phase during crystal growth. While there were several successful runs that produced ZnTeO{sub 3} single crystals, it was found that large (≥10 cm{sup 3}) single ZnTeO{sub 3} crystals resulted when the crucible was exposed to a steeper vertical thermal gradient and when the temperature of the melt was raised to at least 860 °C. The results of powder X-ray diffraction (XRD) patterns were in accordance with the X-ray powder diffraction file (PDF) for ZnTeO{sub 3}. Some optical, electrical and structural properties of ZnTeO{sub 3} single crystals were reported in this paper.« less
Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue
NASA Technical Reports Server (NTRS)
Bill, R. C.
1986-01-01
Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF.
Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland
NASA Astrophysics Data System (ADS)
Hunt, Emma J.; Finch, Adrian A.; Donaldson, Colin H.
2017-01-01
The peralkaline to agpaitic Ilímaussaq Complex, S. Greenland, displays spectacular macrorhythmic (> 5 m) layering via the kakortokite (agpaitic nepheline syenite), which outcrops as the lowest exposed rocks in the complex. This study applies crystal size distribution (CSD) analyses and eudialyte-group mineral chemical compositions to study the marker horizon, Unit 0, and the contact to the underlying Unit - 1. Unit 0 is the best-developed unit in the kakortokites and as such is ideal for gaining insight into processes of crystal formation and growth within the layered kakortokite. The findings are consistent with a model whereby the bulk of the black and red layers developed through in situ crystallisation at the crystal mush-magma interface, whereas the white layer developed through a range of processes operating throughout the magma chamber, including density segregation (gravitational settling and flotation). Primary textures were modified through late-stage textural coarsening via grain overgrowth. An open-system model is proposed, where varying concentrations of halogens, in combination with undercooling, controlled crystal nucleation and growth to form Unit 0. Our observations suggest that the model is applicable more widely to the layering throughout the kakortokite series and potentially other layered peralkaline/agpaitic rocks around the world.
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2017-08-01
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.
The effect of surface conditions on the work function of insulators and semiconductors
NASA Technical Reports Server (NTRS)
George, A.
1973-01-01
Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.
A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.
1996-01-01
Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.
Nanosecond liquid crystalline optical modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2016-07-26
An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less
Mirmohseni, Abdolreza; Olad, Ali
2010-01-01
A polystyrene coated quartz crystal nanobalance (QCN) sensor was developed for use in the determination of a number of linear short-chain aliphatic aldehyde and ketone vapors contained in air. The quartz crystal was modified by a thin-layer coating of a commercial grade general purpose polystyrene (GPPS) from Tabriz petrochemical company using a solution casting method. Determination was based on frequency shifts of the modified quartz crystal due to the adsorption of analytes at the surface of modified electrode in exposure to various concentrations of analytes. The frequency shift was found to have a linear relation to the concentration of analytes. Linear calibration curves were obtained for 7-70 mg l(-1) of analytes with correlation coefficients in the range of 0.9935-0.9989 and sensitivity factors in the range of 2.07-6.74 Hz/mg l(-1). A storage period of over three months showed no loss in the sensitivity and performance of the sensor.
Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C
2016-02-20
We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.
Formation of surface nanolayers in chalcogenide crystals using coherent laser beams
NASA Astrophysics Data System (ADS)
Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.
2018-03-01
We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.
The electronics system for the LBNL positron emission mammography (PEM) camera
NASA Astrophysics Data System (ADS)
Moses, W. W.; Young, J. W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M. H.; Weng, M.
2001-06-01
Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.
NASA Astrophysics Data System (ADS)
Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-06-01
We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.
Mühlig, P; Klupsch, Th; Kaulmann, U; Hilgenfeld, R
2003-04-01
High-resolution confocal laser scanning microscopy (CLSM) is a powerful tool for in situ observation and analysis of protein crystal growth kinetics. Because the resolution of CLSM is not diffraction-limited by the object, it is possible to visualize, under certain conditions, objects in molecular dimensions. A modified batch technique is applied which allows the growth kinetics of sufficiently small crystallites fixed at the lower side of a cover glass, within a hanging drop, to be studied in reflected light near the total reflection angle. A gap, or cavity, filled with solution is formed between the cover glass and the upper crystal face, which acts to fix small crystallites by hydrodynamic friction forces. The cavity height enables the propagation of molecular steps across the upper crystal face without constraint, so that the propagation velocity and geometrical parameters can be measured by CLSM. The layer growth kinetics of monoclinic crystallites of a long-acting insulin derivative (Insulin Glargine) is investigated. For a twofold supersaturation of the solution, the growth is governed by 2D nucleation at the edges of the crystallites followed by a spreading of molecular steps. The layer growth kinetics are well fitted by the simple cubic kinetic lattice model. We find that only about one of a thousand solute (protein) molecules which push a kink place due to their Brownian motion becomes really incorporated into the growing crystal.
NASA Astrophysics Data System (ADS)
Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran
2018-04-01
The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.
Single Crystal Growth of URu 2Si 2 by the Modified Bridgman Technique
Gallagher, Andrew; Nelson, William L.; Chen, Kuan Wen; ...
2016-10-02
We describe a modified Bridgman growth technique to produce single crystals of the strongly correlated electron material URu 2Si 2 and its nonmagnetic analogue ThRu 2Si 2. Bulk thermodynamic and electrical transport measurements show that the properties of crystals produced in this way are comparable to those previously synthesized using the Czochralski or conventional molten metal flux growth techniques. For the specimens reported here, we find residual resistivity ratios RRR = ρ 300K / ρ 0 as large as 116 and 187 for URu 2Si 2 and ThRu 2Si 2, respectively.
NASA Astrophysics Data System (ADS)
Iyer, Ganesh Hariharan
The first part of this research involved a study of the nature and extent of nonbonded interactions at crystal and oligomer interfaces. A survey was compiled of several characteristics of intersubunit contacts in 58 different oligomeric proteins, and of the intermolecular contacts in 223 protein crystal structures. Routines written in "S" language were utilized for the generation of the observed and expected contacts. The information in the Protein Data Bank (PDB) was extracted using the database management system, Protein Knowledge Base (PKB). Potentials of mean force for atom-atom contacts and residue-residue contacts were derived by comparison of the number of observed interactions with the number expected by mass action. Preference association matrices and log-linear analyses were applied to determine the different factors that could contribute to the overall interactions at the interfaces of oligomers and crystals. Surface patches at oligomer and crystal interfaces were also studied to further investigate the origin of the differences in their stabilities. Total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acid prominent in oligomer interfaces. Contact potentials indicate that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. The second part involved the development of a new class of biomaterials from two-dimensional arrays of ordered proteins. Point mutations were planned to introduce cysteine residues at appropriate locations to enable cross-linking at the molecular interface within given crystallographic planes. Crystallization and subsequent cross-linking of the modified protein would lead to the formation of arrays on subsequent dissociation of the crystal. Novel protein architectures can be generated from these cross-linked nanostructures. Experiments with model protein, maltose-binding protein (MBP) were performed to develop purification, cross-linking and crystallization techniques. The long-term goal of this project is to apply the experience gained with MBP to the fabrication of nanomaterials from other, application-specific proteins for ultrafiltration and microelectronic devices.
Xie, Wen-Jie; Zhou, Xiao-Ming
2015-01-01
Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.
Stability of Detached Solidification
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.; Croell, A.
2009-01-01
Bridgman crystal growth can be conducted in the so-called "detached" solidification regime, where the growing crystal is detached from the crucible wall. A small gap between the growing crystal and the crucible wall, of the order of 100 micrometers or less, can be maintained during the process. A meniscus is formed at the bottom of the melt between the crystal and crucible wall. Under proper conditions, growth can proceed without collapsing the meniscus. The meniscus shape plays a key role in stabilizing the process. Thermal and other process parameters can also affect the geometrical steady-state stability conditions of solidification. The dynamic stability theory of the shaped crystal growth process has been developed by Tatarchenko. It consists of finding a simplified autonomous set of differential equations for the radius, height, and possibly other process parameters. The problem then reduces to analyzing a system of first order linear differential equations for stability. Here we apply a modified version of this theory for a particular case of detached solidification. Approximate analytical formulas as well as accurate numerical values for the capillary stability coefficients are presented. They display an unexpected singularity as a function of pressure differential. A novel approach to study the thermal field effects on the crystal shape stability has been proposed. In essence, it rectifies the unphysical assumption of the model that utilizes a perturbation of the crystal radius along the axis as being instantaneous. It consists of introducing time delay effects into the mathematical description and leads, in general, to stability over a broader parameter range. We believe that this novel treatment can be advantageously implemented in stability analyses of other crystal growth techniques such as Czochralski and float zone methods.
Studying of crystal growth and overall crystallization of naproxen from binary mixtures.
Kaminska, E; Madejczyk, O; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M
2017-04-01
Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher E a (=205kJ/mol) was obtained for NAP-acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of E a in the case of NAP-acSUC solid dispersion (81kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X-ray diffraction studies. We also suggested that specific intermolecular dipole-dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP-acMAL and NAP-acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular modifiers reveal a mechanism of pathological crystal growth inhibition
NASA Astrophysics Data System (ADS)
Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.
2016-08-01
Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation of calcium oxalate monohydrate nucleation as is citrate. Our findings support exploration of the clinical potential of hydroxycitrate as an alternative treatment to citrate for kidney stones.
Electrowetting of Weak Polyelectrolyte-Coated Surfaces.
Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos
2017-05-23
Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.
Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites
Kim, Jun Young
2009-01-01
This paper focuses on the fabrication via simple melt blending of thermotropic liquid crystal polyester (TLCP) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) and the unique effects of the modified CNT on the physical properties of the nanocomposites. The thermal, mechanical, and rheological properties of modified CNT-reinforced TLCP nanocomposites are highly dependent on the uniform dispersion of CNT and the interactions between the CNT and TLCP, which can be enhanced by chemical modification of the CNT, providing a design guide of CNT-reinforced TLCP nanocomposites with great potential for industrial uses.
Electrowetting on semiconductors
NASA Astrophysics Data System (ADS)
Palma, Cesar; Deegan, Robert
2015-01-01
Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.
Jarmer, Daniel J; Lengsfeld, Corinne S; Anseth, Kristi S; Randolph, Theodore W
2005-12-01
Poly (sebacic anhydride) (PSA) was used as a growth inhibitor to selectively modify habit of griseofulvin crystals formed via the Precipitation with a compressed-fluid antisolvent (PCA) process. PSA and griseofulvin were coprecipitated within a PCA injector, which provided efficient mixing between the solution and compressed antisolvent process streams. Griseofulvin crystal habit was modified from acicular to bipyramidal when the mass ratio of PSA/griseofulvin in the solution feed stream was
Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo
2017-01-01
Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1976-01-01
Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.
NASA Astrophysics Data System (ADS)
Li, Ziyi
2017-12-01
Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.
Structural landscape of base pairs containing post-transcriptional modifications in RNA
Seelam, Preethi P.; Sharma, Purshotam
2017-01-01
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA. PMID:28341704
Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...
2016-02-19
In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less
Physicochemical functionality of 4-α-glucanotransferase-treated rice flour in food application.
Kim, Young-Lim; Mun, Saehun; Park, Kwan-Hwa; Shim, Jae-Yong; Kim, Yong-Ro
2013-09-01
The physicochemical properties of 4-α-glucanotransferase (4αGTase)-modified rice flours were examined by measuring the molecular weight distribution, moisture sorption isotherm, and melting enthalpy of ice crystals. The results obtained by measuring the moisture sorption isotherm and melting enthalpy of ice crystals revealed that 4αGTase-modified rice flours had high water binding capacity than that of control rice flour. When the textural properties of noodles containing 4αGTase-treated rice flours after freeze-thaw cycling were measured by texture profile analysis, the textural properties of control noodle deteriorated. However, those of noodle with 4αGTase-modified rice flours were retained. For the melting enthalpy of ice crystals formed within cooked noodles, 4αGTase-treated rice flour showed similar effect to sucrose for reducing the melting enthalpy of ice crystals, however, the texture and taste of noodle with sucrose was undesirable for consuming. 4αGTase-treated rice flour appeared to have good potential as a non-sweet cryoprotectant of frozen product. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)
2001-01-01
A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.
NASA Technical Reports Server (NTRS)
Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)
2004-01-01
A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.
Fluid and Crystallized Intelligence--Theory and Research in Later Adulthood.
ERIC Educational Resources Information Center
Willis, Sherry L.; Baltes, Paul B.
Two studies examined modifiability in intellectual functioning in older adults. The fluid-crystallized theory provided a theory base for the research. (Fluid intelligence follows a normative decline through adulthood, while crystallized intelligence remains stable or even increases.) In the first study thirty subjects (average age 69.2)…
NASA Astrophysics Data System (ADS)
Kim, Jongbin; Kim, Minkoo; Kim, Jong-Man; Kim, Seung-Ryeol; Lee, Seung-Woo
2014-09-01
This paper reports transient response characteristics of active-matrix organic light emitting diode (AMOLED) displays for mobile applications. This work reports that the rising responses look like saw-tooth waveform and are not always faster than those of liquid crystal displays. Thus, a driving technology is proposed to improve the rising transient responses of AMOLED based on the overdrive (OD) technology. We modified the OD technology by combining it with a dithering method because the conventional OD method cannot successfully enhance all the rising responses. Our method can improve all the transitions of AMOLED without modifying the conventional gamma architecture of drivers. A new artifact is found when OD is applied to certain transitions. We propose an optimum OD selection method to mitigate the artifact. The implementation results show the proposed technology can successfully improve motion quality of scrolling texts as well as moving pictures in AMOLED displays.
Infrared spectroscopy of organic semiconductors modified by self-assembled monolayers
NASA Astrophysics Data System (ADS)
Khatib, O.; Lee, B.; Podzorov, V.; Yuen, J.; Heeger, A. J.; Li, Z. Q.; di Ventra, M.; Basov, D. N.
2009-03-01
Recently, self-assembled monolayers (SAMs) were used to modify electronic surface properties of organic single crystals, leading to several orders of magnitude increase in the electrical conductivity^1. Motivated by this discovery, the same technique was applied to polymers. Here we present a thorough spectroscopic investigation of organic semiconductors based on poly(3-hexlthiophene) (P3HT) that have been treated with a fluorinated trichlorosilane SAM. Infrared spectroscopy offers access to details of charge injection, electrostatic doping, and the electronic structure that are not always available from transport measurements, which can be dominated by defects and contact effects. In polymer films, the SAM molecules penetrate into the bulk, leading to a rich spectrum of electronic excitations in the mid-infrared energy range. ^1 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nature Mater. 7, 84--89 (2008)
Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces
NASA Astrophysics Data System (ADS)
Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.
1998-03-01
Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.
NASA Astrophysics Data System (ADS)
Park, Il Song; Bae, Tae Sung; Seol, Kyeong Won
2006-10-01
Titanium is widely used as an implant material due to its good mechanical properties and the excellent biocompatibility of the oxide film on the surface. To modify the unstable oxide surface of pure titanium, plasma electrolytic oxidation was applied in this study. The electrolyte used for anodizing was a mixture of GP (glycerophosphate disodium salt) and CA (calcium acetate). In addition, a hydrothermal treatment was performed to precipitate a calcium phosphate crystal on the titanium oxide layer for bioactivity. The effect of the CA concentration of the electrolyte on the surface of titanium was investigated, with CA concentrations at 0.1 M, 0.2 M, and 0.3 M. A high concentration of CA results in a low breakdown voltage; hence many large micropores were formed on the anodized surface. Moreover, the size of the HA crystals was more minute in proportion to the increasing concentration of CA. The crystal phase of titanium dioxide was mainly anatase, and a rutile phase was also observed. As the size and/or amount of HA crystals increased, the surface roughness increased. However, the surface roughness could be decreased by fully and uniformly covering the surface with HA crystals. The corrosion resistance in the saline solution was increased by anodic spark oxidation. In addition, it was slightly increased by a hydrothermal treatment. It is considered that a more stable and thicker titanium oxide layer is formed by anodic oxidation and a hydrothermal treatment.
Zheng, Yilei
2018-01-01
Differential scanning calorimeter was used to extensively investigate the non-isothermal crystallization of polypropylene (PP)/layered double hydroxides (LDHs) nanocomposites prepared through wet solid-state shear milling. The corresponding crystallization kinetics was further investigated by using Ozawa, modified Avrami and combined Avrami–Ozawa method, respectively. The results showed that the Ozawa method could not well describe the crystallization kinetics of pure PP and its nanocomposites. Comparatively, the modified Avrami method as well as the combined Avrami–Ozawa method gives the satisfactory results. Under the effect of pan-milling, the produced LDH nano intercalated/exfoliated particles exhibit the inhibitive effect on the PP nucleation but more remarkable promotion effect on the spherulite growth, leading to enhancement in the overall crystallization rate. This is reflected in increase of the calculated fold surface free energy σe and also the supercooling degree ΔT required for crystallization nucleation. In addition, the polarized optical microscopy observation also verifies the higher spherulite growth rate of PP/LDHs nanocomposites than that of pure PP. PMID:29410819
Derewenda, Zygmunt S; Godzik, Adam
2017-01-01
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.
Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal
NASA Astrophysics Data System (ADS)
Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng
2015-03-01
A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.
Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less
Tercjak, Agnieszka; Mondragon, Iñaki
2008-10-07
Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.
King, Matthew D; Buchanan, William D; Korter, Timothy M
2011-03-14
The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.
Li, Yingchun; Jia, Shuai; Du, Shuanli; Wang, Yafei; Lv, Lida; Zhang, Jianbin
2018-06-01
An approach originated from preparing long chain branched polypropylene (PP) was applied to modify the properties of recycled PP that involved reactive extrusion to introduce a branched chain structure onto recycled PP under the assistance of chemical reaction between maleic anhydride (MAH) monomer and glycidyl methacrylate (GMA) grafts. The results from Fourier transformed infrared spectroscopy (FTIR) indicated the reaction took place during melt mixing, and the intensity of ester increased with increasing amount of MAH. Several rheological plots including complex viscosity, storage modulus, loss modulus, loss tangent and Cole-Cole plot were used to investigate the rheological properties of recycled PP and modified PP with MAH, which indicated an additional longer relaxation time that was not shown in recycled PP. The effects of branched structure on melting and crystallization behaviors were also investigated, demonstrating the branched chains acted as nucleating agent. Moreover, the branched structure of modified samples gave rise to enhance mechanical properties, especially, the higher impact strength compared with recycled PP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Park, Chanhun; Nam, Hee-Geun; Kim, Pung-Ho; Mun, Sungyong
2014-06-01
The removal of isoleucine from valine has been a key issue in the stage of valine crystallization, which is the final step in the valine production process in industry. To address this issue, a three-zone simulated moving-bed (SMB) process for the separation of valine and isoleucine has been developed previously. However, the previous process, which was based on a classical port-location mode, had some limitations in throughput and valine product concentration. In this study, a three-zone SMB process based on a modified port-location mode was applied to the separation of valine and isoleucine for the purpose of making a marked improvement in throughput and valine product concentration. Computer simulations and a lab-scale process experiment showed that the modified three-zone SMB for valine separation led to >65% higher throughput and >160% higher valine concentration compared to the previous three-zone SMB for the same separation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Waters, L.; Lange, R. A.
2016-12-01
Detailed mapping of the Long Valley (CA) region (Hildreth, 2004) reveals that the eruption of the Late Bishop Tuff (LBT) is followed by eruption of the Early Rhyolites (ER), which are obsidian lavas. The obsidians are paradoxical, as they erupted effusively, contain multiple phases (some of which vary in composition), and yet, they are crystal-poor. The obsidians are saturated in ≥7 phases (plagioclase + orthopyroxene + ilmenite + titanomagnetite + biotite + apatite + zircon ± pyrrhotite). Plagioclase and orthopyroxene crystals have rounded edges accompanying euhedral margins, and large (>200µm) ilmenites have swallow-tail growth. Plagioclase and orthopyroxene span a compositional range between An20-45 and En43-58, respectively, and phase equilibrium experiments confirm that these are phenocrysts, despite their complex textures. Pre-eruptive temperatures and fO2 values are calculated applying Fe-Ti oxide thermometry to all possible oxide pairs and range from 724-861°C and ΔNNO -0.3 to -0.9, respectively. Application of the plagioclase hygrometer to crystals in ER obsidians reveals pre-eruptive H2O contents of 3-5wt%. We propose that mineral compositions and textures within the ER obsidians record rapid growth due to degassing-induced crystallization of a superheated melt. Superheating is required to explain the origin of the ER lavas as it eliminates nucleation sites, requiring crystallization to occur on nuclei that form during degassing enabling effusive eruption of crystal-poor lavas. The ER obsidians differ from the LBT in their crystallinities (<5% vs. >12%), phenocryst phases (e.g., sanidine is absent in ER obsidians), plagioclase compositions (An20-45 vs. An20-29), and fO2 values (ΔNNO < -0.3 vs. +0.5), which suggests that the ER lavas may not be derived from the LBT reservoir. Rather, we hypothesize that the ER phenocryst assemblage, reduced fO2 values, and requirement for superheating can be explained if the obsidians formed as partial melts of a mixed lithology, consisting of pre-existing crust and an additional component with low fO2. We propose that the reduced component in the ER source is aesthenospheric basalt, which suggests that a transition in mantle source, from subduction-modified lithosphere to asthenosphere, has occurred beneath Long Valley.
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Ramasamy, P.
2016-08-01
AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ran; Zhang, Huixia; Liu, Yunping
Two polytungstovandates [Ag(mbpy){sub 2}][Ag{sub 2}(mbpy){sub 3}][VW{sub 5}O{sub 19}]·H{sub 2}O (1) and [Ag(mbpy)]{sub 2}[Ag(mbpy){sub 2}]{sub 4}[VW{sub 12}O{sub 40}] (2) (mbpy =4,4′-dimethyl-2,2′-bipyridyl), had been hydrothermally synthesized and characterized by IR, TG, and single-crystal X-ray diffraction techniques. Single-crystal structural analysis revealed that the polyanionic clusters in two compounds are different: Lindqvist-type in 1 and α-Keggin-type in 2, respectively, while the cationic moieties in them are Ag-mbpy units. The experiments showed that this kind of hybrid crystal materials possesses more efficiently catalytic performance for the degradation of organic dye methylene blue (MB) in water solution under the UV irradiation. The significant degradation rate ofmore » MB can reach 89.9%, 94.9% by crystals 1 and 2 (40 mg) in the course of about 5 min. - Graphical abstract: Two Ag-ligand modified polytungstovandates had been synthesized and characterized, which were active in the catalytic degradation of organic dye methylene blue under the UV irradiation. - Highlights: • Two Ag-ligand modified tungstovandates were synthesized and characterized. • Weak interactions play important roles in constructing crystal frameworks. • Compounds are active to catalyze the degradation of methylene blue.« less
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
NASA Astrophysics Data System (ADS)
Paghousi, Roohollah; Fasihi, Kiazand
2018-05-01
We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.
Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com
2014-06-09
The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less
Automating the application of smart materials for protein crystallization.
Khurshid, Sahir; Govada, Lata; El-Sharif, Hazim F; Reddy, Subrayal M; Chayen, Naomi E
2015-03-01
The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as `smart materials') for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.
Isothermal crystallization kinetic modeling of poly(etherketoneketone) (PEKK)
NASA Astrophysics Data System (ADS)
Choupin, T.; Paris, C.; Cinquin, J.; Fayolle, B.; Régnier, G.
2016-05-01
Isothermal melt and cold crystallization kinetics of poly(etherketoneketone) (PEKK) have been investigated by differential scanning calorimetry. A modified Avrami model has been used to describe the two-stage crystallization of PEKK. The primary crystallization stage is assumed to be a two dimensional nucleation growth with an Avrami exponent of 2 whereas the secondary stage is assumed to be a one dimensional nucleation growth with an Avrami exponent of 1. The evolution of the crystallization constant rates depending on temperature has been modeled with the Hoffman and Lauritzen growth equation. The activation energy of nucleation constants Kg for both crystallizations are presented.
Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite
NASA Technical Reports Server (NTRS)
Cebe, Peggy
1988-01-01
The nonisothermal crystallization kinetics of PEEK APC-2 and of 450G neat resin PEEK material were compared using a differential scanning calorimeter to monitor heat flow during crystallization; the effects of cooling rate on the crystallization temperature, the degree of crystallinity, and the conversion rate were investigated. A modified Avrami (1940) analysis was used to describe nonisothermal crystallization kinetics. It was found that, compared with the 450G neat resin PEEK, the nonisothermal crystallization of the PEEK APC-2 composite is characterized by higher initiation temperature, higher heat flow maximum temperature, and greater relative conversion by primary processes.
Derewenda, Zygmunt S.; Godzik, Adam
2017-01-01
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e. crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular ‘sticky patch’ model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer ‘sticky patches’ which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the ‘sticky patch’ model. We discuss state-of-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design of variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis. PMID:28573570
Ultrastructural properties of laser-irradiated and heat-treated dentin.
Rohanizadeh, R; LeGeros, R Z; Fan, D; Jean, A; Daculsi, G
1999-12-01
Previous studies using scanning electron microscopy and infrared absorption spectroscopy reported that laser irradiation causes compositional changes in enamel. The purpose of this study was to evaluate the ultrastructural and compositional changes in dentin caused by irradiation with a short-pulse laser (Q-switched Nd:YAG). The irradiated and non-irradiated areas of the lased dentin samples were investigated by scanning (SEM) and transmission electron microscopy (TEM), micro-micro electron diffraction, and electron microprobe analysis of dispersive energy (EDX). Heat-treated dentin was similarly investigated. This study demonstrated that laser irradiation resulted in the recrystallization of dentin apatite and in the formation of additional calcium phosphate phases consisting of magnesium-substituted beta-tricalcium phosphate, beta-TCMP, beta-(Ca,Mg)3(PO4)2, and tetracalcium phosphate, TetCP, Ca4(PO4)O. TEM analyses of the modified and unmodified zones of the irradiated areas showed two types of crystal populations: much larger crystals from the modified zone and crystals with size and morphology similar to those of dentin apatite in the unmodified zone. The morphology of crystals in the modified zones in the irradiated dentin resembled those of dentin sintered at 800 or 950 degrees C. In the irradiated areas (modified and unmodified zones), the Ca/P ratio was lower compared with that in the non-irradiated dentin. The Mg/Ca ratio in the modified zones was higher than that in the unmodified zones and in the non-irradiated dentin. In sintered dentin, the Mg/Ca ratio increased as a function of sintering temperature. The ultrastructural and compositional changes observed in laser-irradiated dentin may be attributed to high temperature and high pressure induced by microplasma during laser irradiation. These changes may alter the solubility of the irradiated dentin, making it less susceptible to acid dissolution or to the caries process.
Photonic guiding structures in lithium niobate crystals produced by energetic ion beams
NASA Astrophysics Data System (ADS)
Chen, Feng
2009-10-01
A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.
Topological photonic crystal with ideal Weyl points
NASA Astrophysics Data System (ADS)
Wang, Luyang; Jian, Shao-Kai; Yao, Hong
Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on symmetry analysis, we show that a minimal number of symmetry-related Weyl points can be realized in time-reversal invariant photonic crystals. We propose to realize these ``ideal'' Weyl points in modified double-gyroid photonic crystals, which is confirmed by our first-principle photonic band-structure calculations. Photonic crystals with ideal Weyl points are qualitatively advantageous in applications such as angular and frequency selectivity, broadband invisibility cloaking, and broadband 3D-imaging.
Investigation of domain walls in PPLN by confocal raman microscopy and PCA analysis
NASA Astrophysics Data System (ADS)
Shur, Vladimir Ya.; Zelenovskiy, Pavel; Bourson, Patrice
2017-07-01
Confocal Raman microscopy (CRM) is a powerful tool for investigation of ferroelectric domains. Mechanical stresses and electric fields existed in the vicinity of neutral and charged domain walls modify frequency, intensity and width of spectral lines [1], thus allowing to visualize micro- and nanodomain structures both at the surface and in the bulk of the crystal [2,3]. Stresses and fields are naturally coupled in ferroelectrics due to inverse piezoelectric effect and hardly can be separated in Raman spectra. PCA is a powerful statistical method for analysis of large data matrix providing a set of orthogonal variables, called principal components (PCs). PCA is widely used for classification of experimental data, for example, in crystallization experiments, for detection of small amounts of components in solid mixtures etc. [4,5]. In Raman spectroscopy PCA was applied for analysis of phase transitions and provided critical pressure with good accuracy [6]. In the present work we for the first time applied Principal Component Analysis (PCA) method for analysis of Raman spectra measured in periodically poled lithium niobate (PPLN). We found that principal components demonstrate different sensitivity to mechanical stresses and electric fields in the vicinity of the domain walls. This allowed us to separately visualize spatial distribution of fields and electric fields at the surface and in the bulk of PPLN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Steinrück, Hans-Georg; Osvet, Andres
In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation and hydrogen ion-implantation. Here, we find that on the natural, intact low index planes, photocatalytic H 2 evolution (in the absence of a noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching and miscut in the crystal, or by implantation damage. X-ray reflectivity, Raman, and optical reflection measurements showmore » that plain hydrogenation leads to a ≈ 1 nm thick black titania surface layer without activity, while a colorless, density modified, and ≈7 nm thick layer with broken crystal symmetry is present on the ion implanted surface. These results demonstrate that (i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation and (ii) activation does not necessarily coincide with the presence of black color.« less
Liu, Ning; Steinrück, Hans-Georg; Osvet, Andres; ...
2017-02-13
In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation and hydrogen ion-implantation. Here, we find that on the natural, intact low index planes, photocatalytic H 2 evolution (in the absence of a noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching and miscut in the crystal, or by implantation damage. X-ray reflectivity, Raman, and optical reflection measurements showmore » that plain hydrogenation leads to a ≈ 1 nm thick black titania surface layer without activity, while a colorless, density modified, and ≈7 nm thick layer with broken crystal symmetry is present on the ion implanted surface. These results demonstrate that (i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation and (ii) activation does not necessarily coincide with the presence of black color.« less
2006-10-01
F. Bliss, Gerald W. Iseler and Piotr Becla, "Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth ," AIAA...Wang and Nancy Ma, "Semiconductor crystal growth by the vertical Bridgman process with rotating magnetic fields," ASME Journal of Heat Transfer...2005. 15. Stephen J. LaPointe, Nancy Ma and Donald W. Mueller, Jr., " Growth of binary alloyed semiconductor crystals by the vertical Bridgman
Liu, Ya-Fei; Tu, Sheng-Hao; Chen, Zhe; Wang, Yu; Hu, Yong-Hong; Dong, Hui
2014-01-01
Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD) on IL-1 β and TNF α secretion in monocytic THP-1 cells with monosodium urate (MSU) crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA) and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1 β and TNF α protein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1 β and TNF α . Moreover, MSD significantly decreased IL-1 β release in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies.
Liu, Ya-Fei; Tu, Sheng-Hao; Chen, Zhe; Wang, Yu; Hu, Yong-Hong; Dong, Hui
2014-01-01
Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD) on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate (MSU) crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA) and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1β and TNFα protein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1β and TNFα. Moreover, MSD significantly decreased IL-1β release in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies. PMID:24999366
Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.
1987-01-01
This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.
Sugama, T.; Kukacka, L.E.; Carciello, N.R.
1987-04-21
This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.
Sugama, Toshifumi; Kukacka, L.E.; Carciello, N.R.
1985-11-05
This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80/sup 0/C. The polyelectrolyte or the precoat is present in about 0.5 to 5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150/sup 0/C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 x 10/sup 5/ gave improved ductility modulus effect.
NASA Astrophysics Data System (ADS)
Etminanfar, M. R.; Khalil-Allafi, J.; Sheykholeslami, S. O. R.
2018-02-01
Nitinol alloys have been used in various biological applications due to their superior properties. In this study, a bipolar pulsed current electrodeposition technique was applied to produce a hydroxyapatite (HA) film on the Nitinol alloy. Also, the protection performance of the coating was evaluated on both abraded and thermochemically modified alloy. According to obtained data, reducing the electrocrystallization rate by the pulse deposition technique can promote HA formation on both abraded and modified substrates. Based on scanning electron microscopy and high-resolution transmission electron microscopy data, the HA coatings revealed a flake-like morphology and each flake was composed of nano-crystalline grains. Atomic force microscopy images revealed that flakes on the abraded substrate were smaller in size than that of the modified alloy. Comparing the corrosion resistance of the bare substrates revealed that the modified alloy has a higher corrosion resistance than the abraded alloy and the modified surface is well passivized during anodic polarization in Ringer's solution. However, this condition is reversed after the deposition of HA film. It seems that because of the lower crystallization sites on the abraded alloy, the produced HA film is denser and more protective against the corrosive mediums as compared to the coating on the modified alloy. Although the HA coating can improve the bioactivity of both substrates, the resulted film on the oxidized alloy is porous and deteriorates the implant permanence in the vicinity of body fluids.
Phonon-enhanced crystal growth and lattice healing
Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna
2013-05-28
A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
NASA Astrophysics Data System (ADS)
Signorelli, Javier; Tommasi, Andréa
2015-11-01
Homogenization models are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data.
Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-05-01
Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.
Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals
2004-07-01
NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES
Electron nematic fluid in a strained S r3R u2O7 film
NASA Astrophysics Data System (ADS)
Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne
2018-04-01
S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.
Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles.
Meade, Shawn O; Chen, Michelle Y; Sailor, Michael J; Miskelly, Gordon M
2009-04-01
A particle-based multiplexed DNA assay based on encoded porous SiO(2) photonic crystal disks is demonstrated. A "spectral barcode" is generated by electrochemical etch of a single-crystal silicon wafer using a programmed current-time waveform. A lithographic procedure is used to isolate cylindrical microparticles 25 microm in diameter and 10 microm thick, which are then oxidized, modified with a silane linker, and conjugated to various amino-functionalized oligonucleotide probes via cyanuric chloride. It is shown that the particles can be decoded based on their reflectivity spectra and that a multiple analyte assay can be performed in a single sample with a modified fluorescence microscope. The homogeneity of the reflectivity and fluorescence spectra, both within and across the microparticles, is also reported.
Topological photonic crystal with equifrequency Weyl points
NASA Astrophysics Data System (ADS)
Wang, Luyang; Jian, Shao-Kai; Yao, Hong
2016-06-01
Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on general symmetry analysis, we show that a minimal number of four symmetry-related (consequently equifrequency) Weyl points can be realized in time-reversal invariant photonic crystals. We further propose an experimentally feasible way to modify double-gyroid photonic crystals to realize four equifrequency Weyl points, which is explicitly confirmed by our first-principle photonic band-structure calculations. Remarkably, photonic crystals with equifrequency Weyl points are qualitatively advantageous in applications including angular selectivity, frequency selectivity, invisibility cloaking, and three-dimensional imaging.
Strong-field and attosecond physics in solids
Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...
2014-10-08
We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less
Liu, Qing-Lu; Zhao, Zong-Yan; Yi, Jian-Hong
2018-05-07
For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta 2 O 5 , TaON, and Ta 3 N 5 ; the second group included β-Ta 2 O 5 , δ-Ta 2 O 5 , ε-Ta 2 O 5 , and amorphous-Ta 2 O 5 . Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta 3 N 5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta 2 O 5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta 2 O 5 , ε-Ta 2 O 5 , and β-Ta 2 O 5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.
Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David
2014-05-01
The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.
NASA Astrophysics Data System (ADS)
Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Takida, T.; Kato, M.; Kawai, M.; Yoshida, N.
2010-03-01
Ultra-fine grained (UFG) W-TiC compacts fabricated by powder metallurgical methods utilizing mechanical alloying (MA) are very promising for use in irradiation environments. However, the assurance of room-temperature ductility and enhancement in surface resistances to low-energy hydrogen irradiation are unsettled issues. As an approach to solution to these, microstructural modification by hot plastic working has been applied to UFG W-TiC processed by MA in a purified Ar or H 2 atmosphere and hot isostatic pressing (HIP). Hot plastically worked compacts have been subjected to 3-point bend tests at room temperature and TEM microstructural examinations. It is found that the microstructural modification allows us to convert UFG W-1.1%TiC to compacts exhibiting a very high fracture strength and appreciable ductility at room temperature. The compacts of W-1.1%TiC/Ar (MA atmosphere: Ar) and W-1.1%TiC/H 2 (MA atmosphere: H 2) exhibit re-crystallized structures with approximately 0.5 and 1.5 μm in grain size, respectively. It is shown that the enhancement of fracture resistance by microstructural modifications is attributed to significant strengthening of weak grain boundaries in the re-crystallized state. As a result the modified compacts exhibit superior surface resistance to low-energy deuteron irradiation.
Crystal field parameters in UCI 4: Experiment versus theory
NASA Astrophysics Data System (ADS)
Zolnierek, Z.; Gajek, Z.; Malek, Ch. Khan
1984-08-01
Crystal field effect on U 4+ ion with the 3H 4 ground term in tetragonal ligand field of UCl 4 has been studied in detail. Crystal field parameters determined experimentally from optical spectroscopy and magnetic susceptibility are in good agreement with CFP sets derived from the modified point charge model and the ab initio method. Theoretical calculations lead to overestimating the A44< r4> and lowering the A02< r2> values in comparison to those found in the experiments. The discrepancies are, however, within an accuracy of calculations. A large reduction of expectation values of the magnetic moment operator for the eigenvectors of lowest CF levels (17.8%), determined from magnetic susceptibility, cannot be attributed to the overlap and covalency effects only. The detailed calculations have shown that the latter effects provide about 4.6% reduction of respective matrix elements, and the applied J-J mixing procedure increases this factor up to 6.5%. Since similar, as in UCl 4, reduction factor(≈15%) has already been observed in a number of different uranium compounds, it seems likely that this feature is involved in the intrinsic properties of the U 4+ ion. We endeavor to explain this effect in terms of configuration interaction mechanisms.
Iturri, Jagoba; García-Fernández, Luis; Reuning, Ute; García, Andrés J.; Campo, Aránzazu del; Salierno, Marcelo J.
2015-01-01
The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies. PMID:25825012
Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y
2006-05-01
Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.
NASA Astrophysics Data System (ADS)
Miao, Hongchen; Li, Faxin
2015-09-01
The piezoelectric face-shear ( d36 ) mode may be the most useful shear mode in piezoelectrics, while currently this mode can only exist in single crystals of specific point groups and cut directions. Theoretically, the d36 coefficient vanishes in piezoelectric ceramics because of its transversally isotropic symmetry. In this work, we modified the symmetry of poled PZT ceramics from transversally isotropic to orthogonal through ferroelastic domain switching by applying a high lateral stress along the "2" direction and holding the stress for several hours. After removing the compression, the piezoelectric coefficient d31 is found much larger than d32 . Then, by cutting the compressed sample along the Z x t ±45 ° direction, we realized d36 coefficients up to 206 pC/N , which is measured by using a modified d33 meter. The obtained large d36 coefficients in PZT ceramics could be very promising for face-shear mode resonators and shear horizontal wave generation in nondestructive testing.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
Demonstrations with a Liquid Crystal Shutter
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2012-01-01
The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…
Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications
NASA Astrophysics Data System (ADS)
Stelian, C.; Duffar, T.
2018-05-01
Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.
A modified Stillinger-Weber potential for TlBr and its polymorphic extension
Zhou, Xiaowang; Foster, Michael E.; Jones, Reese E.; ...
2015-04-30
TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always bemore » applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.« less
NASA Astrophysics Data System (ADS)
Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Botta, Giovanni; Verlinde, Johannes
2013-12-01
Using the Generalized Multi-particle Mie-method (GMM), Botta et al. (in this issue) [7] created a database of backscattering cross sections for 412 different ice crystal dendrites at X-, Ka- and W-band wavelengths for different incident angles. The Rayleigh-Gans theory, which accounts for interference effects but ignores interactions between different parts of an ice crystal, explains much, but not all, of the variability in the database of backscattering cross sections. Differences between it and the GMM range from -3.5 dB to +2.5 dB and are highly dependent on the incident angle. To explain the residual variability a physically intuitive iterative method was developed to estimate the internal electric field within an ice crystal that accounts for interactions between the neighboring regions within it. After modifying the Rayleigh-Gans theory using this estimated internal electric field, the difference between the estimated backscattering cross sections and those from the GMM method decreased to within 0.5 dB for most of the ice crystals. The largest percentage differences occur when the form factor from the Rayleigh-Gans theory is close to zero. Both interference effects and neighbor interactions are sensitive to the morphology of ice crystals. Improvements in ice-microphysical models are necessary to predict or diagnose internal structures within ice crystals to aid in more accurate interpretation of radar returns. Observations of the morphology of ice crystals are, in turn, necessary to guide the development of such ice-microphysical models and to better understand the statistical properties of ice crystal morphologies in different environmental conditions.
Can Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.
Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...
2017-09-11
Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less
Hydrothermal crystal growth of ABe 2BO 3F 2 (A=K, Rb, Cs, Tl) NLO crystals
NASA Astrophysics Data System (ADS)
McMillen, Colin D.; Kolis, Joseph W.
2008-04-01
Crystals of a family of compounds, ABe 2BO 3F 2 (ABBF, A=K, Rb, Cs, Tl), have been grown hydrothermally. Each of these materials was studied using the powder SHG technique and exhibited promising NLO behavior. Seeded crystal growth was demonstrated and the growth conditions were optimized by modifying the temperature, thermal gradient and mineralizer concentration. RbBe 2BO 3F 2 crystals possessed a particularly good combination of SHG intensity, favorable crystal habit and fast growth rates. High quality crystals suitable for advanced deep-UV NLO studies were grown at rates of 0.11 mm/day on (0 0 1) and 0.12 mm/day perpendicular to (0 0 1).
Explosive performance of HMX/NTO co-crystal
NASA Astrophysics Data System (ADS)
Li, J. C.; Jiao, Q. J.; Gong, Y. G.; Wang, Y. Y.; Liang, T.; Sun, J.
2018-01-01
A new co-crystal explosive of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and 3-nitro-1, 2, 4-triazol-5-one (NTO) in a molar ratio of 1:1 has been prepared by solvent/anti-solvent method. The SEM photographs show that HMX/NTO co-crystals are distinctly different from HMX and NTO crystals. The co-crystals are prisms with well formed crystal surfaces. Thermal analysis results indicate the melting point of the co-crystal is 29.3 °Chigher than that of NTO. Moreover, the co-crystal exhibits a modified mechanical sensitivity. The characteristic height (H50) of impact sensitivity increases 14.8cm, and the explosion percentage (P) of friction sensitivity decreases by 40% compared with HMX. The HMX/NTO co-crystals possess good thermal property and low sensitivity, which mean huge advantages in blasting engineering.
Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.
properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro
Red blood cells aligning inside innovative liquid crystal cell
NASA Astrophysics Data System (ADS)
Likhomanova, S. V.; Kamanin, A. A.; Kamanina, N. V.
2017-11-01
Investigation results of red blood cells (human erythrocytes) aligning and fixing inside the liquid crystal (LC) cell have been presented in the present paper. LC cells have been modified through the improved nanostructured relief and LC sensitized with intermolecular charge transfer complex COANP-C70.
ERIC Educational Resources Information Center
Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.
2000-01-01
Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)
Controlled dehydration improves the diffraction quality of two RNA crystals.
Park, HaJeung; Tran, Tuan; Lee, Jun Hyuck; Park, Hyun; Disney, Matthew D
2016-11-03
Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.
Carbon Dioxide Adsorption Behavior of Modified HKUST-1
NASA Astrophysics Data System (ADS)
Ma, Lan; Tang, Huamin; Zhou, Chaohua; Zhang, Hongpeng; Yan, Chunxiao; Hu, Xiaochun; Yang, Yang; Yang, Weiwei; Li, Yuming; He, Dehua
2014-12-01
A kind of typical metal-organic frameworks (MOFs) material, HKUST-1 was prepared by hydrothermal method and characterized by XRD and SEM. The results of characterizations manifested that HKUST-1 showed a regular octahedral crystal structure. The as-prepared HKUST-1 was modified by several kinds of organic base materials and the CO2 adsorption behaviors of modified HKUST-1 materials were evaluated. The CO2 adsorption capacities of different base modified HKUST-1 varied with the base intensity of modified organic base materials.
Control of interface shape during high melting sesquioxide crystal growth by HEM technique
NASA Astrophysics Data System (ADS)
Hu, Kaiwei; Zheng, Lili; Zhang, Hui
2018-02-01
During crystal growth in heat exchanger method (HEM) system, the shape of the growth interface changes with the proceeding of the growth process, which limits the crystal size and reduces the quality of the crystal. In this paper, a modified HEM system is proposed to control the interface shape for growth of sesquioxide crystals. Numerical simulation is performed to predict heat transfer, melt flow and interface shape during growth of high melting sesquioxide crystals by the heat exchanger method. The results show that a flat or slightly convex interface shape is beneficial to reduce the solute pileup in front of the melt/crystal interface and decrease the radial temperature gradient inside the crystal during growth of sesquioxide crystals. The interface shape can be controlled by adjusting the gap size d and lower resistance heater power during growth. The growth rate and the melt/crystal interface position can be obtained by two measured temperatures.
NASA Astrophysics Data System (ADS)
Yuan, Yongbo; Bi, Yu; Huang, Jinsong
2011-02-01
We report efficient laminated organic photovoltaic device with efficiency approach the optimized device by regular method based on Poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The high efficiency is mainly attributed to the formation of a concrete polymer/metal interface mechanically and electrically by the use of electronic-glue, and using the highly conductive and flexible silver film as anode to reduce photovoltage loss and modifying its work function for efficiency hole extraction by ultraviolet/ozone treatment, and the pressure induced crystallization of PCBM.
Incorporation of impurity to a tetragonal lysozyme crystal
NASA Astrophysics Data System (ADS)
Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo
1999-01-01
Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.
Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalasemore » (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.« less
An assessment of calcite crystal growth mechanisms based on crystal size distributions
Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.
2000-01-01
Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial Ω = 20, where Ω = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial Ω = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (Ω >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.
Bridgman growth of lead potassium niobate crystals
NASA Astrophysics Data System (ADS)
Fan, Shiji; Sun, Renying; Lin, Yafang; Wu, Jindi
1999-03-01
Lead potassium niobate Pb 2KNb 5O 15 (PKN) crystals with tetragonal tungsten bronze (TTB) structure have been grown by the modified Bridgman (BR) method. Nearly sealed Pt crucibles and small temperature gradients in the Bridgman furnace can limit volatilization of PbO and cracking of as-grown PKN crystals. Transparent PKN crystals of 1 inch diameter by ˜2 inch length with brownish color have been grown successfully at a crucible lowering rate <0.5 mm/h and a temperature gradient of 10-15°C/cm across the solid-liquid interface. Coupling between twins and growth directions of the crystal is also discussed.
Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation
NASA Astrophysics Data System (ADS)
Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Verlinde, Johannes
2014-09-01
A modification to the Rayleigh-Gans approximation is made that includes self-interactions between different parts of an ice crystal, which both improves the accuracy of the Rayleigh-Gans approximation and extends its applicability to polarization-dependent parameters. This modified Rayleigh-Gans approximation is both efficient and reasonably accurate for particles with at least one dimension much smaller than the wavelength (e.g., dendrites at millimeter or longer wavelengths) or particles with sparse structures (e.g., low-density aggregates). Relative to the Generalized Multiparticle Mie method, backscattering reflectivities at horizontal transmit and receive polarization (HH) (ZHH) computed with this modified Rayleigh-Gans approach are about 3 dB more accurate than with the traditional Rayleigh-Gans approximation. For realistic particle size distributions and pristine ice crystals the modified Rayleigh-Gans approach agrees with the Generalized Multiparticle Mie method to within 0.5 dB for ZHH whereas for the polarimetric radar observables differential reflectivity (ZDR) and specific differential phase (KDP) agreement is generally within 0.7 dB and 13%, respectively. Compared to the A-DDA code, the modified Rayleigh-Gans approximation is several to tens of times faster if scattering properties for different incident angles and particle orientations are calculated. These accuracies and computational efficiencies are sufficient to make this modified Rayleigh-Gans approach a viable alternative to the Rayleigh-Gans approximation in some applications such as millimeter to centimeter wavelength radars and to other methods that assume simpler, less accurate shapes for ice crystals. This method should not be used on materials with dielectric properties much different from ice and on compact particles much larger than the wavelength.
Uludag, Yildiz; Tothill, Ibtisam E
2012-07-17
Early detection of cancer is vital for the successful treatment of the disease. Hence, a rapid and sensitive diagnosis is essential before the cancer is spread out to the other body organs. Here we describe the development of a point-of-care immunosensor for the detection of the cancer biomarker (total prostate-specific antigen, tPSA) using surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensor platforms in human serum samples. K(D) of the antibody used toward PSA was calculated as 9.46 × 10(-10) M, indicating high affinity of the antibody used in developing the assay. By performing a sandwich assay using antibody-modified nanoparticles concentrations of 2.3 ng mL(-1) (Au, 20 nm) and 0.29 ng mL(-1) (8.5 pM) (Au, 40 nm) tPSA in 75% human serum were detected using the developed assay on an SPR sensor chip. The SPR sensor results were found to be comparable to that achieved using a QCM sensor platform, indicating that both systems can be applied for disease biomarkers screening. The clinical applicability of the developed immunoassay can therefore be successfully applied to patient's serum samples. This demonstrates the high potential of the developed sensor devices as platforms for clinical prostate cancer diagnosis and prognosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried
2015-11-16
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue ormore » red shifted depending on the frequency of the applied voltage.« less
Automating the application of smart materials for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.
2015-03-01
The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of successmore » when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.« less
Interfacial free energy and stiffness of aluminum during rapid solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Interfacial free energy and stiffness of aluminum during rapid solidification
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
2017-05-01
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Huang, Yao-Hung; Chang, Jeng-Shian; Chao, Sheng D.; Wu, Kuang-Chong; Huang, Long-Sun
2014-01-01
A quartz crystal microbalance (QCM) serving as a biosensor to detect the target biomolecules (analytes) often suffers from the time consuming process, especially in the case of diffusion-limited reaction. In this experimental work, we modify the reaction chamber of a conventional QCM by integrating into the multi-microelectrodes to produce electrothermal vortex flow which can efficiently drive the analytes moving toward the sensor surface, where the analytes were captured by the immobilized ligands. The microelectrodes are placed on the top surface of the chamber opposite to the sensor, which is located on the bottom of the chamber. Besides, the height of reaction chamber is reduced to assure that the suspended analytes in the fluid can be effectively drived to the sensor surface by induced electrothermal vortex flow, and also the sample costs are saved. A series of frequency shift measurements associated with the adding mass due to the specific binding of the analytes in the fluid flow and the immobilized ligands on the QCM sensor surface are performed with or without applying electrothermal effect (ETE). The experimental results show that electrothermal vortex flow does effectively accelerate the specific binding and make the frequency shift measurement more sensible. In addition, the images of the binding surfaces of the sensors with or without applying electrothermal effect are taken through the scanning electron microscopy. By comparing the images, it also clearly indicates that ETE does raise the specific binding of the analytes and ligands and efficiently improves the performance of the QCM sensor. PMID:25538808
NASA Astrophysics Data System (ADS)
Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.
2014-01-01
The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.
Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei
2009-12-15
Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji
2004-03-01
(Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.
Alternative to classic annealing treatments for fractally patterned TiO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overschelde, O. van; Wautelet, M.; Guisbiers, G.
2008-11-15
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass and subsequently irradiated by UV radiation using a KrF excimer laser. The influence of the laser fluence (F) on the constitution and microstructure of the deposited films is studied for 0.05
A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.
Lupulescu, Alexandra I; Kumar, Manjesh; Rimer, Jeffrey D
2013-05-01
Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.
NASA Astrophysics Data System (ADS)
Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde
2017-10-01
The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xing; Zhang, Kangjia; Wang, Mingshan
2018-02-28
Trace amount of Zirconium (Zr) has been adopted to modify the crystal structure and surface of the Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material. During cycling at 1.0C, the Zr-modified NCM811 shows an improved capacity retention of 92% after 100 cycles, higher than 75% for pristine NMC811. In addition, the Zr-modified NCM811 is capable of delivering a discharge capacity of 107 mAh g-1 at 10.0C rate, much higher than 28 mAh g-1 delivered by pristine material. These improved electrochemical performances are ascribed to the dual functions of Zr modification. On one hand, part of the Zr enters the crystal lattice, which ismore » beneficial for reducing the Li/Ni cation mixing and enhancing the crystal stability of the cathode. On the other hand, the rest of the Zr forms a 1~2 nm thick coating layer on the surface of the NCM811 cathode, which effectively prevents the direct contact between NCM and the electrolyte, thus suppressing the detrimental interfacial reactions. Therefore, the Zr-modified LiNi0.8Co0.1Mn0.1O2 exhibited significantly enhanced cycling stability and charging/discharging rate capability in comparison with the untreated counterpart.« less
Surface Modification and Nanojunction Fabrication with Molecular Metal Wires
2012-12-21
single - crystal X-ray diffraction studies of 2 and 3. Both the single - crystal structural data of 2 and 3 and the spectroscopic/voltammetric data...structure, magnetic properties, and single -molecule conductance of two new trinuclear metal string complexes, [Ni3(dzp)4(NCS)2] (2) and [ Co3 (dzp)4(NCS...modifying the crystallization conditions. The [s- Co3 (dpa)4(Cl)2] contains a symmetrical tricobalt framework with identical Co–Co bond lengths (2.34 Å
Field induced heliconical structure of cholesteric liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie
A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
NASA Astrophysics Data System (ADS)
Balint, A. M.; Mihailovici, M. M.; Bãltean, D. G.; Balint, St.
2001-08-01
In this paper, we start from the Chang-Brown model which allows computation of flow, temperature and dopant concentration in a vertical Bridgman-Stockbarger semiconductor growth system. The modifications made by us concern the melt/solid interface. Namely, we assume that the phase transition does not take place on a flat mathematical surface, but in a thin region (the so-called precrystallization-zone), masking the crystal, where both phases, liquid and solid, co-exist. We deduce for this zone new effective equations which govern flow, heat and dopant transport and make the coupling of these equations with those governing the same phenomena in the pure melt. We compute flow, temperature and dopant concentration for crystal and melt with thermophysical properties similar to gallium-doped germanium using the modified Chang-Brown model and compare the results to those obtained using the Chang-Brown model.
Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization
NASA Astrophysics Data System (ADS)
Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo
2018-03-01
A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.
NASA Astrophysics Data System (ADS)
Purohit, Geetanjali; Pattanaik, Anup; Nayak, Pratibindhya
2018-05-01
Anisotropic properties of Sommerfeld coefficient and penetration depth for single crystal NdFeAsO1-xFx has been studied by using modified phenomenological Ginzburg-Landau (GL) theory. In the above two-band superconducting system, the calculated value of Sommerfeld coefficient shows very close proximity with the experimental result as reported by Welp. Further, anisotropic ratio of penetration depth also calculated and reported for this system. The results of anisotropic properties of the above superconducting system implied that modified GL-theory in the form presented here can be applicable to the above superconducting system.
Calcium oxalate crystal growth modification; investigations with confocal Raman microscopy
NASA Astrophysics Data System (ADS)
McMulkin, Calum J.; Massi, Massimiliano; Jones, Franca
2017-06-01
Confocal Raman Microscopy (CRM) in combination with a photophysical investigation has been employed to give insight into the interaction between calcium oxalate monohydrate (COM) and a series of tetrazole containing crystal growth modifier's (CGM's), in conjunction with characterisation of morphological changes using scanning electron and optical microscopy. The tetrazole CGM's were found to interact by surface adsorption with minimal morphological changes to the COM crystals however, significant interactions via chemisorption were observed; it was discovered that the chemisorption is sufficiently strong for aggregation of the tetrazole species to occur within the crystal during crystallisation.
NASA Astrophysics Data System (ADS)
Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.
2013-09-01
Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.
Flux cutting in high- T c superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.
We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less
Thermodynamics of surface defects at the aspirin/water interface
NASA Astrophysics Data System (ADS)
Schneider, Julian; Zheng, Chen; Reuter, Karsten
2014-09-01
We present a simulation scheme to calculate defect formation free energies at a molecular crystal/water interface based on force-field molecular dynamics simulations. To this end, we adopt and modify existing approaches to calculate binding free energies of biological ligand/receptor complexes to be applicable to common surface defects, such as step edges and kink sites. We obtain statistically accurate and reliable free energy values for the aspirin/water interface, which can be applied to estimate the distribution of defects using well-established thermodynamic relations. As a show case we calculate the free energy upon dissolving molecules from kink sites at the interface. This free energy can be related to the solubility concentration and we obtain solubility values in excellent agreement with experimental results.
Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?
Dalpiaz, Alessandro; Pavan, Barbara; Ferretti, Valeria
2017-08-01
Poorly soluble and/or permeable molecules jeopardize the discovery and development of innovative medicines. Pharmaceutical co-crystals, formed by an active pharmaceutical substance (API) and a co-crystal former, can show enhanced dissolution and permeation values compared with those of the parent crystalline pure phases. It is currently assumed that co-crystallization with pharmaceutical excipients does not affect the pharmacological activity of an API or, indeed, might even improve physical properties such as solubility and permeability. However, as we highlight here, the biological behavior of co-crystals can differ drastically with respect to that of their parent physical mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silicon carbide - Progress in crystal growth
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
1987-01-01
Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meining, Winfried, E-mail: wim@csb.ki.se; Scheuring, Johannes; Fischer, Markus
2006-06-01
SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å,more » α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.« less
Drilling technique for crystals
NASA Technical Reports Server (NTRS)
Hunter, T.; Miyagawa, I.
1977-01-01
Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.
Reverse-mode microdroplet liquid crystal display
NASA Astrophysics Data System (ADS)
Ma, Yao-Dong; Wu, Bao Gang; Xu, Gang
1990-04-01
This paper presents the production of the a reverse-mode microdroplet liquid crystal (RMLC) light shutter display. In this unit, the display is formed by a thin polymer film with dispersed liquid crystal microdroplets. The display is light transmissive in the absence of an applied electrical field. The display is converted to a non-transmissive state (i.e. absorbing or scattering) when an electrical field is applied. The "off' and "on" state. of this display are thus exactly opposite to that encountered in "normal-mode" microdroplet liquid crystal display devices such as polymer dispersed liquid crystals (PDLC)15 or Nematic Curvilinear Aligned Phase (NCAP)6. The Reverse Mode Microdroplet Liquid Crystal is obtained by modification of the surface energy of the polymer which encases liquid crystals via reaction of a dopant incorporated inside of the microdroplet during the droplet formation within the inside polymer layer. The liquid crystal used in RMLC is of negative dielectric anisotropy.
Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.
2016-10-28
Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the twomore » elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.« less
Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.
Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C
2014-01-21
Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.
Modified Bridgman-Stockbarger growth and characterization of LiInSe{sub 2} single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayakumar, P., E-mail: ramasamyp@ssn.edu.in; Magesh, M., E-mail: ramasamyp@ssn.edu.in; Arunkumar, A., E-mail: ramasamyp@ssn.edu.in
2014-04-24
The LiInSe{sub 2} polycrystalline materials were successfully synthesized from melt and temperature oscillation method. 8 mm diameter and 32 mm length single crystal was grown from Bridgman-Stockbarger method with steady ampoule rotation. Crystalline phase was confirmed by powder XRD pattern. Thermo gravimetric and differential thermal analysis confirms that the melting point of the grown crystal is 897°C. Rutherford backscattering analysis (RBS) gives the crystal composition as Li{sub 0.8}In{sub 1.16}Se{sub 2.04}. The crystalline perfection of the grown crystal was analyzed by High resolution X-ray diffraction measurements (HRXRD). The electrical properties of the grown crystal were analyzed by Hall effect measurements andmore » it confirms the n-type semiconducting nature.« less
NASA Technical Reports Server (NTRS)
Snell, Edward; vanderWoerd, Mark
2003-01-01
Thermally imaging the cryocooling processes of crystals has been demonstrated showing the progression of a cold wave through a crystal from the face closest to the origin of the coldstream ending at the point furthest away. During these studies large volume crystals were clearly distinguished from the loop holding them. Large volume crystals, used for neutron studies, were chosen deliberately to enhance the imaging. The different infrared transmission and reflectance properties of the crystal in comparison to the cryo-protectant are thought to be the parameter that produces the contrast making the crystal visible. As an application of the technology to locating crystals, more small crystals of lysozyme and a bFGF/dna complex were cryo-protected and imaged in large loops. The crystals were clearly distinguished from the vitrified solution. In the case of the bFGF/dna complex the illumination had to be carefully manipulated to enable the crystal to be seen in the visible spectrum. These preliminary results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Thipparaboina, Rajesh; Modi, Sameer R.; Bansal, Arvind K.; Shastri, Nalini R.
2015-07-01
Crystallization in the presence of Polysorbate-80 (T-80), a non-ionic surfactant was explored for crystal habit modification of nifedipine polymorph I (Nif). A concentration dependent reduction in aspect ratio was observed with T-80. Generation of any new solvates/polymorphs was ruled out by Fourier Transform Infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and thermogravimetric analysis, while the absence of T-80 on the surface or bulk of the recrystallized samples was established by liquid chromatography mass spectroscopy. The dissolution rate order of the re-crystallized Nif habits was in the order of; Nif-D (Nif with 0.6%v/v T-80)>Nif-C (Nif with 0.4% v/v T-80)>Nif-B (Nif with 0.2% v/v T-80)>Nif-A (plain Nif). Wetting ability and surface free energy determination from contact angle measurements were used to explain the order of dissolution rate. The consequences of varying concentration of T-80 on Nif crystal habit was supported by means of molecular dynamics (MD) which was executed using COMPASS force field while modified attachment energy was computed to acquire the absolute morphology. The mechanism for alteration in the morphology was suggested based on the computed crystal surface chemistry. Nif-D crystal habit was nearly iso-diametric with majority of facets occupied by polar dominant surfaces {0 1 1} and {0 0 2} which ultimately resulted in higher dissolution rate. In Nif-B and Nif-C the dissolution rate was dependent on the proportion of polar and non-polar facet area. The methodology used in this study could be an influential tool for selection of concentration of habit-modifying additives in other crystallization studies.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping
2011-08-01
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.
Single crystals of metal solid solutions: A study
NASA Technical Reports Server (NTRS)
Miller, J. F.; Gelles, S. H.
1975-01-01
Report describes growth of silver-alloy crystals under widely varying conditions of growth rate, temperature gradient, and magnetic field. Role of gravitation and convection on crystal substructure is analyzed, as well as influence of magnetic fields applied during crystallization.
Effects of neutron and electron irradiation on superconducting HgBa 2CuO 4+ δ single crystals
NASA Astrophysics Data System (ADS)
Zehetmayer, M.; Eisterer, M.; Kazakov, S. M.; Karpinski, J.; Wisniewski, A.; Puzniak, R.; Daignere, A.; Weber, H. W.
2004-08-01
We report on measurements of the magnetic moment in superconducting HgBa 2CuO 4+ δ single crystals by SQUID magnetometry. Neutron and electron irradiation are employed to modify the defect structure. Both types of radiation affect the irreversible properties, but characteristic qualitative differences occur, which will be discussed.
Gout: a review of non-modifiable and modifiable risk factors
MacFarlane, Lindsey A.; Kim, Seoyoung C.
2014-01-01
Gout is a common inflammatory arthritis triggered by the crystallization of uric acid within the joints. Gout affects millions worldwide and has an increasing prevalence. Recent research has been carried out to better qualify and quantify the risk factors predisposing individuals to gout. These can largely be broken into non-modifiable risk factors such as sex, age, race, and genetics, and modifiable risk factors such as diet and lifestyle. Increasing knowledge of factors predisposing certain individuals to gout could potentially lead to improved preventive practices. This review summarizes the non-modifiable and modifiable risk factors associated with development of gout. PMID:25437279
NASA Astrophysics Data System (ADS)
Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi
2001-09-01
A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.
Oswald, Christine; Jenewein, Stefan; Smits, Sander H J; Holland, I Barry; Schmitt, Lutz
2008-04-01
TNP-modified nucleotides have been used extensively to study protein-nucleotide interactions. In the case of ABC-ATPases, application of these powerful tools has been greatly restricted due to the significantly higher affinity of the TNP-nucleotide for the corresponding ABC-ATPase in comparison to the non-modified nucleotides. To understand the molecular changes occurring upon binding of the TNP-nucleotide to an ABC-ATPase, we have determined the crystal structure of the TNP-ADP/HlyB-NBD complex at 1.6A resolution. Despite the higher affinity of TNP-ADP, no direct fluorophore-protein interactions were observed. Unexpectedly, only water-mediated interactions were detected between the TNP moiety and Tyr(477), that is engaged in pi-pi stacking with the adenine ring, as well as with two serine residues (Ser(504) and Ser(509)) of the Walker A motif. Interestingly, the side chains of these two serine residues adopt novel conformations that are not observed in the corresponding ADP structure. However, in the crystal structure of the S504A mutant, which binds TNP-ADP with similar affinity to the wild type enzyme, a novel TNP-water interaction compensates for the missing serine side chain. Since this water molecule is not present in the wild type enzyme, these results suggest that only water-mediated interactions provide a structural explanation for the increased affinity of TNP-nucleotides towards ABC-ATPases. However, our results also imply that in silico approaches such as docking or modeling cannot directly be applied to generate 'affinity-adopted' ADP- or ATP-analogs for ABC-ATPases.
Effect of co-crystallization on singlet fission efficiency in pentacene derivatives
NASA Astrophysics Data System (ADS)
Wang, Xiaopeng; Sanders, Samuel; Campos, Luis; Sfeir, Matthew; Marom, Noa
Singlet fission (SF), the conversion of one singlet exciton into two triplet excitons, may lead to a twofold increase in the efficiency of organic photovoltaics. Since SF has been observed in crystalline pentacene, this material has drawn interest both experimentally and theoretically. Recently, it has been shown that SF efficiency in rubrene may be improved by modifying the crystal packing. Here, we study the effect of co-crystallization with small molecule H-bond donors on SF efficiency in pentacene derivatives. Five co-crystals are synthetized and their photoluminescence (PL) and absorption spectra are measured. First-principles calculations based on many-body perturbation theory (MBPT) are then employed to study their excitonic properties. By combining experiment and theory, we demonsrate that excitonic properties, including singlet-triplet gaps, exciton binding energies, and exciton localization, are significantly modulated in pentacene co-crystals. Consequently, co-crystallization becomes an effective strategy for improving SF efficiency in molecular crystals of organic semiconductors.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...
2016-03-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias
2016-01-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771
NASA Astrophysics Data System (ADS)
Stelian, C.; Nehari, A.; Lasloudji, I.; Lebbou, K.; Dumortier, M.; Cabane, H.; Duffar, T.
2017-10-01
Single La3Ga5.5Ta0.5O14 (LGT) crystals have been grown by using the Czochralski technique with inductive heating. Some ingots exhibit imperfections such as cracks, dislocations and striations. Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the crystallization of ingots having 3 cm in diameter. It was found that the conical shape of the interface depends essentially on the internal radiative exchanges in the semi-transparent LGT crystal. Numerical results are compared to experimental visualization of the growth interface, showing a good agreement. The effect of the forced convection produced by the crystal and crucible rotation is numerically investigated at various rotation rates. Increasing the crystal rotation rate up to 50 rpm has a significant flattening effect on the interface shape. Applying only crucible rotation enhances the downward flow underneath the crystal, leading to an increased interface curvature. Counter rotation between the crystal and the crucible results in a distorted shape of the interface.
Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole
Julian, Trisna; Hidayat, Shidiq Nur; Suyono, Eko Agus
2018-01-01
Safrole is the main precursor for producing the amphetamine-type stimulant (ATS) drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA), also known as ecstasy. We devise a polyacrylonitrile (PAN) nanofiber-based quartz crystal microbalance (QCM) for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds. PMID:29642565
The Development of Models to Optimize Selection of Nuclear Fuels through Atomic-Level Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Simon Phillpot; Prof. Susan B. Sinnott; Prof. Hans Seifert
2009-01-26
Demonstrated that FRAPCON can be modified to accept data generated from first principles studies, and that the result obtained from the modified FRAPCON make sense in terms of the inputs. Determined the temperature dependence of the thermal conductivity of single crystal UO2 from atomistic simulation.
NASA Astrophysics Data System (ADS)
Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping
2016-06-01
Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng
2016-06-21
Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less
Tailored multivariate analysis for modulated enhanced diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni
2015-10-21
Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. The multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). When applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. To develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less
Vargeese, Anuj A; Joshi, Satyawati S; Krishnamurthy, V N
2010-08-15
Ammonium nitrate (AN) is an inorganic crystalline compound used as a solid propellant oxidizer and as a nitrogenous fertilizer. The practical use of AN as solid propellant oxidizer is restricted due to the near room temperature polymorphic phase transition and hygroscopicity. A good deal of effort has been expended for last many years to stabilize the polymorphic transitions of AN, so as to minimize the storage difficulties of AN based fertilizers and to achieve more environmentally benign propellant systems. Also, particles with aspect ratio nearer to one are a vital requirement in fertilizer and propellant industries. In the present study AN is crystallized in presence of trace amount of potassium ferrocyanide (K(4)Fe(CN)(6)) crystal habit modifier and kept for different time intervals. And the effect of K(4)Fe(CN)(6) on the habit and phase modification of AN was studied. Phase modified ammonium nitrate (PMAN) with a particle aspect ratio nearer to one was obtained by this method and the reasons for this modifications are discussed. The morphology changes were studied by SEM, the phase modifications were studied by DSC and the structural properties were studied by powder XRD. Copyright 2010 Elsevier B.V. All rights reserved.
Polycrystalline magma behaviour in dykes: Insights from high-resolution numerical models
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Duretz, Thibault; Tartèse, Romain; May, Dave
2013-04-01
The presence of a crystalline load in magmas modifies their effective rheology and thus their flow behaviour. In dykes, for instance, the presence of crystals denser than the melt reduces the ascent velocity and modifies the shape of the velocity profile from a Newtonian Poiseuille flow to a Bingham type flow. Nevertheless, several unresolved issues still remain poorly understood and need to be quantified: (1) What are the mechanisms controlling crystals segregation during magma ascent in dykes? (2) How does crystals transportation within a melt depend on their concentration, geometry, size and density? (3) Do crystals evolve in isolation to each other or as a cluster? (4) What is the influence of considering inertia of the melt within the system? In this study, we present numerical models following the setup previously used in Yamato et al. (2012). Our model setup simulates an effective pressure gradient between the base and the top of a channel (representing a dyke), by pushing a rigid piston into a magmatic mush that comprised crystals and melt and perforated by a hole. The initial resolution of the models (401x1551 nodes) has been doubled in order to ensure that the smallest crystalline fractions are sufficiently well resolved. Results show that the melt phase can be squeezed out from a crystal-rich magma when subjected to a given pressure gradient range and that clustering of crystals might be an important parameter controlling their behaviour. This demonstrates that crystal-melt segregation in dykes during magma ascent constitutes a viable mechanism for magmatic differentiation of residual melts. These results also explain how isolated crystal clusters and melt pockets, with different chemistry, can be formed. In addition, we discuss the impact of taking into account inertia in our models. Reference: Yamato, P., Tartèse, R., Duretz, T., May, D.A., 2012. Numerical modelling of magma transport in dykes. Tectonophysics 526-529, 97-109.
Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.
2013-12-15
The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.
Enhancement of polar phase and conductivity relaxation in PIL-modified GO/PVDF composites
NASA Astrophysics Data System (ADS)
Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng
2018-02-01
To investigate the effect of graphene oxide (GO) modified by polymerized ionic liquid (PIL) on the crystallization and dielectric relaxation of poly(vinylidene fluoride) (PVDF), a series of PVDF composites have been prepared using the solution casting method. The ion-dipole interaction between PIL and >CF2 and the π-dipole interaction between GO and >CF2 can induce synergistically the polar phase, and the π-ion interaction between GO and PIL can strengthen the induction effect of the polar phase and decrease the degree of crystallization of PVDF. The electric modulus and conductivity relaxation are employed to analyze the experimental complex dielectric permittivity. In the frequency spectra of complex permittivity of PVDF composites, space charge polarization and conductivity lead to a large value of dielectric permittivity. The temperature dependence of relaxation time of conductivity relaxation accords with the Arrhenius equation. A low degree of crystallization, more ion concentration, and polar phase in PVDF/PIL/GO enhance the movement of the polymer chain segment and charge carriers.
Interactive and Versatile Navigation of Structural Databases.
Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin
2016-05-12
We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures.
NASA Astrophysics Data System (ADS)
Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.
2018-04-01
Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.
Electromigration process for the purification of molten silicon during crystal growth
Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.
1982-01-01
A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.
Studies of LSO:Tb radio-luminescence properties using white beam hard X-ray synchrotron irradiation
NASA Astrophysics Data System (ADS)
Cecilia, A.; Rack, A.; Pelliccia, D.; Douissard, P.-A.; Martin, T.; Couchaud, M.; Dupré, K.; Baumbach, T.
A radio-luminescence set-up was installed at the synchrotron light source ANKA to characterise scintillators under the high X-ray photon flux density of white beam synchrotron radiation. The system allows for investigating the radio-luminescence spectrum of the material under study as well as analysing in situ changes of its scintillation behaviour (e.g. under heat load and/or intensive ionising radiation). In this work we applied the radio-luminescence set-up for investigating the radiation damage effects on the luminescence properties of a new kind of thin single crystal scintillator for high resolution X-ray imaging based on a layer of modified Lu2SiO5 grown by liquid phase epitaxy on a dedicated substrate within the framework of an EC project (SCINTAX).
NASA Astrophysics Data System (ADS)
Endo, A.; Sakida, S.; Benino, Y.; Nanba, T.
2011-10-01
Surface crystallized glass ceramics with fresnoite (Ba2TiSi2O8) phase were prepared by conventional heat treatment of 30BaO-20TiO2-50SiO2 glass together with ultrasonic surface treatment (UST) technique. The precursor glass was fully crystallized in a bulk form without any cracks, and the optical transparency and crystallographic orientation of the crystalline layers were evaluated by UV-Vis spectroscopy and XRD diffraction analyses, respectively. These properties were both enhanced significantly by applying UST using fresnoite/water suspension before the crystallization process, which is advantage for nonlinear optical applications of bulk glass ceramics. The effects of UST on the crystallization behavior were investigated by applying UST with various conditions.
NASA Astrophysics Data System (ADS)
Wang, Jingcheng; Luo, Jingrun
2018-04-01
Due to the extremely high particle volume fraction (greater than 85%) and damage feature of polymer bonded explosives (PBXs), conventional micromechanical methods lead to inaccurate estimates on their effective elastic properties. According to their manufacture characteristics, a multistep approach based on micromechanical methods is proposed. PBXs are treated as pseudo poly-crystal materials consisting of equivalent composite particles (explosive crystals with binder coating), rather than two-phase composites composed of explosive particles and binder matrix. Moduli of composite spheres are obtained by generalized self-consistent method first, and the self-consistent method is modified to calculate the effective moduli of PBX. Defects and particle size distribution are considered by Mori-Tanaka method. Results show that when the multistep approach is applied to PBX 9501, estimates are far more accurate than the conventional micromechanical results. The bulk modulus is 5.75% higher, and shear modulus is 5.78% lower than the experimental values. Further analyses discover that while particle volume fraction and the binder's property have significant influences on the effective moduli of PBX, the moduli of particles present minor influences. Investigation of another particle size distribution indicates that the use of more fine particles will enhance the effective moduli of PBX.
The effect of an external electric field on the growth of incongruent-melting material
NASA Astrophysics Data System (ADS)
Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi
2005-02-01
The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.
NASA Astrophysics Data System (ADS)
Wang, Yu; Liu, Yingli; Zhang, Huaiwu; Li, Jie; Gao, Liwen; Chen, Daming; Chen, Yong
2018-02-01
In this paper, a wet magnetizing orientation process was applied to synthesize c-axis-textured, M-type barium ferrite (BaFe12O19 or BaM), which is widely used to produce hard magnetic materials. To modify the magnetic properties of the BaM ferrite and make it suitable for certain operating frequencies, Sc3+ was substituted into Fe3+ sites of the BaM crystal structure. A BaSc x Fe12- x O19 ferrite with a typical relative density of ˜ 75% was successfully obtained. We used x-ray diffraction, scanning electronic microscopy, and a vibrating sample magnetometer to obtain phase information, detail of the microstructure, and magnetic properties of the BaSc x Fe12- x O19, respectively. The composition BaSc x Fe12- x O19 ( x = 0.1) featured a superior squareness ratio of ˜ 67% and a saturation magnetization ( M S) of ˜ 5300 Gauss in magnetic hysteresis loop measurements. These features match well with requirements for self-biased passive devices. Moreover, the site preference of Sc3+ in the hexagonal crystal structure was investigated.
Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.
2018-05-01
The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.
JPRS Report - Science & Technology Japan: New Functional Materials.
1989-12-27
Using Modified and Controlled High Pressure Environments [Masao Wakatsuki, Kaoru J. Takano] 21 Molecular Design, Synthesis, and Evaluation of High...Crystals [ Shigetoshi Takahashi ] 51 Synthesis of New Organosilicon Polymers and Their Functionalities [Mitsuo Ishikawa , Joji Ohshita] 52...Analysis of The Formation Mechanisms Using Modified and Controlled High Pressure Environments Masao Wakatsuki and Kaoru J. Takano Institute of
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Wada, Satoshi; Panchenko, Vladislav Ya.
2017-08-01
We develop a modified two-temperature (2T) model of laser-matter interaction in dielectrics based on experimental insight from picosecond-pulsed high-frequency temperature-controlled second-harmonic (515 nm) generation in periodically poled stoichiometric LiTaO3 crystal and required for computational treatment of short-pulsed nonlinear optics and materials processing applications. We show that the incorporation of an extended set of recombination-kinetics-related energy-release and heat-exchange processes following short-pulsed photoionization by two-photon absorption of the second harmonic allows accurate simulation of the electron-lattice relaxation dynamics and electron-lattice temperature evolution in LiTaO3 crystal in nonlinear laser-frequency conversion. Our experimentally confirmed model and detailed simulation study show that two-photon ionization with the recombination mechanism via ion-electron-lattice interaction followed by a direct transfer of the recombination energy to the lattice is the main laser-matter energy-transfer pathway responsible for the majority of the crystal lattice heating (approximately 90%) continuing for approximately 50 ps after laser-pulse termination and competing with effect of electron-phonon energy transfer from the free electrons. This time delay is due to a recombination bottleneck which hinders faster relaxation to thermal equilibrium in photoionized dielectric crystal. Generally, our study suggests that in dielectrics photoionized by short-pulsed radiation with intensity range used in nonlinear laser-frequency conversion, the electron-lattice relaxation period is defined by the recombination-stage bottleneck of a few tens of picoseconds and not by the time of the electron-phonon energy transfer. This modification of the 2T model can be applied to a broad range of processes involving laser-matter interactions in dielectrics and semiconductors for charge density reaching the range of 1021- 1022 cm-3 .
NASA Astrophysics Data System (ADS)
Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan; Sewell, Thomas D.
2016-10-01
A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-dimensionally (2D) infinite crystal-crystal homophase and heterophase interfaces, and nanostructures with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates easy definition of constraints on cut crystal geometries. The method preserves the translational symmetry of all Bravais lattices and thus can be applied to any crystal described by such a lattice including complicated, low-symmetry molecular crystals. Implementations are presented with carefully articulated combinations of loop searches and constraints that drastically reduce computational complexity compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals found using the GCCM overcome some limitations in standard distributions of popular molecular dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular dynamics and molecular statics simulations with 2D infinite crystal-crystal homophase interfaces created using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlate with the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how nanostructures can be constructed through simple constraints applied in the GCCM framework. Example GCCM constructions are shown that are relevant to some current problems in materials science, including shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.
Growth of 1.5-In Eu : SrI2 Single Crystal and Scintillation Properties
NASA Astrophysics Data System (ADS)
Yokota, Yuui; Ito, Tomoki; Yasuhiro, Shoji; Kurosawa, Shunsuke; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira
2016-04-01
We grew 1.5-in Eu doped SrI2 (Eu : SrI2) bulk single crystal by a modified vertical Bridgman (VB) method using a removable chamber and high-frequency induction heating. Asgrown 1.5-in Eu : SrI2 bulk single crystal had no visible crack and inclusion in the crystal. In the transmittance and α-ray radioluminescence spectra, large absorption below 433 nm and emission peak at 433 nm were observed, respectively. Each polished Eu : SrI2 specimen indicated 56 000 62 000 ph/MeV light yield and 3.3 3.9% energy resolution. The decay times of the specimens were 0.61 0.67 μs.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
NASA Astrophysics Data System (ADS)
Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.
2015-08-01
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.
Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Department of Electrical and Computer Engineering, MSC01 1100, University of New Mexico, Albuquerque, New Mexico 87131-0001; Branch, D. W.
2015-08-15
A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5more » μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing
Patel, N.; Branch, D. W.; Schamiloglu, E.; ...
2015-08-11
A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO 3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses tomore » both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less
Photonically engineered incandescent emitter
Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.
2003-08-26
A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.
Photonically Engineered Incandescent Emitter
Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.
2005-03-22
A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.
Utilization of High-Temperature Slags From Metallurgy Based on Crystallization Behaviors
NASA Astrophysics Data System (ADS)
Sun, Yongqi; Zhang, Zuotai
2018-05-01
Here, following the principle of modifying crystallization behaviors, including avoidance and optimization, we review recent research on the utilization of hot slags. Because of the high-temperature property (1450-1650°C), the utilization of hot slags are much different from that of other wastes. We approach this issue from two main directions, namely, material recycling and heat utilization. From the respect of material recycling, the utilization of slags mainly follows total utilization and partial utilization, whereas the heat recovery from slags follows two main paths, namely, physical granulation and chemical reaction. The effective disposal of hot slags greatly depends on clarifying the crystallization behaviors, and thus, we discuss some optical techniques and their applicable scientific insights. For the purpose of crystallization avoidance, characterizing the glass-forming ability of slags is of great significance, whereas for crystallization modification, the selection of chemical additives and control of crystallization conditions comprise the central routes.
Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals
Sun, Po; Williams, John D.
2012-01-01
This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.
Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures
NASA Astrophysics Data System (ADS)
Marshall, T.; Challis, R. E.; Tebbutt, J. S.
2002-05-01
The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.
NASA Astrophysics Data System (ADS)
Qiao, Hai; Hu, Na; Bai, Jin; Ren, Lili; Liu, Qing; Fang, Liaoqiong; Wang, Zhibiao
2017-12-01
Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.
The perfection and defect structure of organic hourglass inclusion K 2SO 4 crystals
NASA Astrophysics Data System (ADS)
Vetter, William M.; Totsuka, Hirono; Dudley, Michael; Kahr, Bart
2002-06-01
Hourglass inclusion crystals of K 2SO 4 were grown from aqueous solutions containing the dye acid fuchsin, and studied by synchrotron white-beam X-ray topography and reciprocal space mapping. Both self-nucleated and larger, seeded dye-included crystals were prepared, as well as comparable undoped crystals. While the dye modified the crystals' habit strongly, X-ray topographs showed it had no influence on their dislocation configurations, which were typical for solution-grown crystals. No kinematical contrast arising from the presence of the dye was observed that indicated dye-induced strain in the crystal lattice. Growth sector boundaries were visible in the dyed crystals but not in undoped crystals, implying there was a slightly higher lattice mismatch across growth sector boundaries in the dye-included crystals. Reciprocal space maps of small areas on an hourglass inclusion crystal within either a dye-included growth sector or an undoped growth sector showed single peaks with the same perfect crystal rocking curve width and no dilatation or tilt of the host lattice resulting from the dye's presence. These results showed hourglass inclusion crystals can be grown in which the presence of the dye disturbs the crystalline structure of the host salt minimally, and that hourglass inclusions have the nature of a solid solution.
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
1996-01-01
A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.
Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo
2011-01-01
Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.
Kulak, Alex N; Iddon, Peter; Li, Yuting; Armes, Steven P; Cölfen, Helmut; Paris, Oskar; Wilson, Rory M; Meldrum, Fiona C
2007-03-28
Two double-hydrophilic block copolymers, each comprising a nonionic block and an anionic block comprising pendent aromatic sulfonate groups, were used as additives to modify the crystallization of CaCO3. Marked morphological changes in the CaCO3 particles were observed depending on the reaction conditions used. A poly(ethylene oxide)-b-poly(sodium 4-styrenesulfonate) diblock copolymer was particularly versatile in effecting a morphological change in calcite particles, and a continuous structural transition in the product particles from polycrystalline to mesocrystal to single crystal was observed with variation in the calcium concentration. The existence of this structural sequence provides unique insight into the mechanism of polymer-mediated crystallization. We propose that it reflects continuity in the crystallization mechanism itself, spanning the limits from nonoriented aggregation of nanoparticles to classical ion-by-ion growth. The various pathways to polycrystalline, mesocrystal, and single-crystal particles, which had previously been considered to be distinct, therefore all form part of a unifying crystallization framework based on the aggregation of precursor subunits.
Effect of Shock Waves on Dielectric Properties of KDP Crystal
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.
2018-05-01
An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.
Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace
NASA Astrophysics Data System (ADS)
Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao
1983-02-01
A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.
Shear-induced partial translational ordering of a colloidal solid
NASA Astrophysics Data System (ADS)
Ackerson, B. J.; Clark, N. A.
1984-08-01
Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... design intake volume of 680,000 gpm [gallons per minute] (42,840 L/s), with a combined condenser flow... licensee in 2007 and the cooling tower design was subsequently modified to meet PM emission thresholds by reducing the flow rate through the tower. The predicted emissions from the modified design are 91.2 tons PM...
NASA Astrophysics Data System (ADS)
Wang, Dong-Xu; Chen, Shu-Sen; Li, Yan-Yue; Yang, Jia-Yun; Wei, Tian-Yu; Jin, Shao-Hua
2014-07-01
Additives are one of the most important factors that greatly affect the crystal characteristics of the high energy compound hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX, C3H6N6O6) and they have an influence on impact sensitivity. In this article, a growth morphology method was applied to obtain the crystal habit of RDX in a vacuum as well as the morphologically important faces, and molecular dynamics simulations were applied to calculate the interaction energy between these crystal faces and additive molecules for prediction of the additive-effect crystal habits of RDX. On this basis, crystal characteristics including crystal morphology, aspect ratio, and total surface charge were investigated. Then the particle size and surface electrostatic voltage of the samples from recrystallization were analyzed experimentally. The impact sensitivity test indicated that acrylamide, which could enhance the regularity and degree of sphericity of RDX crystals and effectively reduce the surface static electricity of RDX, was successful in reducing the impact sensitivity of RDX as an additive for crystallization. The above experimental results were in good agreement with the conclusions based on the theoretical calculations.
Crystal study and econometric model
NASA Technical Reports Server (NTRS)
1975-01-01
An econometric model was developed that can be used to predict demand and supply figures for crystals over a time horizon roughly concurrent with that of NASA's Space Shuttle Program - that is, 1975 through 1990. The model includes an equation to predict the impact on investment in the crystal-growing industry. Actually, two models are presented. The first is a theoretical model which follows rather strictly the standard theoretical economic concepts involved in supply and demand analysis, and a modified version of the model was developed which, though not quite as theoretically sound, was testable utilizing existing data sources.
Anisotropic light diffraction in crystals with a large acoustic-energy walk-off
NASA Astrophysics Data System (ADS)
Balakshy, V. I.; Voloshin, A. S.; Molchanov, V. Ya.
2014-11-01
The influence of energy walk-off in an acoustic beam on the characteristic of anisotropic Bragg diffraction of light has been investigated by the example of paratellurite crystal. The angular and frequency characteristics of acousto-optic diffraction have been calculated in wide ranges of ultrasound frequencies and Bragg angles using the modified Raman-Nath equations. It is shown that the walk-off of an acoustic beam may change (either widen or narrow) significantly the frequency and angular ranges. The calculation results have been experimentally checked on an acousto-optic cell made of 10.5°-cut paratellurite crystal.
Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui
2014-09-20
This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.
Pramann, Axel; Rienitz, Olaf
2016-06-07
A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.
Novel Routes to Tune Thermal Conductivities and Thermoelectric Properties of Materials
2012-11-15
expand the possibilities of borides as functional compou nds. A series of indium-free novel TCO compounds with novel crystal structures, has...powerful methods for modification were demonstrated in the borides , silicides and oxides. Introduction: The goal of this project is to...the possibility to modify the crystal structures can expand the possibilities of borides as functional compounds. A series of indium-free novel TCO
Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)
2012-05-14
on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m
UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique
NASA Astrophysics Data System (ADS)
Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes
2017-02-01
In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.
Micro pulling down growth of very thin shape memory alloys single crystals
NASA Astrophysics Data System (ADS)
López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.
Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.
Gunda, Harini; Das, Saroj Kumar; Jasuja, Kabeer
2018-04-05
Layered metal diborides that contain metal atoms sandwiched between boron honeycomb planes offer a rich opportunity to access graphenic forms of boron. We recently demonstrated that magnesium diboride (MgB 2 ) could be exfoliated by ultrasonication in water to yield boron-based nanosheets. However, knowledge of the fate of metal boride crystals in aqueous phases is still in its incipient stages. This work presents our preliminary findings on the discovery that MgB 2 crystals can undergo dissolution in water under ambient conditions to result in precursors (prenucleation clusters) that, upon aging, undergo nonclassical crystallization preferentially growing in lateral directions by two-dimensional (2D) oriented attachment. We show that this recrystallization can be utilized as an avenue to obtain a high yield (≈92 %) of boron-based nanostructures, including nanodots, nanograins, nanoflakes, and nanosheets. These nanostructures comprise boron honeycomb planes chemically modified with hydride and oxy functional groups, which results in an overall negative charge on their surfaces. This ability of MgB 2 crystals to yield prenucleation clusters that can self-seed to form nanostructures comprising chemically modified boron honeycomb planes presents a new facet to the physicochemical interaction of MgB 2 with water. These findings also open newer avenues to obtain boron-based nanostructures with tunable morphologies by varying the chemical milieu during recrystallization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luminescence spectra of a cholesteric photonic crystal
NASA Astrophysics Data System (ADS)
Dolganov, P. V.
2017-05-01
The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.
In-situ Optical Waveguides for Monitoring and Modifying Protein Crystal Growth
NASA Technical Reports Server (NTRS)
Gibson, Ursula; Osterberg, Ulf
2004-01-01
The use of electric fields in the growth of protein crystals was investigated, both theoretically and experimentally. We used dc, ac and optical fields to change the spatial distribution of proteins. Dc fields had only local effects, due to the conductivity of the growth solution. We found that for low frequency fields, movement of the buffer and salt ions dominated, and that for high frequency ac fields, &electrophoretic effects could be useful for relocating growing protein crystals. The most promising result was that for optical fields, a large gradient in the field could be used to capture a crystal, and observe growth in-situ. This concept could be developed into an experimental setup compatible with automated x-ray diffraction measurements in microgravity.
NASA Astrophysics Data System (ADS)
Koperwas, K.; Affouard, F.; Gerges, J.; Valdes, L.-C.; Adrjanowicz, K.; Paluch, M.
2017-12-01
In this paper, we examine, in terms of the classical nucleation theory, how the strengthening of the attractive intermolecular interactions influences the crystallization process for systems like Lennard-Jones at different isobaric conditions. For this purpose, we modify the standard Lennard-Jones potential, and as a result, we obtain three different systems characterized by various strengths of attractive potentials occurring between molecules, which are in direct relationship to the physical quantities describing molecules, e.g., its polarizability or dipole moment. Based on performed analysis, we demonstrate that the molecular attraction primarily impacts the thermodynamics of the interface between liquid and crystal. This is reflected in the behavior of nucleation and overall crystallization rates during compression of the system.
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.
2016-01-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R
2016-11-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.
A simple apparatus for controlling nucleation and size in protein crystal growth
NASA Technical Reports Server (NTRS)
Gernert, Kim M.; Smith, Robert; Carter, Daniel C.
1988-01-01
A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the 'hanging drop' method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.
Improved light output of plastic scintillator by a modified self-assembled photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Liang; Zhu, Zhichao; Liu, Bo; Cheng, Chuanwei; Liu, Jinliang; Ruan, Jinlu; Zhang, Zhongbin; Ouyang, Xiaoping; Gu, Mu; Chen, Hong
2017-11-01
In this investigation, we have demonstrated that a modified self-assembled photonic crystal with conformal high refractive index material TiO2 can achieve a great enhancement of light extraction efficiency. A 2.26 fold wavelength- and angle-integrated enhancement ratio can be achieved. The conformal layer increases the number of leaky modes and thus improve the extraction efficiency. The enhancement is attributed to the leaky modes based on the individual microspheres with conformal layer. Their low quality factors with a broadband characteristic are advantageous to the broadband enhancement for the emission spectra of plastic scintillator. Furthermore, the dense conformal layers have excellent combination with the self-assembled microspheres and the whole preparation process cannot destroy the plastic scintillator, which is beneficial to the practical application.
Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles
Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; ...
2011-01-01
Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less
Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiang
2006-01-01
This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystalmore » structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in Ceramic Engineering and Science Proceedings (the 29th International Conference on Advanced Ceramics and Composites - Advances in Bioceramics and Biocomposites) [5].« less
NASA Technical Reports Server (NTRS)
Lal, R. B.
1995-01-01
One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.
Tailored multivariate analysis for modulated enhanced diffraction
Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni; ...
2015-10-21
Modulated enhanced diffraction (MED) is a technique allowing the dynamic structural characterization of crystalline materials subjected to an external stimulus, which is particularly suited forin situandoperandostructural investigations at synchrotron sources. Contributions from the (active) part of the crystal system that varies synchronously with the stimulus can be extracted by an offline analysis, which can only be applied in the case of periodic stimuli and linear system responses. In this paper a new decomposition approach based on multivariate analysis is proposed. The standard principal component analysis (PCA) is adapted to treat MED data: specific figures of merit based on their scoresmore » and loadings are found, and the directions of the principal components obtained by PCA are modified to maximize such figures of merit. As a result, a general method to decompose MED data, called optimum constrained components rotation (OCCR), is developed, which produces very precise results on simulated data, even in the case of nonperiodic stimuli and/or nonlinear responses. Furthermore, the multivariate analysis approach is able to supply in one shot both the diffraction pattern related to the active atoms (through the OCCR loadings) and the time dependence of the system response (through the OCCR scores). Furthermore, when applied to real data, OCCR was able to supply only the latter information, as the former was hindered by changes in abundances of different crystal phases, which occurred besides structural variations in the specific case considered. In order to develop a decomposition procedure able to cope with this combined effect represents the next challenge in MED analysis.« less
Modeling of convection phenomena in Bridgman-Stockbarger crystal growth
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.
1985-01-01
Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.
NASA Technical Reports Server (NTRS)
1981-01-01
The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.
NASA Astrophysics Data System (ADS)
Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.
2018-02-01
Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which was interconnected to the lock-in detection system. The radiofrequency response to the applied voltage from the generator was measured simultaneously for all elements.
NASA Astrophysics Data System (ADS)
Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.
2018-04-01
A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.
Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium
NASA Astrophysics Data System (ADS)
Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin
2018-01-01
The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.
On geological interpretations of crystal size distributions: Constant vs. proportionate growth
Eberl, D.D.; Kile, D.E.; Drits, V.A.
2002-01-01
Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.
NASA Astrophysics Data System (ADS)
Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.
2006-03-01
Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.
NASA Astrophysics Data System (ADS)
Rajczakowska, Magdalena; Łydżba, Dariusz
2016-03-01
This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.
Atomistic modeling of metallic thin films by modified embedded atom method
NASA Astrophysics Data System (ADS)
Hao, Huali; Lau, Denvid
2017-11-01
Molecular dynamics simulation is applied to investigate the deposition process of metallic thin films. Eight metals, titanium, vanadium, iron, cobalt, nickel, copper, tungsten, and gold, are chosen to be deposited on the aluminum substrate. The second nearest-neighbor modified embedded atom method potential is adopted to predict their thermal and mechanical properties. When quantifying the screening parameters of the potential, the error for Young's modulus and coefficient of thermal expansion between the simulated results and the experimental measurements is less than 15%, demonstrating the reliability of the potential to predict metallic behaviors related to thermal and mechanical properties. A set of potential parameters which governs the interactions between aluminum and other metals in a binary system is also generated from ab initio calculation. The details of interfacial structures between the chosen films and substrate are successfully simulated with the help of these parameters. Our results indicate that the preferred orientation of film growth depends on the film crystal structure, and the inter-diffusion at the interface is correlated the cohesive energy parameter of potential for the binary system. Such finding provides an important basis to further understand the interfacial science, which contributes to the improvement of the mechanical properties, reliability and durability of films.
Initiating Growth Of Crystals Away From Container Walls
NASA Technical Reports Server (NTRS)
Kroes, Roger L.; Reiss, Donald A.; Lehoczky, Sandor L.
1991-01-01
Nucleation controlled to obtain better crystals. In technique proposed specifically for growing large protein crystals in microgravity (where no thermal convection), small region of high supersaturation created by injection of hot concentrated solution or by use of cold probe. Crystals nucleate preferably in this small region. Also conceivable technique applied on Earth to crystallizations in melts and solutions sufficiently viscous to suppress convection to extent necessary to prevent cooling-induced nucleation in undesired sites.
Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S
2002-11-01
Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.
Polymer-directed crystallization of atorvastatin.
Choi, Hyemin; Lee, Hyeseung; Lee, Min Kyung; Lee, Jonghwi
2012-08-01
Living organisms secrete minerals composed of peptides and proteins, resulting in "mesocrystals" of three-dimensional-assembled composite structures. Recently, this biomimetic polymer-directed crystallization technique has been widely applied to inorganic materials, although it has seldom been used with drugs. In this study, the technique was applied to the drowning-out crystallization of atorvastatin using various polymers. Nucleation and growth at optimized conditions successfully produced composite crystals with significant polymer contents and unusual characteristics. Atorvastatin composite crystals containing polyethylene glycol, polyacrylic acid, polyethylene imine, and chitosan showed a markedly decreased melting point and heat of fusion, improved stability, and sustained-release patterns. The use of hydroxypropyl cellulose yielded a unique combination of enhanced in vitro release and improved drug stability under a forced degradation condition. The formation hypothesis of unique mesocrystal structures was strongly supported by an X-ray diffraction pattern and substantial melting point reduction. This polymer-directed crystallization technique offers a novel and effective way, different from the solid dispersion approach, to engineer the release, stability, and processability of drug crystals. Copyright © 2012 Wiley Periodicals, Inc.
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
Analysis of plastic deformation in silicon web crystals
NASA Technical Reports Server (NTRS)
Spitznagel, J. A.; Seidensticker, R. G.; Lien, S. Y.; Mchugh, J. P.; Hopkins, R. H.
1987-01-01
Numerical calculation of 111-plane 110-line slip activity in silicon web crystals generated by thermal stresses is in good agreement with etch pit patterns and X-ray topographic data. The data suggest that stress redistribution effects are small and that a model, similar to that proposed by Penning (1958) and Jordan (1981) but modified to account for dislocation annihilation and egress, can be used to describe plastic flow effects during silicon web growth.
Pressure sensor using liquid crystals
NASA Technical Reports Server (NTRS)
Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)
1994-01-01
A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.
Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon
2015-09-07
Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat
2017-06-01
The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).
Bridgman growth and luminescence properties of dysprosium doped lead potassium niobate crystal
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Tian, Tian; Yang, Bobo; Xu, Jiayue; Liu, Hongde
2017-06-01
Dy-doped lead potassium niobate (Pb2KNb5O15, PKN) single crystal was grown by the modified vertical Bridgman method through spontaneous nucleation. The crystal was brownish, transparent and inclusion free. Five excitation peaks of Dy3+ ions were clearly seen from near ultraviolet region to blue range. It was unique that the excitation peaks in blue range were more intense, especially the one centered at 455 nm. The emission bands consisted of blue, yellow and red emissions, which were at about 487 nm, 573 nm and 662 nm respectively. The CIE chromaticity diagram of PKN:Dy indicated that white light and yellow light could be emitted when the crystal was excited under near ultraviolet light and blue light, respectively. Thus PKN:Dy crystal is a candidate material whose emitting light could be tunable through changing the excited light wavelength.
Barboza-Corona, José Eleazar; Delgadillo-Ángeles, Jorge Luis; Castañeda-Ramírez, José Cristóbal; Barboza-Pérez, Uriel Eleazar; Casados-Vázquez, Luz Edith; Bideshi, Dennis K; del Rincón-Castro, Ma Cristina
2014-01-24
The endochitinase ChiA74 is a soluble secreted enzyme produced by Bacillus thuringiensis that synergizes the entomotoxigenecity of Cry proteins that accumulate as intracellular crystalline inclusion during sporulation. The purpose of this study was to produce alkaline-soluble ChiA74∆sp inclusions in B. thuringiensis, and to determine its effect on Cry crystal production, sporulation and toxicity to an important agronomical insect, Manduca sexta. To this end we deleted the secretion signal peptide-coding sequence of chiA74 (i.e. chiA74∆sp) and expressed it under its native promoter (pEHchiA74∆sp) or strong chimeric sporulation-dependent cytA-p/STAB-SD promoter (pEBchiA74∆sp) in Escherichia coli, acrystalliferous B. thuringiensis (4Q7) and B. thuringiensis HD1. Based on mRNA analyses, up to ~9-fold increase in expression of chiA74∆sp was observed using the cytA-p/STAB-SD promoter. ChiA74∆sp (~70 kDa) formed intracellular inclusions that frequently accumulated at the poles of cells. ChiA74∆sp inclusions were dissolved in alkali and reducing conditions, similar to Cry crystals, and retained its activity in a wide range of pH (5 to 9), but showed a drastic reduction (~70%) at pH 10. Chitinase activity of E. coli-pEHchiA74∆sp was ~150 mU/mL, and in E. coli-pEBchiA74∆sp, 250 mU/mL. 4Q7-pEBchiA74∆sp and 4Q7-pEHchiA74∆sp had activities of ~127 mU/mL and ~41 mU/mL, respectively. The endochitinase activity in HD1-pEBchiA74∆sp increased 42x when compared to parental HD1 strain. HD1-pEBchiA74∆sp and HD1 harbored typical bipyramidal Cry inclusions, but crystals in the recombinant were ~30% smaller. Additionally, a 3x increase in the number of viable spores was observed in cultures of the recombinant strain when compared to HD1. Bioassays against first instar larvae of M. sexta with spore-crystals of HD1 or spore-crystal-ChiA74∆sp inclusions of HD1-pEBchiA74∆sp showed LC₅₀s of 67.30 ng/cm² and 41.45 ng/cm², respectively. Alkali-labile ChiA74∆sp inclusion bodies can be synthesized in E. coli and B. thuringiensis strains. We demonstrated for the first time the applied utility of synthesis of ChiA74∆sp inclusions, Cry crystals and spores in the same sporangium of HD1, a strain used successfully worldwide to control economically significant lepidopteran pests of agriculture. Our findings will allow to us develop strategies to modify expression of ChiA74∆sp while maximizing Cry crystal synthesis in commercial strains of B. thuringiensis.
NASA Astrophysics Data System (ADS)
Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.
Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iino, Daisuke; Takakura, Yasuaki; Kuroiwa, Mika
2007-08-01
The crystallization and preliminary X-ray studies of the aminoglycoside antibiotic-modifying enzyme hygromycin B phosphotransferase from E. coli are reported. Aminoglycoside antibiotics, such as hygromycin, kanamycin, neomycin, spectinomycin and streptomycin, inhibit protein synthesis by acting on bacterial and eukaryotic ribosomes. Hygromycin B phosphotransferase (Hph; EC 2.7.1.119) converts hygromycin B to 7′′-O-phosphohygromycin using a phosphate moiety from ATP, resulting in the loss of its cell-killing activity. The Hph protein has been crystallized for the first time using a thermostable mutant and the hanging-drop vapour-diffusion method. The crystal provided diffraction data to a resolution of 2.1 Å and belongs to space group P3{submore » 2}21, with unit-cell parameters a = b = 71.0, c = 125.0 Å. Crystals of complexes of Hph with hygromycin B and AMP-PNP or ADP have also been obtained in the same crystal form as that of the apoprotein.« less
First results from the PROTEIN experiment on board the International Space Station
NASA Astrophysics Data System (ADS)
Decanniere, Klaas; Potthast, Lothar; Pletser, Vladimir; Maes, Dominique; Otalora, Fermin; Gavira, Jose A.; Pati, Luis David; Lautenschlager, Peter; Bosch, Robert
On March 15 2009 Space Shuttle Discovery was launched, carrying the Process Unit of the Protein Crystallization Diagnostics Facility (PCDF) to the International Space Station. It contained the PROTEIN experiment, aiming at the in-situ observation of nucleation and crystal growth behaviour of proteins. After installation in the European Drawer Rack (EDR) and connection to the PCDF Electronics Unit, experiment runs were performed continuously for 4 months. It was the first time that protein crystallization experiments could be modified on-orbit in near real-time, based on data received on ground. The data included pseudo-dark field microscope images, interferograms, and Dynamic Light Scattering data. The Process Unit with space grown crystals was returned to ground on July 31 2009. Results for the model protein glucose isomerase (Glucy) from Streptomyces rubiginosus crystallized with ammonium sulfate will be reported concerning nucleation and the growth from Protein and Impurities Depletion Zones (PDZs). In addition, results of x-ray analyses for space-grown crystals will be given.
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment
ERIC Educational Resources Information Center
Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.
2005-01-01
A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.
Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali
2014-12-30
The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3
NASA Technical Reports Server (NTRS)
Brooks, Howard L.
1986-01-01
In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.
Coated article and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)
2003-01-01
An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
Coated article and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)
2002-01-01
An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.
NASA Technical Reports Server (NTRS)
Snyder, Gregory A.; Taylor, Lawrence A.; Neal, Clive R.
1992-01-01
A chemical model for simulating the sources of the lunar mare basalts was developed by considering a modified mafic cumulate source formed during the combined equilibrium and fractional crystallization of a lunar magma ocean (LMO). The parameters which influence the initial LMO and its subsequent crystallization are examined, and both trace and major elements are modeled. It is shown that major elements tightly constrain the composition of mare basalt sources and the pathways to their creation. The ability of this LMO model to generate viable mare basalt source regions was tested through a case study involving the high-Ti basalts.
Recent Advances in the LEWICE Icing Model
NASA Technical Reports Server (NTRS)
Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas
2015-01-01
This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.
Hildebrandt, Christian; Joos, Lea; Saedler, Rainer; Winter, Gerhard
2015-06-01
Polyethylene glycols (PEG) represent the most successful and frequently applied class of excipients used for protein crystallization. PEG auto-oxidation and formation of impurities such as peroxides and formaldehydes that foster protein drug degradation is known. However, their effect on mAb crystallization has not been studied in detail before. During the present study, a model IgG1 antibody (mAb1) was crystallized in PEG solutions. Aggregate formation was observed during crystallization and storage that was ascribed to PEG degradation products. Reduction of peroxide and formaldehyde levels prior to crystallization by vacuum and freeze-drying was investigated for its effect on protein degradation. Vacuum drying was superior in removal of peroxides but inferior in reducing formaldehyde residues. Consequently, double purification allowed extensive removal of both impurities. Applying of purified PEG led to 50% lower aggregate fractions. Surprisingly, PEG double purification or addition of methionine prior to crystallization prevented crystal formation. With increased PEG concentration or spiking with peroxides and formaldehydes, crystal formation could be recovered again. With these results, we demonstrate that minimum amounts of oxidizing impurities and thus in consequence chemically altered proteins are vital to initiate mAb1 crystallization. The present study calls PEG as good precipitant for therapeutic biopharmaceuticals into question. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.
2014-01-01
Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060
Code of Federal Regulations, 2010 CFR
2010-04-01
... sweet cream buttermilk, skim milk that has been concentrated and from which part of the lactose has been removed by crystallization, and whey and those modified whey products (e.g., reduced lactose whey, reduced...
Code of Federal Regulations, 2011 CFR
2011-04-01
... sweet cream buttermilk, skim milk that has been concentrated and from which part of the lactose has been removed by crystallization, and whey and those modified whey products (e.g., reduced lactose whey, reduced...
Modified Withdrawal Slot Increases Silicon Production
NASA Technical Reports Server (NTRS)
Piotrowsky, P. A.; Duncan, C. S.
1988-01-01
New shape reduces ribbon breakage and resulting idle time. Shape for slot through which single-crystal silicon ribbon pulled from melt increases productivity. Reduces tendency of emerging ribbon to grow thin and break.
Timing and tracking for the Crystal Barrel detector
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer
2017-01-01
The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.
NASA Astrophysics Data System (ADS)
Kliemt, K.; Krellner, C.
2016-09-01
The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.
The influence of additives on the crystal habit of gibbsite
NASA Astrophysics Data System (ADS)
Seyssiecq, Isabelle; Veesler, Stéphane; Pèpe, Gérard; Boistelle, Roland
1999-01-01
Crystallization of gibbsite (Al(OH) 3) is an important stage of the Bayer process, production of alumina from bauxite ores. In both pure or industrial supersaturated sodium aluminate solutions, gibbsite crystals are always agglomerated. In the present paper, we present results of a study concerning the influence of different polycarboxylic acids as crystal habit modifier for gibbsite. In pure solution, agglomerated hexagonal plates are observed. Whereas acicular and tabular morphologies are found in the presence of different additives. These results are discussed referring to the crystallographic structure of gibbsite. It is found that only oxygen atoms are present on gibbsite surface. This observation leads us to propose an additive way of acting by formation of a molecular complex between the growth unit and the carboxylic groups of the additive.
Microstructural aspects in steel fiber reinforced acrylic emulsion polymer modified concrete
NASA Astrophysics Data System (ADS)
Hazimmah, Dayang; Ayob, Afizah; Sie Yee, Lau; Chee Cung, Wong
2018-03-01
Scanning electron microscope observations of polymer-free and polymer-modified cements have shown that the polymer particles are partitioned between the inside of hydrates and the surface of anhydrous cement grains. For optimum dosage of acrylic emulsion polymer with 2.5%, the C-S-H gel in this structure is finer and more acicular. Some polymer adheres or deposit on the surface of the C-S-H gel. The presence of acrylic emulsion polymer confines the ionic diffusion so that the Ca(OH)2 crystallized locally to form fine crystals. The void in the structures seems to be smaller but no polymer films appears to be bridging the walls of pores although many polymer bonds or C-S-H spread into the pore spaces. In addition to porosity reduction, acrylic emulsion polymer modified the hydration products in the steel fiber -matrix ITZ. The hydration product C-S-H appeared as a needle like shape. The needle-shaped C-S-H increases and gradually formed the gel, with needles growing into the pore space. The phenomenon is more obvious as curing age increased.
Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A
2012-08-01
Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.
NASA Astrophysics Data System (ADS)
Schubert, F.; Fleury, G.; Steinhaus, T.
2000-11-01
Turbine blades in gas turbine engines are subjected during operation to triaxial stress fields. For the description of the deformation behaviour of anisotropic single-crystal blades, constitutive equations are required which take account of modifications to the deformation processes caused by evolution of the γ/γ' microstructure during service (γ' rafting). A microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of γ' particles, has been applied. The shape of γ' particles remains cubic below exposures at 700 °C. At high temperatures (above 850 °C) the γ' particles coalesce to rafts, and the viscoplastic response of the superalloy is continuously modified. This reduces the creep resistance of <001> orientated specimen. After tensile loading of the <001>-orientated specimens at 1000 °C, the rafting of γ' in the (100) plane was observed as expected, whereas the <111> specimens did not reveal γ' rafting. Torsionally loaded specimens exhibited rafting only in the near <100>-orientated surface regions of the specimen. The deformation in the <111> tensile and <001> torsion specimens occurred by octahedral slip of dislocations and not by cubic slip, as expected from theoretical considerations. Rafting did not occur in the <111>-orientated specimens. This anisotropy change is simulated successfully by the microstructure-dependent model.
NASA Astrophysics Data System (ADS)
Shur, V. Ya.; Zelenovskiy, P. S.; Nebogatikov, M. S.; Alikin, D. O.; Sarmanova, M. F.; Ievlev, A. V.; Mingaliev, E. A.; Kuznetsov, D. K.
2011-09-01
Piezoelectric force microscopy (PFM) and Raman confocal microscopy have been used for studying the nanodomain structures in congruent LiNbO3 and LiTaO3 crystals. The high-resolution nanodomain images at the surface were observed via PFM. Raman confocal microscopy has been used for the visualization of the nanodomain structures in the bulk via layer-by-layer scanning at various depths. It has been shown experimentally that the nanodomain images obtained at different depths correspond to domain images at the polar surface obtained at different moments: the deeper the nanodomain, the earlier the moment. Such a correlation was applied for the reconstruction of the evolution of the domain structures with charged domain walls. The studied domain structures were obtained in highly non-equilibrium switching conditions realized in LiNbO3 and LiTaO3 via pulse laser irradiation and the electric field poling of LiNbO3, with the surface layer modified by ion implantation. The revealed main stages of the domain structure evolution allow the authors to demonstrate that all geometrically different nanodomain structures observed in LiNbO3 and LiTaO3 appeared as a result of discrete switching.
Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt
NASA Astrophysics Data System (ADS)
Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal
2000-03-01
Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.
Surov, Artem O; Volkova, Tatyana V; Churakov, Andrei V; Proshin, Alexey N; Terekhova, Irina V; Perlovich, German L
2017-11-15
The cocrystallization approach has been applied to modify the poor solubility profile of the biologically active 1,2,4-thiadiazole derivative (TDZ). Extensive cocrystal screening with a library of coformers resulted in formation of a new solid form of TDZ with vanillic acid in a 1:1 molar ratio. The cocrystalline phase was identified and characterized by thermal and diffraction analyses including single-crystal X-ray diffraction. The energies of intermolecular interactions in the crystal were calculated by solid-state DFT and PIXEL methods. Both calculation schemes show good consistency in terms of total energy of the intermolecular interactions and suggest that the cocrystal is mainly stabilized via hydrogen bonds, which provide ca. 44% of the lattice energy. Since the cocrystal contained the hydroxybenzoic acid derivative as a coformer, the solubility profile of the cocrystal was investigated at different pHs using eutectic concentrations of the components. Furthermore, the influence of the cocrystallization on the permeability performance of the 1,2,4-thiadiazole through an artificial regenerated cellulose membrane was also evaluated. In addition, the thermodynamic functions of the cocrystal formation were estimated from the solubility of the cocrystal and the corresponding solubility of the pure compounds at various temperatures. The cocrystal formation process was found to have a relatively small value of the driving force (-5.3kJ·mol -1 ). The most significant contribution to the Gibbs energy was provided by the exothermic enthalpy of formation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru
The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.
Crystallization screening test for the whole-cell project on Thermus thermophilus HB8
Iino, Hitoshi; Naitow, Hisashi; Nakamura, Yuki; Nakagawa, Noriko; Agari, Yoshihiro; Kanagawa, Mayumi; Ebihara, Akio; Shinkai, Akeo; Sugahara, Mitsuaki; Miyano, Masashi; Kamiya, Nobuo; Yokoyama, Shigeyuki; Hirotsu, Ken; Kuramitsu, Seiki
2008-01-01
It was essential for the structural genomics of Thermus thermophilus HB8 to efficiently crystallize a number of proteins. To this end, three conventional robots, an HTS-80 (sitting-drop vapour diffusion), a Crystal Finder (hanging-drop vapour diffusion) and a TERA (modified microbatch) robot, were subjected to a crystallization condition screening test involving 18 proteins from T. thermophilus HB8. In addition, a TOPAZ (microfluidic free-interface diffusion) designed specifically for initial screening was also briefly examined. The number of diffraction-quality crystals and the time of appearance of crystals increased in the order HTS-80, Crystal Finder, TERA. With the HTS-80 and Crystal Finder, the time of appearance was short and the rate of salt crystallization was low. With the TERA, the number of diffraction-quality crystals was high, while the time of appearance was long and the rate of salt crystallization was relatively high. For the protein samples exhibiting low crystallization success rates, there were few crystallization conditions that were common to the robots used. In some cases, the success rate depended greatly on the robot used. The TOPAZ showed the shortest time of appearance and the highest success rate, although the crystals obtained were too small for diffraction studies. These results showed that the combined use of different robots significantly increases the chance of obtaining crystals, especially for proteins exhibiting low crystallization success rates. The structures of 360 of 944 purified proteins have been successfully determined through the combined use of an HTS-80 and a TERA. PMID:18540056
NASA Astrophysics Data System (ADS)
Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao
2013-06-01
In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.
Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles
NASA Astrophysics Data System (ADS)
Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian
2017-11-01
Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu
2011-06-01
In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.
Förster, Charlotte; Oberthuer, Dominik; Gao, Jiang; Eichert, André; Quast, Frederick G.; Betzel, Christian; Nitsche, Andreas; Erdmann, Volker A.; Fürste, Jens P.
2009-01-01
Locked nucleic acids (LNAs) are modified nucleic acids which contain a modified sugar such as β-d-2′-O,4′-C methylene-bridged ribofuranose or other sugar derivatives in LNA analogues. The β-d-2′-O,4′-C methylene ribofuranose LNAs in particular possess high stability and melting temperatures, which makes them of interest for stabilizing the structure of different nucleic acids. Aptamers, which are DNAs or RNAs targeted against specific ligands, are candidates for substitution with LNAs in order to increase their stability. A 7-mer helix derived from the terminal part of an aptamer that was targeted against ricin was chosen. The ricin aptamer originally consisted of natural RNA building blocks and showed high affinity in ricin binding. For future stabilization of the aptamer, the terminal helix has been constructed as an ‘all-locked’ LNA and was successfully crystallized in order to investigate its structural properties. Optimization of crystal growth succeeded by the use of different metal salts as additives, such as CuCl2, MgCl2, MnCl2, CaCl2, CoCl2 and ZnSO4. Preliminary X-ray diffraction data were collected and processed to 2.8 Å resolution. The LNA crystallized in space group P65, with unit-cell parameters a = 50.11, b = 50.11, c = 40.72 Å. The crystals contained one LNA helix per asymmetric unit with a Matthews coefficient of 3.17 Å3 Da−1, which implies a solvent content of 70.15%. PMID:19724123
Increasing the switching speed of liquid crystal devices with magnetic nanorods
NASA Astrophysics Data System (ADS)
Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.
2012-10-01
Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.
NASA Astrophysics Data System (ADS)
Saravanan, M.
2016-08-01
The crystals (dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol [DMAPNP] suitable for NLO applications were grown by the slow cooling method. The solubility and metastable zone width measurement of DMAPNP specimen was studied. The material crystallizes in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The ocular precision in the intact visible region was found to be good for non-linear optical claim. Quality of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of DMAPNP sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The third order nonlinear optical properties of DMAPNP crystals were premeditated by Z-scan method. Birefringence and optical homogeneity of the crystal were evaluated using modified channel spectrum method. The half wave voltage of the grown crystal deliberate from the elector optic experimentation. Photoconductivity measurement specified consummate of inducing dipoles owing to brawny incident radiation and also disclose the nonlinear activities of the grown specimen.
The effect of UV exposure and heat treatment on crystallization behavior of photosensitive glasses
NASA Astrophysics Data System (ADS)
Kıbrıslı, Orhan; Ersundu, Ali Erçin
2018-05-01
In this study, photosensitive glasses in the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, silver, tin, antimony) and halogenides (NaF and KBr) were synthesized through a conventional melt-quenching technique. The crystallization mechanism was investigated for solely heat-treated and UV-exposed + heat-treated samples using differential thermal analysis (DTA), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques to understand the effect of UV exposure on crystallization behavior of photosensitive glasses. Accordingly, non-isothermal DTA measurements were performed at different heating rates to determine crystallization peak, T p, and onset, T c, temperatures. For solely heat-treated samples, the kinetic parameters such as the Avrami constant, n, and morphology index, m, were calculated as 1 from the Ozawa method indicating surface crystallization and the value of crystallization activation energy was calculated as 944 kJ/mol using modified Kissinger method. On the contrary, bulk crystallization was found to be predominant for UV exposed + heat-treated samples revealing that UV exposure is the primary cause of bulk crystallization in photosensitive glasses.
Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.
Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H
2017-08-02
Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.
Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena
2010-01-01
The thrombin-binding aptamer (TBA) is a consensus DNA 15-mer that binds specifically to human α-thrombin at nanomolar concentrations and inhibits its procoagulant functions. Recently, a modified TBA (mTBA) containing a 5′–5′ inversion-of-polarity site has been shown to be more stable and to possess a higher thrombin affinity than its unmodified counterpart. The structure of the thrombin–TBA complex has previously been determined at low resolution, but did not provide a detailed picture of the aptamer conformation or of the protein–DNA assembly, while that of the complex with mTBA is unknown. Crystallographic analysis of the thrombin–mTBA complex has been attempted. The crystals diffracted to 2.15 Å resolution and belonged to space group I222. PMID:20693681
Tian, Lu; Wei, Wan-Zhi; Mao, You-An
2004-04-01
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.
A modified hexagonal photonic crystal fiber for terahertz applications
NASA Astrophysics Data System (ADS)
Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek
2018-05-01
We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.
Crystallization behaviour of nanostructured hybrid SiO2-TiO2 gel glasses to nanocomposites.
Tsvetelina, Gerganova; Yordanka, Ivanova; Yuliya, Vueva; Miranda, Salvado Isabel M; Helena, Fernandes Maria
2010-04-01
The crystallization behaviour of hybrid SiO2-TiO2 nanocomposites derived from titanosiloxanes by sol-gel method has been investigated depending on the type of siloxane precursor and the pirolysis temperature. The resulting hybrid titanosiloxanes, crosslinked with trimethylsilil isocyanate (nitrogen-modified) or methyltrietoxisilane (carbon-modified), were pirolyzed in an inert atmosphere in the temperature range between 600 to 1100 degrees C in order to form C-(N)-Si-O-TiO2 nanocomposites. By means of XRD, FTIR, 29Si NMR, SEM, TEM and AFM investigations have been established that the transformation of the nanostructured SiO2-TiO2 hybrid materials into nanocomposites as well as the crystalline size depend on the titanium content and the type of cross-linking agents used in the synthesizes.
Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation
Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.
2016-01-01
Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030
Yang, Qin; Zhang, Youyu; Liu, Meiling; Ye, Min; Zhang, YuQin; Yao, Shouzhuo
2007-07-30
The electrochemical piezoelectric quartz crystal impedance (EQCI), a combined technique of piezoelectric quartz crystal impedance (PQCI), electrochemical impedance (EI), and Fourier transform infrared spectroscopy-attenuated total internal reflectance spectroscopy (FTIR-ATR) were used to in situ study the adsorption process of fibrinogen onto the surface of biomaterials-TiO2 and hydroxyapatite (Ca5(PO4)3OH, HAP). The equivalent circuit parameters, the resonance frequencies and the half peak width of the conductance spectrum of the two biomaterial-modified piezoelectric quartz crystal (PQC) resonances as well as the FTIR-ATR spectra of fibrinogen during fibrinogen adsorption on TiO2 and HAP particles modified electrode surface were obtained. The adsorption kinetics and mechanism of fibrinogen were investigated and discussed as well. The results suggested that two consecutive steps occurred during the adsorption of fibrinogen onto TiO2 and hydroxyapatite (HAP) surface. The fibrinogen molecules were firstly adsorbed onto the surface, and then the rearrangement of adsorbed fibrinogen or multi-layered adsorption occurred. The FTIR-ATR spectroscopy investigations showed that the secondary structure of fibrinogen molecules was altered during the adsorption and the adsorption kinetics of fibrinogen related with the variety of biomaterials. These experimental results suggest a way for enriching biological analytical science and developing new applications of analytical techniques, such as PQCI, EI, and FTIR-ATR.
The influence of additives on crystallization of blends based on polylactid acid
NASA Astrophysics Data System (ADS)
Perd'ochová, D.; Tomanová, K.; Alexy, P.; Bočkaj, J.; Feranc, J.; Plavec, R.; Omaníková, L.; Jurkovič, P.; Prikřyl, R.
2017-11-01
The sustainable development consists of the effort of replacing commonly used polymer materials for the biodegradable ones. They do not have sufficient physical and mechanical properties, therefore they have to be modified by producing various ratio mixtures or with the additives. Improving their processability and properties is an important challenge to be afforded before using these materials on the market. One way to improve the properties of these materials is to prepare their blends [1]. The most common way of the preparation of packaging materials is the injection moulding, where the crystallization of material is very important. That is the reason the crystallization has become one of the most studied characteristics of biodegradable blends based on PLA / PHB. The work is a contribution to works that deal with the description of the structure of PLA / PHB blends, which have been modified by the addition of various types of additives, mainly nucleating agents and plasticizers [2]. The films of these blends keep approximately unchanged mechanical properties after two weeks of storage. The presence of plasticizer (ATBC) and nucleating agent (BN) has no significant impact on the processing stability of PLA/PHB blends. The results show that the combination of the plasticizer and nucleating agent greatly affects the process of crystallization of PLA/PHB blends as well as the ratio of polymers and the heat treatment process.
Bending self-collimated one-way light by using gyromagnetic photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qing-Bo; Jiangsu Key Construction Laboratory of Modern Measurement Technology and Intelligent System, Huaiyin Normal University, Huaian 223300; Li, Zhen
2015-12-14
We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.
Predictions of Crystal Structures from First Principles
2007-06-01
RDX crystal in hoped that the problem could be resolved by the molecular dynamics simulations . The fully ab initio development of density functional... Molecular Dynamics Simulations of RDX i.e., without any use of experimental results (except that Crystal the geometry of monomers was derived from X-ray...applied in molecular dynamics simulations of the RDX system, due to its size, is intractable by any high-level ab crystal. We performed isothermal
NASA Astrophysics Data System (ADS)
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane
NASA Astrophysics Data System (ADS)
Lin, SHEN; Lei, GONG; Shuhua, CHEN; Shiping, ZHAN; Cheng, ZHANG; Tao, SHAO
2018-04-01
In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride) (PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°) compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
Meyer, Hermann-Josef
2013-01-01
The crystal structure of a HECT E3 enzyme has been captured as it transfers ubiquitin to a target protein, revealing the dramatic changes in shape that enable it to modify particular residues in its targets. PMID:23936629
The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong
2006-01-01
An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.
Acid leaching of natural chrysotile asbestos to mesoporous silica fibers
NASA Astrophysics Data System (ADS)
Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko
2018-04-01
Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.
Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing.
Masuda, Yoshitake; Ohji, Tatsuki; Kato, Kazumi
2012-03-01
Tin oxide nanosheets were crystallized on transparent conductive oxide substrates of fluorine-doped tin oxide in aqueous solutions. The nanosheets had chemical ratio of Sn:O:F = 1:1.85:0.076, suggesting fluorine doping into SnO(2). They were hydrophobic surfaces with contact angle of 140°. They were converted to hydrophilic surfaces with contact angle of below 1° by light irradiation. The simple water process will be applied to surface coating of polymers, metals, biomaterials, papers, etc. Furthermore, the tin oxide nanosheets were modified with dye-labeled monoclonal antibody. Monoclonal antibody reacts with human alpha-fetoprotein in blood serum of hepatocellular cancer patient. Photoluminescence and photocurrent were obtained from the nanosheets under excitation light. Photoelectric conversion was an essence in the sensing system. The tin oxide nanosheets with dye-labeled prostate specific antigen will be used for electrodes of prostate cancer sensors. © 2012 American Chemical Society
Vertical-probe-induced asymmetric dust oscillation in complex plasma.
Harris, B J; Matthews, L S; Hyde, T W
2013-05-01
A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.
Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.
Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E
2015-07-20
Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ab-initio investigation of Rb substitution in KTP single crystal
NASA Astrophysics Data System (ADS)
Ghoohestani, Marzieh; Arab, Ali; Hashemifar, S. Javad; Sadeghi, Hossein
2018-01-01
The effects of rubidium doping on the structural, electronic, and optical properties of KTiOPO4 (KTP) are investigated in the framework of density functional theory. The equilibrium structural parameters of KTP and RbTiOPO4 (RTP) are calculated within the local density and Perdew-Burke-Ernzerhof (PBE), Wu-Cohen, and PBEsol formulation of generalized gradient approximations. We discuss that PBEsol predicts better equilibrium parameters for the KTP alloy. In addition, the variation of lattice constants and Ti-O-Ti bond angles are evaluated as a function of rubidium concentration. The modern modified Becke-Johnson functional is applied for more accurate band gap determination in the pure and alloyed KTP/RTP compounds. The phenomenological pseudoinversion parameter is calculated for a qualitative understanding of the effect of impurity on a non-linear optical response of KTP. We also analyze the behavior of the dielectric function, dispersive refractive indices, and birefringence of KTP/RTP alloys.
Ferroelectric domain wall motion induced by polarized light
Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.
2015-01-01
Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918
Modification of Sodium Release Using Porous Corn Starch and Lipoproteic Matrix.
Christina, Josephine; Lee, Youngsoo
2016-04-01
Excessive sodium consumption can result in hypertension, diabetes, heart diseases, stroke, and kidney diseases. Various chips and extruded snacks, where salt is mainly applied on the product surface, accounted for almost 56% of snacks retail sales in 2010. Hence, it is important to target sodium reduction for those snack products. Past studies had shown that modifying the rate-release mechanism of sodium is a promising strategy for sodium reduction in the food industry. Encapsulation of salt can be a possible technique to control sodium release rate. Porous corn starch (PCS), created by enzymatic treatment and spray drying and lipoproteic matrix, created by gelation and freeze drying, were evaluated as carriers for controlled sodium release targeting topically applied salts. Both carriers encapsulated salt and their in vitro sodium release profiles were measured using a conductivity meter. The sodium release profiles of PCS treated with different enzymatic reaction times were not significantly different. Protein content and fat content altered sodium release profile from the lipoproteic matrix. The SEM images of PCS showed that most of the salt crystals coated the starch instead of being encapsulated in the pores while the SEM images and computed tomography scan of lipoproteic matrix showed salt dispersed throughout the matrix. Hence, PCS was found to have limitations as a sodium carrier as it could not effectively encapsulate salt inside its pores. The lipoproteic matrix was found to have a potential as a sodium carrier as it could effectively encapsulate salt and modify the sodium release profile. © 2016 Institute of Food Technologists®
Growth and characterization of diammonium copper disulphate hexahydrate single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com
2014-03-01
Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.« less
Use of Traveling Magnetic Fields to Control Melt Convection
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Mazuruk, Konstantin; Volz, Martin P.
2000-01-01
An axially traveling magnetic wave induces a meridional base flow in an electrically conducting molten cylindrical zone. This flow can be beneficial for crystal growth applications. In particular, it can be effectively used to stir the melt in long cylindrical columns. It can also be tailored to modify the thermal and species concentration fields in the melt and to control the interface shape of the growing crystal. The basic theory of such an application is developed and data from a preliminary mercury column experiment are presented.
Photo- and electroluminescence of sulfide and silicate phosphors embedded in synthetic opal
NASA Astrophysics Data System (ADS)
Kaplan, S. F.; Kartenko, N. F.; Kurdyukov, D. A.; Medvedev, A. V.; Badalyan, A. G.; Golubev, V. G.
2007-02-01
The sulfide (ZnS:Mn, Zn xCd 1 -xS:Mn, Zn xCd 1- xS:Ag) and silicate (Zn 2SiO 4:Mn) phosphors were synthesized directly inside the pores of synthetic opal by chemical bath deposition. These composites are perfect three-dimensional photonic crystals, which produce effective photo- and electroluminescence at room temperature. The emission spectra are considerably modified by the photonic crystal structure to become anisotropic in accordance with the photonic band gap angular dispersion.
Nucleation of insulin crystals in a wide continuous supersaturation gradient.
Penkova, Anita; Dimitrov, Ivaylo; Nanev, Christo
2004-11-01
Modifying the classical double pulse technique, by using a supersaturation gradient along an insulin solution contained in a glass capillary tube, we found conditions appropriate for the direct measurement of nucleation parameters. The nucleation time lag has been measured. Data for the number of crystal nuclei versus the nucleation time were obtained for this hormone. Insulin was chosen as a model protein because of the availability of solubility data in the literature. A comparison with the results for hen-egg-white lysozyme, HEWL was performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luong Thi, T. T., E-mail: thuyltt@hnue.edu.vn; Nguyen Bich, N.; Nguyen, H.
Two 4-substituted 2,2'-bipyridines, namely 4-(ferrocenylethynyl)-2,2'-bipyridine (I) and 4-ferrocenyl-2,2'-bipyridine (II) have been synthesized and fully characterized via single-crystal X-ray diffraction and {sup 1}H and {sup 13}C NMR analyses. The π-conjugated system designed from 2,2'-bipyridine modified with the ferrocenylethynyl and ferrocenyl groups shows the desired planarity. In the crystal packing of I and II, the molecules arrange themselves in head-to-tail and head-to-head motifs, respectively, resulting in consecutive layers of ferrocene and pyridine moieties.
A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arienti, Marco; Yang, Xiaoyuan; Kopacz, Adrian M
2015-09-01
The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical propertiesmore » of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .« less
Crystallization of heavy metal fluoride glasses
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.
1984-01-01
The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.
Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.
The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, themore » absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.« less
Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone
NASA Astrophysics Data System (ADS)
Migler, Kalman; Roy, Debjani; Kotula, Anthony; Natarajan, Bharath; Gilman, Jeffrey; Fox, Douglas
The development of biocompatible polymer composites that enhance mechanical properties while maintaining thermoplastic processability is a longstanding goal in sustainable materials. Here we compatibilize a crystallizable polymer and a nano-fiber via surface modification and study the properties and crystallization kinetics of the resulting composite. First we demonstrate that polycaprolactone (PCL) and cellulose nanocrystals (CNCs) can be well-compatibilized by replacing the Na+ of sulfated cellulose nanocrystals (Na-CNCs) with tertiary butyl ammonium cations and then melt mixing via twin-screw extrusion. Transmission electron microscope and high temperature melt rheology show that the modified CNCs were dispersed in the polymer matrix. We find the crystallization kinetics are substantially affected by the CNC as indicated by the simultaneous measures of modulus and conformational states; higher loadings of CNCs accelerated the kinetics. We further correlate the crystallization kinetics, mechanical properties and stability.
A coupled ductile fracture phase-field model for crystal plasticity
NASA Astrophysics Data System (ADS)
Hernandez Padilla, Carlos Alberto; Markert, Bernd
2017-07-01
Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.
NASA Astrophysics Data System (ADS)
Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin
2015-02-01
Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.
NASA Astrophysics Data System (ADS)
Chen, Dong; Shang-Hong, Zhao; MengYi, Deng
2018-03-01
The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.
Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process
NASA Astrophysics Data System (ADS)
Wu, Wei-Yi; Su, Chie-Shaan
2017-02-01
In this study, the supercritical antisolvent (SAS) process was used to recrystallize an active pharmaceutical ingredient, sulfasalazine, to modify the solid-state properties including particle size, crystal habit and polymorphic form. Supercritical CO2 and tetrahydrofuran were used as the antisolvent and solvent, respectively. SAS results obtained from different operating temperatures (35, 45, 55 and 65 °C) were compared and discussed. The results indicate that at 55 °C, spherical sulfasalazine crystals were produced and that their mean particle size was micronized to approximately 1 μm. In addition, according to the analytical results of powder X-ray diffractometry (PXRD), a novel polymorphic form of sulfasalazine was obtained after SAS. Furthermore, the spectroscopic and thermal behavior of produced sulfasalazine crystals were also studied by Fourier transform infrared spectrometry (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Finally, SAS results obtained from different operating temperature was discussed on the basis of the mixture critical point (MCP) of CO2 and tetrahydrofuran. Operation at slightly higher than the MCP is favorable for recrystallization of sulfasalazine through SAS. These results demonstrate that the SAS process is an efficient tool for controlling and modifying the solid-state property of sulfasalazine.
Growth and spectroscopic properties of Sm3+:KY(WO4)2 crystal
NASA Astrophysics Data System (ADS)
Demesh, M. P.; Dernovich, O. P.; Gusakova, N. V.; Yasukevich, A. S.; Kornienko, A. A.; Dunina, E. B.; Fomicheva, L. A.; Pavlyuk, A. A.; Kuleshov, N. V.
2018-01-01
A Sm3+:KY(WO4)2 crystal was grown by the modified Czochralski technique. Polarized absorption and fluorescence spectra, as well as a fluorescence decay curve, were recorded at room temperature. Radiative properties such as emission probabilities, branching ratios and radiative lifetimes were investigated within the framework of the Judd-Ofelt theory as well as the theory of f-f transition intensities which takes into account the influence of the excited configurations. Emission cross section spectra were determined. 4G5/2 fluorescence decay was analyzed within the framework of the Inokuti-Hirayama model. The spectroscopic properties of Sm:KYW crystal were compared with those of other Sm3+-doped materials.
XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William; Lindberg, Ryan; Kim, K-J
The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinalmore » and transverse coherence of the radiation output.« less
Fast gray-to-gray switching of a hybrid-aligned liquid crystal cell
NASA Astrophysics Data System (ADS)
Choi, Tae-Hoon; Kim, Jung-Wook; Yoon, Tae-Hoon
2015-03-01
We demonstrate fast gray-to-gray (GTG) switching of a hybrid-aligned liquid crystal cell by applying both vertical and inplane electric fields to liquid crystals (LCs) using a four-terminal electrode structure. The LCs are switched to the bright state through downward tilting and twist deformation initiated by applying an in-plane electric field, whereas they are switched back to the initial dark state through optically hidden relaxation initiated by applying a vertical electric field for a short duration. The top electrode in the proposed device is grounded, which requires a much higher voltage to be applied for in-plane rotation of LCs. Thus, ultrafast turn-on switching of the device is achieved, whereas the turn-off switching of the proposed device is independent of the elastic constants and the viscosity of the LCs so that fast turn-off switching can be achieved. We experimentally obtained a total response time of 0.75 ms. Furthermore, fast GTG response within 3 ms could be achieved.
Nanosecond electric modification of order parameters
NASA Astrophysics Data System (ADS)
Borshch, Volodymyr
In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.
Lou, Xianwen; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2016-12-30
Ionization in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a very complicated process. It has been reported that quaternary ammonium salts show extremely strong matrix and analyte suppression effects which cannot satisfactorily be explained by charge transfer reactions. Further investigation of the reasons causing these effects can be useful to improve our understanding of the MALDI process. The dried-droplet and modified thin-layer methods were used as sample preparation methods. In the dried-droplet method, analytes were co-crystallized with matrix, whereas in the modified thin-layer method analytes were deposited on the surface of matrix crystals. Model compounds, tetrabutylammonium iodide ([N(Bu) 4 ]I), cesium iodide (CsI), trihexylamine (THA) and polyethylene glycol 600 (PEG 600), were selected as the test analytes given their ability to generate exclusively pre-formed ions, protonated ions and metal ion adducts respectively in MALDI. The strong matrix suppression effect (MSE) observed using the dried-droplet method might disappear using the modified thin-layer method, which suggests that the incorporation of analytes in matrix crystals contributes to the MSE. By depositing analytes on the matrix surface instead of incorporating in the matrix crystals, the competition for evaporation/ionization from charged matrix/analyte clusters could be weakened resulting in reduced MSE. Further supporting evidence for this inference was found by studying the analyte suppression effect using the same two sample deposition methods. By comparing differences between the mass spectra obtained via the two sample preparation methods, we present evidence suggesting that the generation of gas-phase ions from charged matrix/analyte clusters may induce significant suppression of matrix and analyte ions. The results suggest that the generation of gas-phase ions from charged matrix/analyte clusters is an important ionization step in MALDI-MS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.
Neira-Carrillo, Andrónico; Yazdani-Pedram, Mehrdad; Retuert, Jaime; Diaz-Dosque, Mario; Gallois, Sebastien; Arias, José L
2005-06-01
The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.
NASA Astrophysics Data System (ADS)
Zhong, M. J.; Han, Y. M.; Liu, L. P.; Zhou, P.; Du, Y. Y.; Guo, Q. T.; Ma, H. L.; Dai, Y.
2010-12-01
We report the formation of β'-Gd 2(MoO 4) 3 (GMO) crystal on the surface of the 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1, 240 cm -1, 466 cm -1, 664 cm -1 and 994 cm -1which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.
1100 to 1500 K Slow Plastic Compressive Behavior of NiAl-xCr Single Crystals
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Darolia, Ram
2003-01-01
The compressive properties of near <001> and <111> oriented NiAl-2Cr single crystals and near <011> oriented NiAl-6Cr samples have been measured between 1100 and 1500 K. The 2Cr addition produced significant solid solution strengthening in NiAl, and the <111> and <001> single crystals possessed similar strengths. The 6Cr crystals were not stronger than the 2Cr versions. At 1100 and 1200 K plastic flow in all three Cr-modified materials was highly dependent on stress with exponents > 10. The <011> oriented 6Cr alloy exhibited a stress exponent of about 8 at 1400 and 1500 K; whereas both <001> and <111> NiAl-2Cr crystals possessed stress exponents near 3 which is indicative of a viscous dislocation glide creep mechanism. While the Cottrell-Jaswon solute drag model predicted creep rates within a factor of 3 at 1500 K for <001>-oriented NiAl-2Cr; this mechanism greatly over predicted creep rates for other orientations and at 1400 K for <001> crystals.
Birdsall, Robert E.; Koshel, Brooke M.; Hua, Yimin; Ratnayaka, Saliya N.; Wirth, Mary J.
2013-01-01
Sieving of proteins in silica colloidal crystals of mm dimensions is characterized for particle diameters of nominally 350 and 500 nm, where the colloidal crystals are chemically modified with a brush layer of polyacrylamide. A model is developed that relates the reduced electrophoretic mobility to the experimentally measurable porosity. The model fits the data with no adjustable parameters for the case of silica colloidal crystals packed in capillaries, for which independent measurements of the pore radii were made from flow data. The model also fits the data for electrophoresis in a highly ordered colloidal crystal formed in a channel, where the unknown pore radius was used as a fitting parameter. Plate heights as small as 0.4 μm point to the potential for miniaturized separations. Band broadening increases as the pore radius approaches the protein radius, indicating that the main contribution to broadening is the spatial heterogeneity of the pore radius. The results quantitatively support the notion that sieving occurs for proteins in silica colloidal crystals, and facilitate design of new separations that would benefit from miniaturization. PMID:23229163
Electrohydrodynamic Flows in Electrochemical Systems
NASA Technical Reports Server (NTRS)
Saville, D. A.
2005-01-01
Recent studies have established a new class of assembly processes with colloidal suspensions. Particles are driven together to form large crystalline structures in both dc and ac fields. The current work centers on this new class of flows in ac fields. In the research carried out under the current award, it was established that: (i) Small colloidal particles crystallize near an electrode due to electrohydrodynamic flows induced by an sinusoidally varying applied potential. (ii) These flows originate due to disturbances in the electrode polarization layer arising from the presence of the particles. Inasmuch as the charge and the field strength both scale on the applied field, the flows are proportional to the square of the applied voltage. (iii) Suspensions of two different sorts of particles can be crystallized and will form well-ordered binary crystals. (iv) At high frequencies the EHD flows die out. Thus, with a homogeneous system the particles become widely spaced due to dipolar repulsion. With a binary suspension, however, the particles may become attractive due to dipolar attraction arising from differences in electrokinetic dipoles. Consequently binary crystals form at both high and low frequencies.
Reticular synthesis of porous molecular 1D nanotubes and 3D networks.
Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I
2017-01-01
Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.
Reticular synthesis of porous molecular 1D nanotubes and 3D networks
NASA Astrophysics Data System (ADS)
Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.
2017-01-01
Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.
A thermochromic silver nanocluster exhibiting dual emission character
NASA Astrophysics Data System (ADS)
Xu, Qing-Qing; Dong, Xi-Yan; Huang, Ren-Wu; Li, Bo; Zang, Shuang-Quan; Mak, Thomas C. W.
2015-01-01
A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow.A Ag12(SCH2C10H7)6(CF3CO2)6(CH3CN)6 (1) nanocluster modified using naphthalen-2-yl-methanethiol was synthesized and structurally characterized by single crystal X-ray analysis. The targeted luminescent nanocluster displays dual emission with the property of reversible thermochromism spanning from red to bright yellow. Electronic supplementary information (ESI) available: Experimental section and supporting Fig. S1-S6. CCDC 1004246. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4nr05122j
NASA Astrophysics Data System (ADS)
Talreja, Sonal; Ahuja, B. L.
2015-08-01
Electronic and optical properties of CdxZn1-xSe (x = 0, 0.25, 0.5, 0.75, 1) compounds are investigated using the first-principles full potential linearized augmented plane wave method. In particular, we have used modified version of the exchange potential of Becke and Johnson, so called mBJ potential. We have discussed the energy bands, density of states, and optical properties such as dielectric constants, refractive indices, reflection spectra, extinction coefficients of all the CdxZn1-xSe compounds. Our mBJ potential based data are found to be in excellent agreement with the available experimental data, which unambiguously validates the applicability of orbital independent exchange-correlation potential in mixed semiconductor crystals. The optical properties are discussed in terms of applicability of Cd-Zn-Se system in light-emitting diodes, UV detectors and filters, etc.
Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin
2017-01-01
This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation. PMID:28672852
Zhao, Yuan; Yang, Qingrui; Chang, Ye; Pang, Wei; Zhang, Hao; Duan, Xuexin
2017-06-26
This paper demonstrates a novel micro-size (120 μm × 200 μm) piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR). The PSBARs operate at 102 MHz and possess high Q values (about 2000), ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs) modified PSBARs. The limit of detection (LOD) for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA), ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC) differentiation.
NASA Astrophysics Data System (ADS)
Hu, Ruifen; Zhang, Kaihuan; Fan, Guokang; Luo, Zhiyuan; Li, Guang
2015-05-01
Nanostructured nickel hydroxide (nano-Ni(OH)2) was synthesized at a low temperature without annealing. Accordingly, a plasticizer sensor based on a quartz crystal microbalance (QCM) modified with the nano-Ni(OH)2 sensing film was fabricated to detect dibutyl phthalate (DBP) and its relative film thickness was optimized. The sensor worked at room temperature and exhibited a high sensitivity of 4.91 Hz ppb-1 to DBP in a low concentration range of 5-20 ppb, and an ultra-low detection limit of 5 ppb was achieved. In addition, the sensor maintained good repeatability as well as stability shown by the experimental data. The responses to five possible interferences and four other plasticizers were also measured, which indicated the excellent selectivity of the sensor and its potential use in monitoring plasticizers in a gaseous state.
NASA Astrophysics Data System (ADS)
Aggarwal, M. D.; Wang, W. S.; Tambwe, M.
1993-03-01
Pure, Cd2+ and Nd3+-doped benzil C6H5COCOC6H5 have been grown from melt using the Czochralski and modified Bridgman-Stockbarger methods. Angle-tuned second harmonic generation of pure benzil from Nd:YAG laser radiation of λ = 1.06 μm with a conversion efficiency η = I2w/Iw = 0.4% has been demonstrated. We have used a Nd:YAG pulse laser to measure the radiation damage threshold as 15.9 MW/cm2 (c-axis) and 23.9 MW/cm2 (a-axis) under the conditions that laser pulse width is 10 ns. Under the same conditions, the conversion efficiency of Nd3+ and Cd2+-doped benzil, η= I2w/Iw = 1.1%, has been demonstrated. The radiation threshold is higher than for pure benzil crystals.
Maghsoodi, Maryam
2015-01-01
Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214
NASA Astrophysics Data System (ADS)
Pileni, M. P.
2005-12-01
We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.
Modulation of polyepoxysuccinic acid on crystallization of calcium oxalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanqing; Tang, Yongming, E-mail: tangym@njtech.edu.cn; Xu, Jinqiu
The influence of polyepoxysuccinic acid (PESA) on the phase composition and crystal morphology of calcium oxalate was investigated in this paper. It was found that the presence of PESA inhibited the growth of the monoclinic calcium oxalate monohydrate (COM) crystal and promoted the nucleation of the tetragonal calcium oxalate dihydrate (COD). In addition, with the increase in PESA concentration, the aggregation of COD crystals was reduced but the particle size was increased. Under the conditions of low calcium-to-oxalate ratio and high CaOx concentration, PESA could not effectively stabilize the formation of COD. Based on molecular dynamic simulations, the adsorption ofmore » PESA on CaOx crystal faces was confirmed. - Graphical abstract: Introduction of PESA into crystallization solutions promotes the formation of calcium oxalate dehydrate and modifies the morphology of crystals. - Highlights: • PESA induces the formation of COD at low supersaturation. • Establishment of Ca-rich surface augments the adsorption of PESA. • At Ca/Ox=0.5 PESA cannot induce the formation of COD compared with Ca/Ox=2. • Interaction of PESA with COM faces is stronger than that with COD faces.« less
A dynamic gain equalizer based on holographic polymer dispersed liquid crystal gratings
NASA Astrophysics Data System (ADS)
Xin, Zhaohui; Cai, Jiguang; Shen, Guotu; Yang, Baocheng; Zheng, Jihong; Gu, Lingjuan; Zhuang, Songlin
2006-12-01
The dynamic gain equalizer consisting of gratings made of holographic polymer dispersed liquid crystal is explored and the structure and principle presented. The properties of the holographic polymer dispersed liquid crystal grating are analyzed in light of the rigorous coupled-wave theory. Experimental study is also conducted in which a beam of infrared laser was incident to the grating sample and an alternating current electric field applied. The electro-optical properties of the grating and the influence of the applied field were observed. The results of the experiment agree with that of the theory quite well. The design method of the dynamic gain equalizer with the help of numerical simulation is presented too. The study shows that holographic polymer dispersed liquid crystal gratings have great potential to play a role in fiber optics communication.
Non-linear optical crystal vibration sensing device
Kalibjian, R.
1994-08-09
A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.
Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi
2013-01-01
Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
Crassee, I.; Martino, E.; Homes, C. C.; ...
2018-03-22
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Nonuniform carrier density in Cd3As2 evidenced by optical spectroscopy
NASA Astrophysics Data System (ADS)
Crassee, I.; Martino, E.; Homes, C. C.; Caha, O.; Novák, J.; Tückmantel, P.; Hakl, M.; Nateprov, A.; Arushanov, E.; Gibson, Q. D.; Cava, R. J.; Koohpayeh, S. M.; Arpino, K. E.; McQueen, T. M.; Orlita, M.; Akrap, Ana
2018-03-01
We report the detailed optical properties of Cd3As2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μ m , they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response is characterized by very small scattering rates (˜1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.
Nonuniform carrier density in Cd 3 As 2 evidenced by optical spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crassee, I.; Martino, E.; Homes, C. C.
In this paper, we report the detailed optical properties of Cd 3As 2 crystals in a wide parameter space: temperature, magnetic field, carrier concentration, and crystal orientation. We investigate high-quality crystals synthesized by three different techniques. In all the studied samples, independently of how they were prepared and how they were treated before the optical experiments, our data indicate conspicuous fluctuations in the carrier density (up to 30%). These charge puddles have a characteristic scale of 100 μm, they become more pronounced at low temperatures, and possibly, they become enhanced by the presence of crystal twinning. The Drude response ismore » characterized by very small scattering rates (~1 meV) for as-grown samples. Mechanical treatment, such as cutting or polishing, influences the optical properties of single crystals, by increasing the Drude scattering rate and also modifying the high-frequency optical response. Finally, magnetoreflectivity and Kerr rotation are consistent with electronlike charge carriers and a spatially nonuniform carrier density.« less
Crystals for stellar spectrometers
NASA Technical Reports Server (NTRS)
Alexandropoulos, N. G.; Cohen, G. G.
1974-01-01
Crystal evaluation as it applies to instrumentation employed in X-ray astronomy is reviewed, and some solutions are offered to problems that are commonly encountered. A general approach for selecting the most appropriate crystals for a given problem is also suggested. The energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (101) KAP, and (001) RAP are reported.
Bhaduri, Saumya; Sheen, Shiowshuh; Sommers, Christopher H
2014-05-01
Virulence of many foodborne pathogens is directly linked to genes carried on self-replicating extra-chromosomal elements, which can transfer genetic material, both vertically and horizontally, between bacteria of the same and different species. Pathogenic Yersinia enterocolitica harbors a 70-kb virulence plasmid (pYV) that encodes genes for low calcium response, crystal violet (CV) binding, Congo red uptake, autoagglutination (AA), hydrophobicity (HP), type III secretion channels, host immune suppression factors, and biofilm formation. Ionizing radiation and modified atmosphere packaging (MAP) are used to control foodborne pathogens and meat spoilage. In this study, the effect of gamma radiation and modified atmosphere (air, 100% N2 , 75% N2 : 25% CO2 , 50% N2 : 50% CO2 , 25% N2 : 75% CO2 , 100% CO2 ) were examined by using the CV binding phenotype, for the presence or absence of pYV in Y. enterocolitica, suspended in raw ground pork. All Y. enterocolitica serovars used (O:3, O:8, and O5,27) were more sensitive to radiation as the CO2 concentration increased above 50%. Crystal violet binding following a radiation dose of 1.0 kGy, which reduced the Y. enterocolitica serovars >5 log, was greatest in the presence of air (ca. 8%), but was not affected by N2 or CO2 concentration (ca. 5%). Following release from modified atmosphere after irradiation, the loss of CV binding rose from 5% to 8% immediately following irradiation to >30% after outgrowth at 25 °C for 24 h. These results, using Y. enterocolitica as a model system, indicate that the risk of foodborne illness could be affected by the loss of virulence factors when postprocess intervention technologies are used. Provides gamma radiation D10 data for inactivation data for Y. enterocolitica irradiated under modified atmosphere and information to risk assessors regarding the difference between pathogen presence versus actual virulence. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
The 2D Selfassembly of Benzimidazole and its Co-crystallization
NASA Astrophysics Data System (ADS)
Costa, Paulo; Teeter, Jacob; Kunkel, Donna; Sinitskii, Alexander; Enders, Axel
Benzimidazoles (BI) are organic molecules that form ferroelectric crystals. Key to their ferroelectric behavior are the switchable N . . . HN type bonds and how they couple to the electron system of the molecules. We attempted to crystallize BI on various metal surfaces and studied them using STM. We observed that on Au and Ag, BI joins into zipper chains characteristic of its bulk structure that can pack into a continuous 2D layer. Because the dipole of BI lies in the direction of its switchable hydrogen bond, these zippers should in principle have reversible polarizations that point along the direction they run. BI's crystallization is reminiscent to how croconic acid (CA) crystallizes in 2D using O . . . HO bonding, suggesting that these molecules may be able to co-crystallize through OH . . . N bonds. This would present the opportunity to modify BI's properties, such as the energy needed to switch a hydrogen from a donor to acceptor site. When co-deposited, CA and BI successfully combine into a co-crystal formed by building blocks consisting of 2 CA and 2 BI molecules. These findings demonstrate the usefulness of using STM as a preliminary check to verify if two molecules are compatible with each other without having to attempt crystallization with multiple solvents and mixing methods.
Mukhopadhyay, Nabaneeta; Panwar, Ajay S; Kumar, Gulshan; Samajdar, I; Bhattacharyya, Arup R
2015-02-14
Blends of polypropylene (PP) and polyamide 6 (PA6) with multiwalled carbon nanotubes (MWNTs) were prepared using different processing strategies in a twin-screw micro-compounder. The effect of MWNTs on the crystallization behaviour of the PP phase and the PA6 phase of the blend has been investigated through non-isothermal crystallization studies by differential scanning calorimetric analysis. Furthermore, the effect of the addition of the compatibilizer (PP-g-MA) and the modification of MWNTs (m-MWNTs) with a non-covalent organic modifier (Li-salt of 6 amino hexanoic acid, Li-AHA) has also been studied in context to the crystallization behaviour of the PP and PA6 phase in the blend. The crystallization studies have indicated a significant increase in bulk crystallization temperature of the PP phase in the blend in the presence of MWNTs. Moreover, the formation of 'trans-lamellar crystalline' structure consisting of PA6 'trans-crystalline lamellae' on MWNTs surface was facilitated in the case of blends prepared via 'protocol 2' as compared to the corresponding blends prepared via 'protocol 1'. Wide angle X-ray diffraction analysis has showed the existence of a β-polymorph of the PP phase due to incorporation of the PA6 phase in the blend. Addition of MWNTs in the blends has facilitated further β-crystalline structure formation of the PP phase. In the presence of m-MWNTs, a higher β-fraction was observed in the PP phase as compared to the blend with pristine MWNTs. Addition of PP-g-MA has suppressed the β-phase formation in the PP phase in the blend. X-ray bulk texture analysis revealed that incorporation of PA6 as well as pristine/modified MWNTs has influenced the extent of orientation of the PP chains towards specific crystalline planes in various blend compositions of PP and PA6.
Rushford, Michael C.
1990-02-06
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
Rushford, Michael C.
1990-01-01
In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
NASA Astrophysics Data System (ADS)
Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa
2018-04-01
The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.
Convex Curved Crystal Spectograph for Pulsed Plasma Sources.
The geometry of a convex curved crystal spectrograph as applied to pulsed plasma sources is presented. Also presented are data from the dense plasma focus with particular emphasis on the absolute intensity of line radiations.
NASA Astrophysics Data System (ADS)
Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan
2018-04-01
Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.
The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes
Yeh, Joanne I.; Pohl, Ehmke; Truan, Daphne; He, Wei; Sheldrick, George M.; Du, Shoucheng; Achim, Catalina
2011-01-01
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethlyl-glycine backbone. The crystal structure of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATCGG)2 (pdb: 3MBS), and the other containing the same nucleobase pairs and a central pair of bipyridine ligands (pdb: 3MBU), has been solved with a resolution of 1.2 Å and 1.05 Å, respectively. The non-modified PNA duplex adopts a P-type helical structure s i m i l a r t o that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. These results support the notion that while PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines are bulged out of the duplex and are aligned parallel to the minor groove of the PNA. In the case of the bipyridine-containing PNA, two bipyridines from adjacent PNA duplexes form a π-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are π-stacking with adjacent nucleobase pairs and adopt an intrahelical geometry [Johar et al., Chem. Eur. J., 2008, 14, 2080]. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes. PMID:20859960
Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim
2010-05-01
The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Tunable microlens arrays using polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Fan, Yun-Hsing; Gauza, Sebastian; Wu, Shin-Tson
2004-02-01
A tunable-focus microlens array based on polymer network liquid crystal (PNLC) is demonstrated. The PNLC was prepared using an ultraviolet (UV) light exposure through a patterned photomask. The photocurable monomer in each of the UV exposed spot forms an inhomogeneous centro-symmetrical polymer network which acts as a lens when a homogeneous electric field is applied to the cell. The focal length of the microlens arrays is tunable with the applied voltage.
NASA Astrophysics Data System (ADS)
Bouquain, S.; Arndt, N. T.; Faure, F.; Libourel, G.
2013-03-01
To investigate the crystallization of pyroxene in spinifex-textured komatiites and in chondrites we undertook a series of experiments in which compositions in the CMAS system were cooling rapidly in a thermal gradient. Cooling rates were generally between 5 to 10 °C h-1 but some runs were made at 100-200 °C h-1; thermal gradients were between 10 and 20 °C cm-1. These conditions reproduced those at various levels in the crust of komatiitic lava flow. The starting composition was chosen to have pigeonite on the liquidus and a majority of the experiments crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. A~conspicuous aspect of the experimental results was their lack of reproduceability. Some experiments crystallized forsterite whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy but others totally crystallized to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h-1. The notion that this mineral only forms at low cooling rates is not correct.
Growth of 2 Inch Eu-doped SrI2 single crystals for scintillator applications
NASA Astrophysics Data System (ADS)
Yoshikawa, Akira; Shoji, Yasuhiro; Yokota, Yuui; Kurosawa, Shunsuke; Hayasaka, Shoki; Chani, Valery I.; Ito, Tomoki; Kamada, Kei; Ohashi, Yuji; Kochurikhin, Vladimir
2016-10-01
A vertical Bridgman (VB) crystal growth process was established using modified micro-pulling-down (μ-PD) crystal growth system with a removable chamber that was developed for the growth of deliquescent halide single crystals because conventional μ-PD method does not allow growth of large bulk single crystals. Eu:SrI2 crystals were grown from the melt of (Sr0.98Eu0.02)I2 composition using carbon crucibles. Undoped μ-PD SrI2 crystals were used as seeds that were affixed to the bottom of the crucible. All the preparations preceding the growths and the hot zone assembling were performed in a glove box with Ar gas. Then the removable chamber was taken out of the glove box, attached to the μ-PD system, connected with a Turbo Molecular pump, and evacuated down to 10-4 Pa at 300 °C. After the baking procedure, high purity Ar gas (6N) was injected into the chamber. The crucible was heated by a high frequency induction coil up to the melting point of Eu:SrI2. After melting the starting materials, the crucible was displaced in downward direction for the crystal growth and then cooled down to room temperature. Thus, 2 in. and crack-free Eu:SrI2 bulk crystals were produced. The crystals had high transparency and did not contain any visible inclusions. The crystals were cut and polished in the glove box and then sealed in an aluminum container with an optical window for characterization. The details of the crystal growth are discussed.
Apparatus for single ice crystal growth from the melt.
Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori
2009-11-01
A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8 ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10 mm working distance objective lens. Temperature could be established to within +/-10 mK in as little as 3.5 min and controlled to within +/-2 mK after 15 min for at least 10 h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.
Yago, Tomoaki; Link, Gerhard; Kothe, Gerd; Lin, Tien-Sung
2007-09-21
Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.
Kinetics of crystal nucleation and growth in Pd(40)Ni(40)P(20) glass
NASA Technical Reports Server (NTRS)
Drehman, A. J.; Greer, A. L.
1984-01-01
Samples of Pd(40)Ni(40)P(20) glass, produced by cooling the melt at 1 or 800 K/s, are heated in a differential scanning calorimeter to determine the crystallization kinetics. Optical microscopy shows that eutectic crystallization proceeds both by growth from the surface of the samples and by the growth of spherical regions around preexisting nuclei in the interior. A modified Kissinger (1957) analysis is used to obtain the activation energy for crystal growth (3.49 eV). The steady state homogeneous nucleation frequency at 590 K is about 10 million/cu m per sec. This is estimated to be the maximum nucleation frequency: it is too low to account for the observed population of quenched-in nuclei, which are therefore presumed to be heterogeneous. The major practical obstacle to glass formation in this system is heterogeneous nucleation.
Li, Feihu; Tang, Bingtao; Xiu, Jinghai; Zhang, Shufen
2016-04-28
Low color visibility and poor mechanical strength of polystyrene (PS) photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes) composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.
Liquid drop stability for protein crystal growth in microgravity
NASA Technical Reports Server (NTRS)
Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron
1987-01-01
It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.
Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals
NASA Astrophysics Data System (ADS)
McPhail, Dennis; Straub, Martin; Gu, Min
2005-01-01
Electrically tunable three-dimensional photonic crystals with a tunable wavelength range of over 70nm of stop gaps between 3 and 4μm have been generated in a liquid crystal-polymer composite. The photonic crystals were fabricated by femtosecond-laser direct writing of void channels in an inverse woodpile configuration with 20 layers providing an extinction of infrared light transmission of 70% in the stacking direction. Stable structures could be manufactured up to a liquid crystal concentration of 24%. Applying a direct voltage of several hundred volts in the stacking direction of the photonic crystal changes the alignment of the liquid crystal directors and hence the average refractive index of the structure. This mechanism permits the direct tuning of the photonic stop gap.
Zhang, Jiankai; Luo, Hui; Xie, Weijia; Lin, Xuanhuai; Hou, Xian; Zhou, Jianping; Huang, Sumei; Ou-Yang, Wei; Sun, Zhuo; Chen, Xiaohong
2018-03-28
Planar perovskite solar cells (PSCs) that use nickel oxide (NiO x ) as a hole transport layer have recently attracted tremendous attention because of their excellent photovoltaic efficiencies and simple fabrication. However, the electrical conductivity of NiO x and the interface contact properties of the NiO x /perovskite layer are always limited for the NiO x layer fabricated at a relatively low annealing temperature. Ferrocenedicarboxylic acid (FDA) was firstly introduced to modify a p-type NiO x hole transport layer in PSCs, which obviously improves the crystallization of the perovskite layer and hole transport and collection abilities and reduces carrier recombination. PSCs with a FDA modified NiO x layer reached a PCE of 18.20%, which is much higher than the PCE (15.13%) of reference PSCs. Furthermore, PSCs with a FDA interfacial modification layer show better UV durability and a hysteresis-free effect and still maintain the original PCE value of 49.8%after being exposed to UV for 24 h. The enhanced performance of the PSCs is attributed to better crystallization of the perovskite layer, the passivation effect of FDA, superior interface contact at the NiO x /perovskite layers and enhancement of the electrical conductivity of the FDA modified NiO x layer. In addition, PSCs with FDA inserted at the interface of the perovskite/PCBM layers can also improve the PCE to 16.62%, indicating that FDA have dual functions to modify p-type and n-type carrier transporting layers.
NASA Astrophysics Data System (ADS)
Suryanegara, L.; Nugraha, R. A.; Achmadi, S. S.
2017-07-01
Polylactic acid (PLA) is the most representative sustainable and bio-based polymer environmentally friendly that has a great potential to replace petroleum-based plastics. However, brittleness, low heat resistance, and slow crystallization limit the wide application of PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to increase its compatibility with PLA in the composite formation. In this experiment, MFC was modified with partial acetylation (degree of substitution: 1) and further grafted with lactide monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of acetylation and grafting were verified by infrared spectra. Composites were prepared by mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted composites were evaluated for their mechanical and thermal properties. Thermal characterization carried out using differential scanning calorimetry measurements showed that the presence of modified MFC increased the temperature of glass transition and accelerated the crystallization of PLA. Mechanical properties measurement showed that the presence of modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified MFC could extend the application of PLA in industry.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.
1991-04-23
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.
1991-01-01
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.
Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.
Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze
2017-04-05
In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.
Electro-optical tunable birefringent filter
Levinton, Fred M [Princeton, NJ
2012-01-31
An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.
NASA Astrophysics Data System (ADS)
Mokhtari, Ali; Soleimanian, Vishtasb; Dehkordi, Hamed Aleebrahim; Dastafkan, Kamran
2017-11-01
In this work the potential of Rietveld refinement procedure is used to study the shape and size of non-spherical nanocrystallites. The main advantages of this approach are that not only it can successfully extend to all nanomaterials with different crystal symmetries but also it can evaluate the various phases of multiple materials comparing to electron microscopy methods. Therefore, between seven crystal systems, the formulation of monoclinic and hexagonal crystals is developed. This procedure is applied for the mixture of sodium carbonate and zinc oxide nanocrystallites at different fractions of doped gadolinium oxide. It is found that the crystallites of sodium carbonate and zinc oxide have the rod and ellipsoidal shapes, respectively. The microstructure results are compared with the results of scanning electron microscopy imaging. Good agreement is achieved between the results of scanning electron microscopy and Rietveld methods.
Geometrical optics approach in liquid crystal films with three-dimensional director variations.
Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W
2003-04-01
A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rishi, E-mail: kkraina@gmail.com; Sood, Srishti, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com
2014-04-24
We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.
Single crystals of metal solid solutions
NASA Technical Reports Server (NTRS)
Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.
1974-01-01
The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.
2006-11-06
Transverse shear wave of a quartz crystal with an applied thin film�..�.31 Figure 2.4 Butterworth van - Dyke model for a quartz crystal near...resonance��..�.32 Figure 2.5 Butterworth van - Dyke model for a loaded quartz crystal at resonance...�.34 Figure 2.6 Butterworth van - Dyke model for a...surface chemistry . A thorough understanding of the reaction pathways of CWAs will aid in the development of CWA sensors, environmentally friendly
Experimental study of modification mechanism at a wear-resistant surfacing
NASA Astrophysics Data System (ADS)
Dema, R. R.; Amirov, R. N.; Kalugina, O. B.
2018-01-01
In the study, a simulation of the crystallization process was carried out for the deposition of the near-eutectic structure alloys with inoculants presence in order to reveal the regularities of the inoculant effect and parameters of the process mode simulating surfacing on the structure of the crystallization front and on the nucleation rate and kinetics of growth of equiaxed crystallites of primary phases occurring in the volume of the melt. The simulation technique of primary crystallization of alloys similar to eutectic alloys in the presence of modifiers is offered. The possibility of fully eutectic structure during surfacing of nominal hypereutectic alloys of type white cast irons in wide range of deviations from the nominal composition is revealed.
Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion.
Meca, Esteban; Shenoy, Vivek B; Lowengrub, John
2013-11-01
In the present article, we introduce a phase-field model for thin-film growth with anisotropic step energy, attachment kinetics, and diffusion, with second-order (thin-interface) corrections. We are mainly interested in the limit in which kinetic anisotropy dominates, and hence we study how the expected shape of a crystallite, which in the long-time limit is the kinetic Wulff shape, is modified by anisotropic diffusion. We present results that prove that anisotropic diffusion plays an important, counterintuitive role in the evolving crystal shape, and we add second-order corrections to the model that provide a significant increase in accuracy for small supersaturations. We also study the effect of different crystal symmetries and discuss the influence of the deposition rate.
Optical properties of antiferromagnetic/ion-crystal superlattices
NASA Astrophysics Data System (ADS)
Ta, Jin-Xing; Song, Yu-Ling; Wang, Xuan-Zhang
2012-01-01
Transmission, refraction and absorption properties of an antiferromagnetic/ion-crystal superlattice are investigated. The transmission spectra based on FeF2/TlBr superlattices reveal that there exist two intriguing guided modes in a wide stop band. Additionally, FeF2/TlBr superlattices possess either the negative refraction or the quasi left-handedness, or even simultaneously hold them at certain frequencies of two guided modes, which require both negative magnetic permeability of antiferromagnetic layers and negative permittivity of ion-crystal layers. Frequency regimes of the guided modes will be dependent on the magnitude of the external magnetic field. Therefore, handedness and refraction properties of the system can be manipulated by modifying the external magnetic field. Absorption spectra exhibit that absorption corresponding to guided modes is noticeable.
NASA Astrophysics Data System (ADS)
Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip
2018-05-01
We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
Laser damage metrology in biaxial nonlinear crystals using different test beams
NASA Astrophysics Data System (ADS)
Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille
2008-01-01
Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.
Research on annealing and properties of TlBr crystals for radiation detector use
NASA Astrophysics Data System (ADS)
Zhiping, Zheng; Yongtao, Yu; Dongxiang, Zhou; Shuping, Gong; Qiuyun, Fu
2014-03-01
In this paper, annealing was carried out in air after cutting, polishing and etching to eliminate defects introduced by crystal and wafer preparation work. The effect of annealing temperature and time on the properties of TlBr crystals was investigated. The crystal quality was characterized by infrared (IR) transmittance spectrum, I-V measurement, XRD and energy response spectrum. In the annealing temperature range (100-320 °C) applied, it was found that higher temperature was more effective for improving quality. Furthermore, it is proved that an appropriate annealing time is vital for better crystal quality.
A study on inclusion formation mechanism in alpha-LiIO sub 3 crystals
NASA Technical Reports Server (NTRS)
Chen, W. C.; Yan, S. L.; Jia, S. Q.; Du, S. Y.
1985-01-01
The spatial distribution of inclusions in alpha-LiIO3 crystals by means of an argon laser beam scanning technique is studied. The effects of crystal dimensions and solution fluid flow on the inclusion formation in the alpha-LiIO3 crystals were observed. It was further shown that the fluid flow plays an important role in the formation of inclusions. The results obtained were further applied and verified by growing a perfect alpha-LiIO3 single crystal. An experimental foundation for further theoretical studies on the causes of inclusions may be provided.
Nanoparticles Doped Liquid Crystal Filled Photonic Bandgap Fibers
NASA Astrophysics Data System (ADS)
Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders
2008-10-01
We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum to the one achieved with undoped liquid crystals. New interesting features such as frequency dependent behavior and a transmission spectrum with tunable attenuation on the short wavelength side of the bandgap suggest a potential application of this device as a tunable all-in-fiber gain equalization filter. The tunability of the device is demonstrated by changing the temperature of the liquid crystal and by varying both the amplitude and the frequency of the applied external electric field.
On the morphological and chemical stability of vitamin C crystals
NASA Astrophysics Data System (ADS)
Halász, Susan; Bodor, Beáta
1993-03-01
Mass cooling crystallization of aqueous vitamin C solution was studied by applying different cooling rates, initial supersaturations and mixing intensity. The morphology of the products (size, habit and colour) well followed the changes of process parameters. Comparing a high purity (99.9%) standard with a yellow coloured heterodisperse product and a slowly grown single crystal, HPLC chromatography detected decreasing purity of the bigger single crystals, while X-ray and NMR analysis did not show any perceptible difference. It has been concluded that not the surface oxidation (chemical degredation), but rather the inclusions are the main sources of impurities within the crystals.
7 CFR 58.809 - Pasteurization.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., modified whey products, and lactose shall be pasteurized prior to condensing. When the condensing and... transported to another plant for further processing into dry whey, dry whey products or lactose without... procedure unpasteurized ingredients are added (except those necessary for lactose crystallization), or...
7 CFR 58.809 - Pasteurization.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., modified whey products, and lactose shall be pasteurized prior to condensing. When the condensing and... transported to another plant for further processing into dry whey, dry whey products or lactose without... procedure unpasteurized ingredients are added (except those necessary for lactose crystallization), or...
High field (up to 140 kOe) angle dependent magneto transport of Bi2Te3 single crystals
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Maheshwari, P. K.; Tiwari, Brajesh; Awana, V. P. S.
2018-01-01
We report the angle dependent high field (up to 140 kOe) magneto transport of Bi2Te3 single crystals, a well-known topological insulator. The crystals were grown from melt of constituent elements via solid state reaction route by self-flux method. Details of crystal growth along with their brief characterisation up to 5 Tesla applied field was reported by some of us recently (Sultana et al 2017 J. Magn. Magn. Mater. 428 213). The angle dependence of the magneto-resistance (MR) of Bi2Te3 follows the cos (θ) function i.e., MR is responsive, when the applied field is perpendicular (tilt angle θ = 0° and/or 180°) to the transport current. The low field (±10 kOe) MR showed the signatures of weak anti localisation character with typical ν-type cusp near origin at 5 K. Further, the MR is linear right up to highest applied field of 140 kOe. The large positive MR are observed up to high temperatures and are above 250% and 150% at 140 kOe in perpendicular fields at 50 K and 100 K respectively. Heat capacity C P(T) measurements revealed the value of Debye temperature (ѲD) to be 135 K. Angle resolved photoemission spectroscopy data clearly showed that the bulk Bi2Te3 single crystal consists of a single Dirac cone.
NASA Technical Reports Server (NTRS)
Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel
2015-01-01
The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N(sub 0), lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D greater than15 micrometers collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N(sub 0), mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D(sub mm) as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N(sub 0), mu, and lambda, bulk extinction, IWC, and D(sub mm) with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 micrometers, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N(sub 0), mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.
Double axis, two-crystal x-ray spectrometer.
Erez, G; Kimhi, D; Livnat, A
1978-05-01
A two-crystal double axis x-ray spectrometer, capable of goniometric accuracy on the order of 0.1", has been developed. Some of its unique design features are presented. These include (1) a modified commercial thrust bearing which furnishes a precise, full circle theta:2theta coupling, (2) a new tangent drive system design in which a considerable reduction of the lead screw effective pitch is achieved, and (3) an automatic step scanning control which eliminates most of the mechanical deficiencies of the tangent drive by directly reading the tangent arm displacement.
2011-09-01
composition also affects the Co2+ and Fe2+ dopant lifetimes and temperature dependencies. Crystal growth effort is underway in order to improve the...single-crystalline samples of Fe2+ or divalent cobalt ion (Co2+)-doped CMT crystals were produced by Brimrose Corporation using a modified vertical...Bridgman technique (18). The starting high purity ingredients Cd, Mn, and Te along with the dopants (Fe and Co) are placed in a pre-cleaned and baked
Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities.
Chakravarty, S; Bhattacharya, P; Chakrabarti, S; Mi, Z
2007-05-15
We demonstrate multiwavelength lasing of resonant modes in linear (L3) microcavities in a triangular-lattice 2D photonic crystal (PC) slab. The broad spontaneous emission spectrum from coupled quantum dots, modified by the PC microcavity, is studied as a function of the intensity of incident optical excitation. We observe lasing with an ultralow-threshold power of approximately 600 nW and an output efficiency of approximately 3% at threshold. Two other resonant modes exhibit weaker turnon characteristics and thresholds of approximately 2.5 and 200 microW, respectively.
Anisotropic Defect-Mediated Melting of Two-Dimensional Colloidal Crystals
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2004-09-01
The melting transition of anisotropic two-dimensional (2D) crystals is studied in a model system of superparamagnetic colloids. The anisotropy of the induced dipole-dipole interaction is varied by tilting the external magnetic field off the normal to the particle plane. By analyzing the time-dependent Lindemann parameter as well as translational and orientational order we observe a 2D smecticlike phase. The Kosterlitz-Thouless-Halperin-Nelson-Young scenario of isotropic melting is modified: dislocation pairs and dislocations appear with different probabilities depending on their orientation with respect to the in-plane field.
NASA Astrophysics Data System (ADS)
Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.
2005-03-01
Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and substrate decreases in the following order: COO-Ca2+/OH > COO-Ca2+/CONHCH3 > COO-Ca2+/CH3.
NASA Astrophysics Data System (ADS)
Maimoni, A.
1988-03-01
The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.
Multiphysical simulation analysis of the dislocation structure in germanium single crystals
NASA Astrophysics Data System (ADS)
Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.
2016-09-01
To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.
Optical detection of paramagnetic centres: From crystals to glass-ceramics
NASA Astrophysics Data System (ADS)
Rogulis, Uldis
2016-07-01
An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.
Overview of Characterization Techniques for High Speed Crystal Growth
NASA Technical Reports Server (NTRS)
Ravi, K. V.
1984-01-01
Features of characterization requirements for crystals, devices and completed products are discussed. Key parameters of interest in semiconductor processing are presented. Characterization as it applies to process control, diagnostics and research needs is discussed with appropriate examples.
Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot
Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun
2014-01-01
Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35–96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4–8 nL. The protein consumption significantly reduces 50–500 fold compared with current crystallization stations. PMID:24854085
Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.
Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun
2014-05-23
Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.
NASA Technical Reports Server (NTRS)
Vekilov, Peter G.
2003-01-01
Insight into the crystallization processes of biological macromolecules into crystals or aggregates can provide valuable guidelines in many fundamental and applied fields. Such insight will prompt new means to regulate protein phase transitions in-vivo, e.g., polymerization of hemoglobin S in the red cells, crystallization of crystallins in the eye lens, etc. Understanding of protein crystal nucleation will help achieve narrow crystallite size distributions, needed for sustained release of pharmaceutical protein preparations such as insulin or interferon. Traditionally, protein crystallization studies have been related to the pursuit of crystal perfection needed to improve the structure details provided by x-ray, electron or neutron diffraction methods. Crystallization trials for the purposes of structural biology carried out in space have posed an intriguing question related to the inconsistency of the effects of the microgravity growth on the quality of the crystals.
Thermal Optimization of Growth and Quality in Protein Crystals
NASA Technical Reports Server (NTRS)
Wiencek, John M.
1996-01-01
Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka
2016-01-01
Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514
Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco
2016-01-01
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.
Transition of vertically aligned liquid crystal driven by fan-shaped electric field
NASA Astrophysics Data System (ADS)
Tsung, J. W.; Ting, T. L.; Chen, C. Y.; Liang, W. L.; Lai, C. W.; Lin, T. H.; Hsu, W. H.
2017-09-01
Interdigital electrodes are implemented in many commercial and novel liquid crystal devices to align molecules. Although many empirical principles and patents apply to electrode design, only a few numerical simulations of alignment have been conducted. Why and how the molecules align in an ordered manner has never been adequately explained. Hence, this investigation addresses the Fréedericksz transition of vertically aligned liquid crystal that is driven by fishbone electrodes, and thereafter identifies the mechanism of liquid crystal alignment. Theoretical calculations suggest that the periodic deformation that is caused by the fan-shaped fringe field minimizes the free energy in the liquid crystal cell, and the optimal alignment can be obtained when the cell parameters satisfy the relation p /2 d =√{k11/k33 } , where p is the spatial period of the strips of the electrode; d denotes the cell gap; and k11 and k33 are the splay and bend elastic constants of the liquid crystal, respectively. Polymer-stabilized vertical alignment test cells with various p values and spacings between the electrodes were fabricated, and the process of liquid crystal alignment was observed under an optical microscope. The degree of alignment was evaluated by measuring the transmittance of the test cell. The experimental results were consistent with the theoretical predictions. The principle of design, p /2 d =√{k11/k33 } , greatly improves the uniformity and stability of the aligned liquid crystal. The methods that are presented here can be further applied to cholesteric liquid crystal and other self-assembled soft materials.
Oscillating-Crucible Technique for Silicon Growth
NASA Technical Reports Server (NTRS)
Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.
1984-01-01
Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.
Liquid crystal dynamic flow control by bidirectional alignment surface
NASA Astrophysics Data System (ADS)
Li, Y. W.; Lee, C. Y.; Kwok, H. S.
2009-02-01
We investigate the behavior of liquid crystal dynamic flow in a cell with a bidirectional alignment (BDA) surface. Numerical simulations show that with a BDA surface having a pitch comparable to the cell gap d, the liquid crystal dynamic flow direction can be controlled by the driving voltage. Such an effect can be applied to bistable twisted nematic displays without the need for anchoring breaking.
Growth of CuSO4 · 5H2O single crystals and study of some of their properties
NASA Astrophysics Data System (ADS)
Manomenova, V. L.; Stepnova, M. N.; Grebenev, V. V.; Rudneva, E. B.; Voloshin, A. E.
2013-05-01
Large single crystals of copper sulfate pentahydrate CuSO4 · 5H2O of optical quality have been grown; they can be applied as broadband UV optical filters. Their transmission spectra are measured. The crystal thermal stability is investigated and the onset temperature of dehydration is determined to be 46°C.
King, James Claude
1976-01-13
The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.
Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.
Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun
2015-01-01
Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.
Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals
NASA Astrophysics Data System (ADS)
Wu, Fei
Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the direction of incident positrons, z or non-z, did not affect the observed differences in lifetime and intensity trends. The results confirmed the existence of differential interactions of positronium with the asymmetric lattice structures of LH and RH quartz crystals.
Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases
Eichman, Brandt F.; O’Rourke, Eyleen J.; Radicella, J.Pablo; Ellenberger, Tom
2003-01-01
DNA glycosylases catalyze the excision of chemically modified bases from DNA. Although most glycosylases are specific to a particular base, the 3-methyladenine (m3A) DNA glycosylases include both highly specific enzymes acting on a single modified base, and enzymes with broader specificity for alkylation-damaged DNA. Our structural understanding of these different enzymatic specificities is currently limited to crystal and NMR structures of the unliganded enzymes and complexes with abasic DNA inhibitors. Presented here are high-resolution crystal structures of the m3A DNA glycosylase from Helicobacter pylori (MagIII) in the unliganded form and bound to alkylated bases 3,9-dimethyladenine and 1,N6-ethenoadenine. These are the first structures of a nucleobase bound in the active site of a m3A glycosylase belonging to the helix–hairpin–helix superfamily. MagIII achieves its specificity for positively-charged m3A not by direct interactions with purine or methyl substituent atoms, but rather by stacking the base between two aromatic side chains in a pocket that excludes 7-methylguanine. We report base excision and DNA binding activities of MagIII active site mutants, together with a structural comparison of the HhH glycosylases. PMID:14517230
Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo
2011-01-01
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry
Eren, Tanju; Atar, Necip; Yola, Mehmet Lütfi; Karimi-Maleh, Hassan
2015-10-15
Lovastatin (LOV) is a statin, used to lower cholesterol which has been found as a hypolipidemic agent in commercial red yeast rice. In present study, a sensitive molecular imprinted quartz crystal microbalance (QCM) sensor was prepared by fabricating a self-assembling monolayer formation of allylmercaptane on QCM chip surface for selective determination of lovastatin (LOV) in red yeast rice. To prepare molecular imprinted quartz crystal microbalance (QCM) nanosensor, LOV imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was attached on the modified gold surface of QCM chip. The non-modified and improved surfaces were characterized by using contact angle, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The imprinted QCM sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range was obtained as 0.10-1.25 nM. The detection limit of the prepared material was calculated as 0.030 nM. The developed QCM nanosensor was successfully used to examine red yeast rice. Furthermore, the stability and repeatability of the prepared QCM nanosensor were studied. The spectacular long-term stability and repeatability of the prepared LOV-imprinted QCM nanosensor make them intriguing for use in QCM sensors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.
Capece, Maxx; Davé, Rajesh
2015-06-01
Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.
2017-11-01
Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.
Hot Stuff? Thermal Imaging Applied to Cryocrystallography
NASA Technical Reports Server (NTRS)
Snell, E. H.
2004-01-01
In the past we have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. From these images it was clear that a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. During these studies we used large volume crystals, which were clearly distinguished fiom the loop holding them. These large crystals, originally grown for neutron diffiaction studies, were chosen deliberately to enhance the imaging. As an extension to this work, we present used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different d a r e d transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop. Data fkom initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light mad with h i k e d rdi&tion. The crystals were clearly distinguished from the vitrified solution in the infiared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These results will be presented along with advantages and disadvantages of the technique and a discussion of how it might be applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Seiki; Hoshino, Takeshi; Ito, Len
A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. Bymore » coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.« less
NASA Astrophysics Data System (ADS)
Xu, Jialin; Deng, Hao; Zeng, Zhou; Zhang, Zhang; Zhao, Kunyu; Chen, Jianwei; Nakamori, Nami; Wang, Feifei; Ma, Jinpeng; Li, Xiaobing; Luo, Haosu
2018-04-01
The [001]-oriented Pb(Mg1/3Nb2/3)O3-0.25PbTiO3(PMN-0.25PT) single crystal has been poled by alternating current polarization (ACP). The piezoelectric, dielectric, and electromechanical properties of PMN-0.25PT crystals were investigated with the variations of the electric field, polarization frequency, and cycles. For the piezoelectric performance of the PMN-0.25PT crystal, the optimum ACP condition was obtained under the electric field of 12-18 kV/cm in the frequency range of 20-40 Hz and after 20 cycles. It gives the crystals an increase by 40% from 1220 pC/N to 1730 pC/N in the piezoelectric coefficient compared with traditional direct current polarization. The patterns of the periodic stripe nanodomains under different polarization conditions were revealed by piezoresponse force microscopy. The enhancement of the piezoelectric performance is attributed to the high density of these domain walls. This work indicates that ACP is an effective way to modify the piezoelectric performance of PMN-0.25PT crystals and make it a promising candidate for sensors and transducers.
NASA Astrophysics Data System (ADS)
Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming
2017-03-01
CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.
Soft phononic crystals with deformation-independent band gaps
2017-01-01
Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation. PMID:28484331
Growth and characterisation of a new polymorph of barium maleate: a metal organic framework.
Nair, Lekshmi P; Bijini, B R; Prasanna, S; Eapen, S M; Nair, C M K; Deepa, M; RajendraBabu, K
2015-02-25
A new polymorph of barium maleate (BM) with chemical formula C24H14O24Ba5⋅7H2O is grown by modified gel method. Transparent plate like crystals of dimensions 9×4×1 mm(3) were obtained. Single crystal X-ray Diffraction analysis was done to determine the structure and the crystal belongs to triclinic system, P-1 space group with cell dimensions a=7.2929(3) Å, b=10.5454(4) Å, c=14.2837(6) Å, α=102.0350(10)°, β=99.1580(10)°, γ=102.9170(10)°. Hydrogen bonding stabilises the two dimensional polymeric crystal structure. Fourier Transform Infrared spectroscopic method was utilised for the analysis of various functional groups present in the complex. Elemental analysis confirmed the stoichiometry of the complex. Thermal properties of the crystal were studied by TGA/DTA. The material melts at 368°C. The optical transparency of the crystal was studied using UV-Visible absorption spectra. The optical band gap is found to be 3.35 eV. Copyright © 2014 Elsevier B.V. All rights reserved.
Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals
NASA Astrophysics Data System (ADS)
Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.
2017-05-01
Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.
High-pressure protein crystallography of hen egg-white lysozyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp
The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less
Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue
NASA Astrophysics Data System (ADS)
Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying
2018-02-01
Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.
Gus'kov, Vladimir Yu; Gainullina, Yulia Yu; Ivanov, Sergey P; Kudasheva, Florida Kh
2014-08-22
The thermodynamic features of organic molecule adsorption from the gaseous phase of sorbents modified with 5-hydroxy-6-methyluracil (HMU) were studied. Molar internal energy and entropy of adsorption variation analyses showed that with every type surface, except for silica gel, layers of supramolecular structure have cavities equal in size with the ones revealed in HMU crystals by X-ray diffraction. Adsorption thermodynamics on HMU-modified sorbents depended on the amount of impregnated HMU and on the polarity, but not the porosity, of the initial sorbent. Polarity of the modified surface increased as a function of HMU quantity and initial sorbent mean pore size, but become appreciably lower if the initial surface is capable of hydrogen bonding. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com
2012-11-15
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to thatmore » of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.« less
Lead magnesium niobate actuator for micropositioning
Swift, Charles D.; Bergum, John W.
1994-01-01
An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.
Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas
2016-06-01
Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Focusing of light by polymer-dispersed liquid-crystal films with nanosized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loiko, V. A., E-mail: loiko@dragon.bas-net.by; Konkolovich, A. V.
2006-12-15
An analysis is presented of polarization-independent electrically tunable light focusing by polymerdispersed liquid-crystal films with nanosized liquid-crystal droplets. Polymer-dispersed liquid-crystal films with axially symmetric distributions of liquid-crystal droplet concentration and layers with axially symmetric thickness profiles are considered. The paraxial, Rayleigh, and Rayleigh-Gans approximations, as well as the Foldy-Twersky equation, are used to examine the dependence of focal length on lens geometry, droplet size, concentration of nematic liquid-crystal droplets, and applied field. The tunable focusing ranges are evaluated for both lens types considered in the study. Dependence of the transmittance of polymer-dispersed liquid-crystal film on its characteristics is analyzed. Themore » results obtained are compared with those available from the literature.« less
Non-linear optical crystal vibration sensing device
Kalibjian, Ralph
1994-01-11
A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocker, Christian, E-mail: christian.bocker@uni-jena.d; Munoz, Francisco; Duran, Alicia
2011-02-15
The transparent glass-ceramics obtained in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} show homogeneously dispersed BaF{sub 2} nano crystals with a narrow size distribution. The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses and the respective glass-ceramics in order to clarify the crystallization mechanism and the role of fluorine during crystallization. With an increasing annealing time, the concentration and also the number of crystals remain approximately constant. With an increasing annealing temperature, the crystalline fraction increases until a saturation limit is reached, while the number of crystals decreases and the size of the crystals increases.more » Fluoride in the glassy network occurs as Al-F-Ba, Al-F-Na and also as Ba-F structures. The latter are transformed into crystalline BaF{sub 2} and fluoride is removed from the Al-F-Ba/Na bonds. However, some fluorine is still present in the glassy phase after the crystallization. -- Graphical abstract: The X-ray diffraction and the nuclear magnetic resonance spectroscopy were applied to glasses in the silicate system Na{sub 2}O/K{sub 2}O/SiO{sub 2}/BaF{sub 2} and the respective glass-ceramics with BaF{sub 2} nano crystals in order to clarify the crystallization mechanism and the role of fluorine during crystallization. Display Omitted Research highlights: {yields} BaF{sub 2} nano crystals are precipitated from a silicate glass system. {yields} Ostwald ripening during the late stage of crystallization does not occur. {yields} Fluorine in the glass is coordinated with Ba as well as Al together with Ba or Na.{yields} In the glass-ceramics, the residual fluorine is coordinated as Al-F-Ba/Na.« less
DIFFRACTION FROM MODEL CRYSTALS
USDA-ARS?s Scientific Manuscript database
Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...
NASA Astrophysics Data System (ADS)
Bouquain, S.; Arndt, N. T.; Faure, F.; Libourel, G.
2014-07-01
To investigate the crystallization of pyroxene in spinifex-textured komatiites, we undertook a series of experiments in which compositions in the CaO-MgO-Al2O3-SiO2 CMAS system were cooled rapidly in a thermal gradient. Cooling rates were generally between 5 and 10 °C h-1, but some runs were made at 100-200 °C h-1; thermal gradients were between 10 and 20 °C cm-1. These conditions reproduced those at various depths in the crust of komatiite lava flow. The starting composition was chosen to have pigeonite on the liquidus, and most of the experimental charges crystallized zoned pigeonite-diopside crystals like those in komatiite lavas. An intriguing aspect of the experimental results was their lack of reproducibility. Some experiments crystallized forsterite, whereas others that were run under similar conditions crystallized two pyroxenes and no forsterite; some experiments were totally glassy, but others crystallized entirely to pyroxene. The degree of supercooling at the onset of pyroxene crystallization was variable, from less than 25 °C to more than 110 °C. We attribute these results to the difficulty of nucleation of pyroxene under the conditions of the experiments. In some cases forsterite crystallized metastably and modified the liquid composition to inhibit pyroxene crystallization; in others no nucleation took place until a large degree of supercooling was achieved, and then pyroxene crystallized rapidly. Pigeonite crystallized under a wide range of conditions, at cooling rates from 3 to 100 °C h-1. The notion that this mineral only forms at low cooling rates is not correct.
Dyer, A.L.
1958-07-29
An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.
Sahrai, Mostafa; Abbasabadi, Majid
2018-01-20
We discuss the light pulse propagation in a one-dimensional photonic crystal doped by graphene quantum dots in a defect layer. The graphene quantum dots behave as a three-level quantum system and are driven by three coherent laser fields. It is shown that the group velocity of the transmitted and reflected pulses can be switched from subluminal to superluminal light propagation by adjusting the relative phase of the applied fields. Furthermore, it is found that by proper choice of the phase difference between applied fields, the weak probe field amplification is achieved through a one-dimensional photonic crystal. In this way, the result is simultaneous subluminal transmission and reflection.
Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Shimizu, Nobtaka; Kawano, Yoshiaki; Kumasaka, Takashi; Yamamoto, Masaki; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2010-06-01
SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors—thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions un der scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetting, Matthew W., E-mail: vetting@aecom.yu.edu; Hegde, Subray S.; Blanchard, John S.
2009-05-01
A method to modify proteins with glutaraldehyde under reducing conditions is presented. Treatment with glutaraldehyde and dimethylaminoborane was found to result in cyclic pentylation of free amines and facilitated the structural determination of a protein previously recalcitrant to the formation of diffraction quality crystals. The pentapeptide-repeat protein EfsQnr from Enterococcus faecalis protects DNA gyrase from inhibition by fluoroquinolones. EfsQnr was cloned and purified to homogeneity, but failed to produce diffraction-quality crystals in initial crystallization screens. Treatment of EfsQnr with glutaraldehyde and the strong reducing agent borane–dimethylamine resulted in a derivatized protein which produced crystals that diffracted to 1.6 Å resolution;more » their structure was subsequently determined by single-wavelength anomalous dispersion. Analysis of the derivatized protein using Fourier transform ion cyclotron resonance mass spectrometry indicated a mass increase of 68 Da per free amino group. Electron-density maps about a limited number of structurally ordered lysines indicated that the modification was a cyclic pentylation of free amines, producing piperidine groups.« less
NASA Astrophysics Data System (ADS)
Zheng, Limei; Wang, Junjun; Liu, Xuedong; Yang, Liya; Lu, Xiaoyan; Li, Yanran; Huo, Da; Lü, Weiming; Yang, Bin; Cao, Wenwu
2017-10-01
A Li and Ta modified (K, Na)NbO3 lead-free single crystal with a large size (13 × 10 × 20 mm3) has been grown by using the top-seeded solution growth method. The large size allows us to carry out an extensive study on this tetragonal crystal. We have measured a complete set of elastic, dielectric, and piezoelectric constants for the [001]C poled crystal with the single domain state. The crystal exhibits high shear piezoelectricity with d15 = 518 pC/N and k15 = 0.733, showing excellent potential in shear electro-sonic energy transformation devices. It is found that the high shear piezoelectricity originates from the vicinity of orthorhombic-tetragonal phase transition, which favors polarization rotation greatly. The orientation dependence of longitudinal dielectric, piezoelectric, and elastic constants and electromechanical coupling factor in the 3-dimentional space were calculated based on the single domain dataset. We believe that this work is of great importance for both fundamental studies and device designs for lead-free materials.
Individual behavior and pairwise interactions between microswimmers in anisotropic liquid
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg D.; Aranson, Igor S.
2015-01-01
A motile bacterium swims by generating flow in its surrounding liquid. Anisotropy of the suspending liquid significantly modifies the swimming dynamics and corresponding flow signatures of an individual bacterium and impacts collective behavior. We study the interactions between swimming bacteria in an anisotropic environment exemplified by lyotropic chromonic liquid crystal. Our analysis reveals a significant localization of the bacteria-induced flow along a line coaxial with the bacterial body, which is due to strong viscosity anisotropy of the liquid crystal. Despite the fact that the average viscosity of the liquid crystal is two to three orders of magnitude higher than the viscosity of pure water, the speed of bacteria in the liquid crystal is of the same order of magnitude as in water. We show that bacteria can transport a cargo (a fluorescent particle) along a predetermined trajectory defined by the direction of molecular orientation of the liquid crystal. We demonstrate that while the hydrodynamic interaction between flagella of two close-by bacteria is negligible, the observed convergence of the swimming speeds as well as flagella waves' phase velocities may occur due to viscoelastic interaction between the bacterial bodies.
Video-Growing Salt Crystals Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.
Template-directed control of crystal morphologies.
Meldrum, Fiona C; Ludwigs, Sabine
2007-02-12
Biominerals are characterised by unique morphologies, and it is a long-term synthetic goal to reproduce these synthetically. We here apply a range of templating routes to investigate whether a fascinating category of biominerals, the single crystals with complex forms, can be produced using simple synthetic methods. Macroporous crystals with sponge-like morphologies identical to that of sea urchin skeletal plates were produced on templating with a sponge-like polymer membrane. Similarly, patterning of individual crystal faces was achieved from the micrometer to nanometer scale through crystallisation on colloidal particle monolayers and patterned polymer thin films. These experiments demonstrate the versatility of a templating approach to producing single crystals with unique morphologies.
Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth
NASA Technical Reports Server (NTRS)
Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.
2004-01-01
Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.
NASA Technical Reports Server (NTRS)
Snell, E. H.; vanderWoerd, M. J.; Miller, M. D.; Deacon, A. M.
2004-01-01
We demonstrate the use of inbred imaging to locate crystals mounted in cryoloops and cryopreserved in a nitrogen gas stream at 100K. In the home laboratory crystals are clearly seen in the infrared images with light transmitting through the sample while irradiating the crystal from behind, and with illumination from a direction perpendicular to the direction of view. The crystals transmit and reflect infrared radiation differently from the surrounding mother liquor and loop. Because of differences in contrast between crystals and their surrounding mother liquor, it is possible to clearly identify the crystal position. In use at the synchrotron, with robotically mounted crystals the small depth of field of the lens required the recording of multiple images at different focal points. Image processing techniques were then used to produce a clear image of the crystal. The resulting infrared images and intensity profiles show that infrared imaging can be a powerful complement to visual imaging in locating crystals in cryocooled loops.
Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace
NASA Astrophysics Data System (ADS)
Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis
2018-05-01
The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Schaffers, K I; Bayramian, A J
2008-02-26
Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.
Three dimensional reflectance properties of superconductor-dielectric photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, G. N., E-mail: gnpandey@amity.edu; Sancheti, Bhagyashree; Pandey, J. P.
2016-05-06
In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.
Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M
2008-09-15
Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.
Factors affecting the morphology of isocitrate lyase crystals
NASA Technical Reports Server (NTRS)
Demattei, Robert C.; Feigelson, Robert S.; Weber, Patricia C.
1992-01-01
Isocitrate lyase crystals have been grown by the hanging drop vapor equilibration method in both 1-g and microgravity and by vapor equilibrium in small capillaries. The crystal morphologies obtained have ranged from dendritic to 'octagonal' prisms. Theoretical evaporation models have been applied to these growth regimes. The results of these analyses along with other experimental results, indicate the factors which must be controlled to produce good growth morphologies.
Kahl, Johannes; Busscher, Nicolaas; Mergardt, Gaby; Mäder, Paul; Torp, Torfinn; Ploeger, Angelika
2015-01-01
There is a need for authentication tools in order to verify the existing certification system. Recently, markers for analytical authentication of organic products were evaluated. Herein, crystallization with additives was described as an interesting fingerprint approach which needs further evidence, based on a standardized method and well-documented sample origin. The fingerprint of wheat cultivars from a controlled field trial is generated from structure analysis variables of crystal patterns. Method performance was tested on factors such as crystallization chamber, day of experiment and region of interest of the patterns. Two different organic treatments and two different treatments of the non-organic regime can be grouped together in each of three consecutive seasons. When the k-nearest-neighbor classification method was applied, approximately 84% of Runal samples and 95% of Titlis samples were classified correctly into organic and non-organic origin using cross-validation. Crystallization with additive offers an interesting complementary fingerprint method for organic wheat samples. When the method is applied to winter wheat from the DOK trial, organic and non-organic treated samples can be differentiated significantly based on pattern recognition. Therefore crystallization with additives seems to be a promising tool in organic wheat authentication. © 2014 Society of Chemical Industry.
Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
NASA Astrophysics Data System (ADS)
Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid
2017-10-01
We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.