Chen, Julian C-H; Unkefer, Clifford J
2017-01-01
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Julian C.-H.; Unkefer, Clifford Jay
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less
Chen, Julian C.-H.; Unkefer, Clifford Jay
2017-01-01
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technicalmore » outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. As a result, this review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.« less
Understanding pre-mRNA splicing through crystallography.
Espinosa, Sara; Zhang, Lingdi; Li, Xueni; Zhao, Rui
2017-08-01
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Julian C.-H.
2017-01-01
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s. PMID:28250943
Electron crystallography and aquaporins.
Schenk, Andreas D; Hite, Richard K; Engel, Andreas; Fujiyoshi, Yoshinori; Walz, Thomas
2010-01-01
Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs. Copyright © 2010 Elsevier Inc. All rights reserved.
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
1999-01-01
University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
1999-01-01
University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
A glimpse of structural biology through X-ray crystallography.
Shi, Yigong
2014-11-20
Since determination of the myoglobin structure in 1957, X-ray crystallography, as the anchoring tool of structural biology, has played an instrumental role in deciphering the secrets of life. Knowledge gained through X-ray crystallography has fundamentally advanced our views on cellular processes and greatly facilitated development of modern medicine. In this brief narrative, I describe my personal understanding of the evolution of structural biology through X-ray crystallography-using as examples mechanistic understanding of protein kinases and integral membrane proteins-and comment on the impact of technological development and outlook of X-ray crystallography.
Facilities for small-molecule crystallography at synchrotron sources.
Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R
2016-01-01
Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.
Micro-crystallography comes of age
Smith, Janet L.; Fischetti, Robert F.; Yamamoto, Masaki
2012-01-01
The latest revolution in macromolecular crystallography was incited by the development of dedicated, user friendly, micro-crystallography beamlines. Brilliant X-ray beams of diameter 20 microns or less, now available at most synchrotron sources, enable structure determination from samples that previously were inaccessible. Relative to traditional crystallography, crystals with one or more small dimensions have diffraction patterns with vastly improved signal-to-noise when recorded with an appropriately matched beam size. Structures can be solved from isolated, well diffracting regions within inhomogeneous samples. This review summarizes the technological requirements and approaches to producing micro-beams and how they continue to change the practice of crystallography. PMID:23021872
Chemical Crystallography at the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Laura; Giordano, Nico; Teat, Simon
Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.
Chemical Crystallography at the Advanced Light Source
McCormick, Laura; Giordano, Nico; Teat, Simon; ...
2017-12-18
Chemical crystallography at synchrotrons was pioneered at the Daresbury SRS station 9.8. The chemical crystallography beamlines at the Advanced Light Source seek to follow that example, with orders of magnitude more flux than a lab source, and various in situ experiments. This article thus attempts to answer why a chemist would require synchrotron X-rays, to describe the techniques available at the ALS chemical crystallography beamlines, and place the current facilities in a historical context.
Recent advances in racemic protein crystallography.
Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei
2017-09-15
Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.
Protein Crystallography from the Perspective of Technology Developments
Su, Xiao-Dong; Zhang, Heng; Terwilliger, Thomas C.; Liljas, Anders; Xiao, Junyu; Dong, Yuhui
2015-01-01
Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future. PMID:25983389
1999-04-21
University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan
2014-12-22
Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in structural and functional analysis of membrane proteins by electron crystallography
Wisedchaisri, Goragot; Reichow, Steve L.; Gonen, Tamir
2011-01-01
Summary Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. PMID:22000511
Advances in structural and functional analysis of membrane proteins by electron crystallography.
Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir
2011-10-12
Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. Copyright © 2011 Elsevier Ltd. All rights reserved.
1999-04-21
University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.
Micro-crystallography comes of age.
Smith, Janet L; Fischetti, Robert F; Yamamoto, Masaki
2012-10-01
The latest revolution in macromolecular crystallography was incited by the development of dedicated, user friendly, micro-crystallography beam lines. Brilliant X-ray beams of diameter 20 μm or less, now available at most synchrotron sources, enable structure determination from samples that previously were inaccessible. Relative to traditional crystallography, crystals with one or more small dimensions have diffraction patterns with vastly improved signal-to-noise when recorded with an appropriately matched beam size. Structures can be solved from isolated, well diffracting regions within inhomogeneous samples. This review summarizes the technological requirements and approaches to producing micro-beams and how they continue to change the practice of crystallography. Copyright © 2012 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... Production Act of 1993--Industrial Macromolecular Crystallography Association Correction In notice document... National Cooperative Research and Production Act of 1993--Industrial Nacromolecular Crystallography...--Industrial Macromolecular Crystallography Association''. 2. On the same page, in the second column, in the...
Neutron Scattering Conferences
Crystallography 2013 Location Aarhus, Denmark Contact Poul Nissen Email pn@mb.au.dk URL http://www.bioxray.au.dk /conf/gcnb2012/ June 9-22, 2013 The Zürich School of Crystallography Location Zürich, Switzerland July 8-12, 2013 International Workshop: Powder & Electron Crystallography Location Patras, Greece
Inhibition of Retinoblastoma Protein Inactivation
2017-11-01
SUBJECT TERMS cell cycle, Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY...screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor, cancer, cell-cycle inhibition, activation...modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography . 3.0 ACCOMPLISHMENTS Summary: We
X-Ray Crystallography: One Century of Nobel Prizes
ERIC Educational Resources Information Center
Galli, Simona
2014-01-01
In 2012, the United Nations General Assembly declared 2014 the International Year of Crystallography. Throughout the year 2014 and beyond, all the crystallographic associations and societies active all over the world are organizing events to attract the wider public toward crystallography and the numerous topics to which it is deeply interlinked.…
Fragment-based screening by protein crystallography: successes and pitfalls.
Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J
2012-10-08
Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.
Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls
Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J.
2012-01-01
Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality. PMID:23202926
On the state of crystallography at the dawn of the electron microscopy revolution.
Higgins, Matthew K; Lea, Susan M
2017-10-01
While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Structure-function insights of membrane and soluble proteins revealed by electron crystallography.
Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg
2013-01-01
Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.
Inhibition of Retinoblastoma Protein Inactivation
2016-09-01
Retinoblastoma protein, E2F transcription factor, high throughput screen, drug discovery, x-ray crystallography 16. SECURITY CLASSIFICATION OF: 17...developed a method to perform fragment based screening by x-ray crystallography . 2.0 KEYWORDS Retinoblastoma (Rb) pathway, E2F transcription factor...cancer, cell-cycle inhibition, activation, modulation, inhibition, high throughput screening, fragment-based screening, x-ray crystallography
Protein Crystallography in Vaccine Research and Development.
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J
2015-06-09
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.
Protein Crystallography in Vaccine Research and Development
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J.
2015-01-01
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines. PMID:26068237
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.
2015-01-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.
Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J
2015-09-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.
X-ray crystallography over the past decade for novel drug discovery - where are we heading next?
Zheng, Heping; Handing, Katarzyna B; Zimmerman, Matthew D; Shabalin, Ivan G; Almo, Steven C; Minor, Wladek
2015-01-01
Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible.
In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?
Gallat, François-Xavier; Matsugaki, Naohiro; Coussens, Nathan P; Yagi, Koichiro J; Boudes, Marion; Higashi, Tetsuya; Tsuji, Daisuke; Tatano, Yutaka; Suzuki, Mamoru; Mizohata, Eiichi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Park, Jaehyun; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nango, Eriko; Itoh, Kohji; Coulibaly, Fasséli; Tobe, Stephen; Ramaswamy, S; Stay, Barbara; Iwata, So; Chavas, Leonard M G
2014-07-17
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Inhibition of 53BP1: Potential for Restoring Homologous Recombination In Ovarian Cancer Cells
2017-08-01
crystallography ; NMR spectroscopy; Calorimetry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...ray crystallography ; NMR spectroscopy; Calorimetry 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain...originally planned. Each aim combines structural studies using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy and functional
Advanced Communication for Wireless Sensor Networks
2016-08-22
characteristic peaks of the PZT crystallography and the presence of non-desired secondary phases. Regarding the spinel thin film, a new sol gel process...particles with the desired crystallography were obtained. As shown in Figure 21 (left), the particle morphology and size can be seen using TEM...film. The crystallography of the films was characterized at different annealing temperatures in order to determine the crystallization kinetics. It
Introduction to electron crystallography.
Kühlbrandt, Werner
2013-01-01
From the earliest work on regular arrays in negative stain, electron crystallography has contributed greatly to our understanding of the structure and function of biological macromolecules. The development of electron cryo-microscopy (cryo-EM) then lead to the first groundbreaking atomic models of the membrane proteins bacteriorhodopsin and light harvesting complex II within lipid bilayers. Key contributions towards cryo-EM and electron crystallography methods included specimen preparation and vitrification, liquid-helium cooling, data collection, and image processing. These methods are now applied almost routinely to both membrane and soluble proteins. Here we outline the advances and the breakthroughs that paved the way towards high-resolution structures by electron crystallography, both in terms of methods development and biological milestones.
Cleavage crystallography of liquid metal embrittled aluminum alloys
NASA Technical Reports Server (NTRS)
Reynolds, A. P.; Stoner, G. E.
1991-01-01
The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.
High-throughput Crystallography for Structural Genomics
Joachimiak, Andrzej
2009-01-01
Protein X-ray crystallography recently celebrated its 50th anniversary. The structures of myoglobin and hemoglobin determined by Kendrew and Perutz provided the first glimpses into the complex protein architecture and chemistry. Since then, the field of structural molecular biology has experienced extraordinary progress and now over 53,000 proteins structures have been deposited into the Protein Data Bank. In the past decade many advances in macromolecular crystallography have been driven by world-wide structural genomics efforts. This was made possible because of third-generation synchrotron sources, structure phasing approaches using anomalous signal and cryo-crystallography. Complementary progress in molecular biology, proteomics, hardware and software for crystallographic data collection, structure determination and refinement, computer science, databases, robotics and automation improved and accelerated many processes. These advancements provide the robust foundation for structural molecular biology and assure strong contribution to science in the future. In this report we focus mainly on reviewing structural genomics high-throughput X-ray crystallography technologies and their impact. PMID:19765976
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Marx, A.; Epp, S. W.
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; ...
2015-08-18
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
Asymmetry in serial femtosecond crystallography data.
Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y; Neutze, Richard; Katona, Gergely
2017-03-01
Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.
Crystallographic education in the 21st century
Gražulis, Saulius; Sarjeant, Amy Alexis; Moeck, Peter; Stone-Sundberg, Jennifer; Snyder, Trevor J.; Kaminsky, Werner; Oliver, Allen G.; Stern, Charlotte L.; Dawe, Louise N.; Rychkov, Denis A.; Losev, Evgeniy A.; Boldyreva, Elena V.; Tanski, Joseph M.; Bernstein, Joel; Rabeh, Wael M.; Kantardjieff, Katherine A.
2015-01-01
There are many methods that can be used to incorporate concepts of crystallography into the learning experiences of students, whether they are in elementary school, at university or part of the public at large. It is not always critical that those who teach crystallography have immediate access to diffraction equipment to be able to introduce the concepts of symmetry, packing or molecular structure in an age- and audience-appropriate manner. Crystallography can be used as a tool for teaching general chemistry concepts as well as general research techniques without ever having a student determine a crystal structure. Thus, methods for younger students to perform crystal growth experiments of simple inorganic salts, organic compounds and even metals are presented. For settings where crystallographic instrumentation is accessible (proximally or remotely), students can be involved in all steps of the process, from crystal growth, to data collection, through structure solution and refinement, to final publication. Several approaches based on the presentations in the MS92 Microsymposium at the IUCr 23rd Congress and General Assembly are reported. The topics cover methods for introducing crystallography to undergraduate students as part of a core chemistry curriculum; a successful short-course workshop intended to bootstrap researchers who rely on crystallography for their work; and efforts to bring crystallography to secondary school children and non-science majors. In addition to these workshops, demonstrations and long-format courses, open-format crystallographic databases and three-dimensional printed models as tools that can be used to excite target audiences and inspire them to pursue a deeper understanding of crystallography are described. PMID:26664347
X-ray crystallography over the past decade for novel drug discovery – where are we heading next?
Zheng, Heping; Handing, Katarzyna B; Zimmerman, Matthew D; Shabalin, Ivan G; Almo, Steven C; Minor, Wladek
2015-01-01
Introduction Macromolecular X-ray crystallography has been the primary methodology for determining the three-dimensional structures of proteins, nucleic acids and viruses. Structural information has paved the way for structure-guided drug discovery and laid the foundations for structural bioinformatics. However, X-ray crystallography still has a few fundamental limitations, some of which may be overcome and complemented using emerging methods and technologies in other areas of structural biology. Areas covered This review describes how structural knowledge gained from X-ray crystallography has been used to advance other biophysical methods for structure determination (and vice versa). This article also covers current practices for integrating data generated by other biochemical and biophysical methods with those obtained from X-ray crystallography. Finally, the authors articulate their vision about how a combination of structural and biochemical/biophysical methods may improve our understanding of biological processes and interactions. Expert opinion X-ray crystallography has been, and will continue to serve as, the central source of experimental structural biology data used in the discovery of new drugs. However, other structural biology techniques are useful not only to overcome the major limitation of X-ray crystallography, but also to provide complementary structural data that is useful in drug discovery. The use of recent advancements in biochemical, spectroscopy and bioinformatics methods may revolutionize drug discovery, albeit only when these data are combined and analyzed with effective data management systems. Accurate and complete data management is crucial for developing experimental procedures that are robust and reproducible. PMID:26177814
Crystallography Open Database – an open-access collection of crystal structures
Gražulis, Saulius; Chateigner, Daniel; Downs, Robert T.; Yokochi, A. F. T.; Quirós, Miguel; Lutterotti, Luca; Manakova, Elena; Butkus, Justas; Moeck, Peter; Le Bail, Armel
2009-01-01
The Crystallography Open Database (COD), which is a project that aims to gather all available inorganic, metal–organic and small organic molecule structural data in one database, is described. The database adopts an open-access model. The COD currently contains ∼80 000 entries in crystallographic information file format, with nearly full coverage of the International Union of Crystallography publications, and is growing in size and quality. PMID:22477773
Crystallography and Interphase Boundary of Martensite and Bainite in Steels
NASA Astrophysics Data System (ADS)
Furuhara, Tadashi; Chiba, Tadachika; Kaneshita, Takeshi; Wu, Huidong; Miyamoto, Goro
2017-06-01
Grain refinements in lath martensite and bainite structures are crucial for strengthening and toughening of high-strength structural steels. Clearly, crystallography of transformation plays an important role in determining the "grain" sizes in these structures. In the present study, crystallography and intrinsic boundary structure of martensite and bainite are described. Furthermore, various extrinsic factors affecting variant selection and growth kinetics, such as elastic/plastic strain and alloying effects on interphase boundary migration, are discussed.
Time-resolved structural studies with serial crystallography: A new light on retinal proteins
Panneels, Valérie; Wu, Wenting; Tsai, Ching-Ju; Nogly, Przemek; Rheinberger, Jan; Jaeger, Kathrin; Cicchetti, Gregor; Gati, Cornelius; Kick, Leonhard M.; Sala, Leonardo; Capitani, Guido; Milne, Chris; Padeste, Celestino; Pedrini, Bill; Li, Xiao-Dan; Standfuss, Jörg; Abela, Rafael; Schertler, Gebhard
2015-01-01
Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination. PMID:26798817
An effective introduction to structural crystallography using 1D Gaussian atoms
NASA Astrophysics Data System (ADS)
Smith, Emily; Evans, Gwyndaf; Foadi, James
2017-11-01
The most important quantitative aspects of computational structural crystallography can be introduced in a satisfactory way using 1D truncated and periodic Gaussian functions to represent the atoms in a crystal lattice. This paper describes in detail and demonstrates 1D structural crystallography starting with the definition of such truncated Gaussians. The availability of the computer programme CRONE makes possible the repetition of the examples provided in the paper as well as the creation of new ones.
Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles
2016-12-01
Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using
Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles
2016-12-01
Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using
Bringing diffuse X-ray scattering into focus
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
2018-02-16
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
Bringing diffuse X-ray scattering into focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.; Wolff, Alexander M.; Fraser, James S.
X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.
An Optical Crystallography Instructional Package on Videocassettes.
ERIC Educational Resources Information Center
Birnie, Richard W.
1980-01-01
Describes a self-teaching instructional package on color videocassettes, supplemented with audio descriptions, prepared from original super-8mm cinephotomicrographs for use in optical crystallography courses. Production techniques are also reviewed. (Author/JN)
From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.
Dods, Robert; Båth, Petra; Arnlund, David; Beyerlein, Kenneth R; Nelson, Garrett; Liang, Mengling; Harimoorthy, Rajiv; Berntsen, Peter; Malmerberg, Erik; Johansson, Linda; Andersson, Rebecka; Bosman, Robert; Carbajo, Sergio; Claesson, Elin; Conrad, Chelsie E; Dahl, Peter; Hammarin, Greger; Hunter, Mark S; Li, Chufeng; Lisova, Stella; Milathianaki, Despina; Robinson, Joseph; Safari, Cecilia; Sharma, Amit; Williams, Garth; Wickstrand, Cecilia; Yefanov, Oleksandr; Davidsson, Jan; DePonte, Daniel P; Barty, Anton; Brändén, Gisela; Neutze, Richard
2017-09-05
Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RC vir ). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RC vir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C
2009-10-01
Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.
Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander
2014-09-01
As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Entering an era of dynamic structural biology….
Orville, Allen M
2018-05-31
A recent paper in BMC Biology presents a general method for mix-and-inject serial crystallography, to facilitate the visualization of enzyme intermediates via time-resolved serial femtosecond crystallography (tr-SFX). They apply their method to resolve in near atomic detail the cleavage and inactivation of the antibiotic ceftriaxone by a β-lactamase enzyme from Mycobacterium tuberculosis. Their work demonstrates the general applicability of time-resolved crystallography, from which dynamic structures, at atomic resolution, can be obtained.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0524-5 .
Macromolecular crystallography beamline X25 at the NSLS
Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.
2014-01-01
Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Liu, Jiangwen; Su, Guangcai; Li, Weizhou; Zeng, Jianmin; Hu, Zhiliu
2012-10-01
The crystallography of body-centered-cube to face-centered cube (bcc-to-fcc) diffusion phase transformations in a duplex stainless steel and a Cu-Zn alloy, including long axis, orientation relationship (OR), habit plane (HP), and dislocation spacing, is successfully interpreted with one-step rotation from the Bain lattice relationship by applying a simplified invariant line (IL) analysis. It is proposed that the dislocation slipping direction in the matrix plays an important role in controlling the crystallography of precipitation.
Helliwell, John R
2017-08-31
Since the Protein Data Bank (PDB) was founded in 1971, there are now over 120,000 depositions, the majority of which are from X-ray crystallography and 90% of those made use of synchrotron beamlines. At the Cambridge Structure Database (CSD), founded in 1965, there are more than 800,000 'small molecule' crystal structure depositions and a very large number of those are relevant in the biosciences as ligands or cofactors. The technology for crystal structure analysis is still developing rapidly both at synchrotrons and in home labs. Determination of the details of the hydrogen atoms in biological macromolecules is well served using neutrons as probe. Large multi-macromolecular complexes cause major challenges to crystallization; electrons as probes offer unique advantages here. Methods developments naturally accompany technology change, mainly incremental but some, such as the tuneability, intensity and collimation of synchrotron radiation, have effected radical changes in capability of biological crystallography. In the past few years, the X-ray laser has taken X-ray crystallography measurement times into the femtosecond range. In terms of applications many new discoveries have been made in the molecular biosciences. The scope of crystallographic techniques is indeed very wide. As examples, new insights into chemical catalysis of enzymes and relating ligand bound structures to thermodynamics have been gained but predictive power is seen as not yet achieved. Metal complexes are also an emerging theme for biomedicine applications. Our studies of coloration of live and cooked lobsters proved to be an unexpected favourite with the public and schoolchildren. More generally, public understanding of the biosciences and crystallography's role within the field have been greatly enhanced by the United Nations International Year of Crystallography coordinated by the International Union of Crystallography. This topical review describes each of these areas along with illustrative results to document the scope of each methodology. © 2017 The Author(s).
The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program
NASA Astrophysics Data System (ADS)
Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi
In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.
Development of the field of structural physiology
FUJIYOSHI, Yoshinori
2015-01-01
Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835
Nannenga, Brent L; Iadanza, Matthew G; Vollmar, Breanna S; Gonen, Tamir
2013-01-01
Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.
Progress in protein crystallography.
Dauter, Zbigniew; Wlodawer, Alexander
2016-01-01
Macromolecular crystallography evolved enormously from the pioneering days, when structures were solved by "wizards" performing all complicated procedures almost by hand. In the current situation crystal structures of large systems can be often solved very effectively by various powerful automatic programs in days or hours, or even minutes. Such progress is to a large extent coupled to the advances in many other fields, such as genetic engineering, computer technology, availability of synchrotron beam lines and many other techniques, creating the highly interdisciplinary science of macromolecular crystallography. Due to this unprecedented success crystallography is often treated as one of the analytical methods and practiced by researchers interested in structures of macromolecules, but not highly competent in the procedures involved in the process of structure determination. One should therefore take into account that the contemporary, highly automatic systems can produce results almost without human intervention, but the resulting structures must be carefully checked and validated before their release into the public domain.
Crystallography taken to the extreme
NASA Astrophysics Data System (ADS)
Dubrovinskaia, Natalia; Dubrovinsky, Leonid
2018-06-01
This article is a brief autobiographical account of our life in science and the path that we took in performing the research for which we were awarded the Gregori Aminoff Prize in Crystallography 2017 by the Royal Swedish Academy of Sciences. We were invited to write it by the editor-in-chief of Physica Scripta, Suzy Lidström, who charged us with the task of contributing to a series of autobiographical articles published since 2014, the International Year of Crystallography, on the lives of the Aminoff Prize winners. As this series is intended to be of particular interest to young scientists, teachers and lecturers and those researching the history of science, we tried to adhere to this purpose while writing our story. It does not pretend to be a comprehensive review either of our own scientific results or, especially, of covering the complete history of the research field of high-pressure crystallography in which we are active.
FASEB Science Research Conference on Ion Channel Regulation
2015-11-02
advanced single-molecule fluorescence and microscopy, and x-ray crystallography . This grant provided support for a conference that brought...ray crystallography . This grant provided support for a conference that brought together scientists from a wide variety of disciplines but with several
Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, A.S.; Schneider, D. K.; Skinner, J. M.
2008-09-01
The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.
Remote Access to the PXRR Macromolecular Crystallography Facilities at the NSLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Soares; D Schneider; J Skinner
2011-12-31
The most recent surge of innovations that have simplified and streamlined the process of determining macromolecular structures by crystallography owes much to the efforts of the structural genomics community. However, this was only the last step in a long evolution that saw the metamorphosis of crystallography from an heroic effort that involved years of dedication and skill into a straightforward measurement that is occasionally almost trivial. Many of the steps in this remarkable odyssey involved reducing the physical labor that is demanded of experimenters in the field. Other steps reduced the technical expertise required for conducting those experiments.
2016-06-30
enzyme. 2 6. The N-terminus of subunit B of PTE-A53 was shown by X-ray crystallography to protrude into the active site of subunit A in a symmetry... crystallography unit. 8. The tagless C23-A203L variant was over-expressed and purified , and was tested for protection against VX intoxication by Prof. Franz...2.3 A, was collected ’in house’, at the WIS X-ray Crystallography Facility. The data collected are summarized in Table 10. Figure 15: The crystals
Native sulfur/chlorine SAD phasing for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784
Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.
Crystallography Open Databases and Preservation: a World-wide Initiative
NASA Astrophysics Data System (ADS)
Chateigner, Daniel
In 2003, an international team of crystallographers proposed the Crystallography Open Database (COD), a fully-free collection of crystal structure data, in the aim of ensuring their preservation. With nearly 250000 entries, this database represents a large open set of data for crystallographers, academics and industrials, located at five different places world-wide, and included in Thomson-Reuters’ ISI. As a large step towards data preservation, raw data can now be uploaded along with «digested» structure files, and COD can be questioned by most of the crystallography-linked industrial software. The COD initiative work deserves several other open developments.
Fab Chaperone-Assisted RNA Crystallography (Fab CARC).
Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong
2016-01-01
Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.
Future directions of electron crystallography.
Fujiyoshi, Yoshinori
2013-01-01
In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.
Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development.
Brader, Mark L; Baker, Edward N; Dunn, Michael F; Laue, Thomas M; Carpenter, John F
2017-02-01
Every major biopharmaceutical company incorporates a protein crystallography unit that is central to its structure-based drug discovery efforts. Yet these capabilities are rarely leveraged toward the formal higher order structural characterization that is so challenging but integral to large-scale biologics manufacturing. Although the biotech industry laments the shortcomings of its favored biophysical techniques, x-ray crystallography is not even considered for drug development. Why not? We suggest that this is due, at least in part, to outdated thinking (for a recent industry-wide survey, see Gabrielson JP, Weiss IV WF. Technical decision-making with higher order structure data: starting a new dialogue. J Pharm Sci. 2015;104(4):1240-1245). We examine some myths surrounding protein crystallography and highlight the inherent properties of protein crystals (molecular identity, biochemical purity, conformational uniformity, and macromolecular crowding) as having practicable commonalities with today's patient-focused liquid drug products. In the new millennium, protein crystallography has become essentially a routine analytical test. Its application may aid the identification of better candidate molecules that are more amenable to high-concentration processing, formulation, and analysis thereby helping to make biologics drug development quicker, simpler, and cheaper. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V
2015-07-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W
2016-07-01
Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.
Holton, James M; Classen, Scott; Frankel, Kenneth A; Tainer, John A
2014-09-01
In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree ) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge ). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree . These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its protein-solvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. Coordinates and structure factors for the real data have been submitted to the Protein Data Bank under accession 4tws. © 2014 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.
NASA Astrophysics Data System (ADS)
Nieto, Carla I.; Sanz, Dionisia; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José
2018-03-01
The crystals of two 1,4-diazepines prepared from curcuminoid β-diketones and ethylenediamine were studied by X-ray crystallography and NMR. Their tautomerism, intramolecular hydrogen bonds and conformation were determined.
Recent progress in structural biology: lessons from our research history.
Nitta, Ryo; Imasaki, Tsuyoshi; Nitta, Eriko
2018-05-16
The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.
Where is crystallography going?
Ashton, Alun W.; Sorensen, Thomas
2018-01-01
Macromolecular crystallography (MX) has been a motor for biology for over half a century and this continues apace. A series of revolutions, including the production of recombinant proteins and cryo-crystallography, have meant that MX has repeatedly reinvented itself to dramatically increase its reach. Over the last 30 years synchrotron radiation has nucleated a succession of advances, ranging from detectors to optics and automation. These advances, in turn, open up opportunities. For instance, a further order of magnitude could perhaps be gained in signal to noise for general synchrotron experiments. In addition, X-ray free-electron lasers offer to capture fragments of reciprocal space without radiation damage, and open up the subpicosecond regime of protein dynamics and activity. But electrons have recently stolen the limelight: so is X-ray crystallography in rude health, or will imaging methods, especially single-particle electron microscopy, render it obsolete for the most interesting biology, whilst electron diffraction enables structure determination from even the smallest crystals? We will lay out some information to help you decide. PMID:29533241
Edlund, Petra; Takala, Heikki; Claesson, Elin; ...
2016-10-19
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edlund, Petra; Takala, Heikki; Claesson, Elin
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less
Pawar, Sunayna S; Koorbanally, Neil A
2014-06-01
A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2. Copyright © 2014 John Wiley & Sons, Ltd.
A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1
Clifton, Matthew C.; Dranow, David M.; Leed, Alison; Fulroth, Ben; Fairman, James W.; Abendroth, Jan; Atkins, Kateri A.; Wallace, Ellen; Fan, Dazhong; Xu, Guoping; Ni, Z. J.; Daniels, Doug; Van Drie, John; Wei, Guo; Burgin, Alex B.; Golub, Todd R.; Hubbard, Brian K.; Serrano-Wu, Michael H.
2015-01-01
Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors. PMID:25909780
Which Strategy for a Protein Crystallization Project?
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.
2003-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Filip, Xenia; Miclaus, Maria; Martin, Flavia; Filip, Claudiu; Grosu, Ioana Georgeta
2017-05-10
Herein we report the preparation and solid state structural investigation of the 1,4-dioxane-quercetin solvate. NMR crystallography methods were employed for crystal structure determination of the solvate from microcrystalline powder. The stability of the compound relative to other reported quercetin solvates is discussed and found to be in perfect agreement with the hydrogen bonding networks/supra-molecular architectures formed in each case. It is also clearly shown that NMR crystallography represents an ideal analytical tool in such cases when hydrogen-bonding networks are required to be constrained at a high accuracy level. Copyright © 2017 Elsevier B.V. All rights reserved.
Examination of Cement Pastes Hydrated Phases, and Synthetic Products by X-Ray Diffraction
1972-04-01
International Union o, Crystallography Commission on Crystallo- graphic Data, Powder Data, Journal of Applied Crystallography, Vol 4, pp 81-86, 1971 . 21...Papes, Research Series 1, Building Research Station, 1962. 25. l,, Dosch, Rbntgen-Ceinstrukturuntersuchu , luftemp’indlicher pulverprlparate, Zement- Kall
Tinker Toys, Crystallography, and the Introductory Mineralogy Course
ERIC Educational Resources Information Center
Buseck, Peter R.
1970-01-01
Describes the use of Tinker Toys to construct three dimensional models of crystals useful in illustrating many concepts of crystallography. Space lattices representing all of the Bravais types can be constructed. Also discusses the use of appropriate models to demonstrate the various symmetry operations. Bibliography. (LC)
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Present and future of membrane protein structure determination by electron crystallography.
Ubarretxena-Belandia, Iban; Stokes, David L
2010-01-01
Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. Copyright © 2010 Elsevier Inc. All rights reserved.
Present and future of membrane protein structure determination by electron crystallography
Ubarretxena-Belandia, Iban; Stokes, David L.
2011-01-01
Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This review describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins. PMID:21115172
Energetic Materials for Bio-Agent Destruction
2017-03-01
Delocalization of electrons in 4 The structure of 5 was obtained by X-ray single crystal crystallography . The crystallographic data are summarized in...4 22.2 49.6 - - 8.36 5 18.8 41.7 - - 5.07 The structure of 5 was obtained by X-ray single crystal crystallography . The
Using Two-Dimensional Colloidal Crystals to Understand Crystallography
ERIC Educational Resources Information Center
Bosse, Stephanie A.; Loening, Nikolaus M.
2008-01-01
X-ray crystallography is an essential technique for modern chemistry and biochemistry, but it is infrequently encountered by undergraduate students owing to lack of access to equipment, the time-scale for generating diffraction-quality molecular crystals, and the level of mathematics involved in analyzing the resulting diffraction patterns.…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Industrial Nacromolecular Crystallography Association Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), Industrial Nacromolecular Crystallography Association (``INCA...
Novel Catalytic Mechanisms For The Chemical Reduction Of Carbon Dioxide To Energy-Dense Liquids
2016-12-14
spectroscopy and X-ray crystallography . Synchrotron radiation techniques such as EXAFS and XANES are being used to characterize the structure and...Chemistry and Catalysis using Soft X-rays at LCLS” 23rd Congress and General Assembly of the International Union of Crystallography , Montreal (2014). A
A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps
2016-03-26
Gault, S.P. Ringer, J.M. Cairney, Atom probe crystallography : characterization of grain boundary orientation relationships in nanocrystalline...J.M. Cairney, Atom probe crystallography : atomic- scale 3-D orientation mapping, Scr. Mater. 66 (11) (2012) 907. L. Yao /MethodsX 3 (2016) 268–273 273
Models as an Aid to Courses in Crystallography and Mineralogy.
ERIC Educational Resources Information Center
Brady, K. T.
1983-01-01
Three models used in teaching crystallography/mineralogy at the University of Technology (Papua, New Guinea) are described. These include stereographic projection model, optical indicatrix models for Istropic/Anisotropic minerals, and model showing effect of anisotropic minerals under crossed polars. Photographs of the models are also included.…
Johann Deisenhofer, Crystallography, and Proteins
research using X-ray crystallography to elucidate for the first time the three-dimensional structure of a large membrane-bound protein molecule. This structure helped explain the process of photosynthesis, by a protein structure determination that relied on complementary features of two different beam lines
Sample manipulation and data assembly for robust microcrystal synchrotron crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian
With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less
Iterative projection algorithms for ab initio phasing in virus crystallography.
Lo, Victor L; Kingston, Richard L; Millane, Rick P
2016-12-01
Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.
Beyond crystallography: Diffractive imaging using coherent x-ray light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J.; Ishikawa, T.; Robinson, I. K.
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imagingmore » in the 21st century.« less
Racemic protein crystallography.
Yeates, Todd O; Kent, Stephen B H
2012-01-01
Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.
Sample manipulation and data assembly for robust microcrystal synchrotron crystallography
Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian; ...
2018-04-19
With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less
Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem
ERIC Educational Resources Information Center
De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo
2012-01-01
The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…
Frontiers of Crystallography: A Project-Based Research-Led Learning Exercise
ERIC Educational Resources Information Center
Wilson, Chick C.; Parkin, Andrew; Thomas, Lynne H.
2012-01-01
A highly interactive research-led learning session for chemistry undergraduates is described, which aims to lead students to an awareness of the applications of crystallography technique through a mentored hands-on crystal structure solution and refinement session. The research-based environment is inherent throughout the 4.5 h program and is…
Forty years of collaborative computational crystallography.
Agirre, Jon; Dodson, Eleanor
2018-01-01
A brief overview is provided of the history of collaborative computational crystallography, with an emphasis on the Collaborative Computational Project No. 4. The key steps in its development are outlined, with consideration also given to the underlying reasons which contributed, and ultimately led to, the unprecedented success of this venture. © 2017 The Protein Society.
Fixed Target combined with Spectral Mapping: Approaching 100% Hit Rates for Serial Crystallography
Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W.; Sherrell, Darren A.; Eger, Bryan T.; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T.; Owen, Robin L.; Pearson, Arwen R.; Stuart, David I.; Ernst, Oliver P.; Mueller-Werkmeister, Henrike M.; Miller, R. J. Dwayne
2018-01-01
The advent of ultrafast highly brilliant coherent X-ray Free Electron Laser sources has driven the development of novel structure determination approaches for proteins, and promises visualisation of protein dynamics on the fastest timescales with full atomic resolution. Significant efforts are being applied to the development of sample delivery systems that allow these unique sources to be most efficiently exploited for high throughput serial femtosecond crystallography. We present here the next generation of a fixed target crystallography chip designed for rapid and reliable delivery of up to 11,259 protein crystals with high spatial precision. An experimental scheme for predetermining the positions of crystals in the chip by means of in-situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure with a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage, and allowing the method to be applied to systems where the number of crystals is limited. PMID:27487825
Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-01-01
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881
Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.
Oghbaey, Saeed; Sarracini, Antoine; Ginn, Helen M; Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W; Sherrell, Darren A; Eger, Bryan T; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T; Owen, Robin L; Pearson, Arwen R; Stuart, David I; Ernst, Oliver P; Mueller-Werkmeister, Henrike M; Miller, R J Dwayne
2016-08-01
The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A.; Pedersen, Lars C.; Wlodawer, Alexander; Chapman, Martin D.
2015-01-01
Current knowledge of molecules involved in immunology and allergic disease results from significant contributions of X-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and X-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact three-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and in mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind lipopolysaccharides may also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. This surface in turn determines antibody specificity and cross-reactivity that are important factors for the selection of allergen panels used for molecular diagnosis and for the interpretation of clinical symptoms. This review celebrates the contributions of X-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. PMID:26145985
Pomés, Anna; Chruszcz, Maksymilian; Gustchina, Alla; Minor, Wladek; Mueller, Geoffrey A; Pedersen, Lars C; Wlodawer, Alexander; Chapman, Martin D
2015-07-01
Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.
The future of crystallography in drug discovery
Zheng, Heping; Hou, Jing; Zimmerman, Matthew D; Wlodawer, Alexander; Minor, Wladek
2014-01-01
Introduction X-ray crystallography plays an important role in structure-based drug design (SBDD), and accurate analysis of crystal structures of target macromolecules and macromolecule–ligand complexes is critical at all stages. However, whereas there has been significant progress in improving methods of structural biology, particularly in X-ray crystallography, corresponding progress in the development of computational methods (such as in silico high-throughput screening) is still on the horizon. Crystal structures can be overinterpreted and thus bias hypotheses and follow-up experiments. As in any experimental science, the models of macromolecular structures derived from X-ray diffraction data have their limitations, which need to be critically evaluated and well understood for structure-based drug discovery. Areas covered This review describes how the validity, accuracy and precision of a protein or nucleic acid structure determined by X-ray crystallography can be evaluated from three different perspectives: i) the nature of the diffraction experiment; ii) the interpretation of an electron density map; and iii) the interpretation of the structural model in terms of function and mechanism. The strategies to optimally exploit a macromolecular structure are also discussed in the context of ‘Big Data’ analysis, biochemical experimental design and structure-based drug discovery. Expert opinion Although X-ray crystallography is one of the most detailed ‘microscopes’ available today for examining macromolecular structures, the authors would like to re-emphasize that such structures are only simplified models of the target macromolecules. The authors also wish to reinforce the idea that a structure should not be thought of as a set of precise coordinates but rather as a framework for generating hypotheses to be explored. Numerous biochemical and biophysical experiments, including new diffraction experiments, can and should be performed to verify or falsify these hypotheses. X-ray crystallography will find its future application in drug discovery by the development of specific tools that would allow realistic interpretation of the outcome coordinates and/or support testing of these hypotheses. PMID:24372145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Kalyaneswar; Pentelute, Brad L.; Tereshko, Valentina
2009-04-08
Racemic protein crystallography, enabled by total chemical synthesis, has allowed us to determine the X-ray structure of native scorpion toxin BmBKTx1; direct methods were used for phase determination. This is the first example of a protein racemate that crystallized in space group I41/a.
ERIC Educational Resources Information Center
Campbell, Michael G.; Powers, Tamara M.; Zheng, Shao-Liang
2016-01-01
Implementing the case study method in a practical X-ray crystallography course designed for graduate or upper-level undergraduate chemistry students is described. Compared with a traditional lecture format, assigning small groups of students to examine literature case studies encourages more active engagement with the course material and…
X-ray Crystallography Facility
NASA Technical Reports Server (NTRS)
2000-01-01
Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.
Beyond crystallography: diffractive imaging using coherent x-ray light sources.
Miao, Jianwei; Ishikawa, Tetsuya; Robinson, Ian K; Murnane, Margaret M
2015-05-01
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century. Copyright © 2015, American Association for the Advancement of Science.
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
X-rays in the Cryo-EM Era: Structural Biology’s Dynamic Future
Shoemaker, Susannah C.; Ando, Nozomi
2018-01-01
Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa), while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kDa in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions on the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology. PMID:29227642
ERIC Educational Resources Information Center
Guzei, Ilia A.
2014-01-01
In honor of the 2014 International Year of Crystallography, the first Wisconsin Crystal Growing Competition was successfully organized and conducted. High school students from 26 schools across the state competed for prizes by growing large crystals of CuSO[subscript4]·5(H[subscript2]O). This paper describes how the event was planned and carried…
Using the Plan View to Teach Basic Crystallography in General Chemistry
ERIC Educational Resources Information Center
Cushman, Cody V.; Linford, Matthew R.
2015-01-01
The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…
2018-03-19
calculations using a temperature of 298 K. 15. SUBJECT TERMS 3,5-dinitro-1,3,5-oxadiazinane (DOD), X-ray crystallography , Raman, energetic material...X-ray analysis. 2.2 Characterization X-ray Crystallography . DOD crystals were characterized with a SuperNova, Dualflex, EosS2 diffractometer using
Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter
2016-08-26
Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.
Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...
2015-07-30
Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less
Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.
Oksanen, Esko; Chen, Julian C-H; Fisher, Suzanne Zoë
2017-04-07
Abstract : The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.
Neutron crystallography for the study of hydrogen bonds in macromolecules
Oksanen, Esko; Chen, Julian C.; Fisher, Zoe
2017-04-07
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less
Neutron crystallography for the study of hydrogen bonds in macromolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksanen, Esko; Chen, Julian C.; Fisher, Zoe
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, themore » protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. Finally, this article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.« less
Wesolowski, Steven S; Pivonka, Don E
2013-07-15
The absolute stereochemistry of chiral drugs is usually established via X-ray crystallography. However, vibrational circular dichroism (VCD) spectroscopy coupled with quantum mechanics simulations offers a rapid alternative to crystallography and is readily applied to both crystalline and non-crystalline samples. VCD is an effective complement to X-ray analysis of drug candidates, and it can be used as a high-throughput means of assessing absolute stereochemistry at all phases of the discovery process (hundreds of assignments per year). The practical implementation (or fee-for-service outsourcing) of VCD and selected case studies are illustrated with an emphasis on providing utility and impact to pharmaceutical discovery programs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liquid sample delivery techniques for serial femtosecond crystallography
Weierstall, Uwe
2014-01-01
X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163
Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.
Weiss, Manfred S
2017-01-01
For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.
Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.
Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.
Deformation and Failure of Protein Materials in Physiologically Extreme Conditions and Disease
2009-03-01
resonance (NMR) spectroscopy and X- ray crystallography have advanced our ability to identify 3D protein structures57. Site-specific studies using NMR, a... ray crystallography, providing structural and temporal information about mechanisms of deformation and assembly (for example in intermediate...tens of thousands of 3D atomistic protein structures, identifying the structure of numerous proteins from varying species sources60. X- ray
X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes.
Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo
2015-02-01
The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M
2014-11-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; ...
2014-10-09
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less
High-throughput methods for electron crystallography.
Stokes, David L; Ubarretxena-Belandia, Iban; Gonen, Tamir; Engel, Andreas
2013-01-01
Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.
Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.
2014-01-01
X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789
Sakabe, N; Sakabe, K; Sasaki, K
2004-01-01
Galaxy is a Weissenberg-type high-speed high-resolution and highly accurate fully automatic data-collection system using two cylindrical IP-cassettes each with a radius of 400 mm and a width of 450 mm. It was originally developed for static three-dimensional analysis using X-ray diffraction and was installed on bending-magnet beamline BL6C at the Photon Factory. It was found, however, that Galaxy was also very useful for time-resolved protein crystallography on a time scale of minutes. This has prompted us to design a new IP-conveyor-belt Weissenberg-mode data-collection system called Super Galaxy for time-resolved crystallography with improved time and crystallographic resolution over that achievable with Galaxy. Super Galaxy was designed with a half-cylinder-shaped cassette with a radius of 420 mm and a width of 690 mm. Using 1.0 A incident X-rays, these dimensions correspond to a maximum resolutions of 0.71 A in the vertical direction and 1.58 A in the horizontal. Upper and lower screens can be used to set the frame size of the recorded image. This function is useful not only to reduce the frame exchange time but also to save disk space on the data server. The use of an IP-conveyor-belt and many IP-readers make Super Galaxy well suited for time-resolved, monochromatic X-ray crystallography at a very intense third-generation SR beamline. Here, Galaxy and a conceptual design for Super Galaxy are described, and their suitability for use as data-collection systems for macromolecular time-resolved monochromatic X-ray crystallography are compared.
Open Access Internet Resources for Nano-Materials Physics Education
NASA Astrophysics Data System (ADS)
Moeck, Peter; Seipel, Bjoern; Upreti, Girish; Harvey, Morgan; Garrick, Will
2006-05-01
Because a great deal of nano-material science and engineering relies on crystalline materials, materials physicists have to provide their own specific contributions to the National Nanotechnology Initiative. Here we briefly review two freely accessible internet-based crystallographic databases, the Nano-Crystallography Database (http://nanocrystallography.research.pdx.edu) and the Crystallography Open Database (http://crystallography.net). Information on over 34,000 full structure determinations are stored in these two databases in the Crystallographic Information File format. The availability of such crystallographic data on the internet in a standardized format allows for all kinds of web-based crystallographic calculations and visualizations. Two examples of which that are dealt with in this paper are: interactive crystal structure visualizations in three dimensions and calculations of lattice-fringe fingerprints for the identification of unknown nanocrystals from their atomic-resolution transmission electron microscopy images.
Difficult macromolecular structures determined using X-ray diffraction techniques.
Hernández-Santoyo, Alejandra
2012-07-01
Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.
How cryo‐electron microscopy and X‐ray crystallography complement each other
Wang, Jia‐Wei
2016-01-01
Abstract With the ability to resolve structures of macromolecules at atomic resolution, X‐ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo‐EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X‐ray crystallography and cryo‐EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. PMID:27543495
Mix-and-diffuse serial synchrotron crystallography
Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...
2017-10-09
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less
Mix-and-diffuse serial synchrotron crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less
A Bright Future for Serial Femtosecond Crystallography with XFELs.
Johansson, Linda C; Stauch, Benjamin; Ishchenko, Andrii; Cherezov, Vadim
2017-09-01
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs. Copyright © 2017 Elsevier Ltd. All rights reserved.
How cryo-electron microscopy and X-ray crystallography complement each other.
Wang, Hong-Wei; Wang, Jia-Wei
2017-01-01
With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms. © 2016 The Protein Society.
A readout system for X-ray powder crystallography
NASA Astrophysics Data System (ADS)
Loukas, D.; Haralabidis, N.; Pavlidis, A.; Karvelas, E.; Psycharis a, K. Misiakos, V.; Mousa, J.; Dre, Ch.
2000-06-01
A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 μm pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.
Determination of X-ray flux using silicon pin diodes
Owen, Robin L.; Holton, James M.; Schulze-Briese, Clemens; Garman, Elspeth F.
2009-01-01
Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. PMID:19240326
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe
2015-01-01
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654
Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.
Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton
2014-07-17
Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.
XAFS and Protein Crystallography Beamline BL38B1 at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanida, Hajime; Miura, Keiko; Takeshita, Kunikazu
2004-05-12
The SPring-8 bending magnet beamline BL38B1 is designed for R and D of optics, detectors, experiments for XAFS and protein X-ray crystallography (PX). This beamline has a multi-purpose hutch for two experimental stations of XAFS and PX, and removable optical benches used for R and D of detectors and instruments. The design and the performance of the beamline are presented.
Craig, George D.; Glass, Robert; Rupp, Bernhard
1997-01-01
A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.
2017-03-29
310 helix. Green: this work. Cyans: solution NMR RSV CA structure in PDB entry 1D1D.[18] Magentas: X-ray crystallography structure of flat hexameric...to combine cryo-electron microscopy and X-ray crystallography , Methods, 49 (2009) 174-180. [8] K.Y. Chan, J. Gumbart, R. McGreevy, J.M. Watermeyer
Oil-free hyaluronic acid matrix for serial femtosecond crystallography
NASA Astrophysics Data System (ADS)
Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So
2016-04-01
The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.
Direct methods in protein crystallography.
Karle, J
1989-11-01
It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.
Chatake, Toshiyuki; Fujiwara, Satoru
2016-01-01
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquelle, Nicolas; CNRS, IBS, 38044 Grenoble; CEA, IBS, 38044 Grenoble
A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able tomore » read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim
2014-01-01
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Czjzek, Mirjam; Ficko-Blean, Elizabeth
2017-01-01
The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.
Structural dynamics of lipid bilayers using ultrafast electron crystallography
NASA Astrophysics Data System (ADS)
Chen, Songye; Seidel, Marco; Zewail, Ahmed
2007-03-01
The structures and dynamics of bilayers of crystalline fatty acids and phospholipids were studied using ultrafast electron crystallography (UEC). The systems investigated are arachidic (eicosanoic) acid and dimyristoyl phosphatidic acid (DMPA), deposited on a substrate by the Langmuir-Blodgett technique. The atomic structures under different preparation conditions were determined. The structural dynamics following a temperature jump induced by femtosecond laser on the substrates were obtained and compared to the equilibrium temperature dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G; Gati, Cornelius; Laksmono, Hartawan; Dao, E Han; Gul, Sheraz; Fuller, Franklin; Kern, Jan; Chatterjee, Ruchira; Ibrahim, Mohamed; Brewster, Aaron S; Young, Iris D; Michels-Clark, Tara; Aquila, Andrew; Liang, Mengning; Hunter, Mark S; Koglin, Jason E; Boutet, Sébastien; Junco, Elia A; Hayes, Brandon; Bogan, Michael J; Hampton, Christina Y; Puglisi, Elisabetta V; Sauter, Nicholas K; Stan, Claudiu A; Zouni, Athina; Yano, Junko; Yachandra, Vittal K; Soltis, S Michael; Puglisi, Joseph D; DeMirci, Hasan
2016-01-01
We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Craig, G.D.; Glass, R.; Rupp, B.
1997-01-28
A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.
Resolution of structural heterogeneity in dynamic crystallography
Ren, Zhong; Chan, Peter W. Y.; Moffat, Keith; Pai, Emil F.; Royer, William E.; Šrajer, Vukica; Yang, Xiaojing
2013-01-01
Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic ‘structural changes’ are often indirectly inferred from ‘structural differences’ by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods. PMID:23695239
Gražulis, Saulius; Daškevič, Adriana; Merkys, Andrius; Chateigner, Daniel; Lutterotti, Luca; Quirós, Miguel; Serebryanaya, Nadezhda R.; Moeck, Peter; Downs, Robert T.; Le Bail, Armel
2012-01-01
Using an open-access distribution model, the Crystallography Open Database (COD, http://www.crystallography.net) collects all known ‘small molecule / small to medium sized unit cell’ crystal structures and makes them available freely on the Internet. As of today, the COD has aggregated ∼150 000 structures, offering basic search capabilities and the possibility to download the whole database, or parts thereof using a variety of standard open communication protocols. A newly developed website provides capabilities for all registered users to deposit published and so far unpublished structures as personal communications or pre-publication depositions. Such a setup enables extension of the COD database by many users simultaneously. This increases the possibilities for growth of the COD database, and is the first step towards establishing a world wide Internet-based collaborative platform dedicated to the collection and curation of structural knowledge. PMID:22070882
Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J
2015-02-01
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.
Pink-beam serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meents, A.; Wiedorn, M. O.; Srajer, V.
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
Combining X-ray and neutron crystallography with spectroscopy.
Kwon, Hanna; Smith, Oliver; Raven, Emma Lloyd; Moody, Peter C E
2017-02-01
X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H + ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction.
Serial Millisecond Crystallography of Membrane Proteins.
Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg
2016-01-01
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.
Applied and implied semantics in crystallographic publishing
2012-01-01
Background Crystallography is a data-rich, software-intensive scientific discipline with a community that has undertaken direct responsibility for publishing its own scientific journals. That community has worked actively to develop information exchange standards allowing readers of structure reports to access directly, and interact with, the scientific content of the articles. Results Structure reports submitted to some journals of the International Union of Crystallography (IUCr) can be automatically validated and published through an efficient and cost-effective workflow. Readers can view and interact with the structures in three-dimensional visualization applications, and can access the experimental data should they wish to perform their own independent structure solution and refinement. The journals also layer on top of this facility a number of automated annotations and interpretations to add further scientific value. Conclusions The benefits of semantically rich information exchange standards have revolutionised the scholarly publishing process for crystallography, and establish a model relevant to many other physical science disciplines. PMID:22932420
Resolution of structural heterogeneity in dynamic crystallography.
Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing
2013-06-01
Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.
Pink-beam serial crystallography
Meents, A.; Wiedorn, M. O.; Srajer, V.; ...
2017-11-03
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less
Protein crystallization: Eluding the bottleneck of X-ray crystallography
Holcomb, Joshua; Spellmon, Nicholas; Zhang, Yingxue; Doughan, Maysaa; Li, Chunying; Yang, Zhe
2017-01-01
To date, X-ray crystallography remains the gold standard for the determination of macromolecular structure and protein substrate interactions. However, the unpredictability of obtaining a protein crystal remains the limiting factor and continues to be the bottleneck in determining protein structures. A vast amount of research has been conducted in order to circumvent this issue with limited success. No single method has proven to guarantee the crystallization of all proteins. However, techniques using antibody fragments, lipids, carrier proteins, and even mutagenesis of crystal contacts have been implemented to increase the odds of obtaining a crystal with adequate diffraction. In addition, we review a new technique using the scaffolding ability of PDZ domains to facilitate nucleation and crystal lattice formation. Although in its infancy, such technology may be a valuable asset and another method in the crystallography toolbox to further the chances of crystallizing problematic proteins. PMID:29051919
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Céolin, R; Rietveld, I-B
2016-01-01
After a short review of the controversies surrounding the discovery of crystalline polymorphism in relation to our present day understanding, the methods of how to solve the stability hierarchy of different polymorphs will be briefly discussed. They involve either theoretical calculations, or, more commonly, experimental methods based on classical thermodynamics. The experimental approach is mainly carried out using heat-exchange data associated to the transition of one form into another. It will be demonstrated that work-related data associated to the phase transition should be taken into account and the role of X-ray crystallography therein will be discussed. X-ray crystallography has become increasingly precise and can nowadays provide specific volumes and their differences as a function of temperature, and also as a function of pressure, humidity, and time. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng
2009-01-01
As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.
High-speed fixed-target serial virus crystallography
Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim; Sutton, Geoff; Harlos, Karl; Walter, Thomas S.; Meyer, Jan; Fischer, Pontus; Duman, Ramona; Vartiainen, Ismo; Reime, Bernd; Warmer, Martin; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Sauter, Nicholas K.; Kotecha, Abhay; Kelly, James; Rowlands, David J.; Sikorsky, Marcin; Nelson, Silke; Damiani, Daniel S.; Alonso-Mori, Roberto; Ren, Jingshan; Fry, Elizabeth E.; David, Christian; Stuart, David I.; Wagner, Armin; Meents, Alke
2017-01-01
We report a method for serial X-ray crystallography at X-ray free electron lasers (XFELs), which allows for full use of the current 120 Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micro-patterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery we were able to determine the crystal structures of a picornavirus, bovine enterovirus 2 (BEV2), and the cytoplasmic polyhedrosis virus type 18 polyhedrin. Total data collection times were less than 14 and 10 minutes, respectively. Our method requires only micrograms of sample and will therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for the most efficient use of the limited beamtime available at XFELs and should enable a substantial increase in sample throughput at these facilities. PMID:28628129
Dunn, Michael F.
2013-01-01
Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR crystallography for application to enzyme catalysis. We begin with a brief introduction to NMR crystallography and then define the process that we have employed to probe the active site in the β-subunit of tryptophan synthase with unprecedented atomic-level resolution. This approach has resulted in a novel structural hypothesis for the protonation state of the quinonoid intermediate in tryptophan synthase and its surprising role in directing the next step in the catalysis of L-Trp formation. PMID:23537227
Crystallography: past and present
NASA Astrophysics Data System (ADS)
Hodeau, J.-L.; Guinebretiere, R.
2007-12-01
In the 19th century, crystallography referred to the study of crystal shapes. Such studies by Haüy and Bravais allowed the establishment of important hypotheses such as (i) “les molécules intégrantes qui sont censées être les plus petits solides que l’on puisse extraire d’un minéral” [1], (ii) the definition of the crystal lattice and (iii) “le cristal est clivable parallèlement à deux ou trois formes cristallines” [2]. This morphological crystallography defined a crystal like “a chemically homogeneous solid, wholly or partly bounded by natural planes that intersect at predetermined angles” [3]. It described the main symmetry elements and operations, nomenclatures of different crystal forms and also the theory of twinning. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as “any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that “diffracts” an incident X-ray beam” [3]. Mathematical tools like the Patterson methods, the direct methods, were developed. The way for solving crystalline structure was opened first for simple compounds and at that time crystallography was associated mainly with perfect crystals. In the fifties, crystallographers already had most apparatus and fundamental methods at their disposal; however, we had to wait for the development of computers to see the full use of these tools. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. Nowadays, one of the new frontiers for crystallographers is to relate the crystal structure to its physical-chemical-biological properties, this means that an accurate structural determination is needed to focus on a selective part of the structure (chemical order, anisotropy, charge transfer, magnetic order) versus an external parameter like temperature, pressure, magnetic or electric field. Modern crystallography is also extended to the study of very small crystals, powders, ill-ordered or non-crystallized materials. Thus presently, crystallography is concerned with any solid that “scatters” an incident beam. Nevertheless, as quoted by A. Guinier, “the problems facing crystallographers have only changed, ... new ones have appeared which require reflection and imagination, ... and which in turn may still bring much joy to all those who like crystallography” [4]. Such developments open up crystallography to modern materials like artificial ones and nanostructures with low- and/or multi-scaled-periodicities and/or extremely small “crystal size” and to materials of the “real world”, with mixtures of phases and/or amorphous contribution and/or defects, a common characteristic of ancient materials analysed in patrimonial research. In our contribution we will show by selected examples that these improvements were allowed (i) by the use of powerful sources, apparatus and detectors which allow micro-diffraction, in-situ diffraction, spectroscopy, resonant scattering, inelastic scattering, coherent scattering, (ii) by the development of methods like diffraction anomalous fine structure (DAFS), pair distribution function (PDF), simulated annealing, single object reconstruction, (iii) by combination of scattering and spectroscopy and by combination of scattering and microscopy. Such combination of different approaches is very efficient and, as said by H. Curien at the IUCr Bordeaux Congress in 1990, “in crystallography, there is a constant alternation between the crystal space and its associated reciprocal space, ... the alternation between experiment and model building is another feature of crystallography activity ..., the crystallographer relies both on his computer and on his diffractometer ..., all these dualistic complementarities are responsible for the fact that crystallographers tend to waver between the description of atomic structures and the explanation of macroscopic properties of solid matter” [5].
Bryce, David L.
2017-01-01
This topical review provides a brief overview of recent developments in NMR crystallography and related NMR approaches to studying the properties of molecular and ionic solids. Areas of complementarity with diffraction-based methods are underscored. These include the study of disordered systems, of dynamic systems, and other selected examples where NMR can provide unique insights. Highlights from the literature as well as recent work from my own group are discussed. PMID:28875022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Sierra, Raymond G.; Gati, Cornelius; Laksmono, Hartawan; ...
2015-11-30
In this paper, we describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. Finally, we used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).
Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.
Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro
2015-12-01
Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.
Caulkins, Bethany G; Young, Robert P; Kudla, Ryan A; Yang, Chen; Bittbauer, Thomas J; Bastin, Baback; Hilario, Eduardo; Fan, Li; Marsella, Michael J; Dunn, Michael F; Mueller, Leonard J
2016-11-23
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate C α and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.
Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz
2013-11-01
The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. © 2013 FEBS.
Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz
2014-01-01
The number of macromolecular structures deposited in the Protein Data Bank now approaches 100 000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. PMID:24034303
Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael
2018-04-24
This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.
Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei
2016-09-20
Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include methods for conducting crystallization experiments in syringes, detecting and characterizing the crystal samples, optimizing crystal density, loading microcrystal laden LCP into the injector device and delivering the sample to the beam for data collection.
"XANSONS for COD": a new small BOINC project in crystallography
NASA Astrophysics Data System (ADS)
Neverov, Vladislav S.; Khrapov, Nikolay P.
2018-04-01
"XANSONS for COD" (http://xansons4cod.com) is a new BOINC project aimed at creating the open-access database of simulated x-ray and neutron powder diffraction patterns for nanocrystalline phase of materials from the collection of the Crystallography Open Database (COD). The project uses original open-source software XaNSoNS to simulate diffraction patterns on CPU and GPU. This paper describes the scientific problem this project solves, the project's internal structure, its operation principles and organization of the final database.
Low-dose fixed-target serial synchrotron crystallography.
Owen, Robin L; Axford, Danny; Sherrell, Darren A; Kuo, Anling; Ernst, Oliver P; Schulz, Eike C; Miller, R J Dwayne; Mueller-Werkmeister, Henrike M
2017-04-01
The development of serial crystallography has been driven by the sample requirements imposed by X-ray free-electron lasers. Serial techniques are now being exploited at synchrotrons. Using a fixed-target approach to high-throughput serial sampling, it is demonstrated that high-quality data can be collected from myoglobin crystals, allowing room-temperature, low-dose structure determination. The combination of fixed-target arrays and a fast, accurate translation system allows high-throughput serial data collection at high hit rates and with low sample consumption.
Interactions that know no boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).
Interactions that know no boundaries
Wall, Michael E.
2018-03-01
Deviations from an ideal crystal lead to diffuse scattering (DS) intensity, both between and beneath the Bragg peaks in diffraction patterns (Guinier, 1963). First characterized using simple ionic crystals in early studies of X-ray diffraction (Lonsdale, 1942), DS has a rich history (Welberry & Weber, 2016) and is a well established technique in smallmolecule crystallography (Welberry, 2004). DS studies in macromolecular crystallography began more recently (Phillips et al., 1980) and now the potential for obtaining information about protein motions is fueling the growing interest in DS (Meisburger et al., 2017).
Does crystallography need a new name?
Argryriou, Dimitri
2017-07-01
The discovery of X-rays and their use in the observation of diffraction from crystals placed crystallography at the forefront of science at the beginning of the last century. The combination of this new tool, together with the emerging understanding of the symmetry of crystals, exposed the locations of atoms in matter and allowed us to start understanding macroscopic properties from an atomic perspective for the first time. These discoveries transformed physics and chemistry bringing to light new scientific fields such as materials science and structural biology.
Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources.
Schmidt, Marius
2017-01-01
Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.
Does crystallography need a new name?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argryriou, Dimitri
The discovery of X-rays and their use in the observation of diffraction from crystals placed crystallography at the forefront of science at the beginning of the last century. The combination of this new tool, together with the emerging understanding of the symmetry of crystals, exposed the locations of atoms in matter and allowed us to start understanding macroscopic properties from an atomic perspective for the first time. These discoveries transformed physics and chemistry bringing to light new scientific fields such as materials science and structural biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki
2007-01-19
A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings.
Mizutani, Kimihiko
2015-01-01
Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.
Bashan, Anat; Yonath, Ada
2009-01-01
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655
High Pressure X-Ray Crystallography With the Diamond Cell at NIST/NBS
Piermarini, Gasper J.
2001-01-01
Scientists in the Crystallography Section at NIST/NBS made several outstanding contributions which greatly promoted the development and advancement of high pressure x-ray crystallography during the second-half of the 20th century. These milestone achievements or “firsts” included: (1) the invention of the lever-arm type diamond anvil cell (DAC) in 1958; (2) the development of DAC technology for powder x-ray diffraction at high pressure in 1960; (3) the introduction of DAC methodology for single crystal x-ray diffraction at high pressure in 1964; (4) the invention of the optical fluorescence ruby method of pressure measurement in 1971; and (5) the discovery of hydrostatic pressure-transmitting media useful to unprecedented pressures for that time. These achievements provided the spark that ignited the explosion of activity in high pressure research that occurred in laboratories throughout the world during the latter part of the 20th century. It is still going on, unabated, today. An estimated 5000 DACs were built during the last 40 years. PMID:27500054
Keedy, Daniel A; Hill, Zachary B; Biel, Justin T; Kang, Emily; Rettenmaier, T Justin; Brandao-Neto, Jose; Pearce, Nicholas M; von Delft, Frank; Wells, James A; Fraser, James S
2018-06-07
Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. © 2018, Keedy et al.
A novel inert crystal delivery medium for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Chelsie E.; Basu, Shibom; James, Daniel
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
Protein crystallography beamline BL2S1 at the Aichi synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke
The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter.more » The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.« less
First Results from a Microfocus X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
1999-01-01
The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.
A novel inert crystal delivery medium for serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, Chelsie E.; Basu, Shibom; James, Daniel
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5Å resolution using 300µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
A novel inert crystal delivery medium for serial femtosecond crystallography
Conrad, Chelsie E.; Basu, Shibom; James, Daniel; ...
2015-06-30
Serial femtosecond crystallography (SFX) has opened a new era in crystallography by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, themore » structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.« less
Protein crystallography beamline BL2S1 at the Aichi synchrotron.
Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao
2017-01-01
The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7-17 keV (1.8-0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.
Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir
2017-06-01
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.
TakeTwo: an indexing algorithm suited to still images with known crystal parameters
Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; ...
2016-08-01
The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and spacemore » group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.« less
A general strategy to solve the phase problem in RNA crystallography
Keel, Amanda Y.; Rambo, Robert P.; Batey, Robert T.; Kieft, Jeffrey S.
2007-01-01
SUMMARY X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding a heavy-atom derivative to obtain high-quality experimental phase information. Existing techniques have drawbacks, severely limiting the rate at which important new structures are solved. To address this need, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G·U wobble pair cation binding motif we have identified an optimal version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This “directed soaking” strategy can be integrated fully into existing RNA and crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kα radiation. The success of this method has been proven in that it has already been used to solve several novel crystal structures. PMID:17637337
The use of polyoxometalates in protein crystallography – An attempt to widen a well-known bottleneck
Bijelic, Aleksandar; Rompel, Annette
2015-01-01
Polyoxometalates (POMs) are discrete polynuclear metal-oxo anions with a fascinating variety of structures and unique chemical and physical properties. Their application in various fields is well covered in the literature, however little information about their usage in protein crystallization is available. This review summarizes the impact of the vast class of POMs on the formation of protein crystals, a well-known (frustrating) bottleneck in macromolecular crystallography, with the associated structure elucidation and a particular emphasis focused on POM's potential as a powerful crystallization additive for future research. The Protein Data Bank (PDB) was scanned for protein structures with incorporated POMs which were assigned a PDB ligand ID resulting in 30 PDB entries. These structures have been analyzed with regard to (i) the structure of POM itself in the immediate protein environment, (ii) the kind of interaction and position of the POM within the protein structure and (iii) the beneficial effects of POM on protein crystallography apparent so far. PMID:26339074
Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W.; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J.; Hall, David R.; Lavault, Bernard; McCarthy, Andrew A.; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B. G.; Thibault, Xavier; Walsh, Martin A.; Leonard, Gordon A.; McSweeney, Sean M.
2010-01-01
The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1. PMID:20724792
10 years of protein crystallography at AR-NW12A beamline
NASA Astrophysics Data System (ADS)
Chavas, L. M. G.; Yamada, Y.; Hiraki, M.; Igarashi, N.; Matsugaki, N.; Wakatsuki, S.
2013-03-01
The exponential growth of protein crystallography can be observed in the continuously increasing demand for synchrotron beam time, both from academic and industrial users. Nowadays, the screening of a profusion of sample crystals for more and more projects is being implemented by taking advantage of fully automated procedures at every level of the experiments. The insertion device AR-NW12A beamline is one of the five macromolecular crystallography (MX) beamlines at the Photon Factory (PF). Currently the oldest MX beamline operational at the High Energy Accelerator Research Organization (KEK), the end-station was launched in 2001 as part of an upgrade of the PF Advanced Ring. Since its commissioning, AR-NW12A has been operating as a high-throughput beamline, slowly evolving to a multipurpose end-station for MX experiments. The development of the beamline took place about a decade ago, in parallel with a drastic development of protein crystallography and more general synchrotron technology. To keep the beamline up-to-date and competitive with other MX stations in Japan and worldwide, new features have been constantly added, with the goal of user friendliness of the various beamline optics and other instruments. Here we describe the evolution of AR-NW12A for its tenth anniversary. We also discuss the plans for upgrades for AR-NW12A, the future objectives in terms of the beamline developments, and especially the strong desire to open the beamline to a larger user community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
A Compact X-Ray System for Support of High Throughput Crystallography
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.
Water channel structures analysed by electron crystallography.
Tani, Kazutoshi; Fujiyoshi, Yoshinori
2014-05-01
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. © 2013.
Protein expression and purification of integrin I domains and IgSF ligands for crystallography.
Zhang, Hongmin; Wang, Jia-Huai
2012-01-01
Cell adhesion depends on combinational expression and interactions of a large number of adhesion molecules at cell-to-cell or cell-to-matrix contact sites. Integrins and their immunoglobulin superfamily (IgSF) ligands represent foremost classes of cell adhesion molecules in immune system. Structural study is critical for a better understanding of the interactions between integrins and their IgSF ligands. Here we describe protocols for protein expression of integrin αL I domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.
High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography
Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme
2013-01-01
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.
2018-01-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177
Analysis of computer images in the presence of metals
NASA Astrophysics Data System (ADS)
Buzmakov, Alexey; Ingacheva, Anastasia; Prun, Victor; Nikolaev, Dmitry; Chukalina, Marina; Ferrero, Claudio; Asadchikov, Victor
2018-04-01
Artifacts caused by intensely absorbing inclusions are encountered in computed tomography via polychromatic scanning and may obscure or simulate pathologies in medical applications. To improve the quality of reconstruction if high-Z inclusions in presence, previously we proposed and tested with synthetic data an iterative technique with soft penalty mimicking linear inequalities on the photon-starved rays. This note reports a test at the tomographic laboratory set-up at the Institute of Crystallography FSRC "Crystallography and Photonics" RAS in which tomographic scans were successfully made of temporary tooth without inclusion and with Pb inclusion.
A convolutional neural network-based screening tool for X-ray serial crystallography.
Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K
2018-05-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.
An acoustic on-chip goniometer for room temperature macromolecular crystallography.
Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T
2017-12-05
This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...
2018-04-24
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
The crystallography of correlated disorder.
Keen, David A; Goodwin, Andrew L
2015-05-21
Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.
Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; ...
2016-02-24
The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russi, Silvia; Song, Jinhu; McPhillips, Scott E.
The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.
A convolutional neural network-based screening tool for X-ray serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
Protein crystal growth in space
NASA Technical Reports Server (NTRS)
Bugg, C. E.; Clifford, D. W.
1987-01-01
The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.
Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis
2007-07-01
Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which togethermore » formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller crystals, and on more rapidly screening larger numbers of candidate crystals; all of these requirements translate directly into a pressing need for increased flux, a tighter beam focus and faster detectors. With these growing demands in mind a major program of beamline and detector upgrades was initiated in 2004 with the goal of dramatically enhancing all aspects of beamline performance. Approximately $3 million in funding from diverse sources including NIH, LBL, the ALS, and the industrial and academic members of the beamline Participating Research Team (PRT), has been employed to develop and install new high performance beamline optics and to purchase the latest generation of CCD detectors. This project, which reached fruition in early 2007, has now fulfilled all of its original goals--boosting the flux on all three beamlines by up to 20-fold--with a commensurate reduction in exposure and data acquisition times for users. The performance of the Sector 5.0 beamlines is now comparable to that of the latest generation ALS superbend beamlines and, in the case of beamline 5.0.2, even surpasses it by a considerable margin. Indeed, the present performance of this beamline is now, once again, comparable to that envisioned for many MX beamlines planned or under construction on newer or higher energy machines.« less
Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei
2017-01-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals. PMID:28875031
Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei
2017-07-01
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
Watching proteins function with time-resolved x-ray crystallography
NASA Astrophysics Data System (ADS)
Šrajer, Vukica; Schmidt, Marius
2017-09-01
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yingssu; Stanford University, 333 Campus Drive, Mudd Building, Stanford, CA 94305-5080; McPhillips, Scott E.
New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data,more » performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully demonstrated. This workflow was run once on the same 96 samples that the group had examined manually and the workflow cycled successfully through all of the samples, collected data from the same samples that were selected manually and located the same peaks of unmodeled density in the resulting difference Fourier maps.« less
Metalloprotein Crystallography: More than a Structure.
Bowman, Sarah E J; Bridwell-Rabb, Jennifer; Drennan, Catherine L
2016-04-19
Metal ions and metallocofactors play important roles in a broad range of biochemical reactions. Accordingly, it has been estimated that as much as 25-50% of the proteome uses transition metal ions to carry out a variety of essential functions. The metal ions incorporated within metalloproteins fulfill functional roles based on chemical properties, the diversity of which arises as transition metals can adopt different redox states and geometries, dictated by the identity of the metal and the protein environment. The coupling of a metal ion with an organic framework in metallocofactors, such as heme and cobalamin, further expands the chemical functionality of metals in biology. The three-dimensional visualization of metal ions and complex metallocofactors within a protein scaffold is often a starting point for enzymology, highlighting the importance of structural characterization of metalloproteins. Metalloprotein crystallography, however, presents a number of implicit challenges including correctly incorporating the relevant metal or metallocofactor, maintaining the proper environment for the protein to be purified and crystallized (including providing anaerobic, cold, or aphotic environments), and being mindful of the possibility of X-ray induced damage to the proteins or incorporated metal ions. Nevertheless, the incorporated metals or metallocofactors also present unique advantages in metalloprotein crystallography. The significant resonance that metals undergo with X-ray photons at wavelengths used for protein crystallography and the rich electronic properties of metals, which provide intense and spectroscopically unique signatures, allow a metalloprotein crystallographer to use anomalous dispersion to determine phases for structure solution and to use simultaneous or parallel spectroscopic techniques on single crystals. These properties, coupled with the improved brightness of beamlines, the ability to tune the wavelength of the X-ray beam, the availability of advanced detectors, and the incorporation of spectroscopic equipment at a number of synchrotron beamlines, have yielded exciting developments in metalloprotein structure determination. Here we will present results on the advantageous uses of metals in metalloprotein crystallography, including using metallocofactors to obtain phasing information, using K-edge X-ray absorption spectroscopy to identify metals coordinated in metalloprotein crystals, and using UV-vis spectroscopy on crystals to probe the enzymatic activity of the crystallized protein.
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...
2017-05-24
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
Watching proteins function with time-resolved x-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šrajer, Vukica; Schmidt, Marius
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in actionmore » and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. Furthermore, these developments will enable structure determination from smaller and/or weakly diffracting microcrystals.« less
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz
2015-01-01
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. PMID:25670859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean
We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux atmore » 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.« less
Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
O'Dell, William B; Bodenheimer, Annette M; Meilleur, Flora
2016-07-15
Neutron protein crystallography is a powerful tool for investigating protein chemistry because it directly locates hydrogen atom positions in a protein structure. The visibility of hydrogen and deuterium atoms arises from the strong interaction of neutrons with the nuclei of these isotopes. Positions can be unambiguously assigned from diffraction at resolutions typical of protein crystals. Neutrons have the additional benefit to structural biology of not inducing radiation damage in protein crystals. The same crystal could be measured multiple times for parametric studies. Here, we review the basic principles of neutron protein crystallography. The information that can be gained from a neutron structure is presented in balance with practical considerations. Methods to produce isotopically-substituted proteins and to grow large crystals are provided in the context of neutron structures reported in the literature. Available instruments for data collection and software for data processing and structure refinement are described along with technique-specific strategies including joint X-ray/neutron structure refinement. Examples are given to illustrate, ultimately, the unique scientific value of neutron protein crystal structures. Copyright © 2015 Elsevier Inc. All rights reserved.
The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockhauser, Sandor; UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble; Ravelli, Raimond B. G.
2013-07-01
Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitatemore » the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.« less
NMR crystallography of zeolites: How far can we go without diffraction data?
Brouwer, Darren H; Van Huizen, Jared
2018-05-10
Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone. Copyright © 2018 John Wiley & Sons, Ltd.
SPring-8 BL41XU, a high-flux macromolecular crystallography beamline
Hasegawa, Kazuya; Shimizu, Nobutaka; Okumura, Hideo; Mizuno, Nobuhiro; Baba, Seiki; Hirata, Kunio; Takeuchi, Tomoyuki; Yamazaki, Hiroshi; Senba, Yasunori; Ohashi, Haruhiko; Yamamoto, Masaki; Kumasaka, Takashi
2013-01-01
SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick–Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 1013 photons s−1. A pinhole aperture is used to collimate the beam in the range 10–50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6–35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented. PMID:24121338
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques-Philippe
2015-01-01
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering. PMID:25945583
Tsujino, Soichiro; Tomizaki, Takashi
2016-05-06
Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.
Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Tomizaki, Takashi
2016-05-01
Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.
Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature
Tsujino, Soichiro; Tomizaki, Takashi
2016-01-01
Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272
EIGER detector: application in macromolecular crystallography.
Casanas, Arnau; Warshamanage, Rangana; Finke, Aaron D; Panepucci, Ezequiel; Olieric, Vincent; Nöll, Anne; Tampé, Robert; Brandstetter, Stefan; Förster, Andreas; Mueller, Marcus; Schulze-Briese, Clemens; Bunk, Oliver; Wang, Meitian
2016-09-01
The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
Review: Serial Femtosecond Crystallography: A Revolution in Structural Biology
Martin-Garcia, Jose M.; Conrad, Chelsie E.; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra
2016-01-01
Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. PMID:27143509
Kern, Jan; Yachandra, Vittal K.; Yano, Junko
2015-09-02
We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.
Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe
2015-05-01
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.
Serial femtosecond crystallography: A revolution in structural biology.
Martin-Garcia, Jose M; Conrad, Chelsie E; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra
2016-07-15
Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. Published by Elsevier Inc.
Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams
Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; ...
2015-04-25
High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less
Breaking the indexing ambiguity in serial crystallography.
Brehm, Wolfgang; Diederichs, Kay
2014-01-01
In serial crystallography, a very incomplete partial data set is obtained from each diffraction experiment (a `snapshot'). In some space groups, an indexing ambiguity exists which requires that the indexing mode of each snapshot needs to be established with respect to a reference data set. In the absence of such re-indexing information, crystallographers have thus far resorted to a straight merging of all snapshots, yielding a perfectly twinned data set of higher symmetry which is poorly suited for structure solution and refinement. Here, two algorithms have been designed for assembling complete data sets by clustering those snapshots that are indexed in the same way, and they have been tested using 15,445 snapshots from photosystem I [Chapman et al. (2011), Nature (London), 470, 73-77] and with noisy model data. The results of the clustering are unambiguous and enabled the construction of complete data sets in the correct space group P63 instead of (twinned) P6322 that researchers have been forced to use previously in such cases of indexing ambiguity. The algorithms thus extend the applicability and reach of serial crystallography.
Graphene-based microfluidics for serial crystallography.
Sui, Shuo; Wang, Yuxi; Kolewe, Kristopher W; Srajer, Vukica; Henning, Robert; Schiffman, Jessica D; Dimitrakopoulos, Christos; Perry, Sarah L
2016-08-02
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, Jan; Yachandra, Vittal K.; Yano, Junko
We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less
Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...
2015-06-27
Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less
The ID23-2 structural biology microfocus beamline at the ESRF
Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward
2010-01-01
The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation. PMID:20029119
New micro-beam beamline at SPring-8, targeting at protein micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Kunio; Ueno, Go; Nisawa, Atsushi
2010-06-23
A new protein micro-crystallography beamline BL32XU at SPring-8 is under construction and scheduled to start operation in 2010. The beamline is designed to provide the stabilized and brilliant micro-beam to collect high-quality data from micro-crystals. The beamline consists of a hybrid in-vacuum undulator, a liquid-nitrogen cooled double crystal monochromator, and K-B focusing mirrors with large magnification factor. Development of data acquisition system and end station consists of high-precision diffractometer, high-efficiency area detector, sample auto-changer etc. are also in progress.
Bogan, Michael J
2013-04-02
Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.
Functional Sub-states by High-pressure Macromolecular Crystallography.
Dhaussy, Anne-Claire; Girard, Eric
2015-01-01
At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.
Bijelic, Aleksandar; Rompel, Annette
2017-06-20
Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein-ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson-Evans polyoxotungstate [TeW 6 O 24 ] 6- (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW's positive effects on the crystallization behavior of proteins with a particular focus on the protein-TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step.
2017-01-01
Conspectus Protein crystallography represents at present the most productive and most widely used method to obtain structural information on target proteins and protein–ligand complexes within the atomic resolution range. The knowledge obtained in this way is essential for understanding the biology, chemistry, and biochemistry of proteins and their functions but also for the development of compounds of high pharmacological and medicinal interest. Here, we address the very central problem in protein crystallography: the unpredictability of the crystallization process. Obtaining protein crystals that diffract to high resolutions represents the essential step to perform any structural study by X-ray crystallography; however, this method still depends basically on trial and error making it a very time- and resource-consuming process. The use of additives is an established process to enable or improve the crystallization of proteins in order to obtain high quality crystals. Therefore, a more universal additive addressing a wider range of proteins is desirable as it would represent a huge advance in protein crystallography and at the same time drastically impact multiple research fields. This in turn could add an overall benefit for the entire society as it profits from the faster development of novel or improved drugs and from a deeper understanding of biological, biochemical, and pharmacological phenomena. With this aim in view, we have tested several compounds belonging to the emerging class of polyoxometalates (POMs) for their suitability as crystallization additives and revealed that the tellurium-centered Anderson–Evans polyoxotungstate [TeW6O24]6– (TEW) was the most suitable POM-archetype. After its first successful application as a crystallization additive, we repeatedly reported on TEW’s positive effects on the crystallization behavior of proteins with a particular focus on the protein–TEW interactions. As electrostatic interactions are the main force for TEW binding to proteins, TEW with its highly negative charge addresses in principle all proteins possessing positively charged patches. Furthermore, due to its high structural and chemical diversity, TEW exhibits major advantages over some commonly used crystallization additives. Therefore, we summarized all features of TEW, which are beneficial for protein crystallization, and present ten good reasons to promote the use of TEW in protein crystallography as a powerful additive. Our results demonstrate that TEW is a compound that is, in many respects, predestined as a crystallization additive. We assume that many crystallographers and especially researchers, who are not experts in this field but willing to crystallize their structurally unknown target protein, could benefit from the use of TEW as it is able to promote both the crystallization process itself and the subsequent structure elucidation by providing valuable anomalous signals, which are helpful for the phasing step. PMID:28562014
Secure UNIX socket-based controlling system for high-throughput protein crystallography experiments.
Gaponov, Yurii; Igarashi, Noriyuki; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Suzuki, Mamoru; Kosuge, Takashi; Wakatsuki, Soichi
2004-01-01
A control system for high-throughput protein crystallography experiments has been developed based on a multilevel secure (SSL v2/v3) UNIX socket under the Linux operating system. Main features of protein crystallography experiments (purification, crystallization, loop preparation, data collecting, data processing) are dealt with by the software. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data, that are stored in Network File Server) in a relational database (MySQL). The system consists of several servers and clients. TCP/IP secure UNIX sockets with four predefined behaviors [(a) listening to a request followed by a reply, (b) sending a request and waiting for a reply, (c) listening to a broadcast message, and (d) sending a broadcast message] support communications between all servers and clients allowing one to control experiments, view data, edit experimental conditions and perform data processing remotely. The usage of the interface software is well suited for developing well organized control software with a hierarchical structure of different software units (Gaponov et al., 1998), which will pass and receive different types of information. All communication is divided into two parts: low and top levels. Large and complicated control tasks are split into several smaller ones, which can be processed by control clients independently. For communicating with experimental equipment (beamline optical elements, robots, and specialized experimental equipment etc.), the STARS server, developed at the Photon Factory, is used (Kosuge et al., 2002). The STARS server allows any application with an open socket to be connected with any other clients that control experimental equipment. Majority of the source code is written in C/C++. GUI modules of the system were built mainly using Glade user interface builder for GTK+ and Gnome under Red Hat Linux 7.1 operating system.
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz
2015-04-17
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; ...
2015-02-10
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. In this paper, we used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop withmore » various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. Finally, the results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Hongsheng; Zhang, Li
Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. This work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. The future development of high-pressure crystallography is also discussed.
From crystal morphology to molecular and scale crystallography
NASA Astrophysics Data System (ADS)
Janner, A.; Janssen, T.
2015-08-01
A number of topics, ranging from morphology of aperiodic crystals to indexed enclosing forms of axial-symmetric proteins, nucleic acids and viruses, have been selected among those investigated by the authors in 50 years of research. The basic symmetries involved in fields like superspace, molecular and scale crystallography, are considered from a personal point of view in their time evolution. A number of specific subjects follow, chosen among a few highlights and presented according to the experience of the authors: snow crystals, calaverite {{AuTe}}2, the incommensurately modulated crystals {{Rb}}2{{ZnBr}}4, {[{N}{({{CH}}3)}4]}2{{ZnCl}}4 and the mitochondrial ferritin.
NASA Astrophysics Data System (ADS)
Kastner, Margaret E.; Vasbinder, Eric; Kowalcyzk, Deborah; Jackson, Sean; Giammalvo, Joseph; Braun, James; Dimarco, Keith
2000-09-01
Literature Cited
Crystallography of Alumina-YAG-Eutectic
NASA Technical Reports Server (NTRS)
Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.
2000-01-01
Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.
Statistical crystallography of surface micelle spacing
NASA Technical Reports Server (NTRS)
Noever, David A.
1992-01-01
The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.
Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...
2014-12-05
We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...
2016-03-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
Which strategy for a protein crystallization project?
NASA Technical Reports Server (NTRS)
Kundrot, C. E.
2004-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells
Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias
2016-01-01
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771
Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization.
Juers, Douglas H; Matthews, Brian W
2004-05-01
The flash-cooling of crystals in macromolecular crystallography has become commonplace. The procedure makes it possible to collect data from much smaller specimens than was the case in the past Also, flash-cooled crystals are much less prone to radiation damage than their room-temperature counterparts, allowing data to be accumulated over extended periods of time. Notwithstanding the attractiveness of the technique, it does have potential disadvantages. First, better methods need to be developed to prevent damage to crystals on freezing. There is also a risk that structures determined at low temperature may suggest conclusions based on aspects of the structure that are not necessarily relevant at room temperature.
Fast fluorescence techniques for crystallography beamlines
Stepanov, Sergey; Hilgart, Mark; Yoder, Derek W.; Makarov, Oleg; Becker, Michael; Sanishvili, Ruslan; Ogata, Craig M.; Venugopalan, Nagarajan; Aragão, David; Caffrey, Martin; Smith, Janet L.; Fischetti, Robert F.
2011-01-01
This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples. PMID:21808424
MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A
2004-11-01
At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.
Smarter Drugs: How Protein Crystallography Revolutionizes Drug Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Clyde
2005-04-26
According to Smith, protein crystallography allows scientists to design drugs in a much more efficient way than the standard methods traditionally used by large drug companies, which can cost close to a billion dollars and take 10 to 15 years. 'A lot of the work can be compressed down,' Smith said. Protein crystallography enables researchers to learn the structure of molecules involved in disease and health. Seeing the loops, folds and placement of atoms in anything from a virus to a healthy cell membrane gives important information about how these things work - and how to encourage, sidestep or stopmore » their functions. Drug design can be much faster when the relationship between structure and function tells you what area of a molecule to target. Smith will use a timeline to illustrate the traditional methods of drug development and the new ways it can be done now. 'It is very exciting work. There have been some failures, but many successes too.' A new drug to combat the flu was developed in a year or so. Smith will tell us how. He will also highlight drugs developed to combat HIV, Tuberculosis, hypertension and Anthrax.« less
NASA Astrophysics Data System (ADS)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi
2010-06-01
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
A Practical Approach to Protein Crystallography.
Ilari, Andrea; Savino, Carmelinda
2017-01-01
Macromolecular crystallography is a powerful tool for structural biology. The resolution of a protein crystal structure is becoming much easier than in the past, thanks to developments in computing, automation of crystallization techniques and high-flux synchrotron sources to collect diffraction datasets. The aim of this chapter is to provide practical procedures to determine a protein crystal structure, illustrating the new techniques, experimental methods, and software that have made protein crystallography a tool accessible to a larger scientific community.It is impossible to give more than a taste of what the X-ray crystallographic technique entails in one brief chapter and there are different ways to solve a protein structure. Since the number of structures available in the Protein Data Bank (PDB) is becoming ever larger (the protein data bank now contains more than 100,000 entries) and therefore the probability to find a good model to solve the structure is ever increasing, we focus our attention on the Molecular Replacement method. Indeed, whenever applicable, this method allows the resolution of macromolecular structures starting from a single data set and a search model downloaded from the PDB, with the aid only of computer work.
Zhang, Tao; Gu, Yuanxin; Fan, Haifu
2016-06-01
In serial crystallography (SX) with either an X-ray free-electron laser (XFEL) or synchrotron radiation as the light source, huge numbers of micrometre-sized crystals are used in diffraction data collection. For a SAD experiment using a derivative with introduced heavy atoms, it is difficult to completely exclude crystals of the native protein from the sample. In this paper, simulations were performed to study how the inclusion of native crystals in the derivative sample could affect the result of SAD phasing and how the post-experimental purification proposed by Zhang et al. [(2015), Acta Cryst. D71, 2513-2518] could be used to remove the impurities. A gadolinium derivative of lysozyme and the corresponding native protein were used in the test. Serial femtosecond crystallography (SFX) diffraction snapshots were generated by CrystFEL. SHELXC/D, Phaser, DM, ARP/wARP and REFMAC were used for automatic structure solution. It is shown that a small amount of impurities (snapshots from native crystals) in the set of derivative snapshots can strongly affect the SAD phasing results. On the other hand, post-experimental purification can efficiently remove the impurities, leading to results similar to those from a pure sample.
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin
2016-03-03
Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.
Canadian macromolecular crystallography facility: a suite of fully automated beamlines.
Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ
2012-06-01
The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.
High-pressure crystallography of periodic and aperiodic crystals
Hejny, Clivia; Minkov, Vasily S.
2015-01-01
More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium ‘High-Pressure Crystallography of Periodic and Aperiodic Crystals’ presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader’s interest in this topic. PMID:25866659
SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, C.; MacDowell, A.A.; Celestre, R.S.
2004-05-12
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source
NASA Astrophysics Data System (ADS)
Polikarpov, I.; Oliva, G.; Castellano, E. E.; Garratt, R. C.; Arruda, P.; Leite, A.; Craievich, A.
1998-02-01
The Brazilian National Synchrotron Light Laboratory - LNLS, will have a dedicated protein crystallography beamline. The beamline under construction includes cylindrical mirror and bent crystal monochromator focusing the high flux of synchrotron radiation in the horizontal plane at the position of the sample. The monochromatic radiation will be tuneable between 2.0 and 1.0 Å with the optimum wavelength at 1.3-1.6 Å, chosen with the aim of maximizing the photon flux from the bending magnets of the storage ring (1.37 GeV). Diffraction images will be recorded on a commercial image plate detector system with on-line readout. The beamline set-up will include cooler/chiller for the samples and biochemical lab for crystallization, heavy-metal soaks, crystal storage and mounting at 22°C and 4°C, will also be available. The facility, intended to serve the national and international community, is planned to be brought into operation in the second half of 1997. It is foreseen that the commissioning of the first protein crystallography beamline in Latin America will boost the number of protein structures determined locally and will increase the general interest of the molecular biology and biochemical research community of Brazil in this area.
Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P
2017-09-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.
Protein structure determination by electron diffraction using a single three-dimensional nanocrystal
Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.
2017-01-01
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237
ISPyB: an information management system for synchrotron macromolecular crystallography.
Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A
2011-11-15
Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.
Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria
2014-01-01
An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.
Kent, Stephen Bh
2018-04-04
A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.
FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography
NASA Astrophysics Data System (ADS)
Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl
2018-03-01
Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.
Anchoring protein crystals to mounting loops with hydrogel using inkjet technology.
Shinoda, Akira; Tanaka, Yoshikazu; Yao, Min; Tanaka, Isao
2014-11-01
X-ray crystallography is an important technique for structure-based drug discovery, mainly because it is the only technique that can reveal whether a ligand binds to the target protein as well as where and how it binds. However, ligand screening by X-ray crystallography involves a crystal-soaking experiment, which is usually performed manually. Thus, the throughput is not satisfactory for screening large numbers of candidate ligands. In this study, a technique to anchor protein crystals to mounting loops by using gel and inkjet technology has been developed; the method allows soaking of the mounted crystals in ligand-containing solution. This new technique may assist in the design of a fully automated drug-screening pipeline.
Structure of organic solids at low temperature and high pressure.
Lee, Rachael; Howard, Judith A K; Probert, Michael R; Steed, Jonathan W
2014-07-07
This tutorial review looks at structural and supramolecular chemistry of molecular solids under extreme conditions, and introduces the instrumentation and facilities that enable single crystal diffraction studies on molecular crystals at both high pressure and low temperature. The equipment used for crystallography under extreme conditions is explored, particularly pressure cells such as the diamond anvil cell, and their mechanism of action, as well as the cryogenic apparatus which allows materials to be cooled to significantly low temperatures. The review also covers recent advances in the structural chemistry of molecular solids under extreme conditions with an emphasis on the use of single crystal crystallography in high pressure and low temperature environments to probe polymorphism and supramolecular interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Kyung -Wook; Karim, Karim S.
Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less
Double-flow focused liquid injector for efficient serial femtosecond crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less
Double-flow focused liquid injector for efficient serial femtosecond crystallography
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; Beyerlein, Kenneth R.; Bushnell, David A.; Kovaleva, Elena G.; Heymann, Michael; Gumprecht, Lars; Kirian, Richard A.; Barty, Anton; Mariani, Valerio; Tolstikova, Aleksandra; Adriano, Luigi; Awel, Salah; Barthelmess, Miriam; Dörner, Katerina; Xavier, P. Lourdu; Yefanov, Oleksandr; James, Daniel R.; Nelson, Garrett; Wang, Dingjie; Calvey, George; Chen, Yujie; Schmidt, Andrea; Szczepek, Michael; Frielingsdorf, Stefan; Lenz, Oliver; Snell, Edward; Robinson, Philip J.; Šarler, Božidar; Belšak, Grega; Maček, Marjan; Wilde, Fabian; Aquila, Andrew; Boutet, Sébastien; Liang, Mengning; Hunter, Mark S.; Scheerer, Patrick; Lipscomb, John D.; Weierstall, Uwe; Kornberg, Roger D.; Spence, John C. H.; Pollack, Lois; Chapman, Henry N.; Bajt, Saša
2017-01-01
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices. PMID:28300169
Double-flow focused liquid injector for efficient serial femtosecond crystallography
Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; ...
2017-03-16
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less
Electron crystallography with the EIGER detector
Tinti, Gemma; Fröjdh, Erik; van Genderen, Eric; Gruene, Tim; Schmitt, Bernd; de Winter, D. A. Matthijs; Weckhuysen, Bert M.; Abrahams, Jan Pieter
2018-01-01
Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data. PMID:29765609
Crystallization of Macromolecules
Friedmann, David; Messick, Troy; Marmorstein, Ronen
2014-01-01
X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560
Aryl substitution of pentacenes
Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank
2014-01-01
Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729
Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H
2017-08-15
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko
2010-06-23
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable ofmore » handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.« less
SIBYLS - A SAXS and protein crystallography beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, Christine; MacDowell, Alastair A.; Celestre, Richard S.
2003-08-22
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
NASA Astrophysics Data System (ADS)
Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.
2016-09-01
Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.
When Protein Crystallography Won't Show You the Membranes (446th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lin
High fever, stomach ache, coughing, sneezing, and fatigue -- these are all painful signs that you may have caught the flu virus. But how does your body actually 'catch' a virus? Somewhere along the way, the virus infected your body by penetrating the membranes, or surfaces, of some of your body's cells. And then it spreads. Cell membranes are permeable surfaces made of proteins and lipids that allow vital materials to enter and exit cells. Many proteins and cell structures are studied at Brookhaven's National Synchrotron Light Source (NSLS) using a procedure called protein crystallography. But they sometimes have uniquemore » characteristics that do not allow them to be easily studied using this widely adopted method. These characteristics make it difficult to understand the cell membrane structure and its ability to both welcome and refuse certain materials and viruses, such as the flu, on behalf of the cell's internal components. Yang will explain the protein crystallography procedure, the simple structure of the cell membrane, and the unusual characteristics of its proteins and lipids. He will also discuss a new, unique method being developed at the NSLS to study proteins and lipids within their native environment as they form the essential permeable surface of a cell membrane.« less
Accounting for partiality in serial crystallography using ray-tracing principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.
Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialitiesmore » based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.« less
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L; Armour, Wes; Waterman, David G; Iwata, So; Evans, Gwyndaf
2013-08-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.
Missed opportunities in crystallography.
Dauter, Zbigniew; Jaskolski, Mariusz
2014-09-01
Scrutinized from the perspective of time, the giants in the history of crystallography more than once missed a nearly obvious chance to make another great discovery, or went in the wrong direction. This review analyzes such missed opportunities focusing on macromolecular crystallographers (using Perutz, Pauling, Franklin as examples), although cases of particular historical (Kepler), methodological (Laue, Patterson) or structural (Pauling, Ramachandran) relevance are also described. Linus Pauling, in particular, is presented several times in different circumstances, as a man of vision, oversight, or even blindness. His example underscores the simple truth that also in science incessant creativity is inevitably connected with some probability of fault. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Curved position-sensitive detector for X-ray crystallography
NASA Astrophysics Data System (ADS)
Izumi, T.
1980-11-01
A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.
Performance of the Taiwan Contract Beamline BL12B2 at SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M.-T.; Du, C.-H.; Lee, J.-F.
2004-05-12
The recent status of the SPring-8 Taiwan Contract Beamline BL12B2 is reported. The beamline was designed to provide multiple applications for materials and biological researches. It is equipped with four end stations, including an EXAFS station, a Huber 6-circle diffractometer for X-ray scattering, a curved image plate for the studies of powder diffraction, and a station for the protein crystallography. The beamline construction was completed in 2000 and it has been in full speed operation since September 2001. To enhance the focusing capacity, the beamline optics has been modified in 2002 and a gain of factor of 10 in photonmore » flux was consequently obtained at protein crystallography station.« less
TLS from fundamentals to practice
Urzhumtsev, Alexandre; Afonine, Pavel V.; Adams, Paul D.
2014-01-01
The Translation-Libration-Screw-rotation (TLS) model of rigid-body harmonic displacements introduced in crystallography by Schomaker & Trueblood (1968) is now a routine tool in macromolecular studies and is a feature of most modern crystallographic structure refinement packages. In this review we consider a number of simple examples that illustrate important features of the TLS model. Based on these examples simplified formulae are given for several special cases that may occur in structure modeling and refinement. The derivation of general TLS formulae from basic principles is also provided. This manuscript describes the principles of TLS modeling, as well as some select algorithmic details for practical application. An extensive list of applications references as examples of TLS in macromolecular crystallography refinement is provided. PMID:25249713
Foadi, James; Aller, Pierre; Alguel, Yilmaz; Cameron, Alex; Axford, Danny; Owen, Robin L.; Armour, Wes; Waterman, David G.; Iwata, So; Evans, Gwyndaf
2013-01-01
The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein. PMID:23897484
Data processing in neutron protein crystallography using positron-sensitive detectors
NASA Astrophysics Data System (ADS)
Schoenborn, B. P.
Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. Special attention is given to subtraction of the high background associated with hydrogen containing molecules, which produces a disproportionately large statistical error.
a-Si:H TFT-silicon hybrid low-energy x-ray detector
Shin, Kyung -Wook; Karim, Karim S.
2017-03-15
Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less
Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.
2014-07-01
The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.
Crowley, James D; Bandeen, Pauline H
2010-01-14
A one pot, multicomponent CuAAC reaction has been exploited for the safe generation of alkyl, benzyl or aryl linked polydentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H and (13)C NMR and in two cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the Ag(I) coordination chemistry of these ligands and found, using HR-ESMS, (1)H NMR, and X-ray crystallography, that both discrete and polymeric metallosupramolecular architectures can be formed.
) "Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction -intermediate analog: New insight in the proton transfer reaction mechanism," Proteins (2010) View all NREL
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Bodenheimer, Annette M; O'Dell, William B; Stanley, Christopher B; Meilleur, Flora
2017-08-07
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proline: Mother Nature;s cryoprotectant applied to protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.
L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration neededmore » for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.« less
2016-01-01
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5′-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography—the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry—to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate Cα and positive charge at C4′ of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites. PMID:27779384
Proline: Mother Nature’s cryoprotectant applied to protein crystallography
Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.
2012-01-01
l-Proline is one of Mother Nature’s cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that l-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6–8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0–3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that l-proline is an effective cryoprotectant for protein crystallography. PMID:22868767
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.; ...
2017-03-04
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT.
Schenk, Andreas D; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-05-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library and Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. Copyright © 2013 Elsevier Inc. All rights reserved.
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT
Schenk, Andreas D.; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-01-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library & Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. PMID:23500887
Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase
Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael
2013-01-01
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774
Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.
Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael
2013-04-05
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.
Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.
Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H
2007-04-20
Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity.
Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian
2018-01-01
Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.
The development of structural x-ray crystallography
NASA Astrophysics Data System (ADS)
Woolfson, M. M.
2018-03-01
From its birth in 1912, when only the simplest structures could be solved, x-ray structural crystallography is now able to solve macromolecular structures containing many thousands of independent non-hydrogen atoms. This progress has depended on, and been driven by, great technical advances in the development of powerful synchrotron x-ray sources, advanced automated equipment for the collection and storage of large data sets and powerful computers to deal with everything from data processing to running programmes employing complex algorithms for the automatic solution of structures. The sheer number of developments in the subject over the past century makes it impossible for this review to be exhaustive, but it will describe some major developments that will enable the reader to understand how the subject has grown from its humble beginnings to what it is today.
Ourmazd, Abbas [University of Wisconsin, Milwaukee, Wisconsin, USA
2017-12-09
Ever shattered a valuable vase into 10 to the 6th power pieces and tried to reassemble it under a light providing a mean photon count of 10 minus 2 per detector pixel with shot noise? If you can do that, you can do single-molecule crystallography. This talk will outline how this can be done in principle. In more technical terms, the talk will describe how the combination of scattering physics and Bayesian algorithms can be used to reconstruct the 3-D diffracted intensity distribution from a collection of individual 2-D diffiraction patterns down to a mean photon count of 10 minus 2 per pixel, the signal level anticipated from the Linac Coherent Light Source, and hence determine the structure of individual macromolecules and nanoparticles.
Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.
Miller, R J Dwayne
2014-03-07
With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.
Rosenbaum, Gerd; Ginell, Stephan L.; Chen, Julian C.-H.
2015-01-01
In this study, a practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19-ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower- and higher-energy harmonic contamination. A Pd-coated mirror and Al attenuators acted as effective low- and high-bandpass filters. The resulting flux at 30 keV, although significantly lower than with X-ray optics designed and optimized for this energy, allowed for accuratemore » data collection on crystals of the small protein crambin to 0.38 Å resolution.« less
Large-volume protein crystal growth for neutron macromolecular crystallography.
Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay
2015-04-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
Automated macromolecular crystallization screening
Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.
2005-03-01
An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.
Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy.
Dycus, J Houston; Harris, Joshua S; Sang, Xiahan; Fancher, Chris M; Findlay, Scott D; Oni, Adedapo A; Chan, Tsung-Ta E; Koch, Carl C; Jones, Jacob L; Allen, Leslie J; Irving, Douglas L; LeBeau, James M
2015-08-01
Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.
Development of sample exchange robot PAM-HC for beamline BL-1A at the photon factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraki, Masahiko, E-mail: masahiko.hiraki@kek.jp; Department of Accelerator Science, SOKENDAI; Matsugaki, Naohiro
A macromolecular crystallography beamline, BL-1A, has been built at the Photon Factory (PF) for low energy experiments and has been operational since 2010. We have installed a sample exchange robot, PAM (PF Automated Mounting system), similar to other macromolecular crystallography beamlines. However, following the installation of a helium chamber to reduce the absorption of the diffraction signal by air, we developed a new sample exchange robot to replace PAM. The new robot, named PAM-HC (Helium Chamber), is designed with the goal of minimizing leakage of helium gas from the chamber. Here, the PAM-HC hardware and the flow of its movementmore » are described. Furthermore, measurements of temperature changes during sample exchange are presented in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Hongxing; Fang, Hengrui; Miller, Mitchell D.
2016-07-15
An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationshipmore » of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.« less
Recent developments in structural proteomics for protein structure determination.
Liu, Hsuan-Liang; Hsu, Jyh-Ping
2005-05-01
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.
Programming new geometry restraints: Parallelity of atomic groups
Sobolev, Oleg V.; Afonine, Pavel V.; Adams, Paul D.; ...
2015-08-01
Improvements in structural biology methods, in particular crystallography and cryo-electron microscopy, have created an increased demand for the refinement of atomic models against low-resolution experimental data. One way to compensate for the lack of high-resolution experimental data is to use a priori information about model geometry that can be utilized in refinement in the form of stereochemical restraints or constraints. Here, the definition and calculation of the restraints that can be imposed on planar atomic groups, in particular the angle between such groups, are described. Detailed derivations of the restraint targets and their gradients are provided so that they canmore » be readily implemented in other contexts. Practical implementations of the restraints, and of associated data structures, in the Computational Crystallography Toolbox( cctbx) are presented.« less
Automation of data acquisition in electron crystallography.
Cheng, Anchi
2013-01-01
General considerations for using automation software for acquiring high-resolution images of 2D crystals under low-dose conditions are presented. Protocol modifications specific to this application in Leginon are provided.
ERIC Educational Resources Information Center
Chapline, George; Wood, Lowell
1975-01-01
Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)
Constructing a Stereographic Projection Model
ERIC Educational Resources Information Center
Lovett, D. R.; King, G. D.
1978-01-01
Explains how to construct a three dimensional model for stereographic projection. It will be suitable for presenting the symmetry of crystal systems, and will help physics students understand the nature of crystallography. (GA)
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G
2011-05-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.
2011-01-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648
In meso in situ serial X-ray crystallography of soluble and membrane proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee
A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins,more » including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular crystallography synchrotron beamlines worldwide. Because of its simplicity and effectiveness, the IMISX approach is likely to supplant existing in meso crystallization protocols. It should prove particularly attractive in the area of ligand screening for drug discovery and development.« less
Ferraroni, Marta; Lucarini, Laura; Masini, Emanuela; Korsakov, Mikhail; Scozzafava, Andrea; Supuran, Claudiu T; Krasavin, Mikhail
2017-09-01
Two lead 1,3-oxazole-based carbonic anhydrase inhibitors (CAIs) earlier identified as selective, picomolar inhibitors of hCA II (a cytosolic target for treatment of glaucoma) have been investigated further. Firstly, they were found to be conveniently synthesized on multigram scale, which enables further development. These compounds were found to be comparable in efficacy to dorzolamide eye drops when applied in the eye drop form as well. Finally, the reasons for unusually high potency of these compounds became understood from their high-resolution X-ray crystallography structures. These data significantly expand our understanding of heterocycle-based primary sulfonamides, many of which have recently emerged from our labs - particularly, from the corneal permeability standpoint. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serial Femtosecond Crystallography of G Protein-Coupled Receptors
Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim
2014-01-01
X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322
A Quasi-Laue Neutron Crystallographic Study of D-Xylose Isomerase
NASA Technical Reports Server (NTRS)
Meilleur, Flora; Snell, Edward H.; vanderWoerd, Mark; Judge, Russell A.; Myles, Dean A. A.
2006-01-01
Hydrogen atom location and hydrogen bonding interaction determination are often critical to explain enzymatic mechanism. Whilst it is difficult to determine the position of hydrogen atoms using X-ray crystallography even with subatomic (less than 1.0 Angstrom) resolution data available, neutron crystallography provides an experimental tool to directly localise hydrogeddeuteriwn atoms in biological macromolecules at resolution of 1.5-2.0 Angstroms. Linearisation and isomerisation of xylose at the active site of D-xylose isomerase rely upon a complex hydrogen transfer. Neutron quasi-Laue data were collected on Streptomyces rubiginosus D-xylose isomerase crystal using the LADI instrument at ILL with the objective to provide insight into the enzymatic mechanism (Myles et al. 1998). The neutron structure unambiguously reveals the protonation state of His 53 in the active site, identifying the model for the enzymatic pathway.
Depletion zones and crystallography on pinched spheres
NASA Astrophysics Data System (ADS)
Chen, Jingyuan; Xing, Xiangjun; Yao, Zhenwei
2018-03-01
Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.
Data processing pipeline for serial femtosecond crystallography at SACLA.
Nakane, Takanori; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Nango, Eriko; Iwata, So; Ishitani, Ryuichiro; Nureki, Osamu
2016-06-01
A data processing pipeline for serial femtosecond crystallography at SACLA was developed, based on Cheetah [Barty et al. (2014). J. Appl. Cryst. 47 , 1118-1131] and CrystFEL [White et al. (2016). J. Appl. Cryst. 49 , 680-689]. The original programs were adapted for data acquisition through the SACLA API, thread and inter-node parallelization, and efficient image handling. The pipeline consists of two stages: The first, online stage can analyse all images in real time, with a latency of less than a few seconds, to provide feedback on hit rate and detector saturation. The second, offline stage converts hit images into HDF5 files and runs CrystFEL for indexing and integration. The size of the filtered compressed output is comparable to that of a synchrotron data set. The pipeline enables real-time feedback and rapid structure solution during beamtime.
Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian
2018-01-01
Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779
Current trends in α-helical membrane protein crystallization: An update
Parker, Joanne L; Newstead, Simon
2012-01-01
α-Helical membrane proteins (MPs) are the targets for many pharmaceutical drugs and play important roles in human physiology. In recent years, significant progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck in MP crystallography still remains, namely, the identification of conditions that give crystals that are suitable for structural determination. In 2008, we undertook an analysis of the crystallization conditions for 121 α-helical MPs to design a rationalized sparse matrix crystallization screen, MemGold. We now report an updated analysis that includes a further 133 conditions. The results reveal the current trends in α-helical MP crystallization with notable differences since 2008. The updated information has been used to design new crystallization and additive screens that should prove useful for both initial crystallization scouting and subsequent crystal optimization. PMID:22811290
Structure of catalase determined by MicroED
Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir
2014-01-01
MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172
Determination of NMR chemical shifts for cholesterol crystals from first-principles
NASA Astrophysics Data System (ADS)
Kucukbenli, Emine; de Gironcoli, Stefano
2011-03-01
Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.
Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S
2016-01-01
This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...
2015-03-30
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; ...
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is shown enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals deliveredmore » by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay
2015-01-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)
2007-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Large-volume protein crystal growth for neutron macromolecular crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Joseph D.; Baird, James K.; Coates, Leighton
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)
2009-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Integrative, Dynamic Structural Biology at Atomic Resolution—It’s About Time
van den Bedem, Henry; Fraser, James S.
2015-01-01
Biomolecules adopt a dynamic ensemble of conformations, each with the potential to interact with binding partners or perform the chemical reactions required for a multitude of cellular functions. Recent advances in X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and other techniques are helping us realize the dream of seeing—in atomic detail—how different parts of biomolecules exchange between functional sub-states using concerted motions. Integrative structural biology has advanced our understanding of the formation of large macromolecular complexes and how their components interact in assemblies by leveraging data from many low-resolution methods. Here, we review the growing opportunities for integrative, dynamic structural biology at the atomic scale, contending there is increasing synergistic potential between X-ray crystallography, NMR, and computer simulations to reveal a structural basis for protein conformational dynamics at high resolution. PMID:25825836
Han, Tzong-Ru T.; Zhou, Faran; Malliakas, Christos D.; Duxbury, Phillip M.; Mahanti, Subhendra D.; Kanatzidis, Mercouri G.; Ruan, Chong-Yu
2015-01-01
Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping–induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature–optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping–induced transition states and phase diagrams of complex materials with wide-ranging applications. PMID:26601190
New computational tools for H/D determination in macromolecular structures from neutron data.
Siliqi, Dritan; Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Mazzone, Annamaria
2010-11-01
Two new computational methods dedicated to neutron crystallography, called n-FreeLunch and DNDM-NDM, have been developed and successfully tested. The aim in developing these methods is to determine hydrogen and deuterium positions in macromolecular structures by using information from neutron density maps. Of particular interest is resolving cases in which the geometrically predicted hydrogen or deuterium positions are ambiguous. The methods are an evolution of approaches that are already applied in X-ray crystallography: extrapolation beyond the observed resolution (known as the FreeLunch procedure) and a difference electron-density modification (DEDM) technique combined with the electron-density modification (EDM) tool (known as DEDM-EDM). It is shown that the two methods are complementary to each other and are effective in finding the positions of H and D atoms in neutron density maps.
Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.
2012-06-01
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
Heymann, Michael; Opthalage, Achini; Wierman, Jennifer L.; Akella, Sathish; Szebenyi, Doletha M. E.; Gruner, Sol M.; Fraden, Seth
2014-01-01
An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation. PMID:25295176
Ruan, Chong-Yu; Vigliotti, Franco; Lobastov, Vladimir A.; Chen, Songye; Zewail, Ahmed H.
2004-01-01
The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1–1 nm) and time (10–13 to 10–12 s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change ≤10 ps), contrasts that of the nanometer substrate. The effect of adsorbates and the phase transition at higher fluences were also studied through the evolution of streaks of interferences, Bragg spots (and their rocking curves), and rings in the diffraction patterns. We compare these results with kinematical theory and those of x-ray diffraction developed to study bulk behaviors. The sensitivity achieved here, with the 6 orders of magnitude larger cross section than x-ray diffraction, and with the capabilities of combined spatial (≈0.01 Å) and temporal (300–600 fs) resolutions, promise diverse applications for this ultrafast electron crystallography tabletop methodology. PMID:14745037
Semiautomated model building for RNA crystallography using a directed rotameric approach.
Keating, Kevin S; Pyle, Anna Marie
2010-05-04
Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.
Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin.
Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y-C; Mo, Jingjie; Rempel, Don L; Tymiak, Adrienne A; Gross, Michael L
2014-12-01
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin ((10)Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.
JBluIce–EPICS control system for macromolecular crystallography
Stepanov, Sergey; Makarov, Oleg; Hilgart, Mark; Pothineni, Sudhir Babu; Urakhchin, Alex; Devarapalli, Satish; Yoder, Derek; Becker, Michael; Ogata, Craig; Sanishvili, Ruslan; Venugopalan, Nagarajan; Smith, Janet L.; Fischetti, Robert F.
2011-01-01
The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography. PMID:21358048
Manzoni, Francesco; Wallerstein, Johan; Schrader, Tobias E; Ostermann, Andreas; Coates, Leighton; Akke, Mikael; Blakeley, Matthew P; Oksanen, Esko; Logan, Derek T
2018-05-24
The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.
Shimizu, Nobutaka; Shimizu, Tetsuya; Baba, Seiki; Hasegawa, Kazuya; Yamamoto, Masaki; Kumasaka, Takashi
2013-11-01
Measurement of the UV-visible absorption spectrum is a convenient technique for detecting chemical changes of proteins, and it is therefore useful to combine spectroscopy and diffraction studies. An online microspectrophotometer for the UV-visible region was developed and installed on the macromolecular crystallography beamline, BL38B1, at SPring-8. This spectrophotometer is equipped with a difference dispersive double monochromator, a mercury-xenon lamp as the light source, and a photomultiplier as the detector. The optical path is mostly constructed using mirrors, in order to obtain high brightness in the UV region, and the confocal optics are assembled using a cross-slit diaphragm like an iris to eliminate stray light. This system can measure optical densities up to a maximum of 4.0. To study the effect of radiation damage, preliminary measurements of glucose isomerase and thaumatin crystals were conducted in the UV region. Spectral changes dependent on X-ray dose were observed at around 280 nm, suggesting that structural changes involving Trp or Tyr residues occurred in the protein crystal. In the case of the thaumatin crystal, a broad peak around 400 nm was also generated after X-ray irradiation, suggesting the cleavage of a disulfide bond. Dose-dependent spectral changes were also observed in cryo-solutions alone, and these changes differed with the composition of the cryo-solution. These responses in the UV region are informative regarding the state of the sample; consequently, this device might be useful for X-ray crystallography.
Wrinkling crystallography on spherical surfaces
Brojan, Miha; Terwagne, Denis; Lagrange, Romain; Reis, Pedro M.
2015-01-01
We present the results of an experimental investigation on the crystallography of the dimpled patterns obtained through wrinkling of a curved elastic system. Our macroscopic samples comprise a thin hemispherical shell bound to an equally curved compliant substrate. Under compression, a crystalline pattern of dimples self-organizes on the surface of the shell. Stresses are relaxed by both out-of-surface buckling and the emergence of defects in the quasi-hexagonal pattern. Three-dimensional scanning is used to digitize the topography. Regarding the dimples as point-like packing units produces spherical Voronoi tessellations with cells that are polydisperse and distorted, away from their regular shapes. We analyze the structure of crystalline defects, as a function of system size. Disclinations are observed and, above a threshold value, dislocations proliferate rapidly with system size. Our samples exhibit striking similarities with other curved crystals of charged particles and colloids. Differences are also found and attributed to the far-from-equilibrium nature of our patterns due to the random and initially frozen material imperfections which act as nucleation points, the presence of a physical boundary which represents an additional source of stress, and the inability of dimples to rearrange during crystallization. Even if we do not have access to the exact form of the interdimple interaction, our experiments suggest a broader generality of previous results of curved crystallography and their robustness on the details of the interaction potential. Furthermore, our findings open the door to future studies on curved crystals far from equilibrium. PMID:25535355
Models of protein–ligand crystal structures: trust, but verify
Deller, Marc C.
2015-01-01
X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575
Models of protein-ligand crystal structures: trust, but verify.
Deller, Marc C; Rupp, Bernhard
2015-09-01
X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.
Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR Binding to Adnectin
NASA Astrophysics Data System (ADS)
Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y.-C.; Mo, Jingjie; Rempel, Don L.; Tymiak, Adrienne A.; Gross, Michael L.
2014-12-01
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.
PEOPLE IN PHYSICS: Atom - from hypothesis to certainty
NASA Astrophysics Data System (ADS)
Lacina, Ales
1999-11-01
The concept of atoms should not be taken for granted. It was developed relatively recently and based on observations in the fields of thermal phenomena, crystallography and chemistry and the crucial discovery of Brownian motion.
Teaching Crystallography to Noncrystallographers.
ERIC Educational Resources Information Center
Glusker, Jenny P.
1988-01-01
Addresses the requirements of high school students and noncrystallographers in lectures on crystals, diffraction, and structure analysis. Discusses basic understanding and a sequence that addresses these requirements. Suggests visual and descriptive teaching methods used in this effort. (CW)
Berkeley Lab - Science Video Glossary
source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein
Data archiving and availability in an era of open science.
Baker, Edward N
2017-01-01
The importance of preserving and making available the original experimental data underlying biological structural models is discussed, both for crystallography, where the raw data images pose particular challenges, and for other structure determination techniques.
Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander
2016-01-01
Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.
Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria
2015-10-01
New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bokor, Éva; Kyriakis, Efthimios; Solovou, Theodora G A; Koppány, Csenge; Kantsadi, Anastassia L; Szabó, Katalin E; Szakács, Andrea; Stravodimos, George A; Docsa, Tibor; Skamnaki, Vassiliki T; Zographos, Spyros E; Gergely, Pál; Leonidas, Demetres D; Somsák, László
2017-11-22
Aryl substituted 1-(β-d-glucosaminyl)-1,2,3-triazoles as well as C-β-d-glucosaminyl 1,2,4-triazoles and imidazoles were synthesized and tested as inhibitors against muscle and liver isoforms of glycogen phosphorylase (GP). While the N-β-d-glucosaminyl 1,2,3-triazoles showed weak or no inhibition, the C-β-d-glucosaminyl derivatives had potent activity, and the best inhibitor was the 2-(β-d-glucosaminyl)-4(5)-(2-naphthyl)-imidazole with a K i value of 143 nM against human liver GPa. An X-ray crystallography study of the rabbit muscle GPb inhibitor complexes revealed structural features of the strong binding and offered an explanation for the differences in inhibitory potency between glucosyl and glucosaminyl derivatives and also for the differences between imidazole and 1,2,4-triazole analogues.
Serial femtosecond crystallography datasets from G protein-coupled receptors
White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim
2016-01-01
We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354
Grain boundary crystallography in polycrystalline yttria-stabilised cubic zirconia
NASA Astrophysics Data System (ADS)
Kini, Maya K.
2018-07-01
Properties of grain boundaries such as grain boundary energy, mobility and diffusion are reported to depend strongly on their crystallography. While studies on ceramic bicrystals with low Σ misorientations have shown highly ordered structures and low energies, studies on dense polycrystalline ceramics often show the significance of grain boundary planes. In the present study, grain boundary plane distributions were studied for yttria-stabilised cubic zirconia with varying grain sizes using Electron Back Scattered Diffraction technique combined with a stereological approach. Despite nearly isotropic grain boundary plane distributions, a highly anisotropic grain boundary character distribution is observed for specific misorientations. Certain low-energy symmetric tilts such as Σ3 and Σ11 are found to occur with high frequencies across the grain size range studied, leading to an inverse correlation between GB energy and frequency of occurrence, consistent with other ceramics studied in literature.
Identifying, studying and making good use of macromolecular crystals
Calero, Guillermo; Cohen, Aina E.; Luft, Joseph R.; Newman, Janet; Snell, Edward H.
2014-01-01
Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed. PMID:25084371
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walian, P.J.
1989-11-01
One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less
Yang, Ding-Shyue; Zewail, Ahmed H.
2009-01-01
Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378
Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals
NASA Astrophysics Data System (ADS)
Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng
2011-06-01
Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.
Phase retrieval for crystalline specimens
NASA Astrophysics Data System (ADS)
Arnal, Romain A.; Millane, Rick P.
2017-09-01
The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.
Fragment Screening and HIV Therapeutics
Bauman, Joseph D.; Patel, Disha; Arnold, Eddy
2013-01-01
Fragment screening has proven to be a powerful alternative to traditional methods for drug discovery. Biophysical methods, such as X-ray crystallography, NMR spectroscopy, and surface plasmon resonance, are used to screen a diverse library of small molecule compounds. Although compounds identified via this approach have relatively weak affinity, they provide a good platform for lead development and are highly efficient binders with respect to their size. Fragment screening has been utilized for a wide-range of targets, including HIV-1 proteins. Here, we review the fragment screening studies targeting HIV-1 proteins using X-ray crystallography or surface plasmon resonance. These studies have successfully detected binding of novel fragments to either previously established or new sites on HIV-1 protease and reverse transcriptase. In addition, fragment screening against HIV-1 reverse transcriptase has been used as a tool to better understand the complex nature of ligand binding to a flexible target. PMID:21972022
Kekilli, Demet; Dworkowski, Florian S N; Pompidor, Guillaume; Fuchs, Martin R; Andrew, Colin R; Antonyuk, Svetlana; Strange, Richard W; Eady, Robert R; Hasnain, S Samar; Hough, Michael A
2014-05-01
It is crucial to assign the correct redox and ligand states to crystal structures of proteins with an active redox centre to gain valid functional information and prevent the misinterpretation of structures. Single-crystal spectroscopies, particularly when applied in situ at macromolecular crystallography beamlines, allow spectroscopic investigations of redox and ligand states and the identification of reaction intermediates in protein crystals during the collection of structural data. Single-crystal resonance Raman spectroscopy was carried out in combination with macromolecular crystallography on Swiss Light Source beamline X10SA using cytochrome c' from Alcaligenes xylosoxidans. This allowed the fingerprinting and validation of different redox and ligand states, identification of vibrational modes and identification of intermediates together with monitoring of radiation-induced changes. This combined approach provides a powerful tool to obtain complementary data and correctly assign the true oxidation and ligand state(s) in redox-protein crystals.
High-speed fixed-target serial virus crystallography
Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim; ...
2017-06-19
Here, we report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallographymore » to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.« less
In-situ data collection at the photon factory macromolecular crystallography beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke, E-mail: yusuke.yamada@kek.jp; Matsugaki, Naohiro; Kato, Ryuichi
Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel arraymore » detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlits, Oksana; Wymore, Troy; Das, Amit
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less
NASA Technical Reports Server (NTRS)
Golden, Barbara L.; Kundrot, Craig E.
2003-01-01
RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.
Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki
2017-08-01
Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.
Atomic electron tomography: 3D structures without crystals
Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.
2016-09-23
Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less
Gerlits, Oksana; Wymore, Troy; Das, Amit; ...
2016-03-09
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less
Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen-Hsiang; Parks, Jerry M; Smith, Jeremy C; Weiss, Kevin L; Keen, David A; Blakeley, Matthew P; Louis, John M; Langan, Paul; Weber, Irene T; Kovalevsky, Andrey
2016-04-11
Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; ...
2015-04-07
Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less
Kuang, Qie; Purhonen, Pasi; Jegerschöld, Caroline; Koeck, Philip J B; Hebert, Hans
2015-01-06
The ligand-gated potassium channels are stimulated by various kinds of messengers. Previous studies showed that ligand-gated potassium channels containing RCK domains (the regulator of the conductance of potassium ion) form a dimer of tetramer structure through the RCK octameric gating ring in the presence of detergent. Here, we have analyzed the structure of Kch, a channel of this type from Escherichia coli, in a lipid environment using electron crystallography. By combining information from the 3D map of the transmembrane part of the protein and docking of an atomic model of a potassium channel, we conclude that the RCK domains face the solution and that an RCK octameric gating ring arrangement does not form under our crystallization condition. Our findings may be applied to other potassium channels that have an RCK gating ring arrangement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling amore » dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.« less
Serial femtosecond crystallography datasets from G protein-coupled receptors.
White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim
2016-08-01
We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.
High-speed fixed-target serial virus crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim
Here, we report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallographymore » to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.« less
Automated identification of functional dynamic networks from X-ray crystallography
van den Bedem, Henry; Bhabha, Gira; Yang, Kun; Wright, Peter E.; Fraser, James S.
2013-01-01
Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design. PMID:23913260
Deformable complex network for refining low-resolution X-ray structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu
2015-10-27
A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less
Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun
2015-06-01
Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
NASA Astrophysics Data System (ADS)
Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, Seik Weng; Tiekink, Edward R. T.
2015-02-01
Two series of new quinolinyl chalcones containing a pyrazole group, 3a-f and 4a-r, have been synthesized by Claisen-Schmidt condensation of the derivatives of 2-methyl-3-acetylquinoline with either substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehyde or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde in 76-93% yield under ultrasonic method. The compounds were characterized using IR, 1H NMR and ESI-MS spectroscopic methods and, for representative compounds, by X-ray crystallography. An E-configuration about the Cdbnd C ethylene bond has been established via 1H NMR spectroscopy and X-ray crystallography. These compounds show promising anti-microbial properties, with 4a and 3e being the most potent against bacterial and fungal strains, respectively and the methoxy substituted compounds showed moderate anti-oxidant activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.
Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less
Watching proteins function with 150-ps time-resolved X-ray crystallography
NASA Astrophysics Data System (ADS)
Anfinrud, Philip
2007-03-01
We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.
Cell-free protein synthesis for structure determination by X-ray crystallography.
Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo
2010-01-01
Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.
Proline: Mother Nature’s cryoprotectant applied to protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.
The amino acid l-proline is shown to be a good cryoprotectant for protein crystals. Four examples are provided; the range of proline used for cryoprotection is 2.0–3.0 M. l-Proline is one of Mother Nature’s cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that l-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included themore » commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6–8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0–3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that l-proline is an effective cryoprotectant for protein crystallography.« less
Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew; ...
2015-09-30
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences ofmore » these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Altogether, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences ofmore » these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keedy, Daniel A.; Kenner, Lillian R.; Warkentin, Matthew
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences ofmore » these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Altogether, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function.« less
Accounting for partiality in serial crystallography using ray-tracing principles.
Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet
2015-09-01
Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.
Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR
Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.
2014-01-01
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra
2015-01-01
Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005
An improved cosmic crystallography method to detect holonomies in flat spaces
NASA Astrophysics Data System (ADS)
Fujii, H.; Yoshii, Y.
2011-05-01
A new, improved version of a cosmic crystallography method for constraining cosmic topology is introduced. Like the circles-in-the-sky method using CMB data, we work in a thin, shell-like region containing plenty of objects. Two pairs of objects (quadruplet) linked by a holonomy show a specific distribution pattern, and three filters of separation, vectorial condition, and lifetime of objects extract these quadruplets. Each object Pi is assigned an integer si, which is the number of candidate quadruplets including Pi as their members. Then an additional device of si-histogram is used to extract topological ghosts, which tend to have high values of si. In this paper we consider flat spaces with Euclidean geometry, and the filters are designed to constrain their holonomies. As the second filter, we prepared five types that are specialized for constraining specific holonomies: one for translation, one for half-turn corkscrew motion and glide reflection, and three for nth turn corkscrew motion for n = 4,3, and 6. Every multiconnected space has holonomies that are detected by at least one of these five filters.Our method is applied to the catalogs of toy quasars in flat Λ-CDM universes whose typical sizes correspond to z ~ 5. With these simulations our method is found to work quite well. These are the situations in which type-II pair crystallography methods are insensitive because of the tiny number of ghosts. Moreover, in the flat cases, our method should be more sensitive than the type-I pair (or, in general, n-tuplet) methods because of its multifilter construction and its independence from n.
Collaborators | Center for Cancer Research
Collaborators Structural Biophysics Laboratory, CCR Macromolecular NMR Section (R. Andrew Byrd, Ph.D.) Protein-Nucleic Acid Interactions Section (Yun-Xing Wang, Ph.D.) Protein Processing Section (Kylie J. Walters, Ph.D.) Kinase Complexes Section (Ping Zhang, Ph.D.) Macromolecular Crystallography Laboratory, CCR
1992-06-25
Dr. Larry DeLucas operating the USML-1 Glovebox (GBX) during the USML-1 (STS-50) mission. Dr. DeLucas was a Payload Specialist during the USML-1 mission and is Associate Director of the Center for Macromolecular Crystallography at The University of Alabama at Birmingham.
Lunar troilite: Crystallography
Evans, H.T.
1970-01-01
Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.
Eleventh Annual V. M. Goldschmidt Conference
NASA Technical Reports Server (NTRS)
2001-01-01
This CD-ROM contains the abstracts and associated files for the Eleventh Annual V.M Goldschmidt Conference. Topics include: Organic Geochemistry; Metamorphic Processes; Igneous Processes; Stable and Radiogenic Isotopes; Planetary Geochemistry and Mineralogy; Mineralogy and Crystallography; Ore Deposits; and Aqueous Geochemistry.
Mineralogy: A Historical Review.
ERIC Educational Resources Information Center
Hazen, Robert M.
1984-01-01
Reviews changing concepts of the origins, properties, and classification of minerals. Emphasis is placed on developments of the eighteenth and nineteenth centuries, during which time the interwoven advances of chemistry, physics, crystallography, and high-temperature, high-pressure studies transformed mineralogy from a qualitative to a…
Crystallization screening: the influence of history on current practice.
Luft, Joseph R; Newman, Janet; Snell, Edward H
2014-07-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed.
Discovery and optimization of p38 inhibitors via computer-assisted drug design.
Goldberg, Daniel R; Hao, Ming-Hong; Qian, Kevin C; Swinamer, Alan D; Gao, Donghong A; Xiong, Zhaoming; Sarko, Chris; Berry, Angela; Lord, John; Magolda, Ronald L; Fadra, Tazmeen; Kroe, Rachel R; Kukulka, Alison; Madwed, Jeffrey B; Martin, Leslie; Pargellis, Christopher; Skow, Donna; Song, Jinhua J; Tan, Zhulin; Torcellini, Carol A; Zimmitti, Clare S; Yee, Nathan K; Moss, Neil
2007-08-23
Integration of computational methods, X-ray crystallography, and structure-activity relationships will be disclosed, which lead to a new class of p38 inhibitors that bind to p38 MAP kinase in a Phe out conformation.
Three-dimensional Structures of Carotenoids by X-ray Crystallography
NASA Astrophysics Data System (ADS)
Helliwell, Madeleine
The number of crystal structures of carotenoid molecules and carotenoid derivatives deposited in the Cambridge Crystallographic Data Centre [1] is still relatively small, but has increased compared with the previous survey [2]. The list is summarized in Table 1.
Increased understanding of cellulose crystallinity
USDA-ARS?s Scientific Manuscript database
According to the International Union of Crystallography, “material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering.”...
A general method for targeted quantitative cross-linking mass spectrometry
USDA-ARS?s Scientific Manuscript database
Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...
A Mechanical Lattice Aid for Crystallography Teaching.
ERIC Educational Resources Information Center
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Allen Orville
2017-12-09
Orville presents âGetting More From Less: Correlated Single-Crystal Spectroscopy and X-ray Crystallography at the NSLSâ in which he discusses how researchers can use many different tools and techniques to study atomic structure and electronic structure to provide insights into chemistry.
Crystallization screening: the influence of history on current practice
Luft, Joseph R.; Newman, Janet; Snell, Edward H.
2014-01-01
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed. PMID:25005076
Keedy, Daniel A; Kenner, Lillian R; Warkentin, Matthew; Woldeyes, Rahel A; Hopkins, Jesse B; Thompson, Michael C; Brewster, Aaron S; Van Benschoten, Andrew H; Baxter, Elizabeth L; Uervirojnangkoorn, Monarin; McPhillips, Scott E; Song, Jinhu; Alonso-Mori, Roberto; Holton, James M; Weis, William I; Brunger, Axel T; Soltis, S Michael; Lemke, Henrik; Gonzalez, Ana; Sauter, Nicholas K; Cohen, Aina E; van den Bedem, Henry; Thorne, Robert E; Fraser, James S
2015-01-01
Determining the interconverting conformations of dynamic proteins in atomic detail is a major challenge for structural biology. Conformational heterogeneity in the active site of the dynamic enzyme cyclophilin A (CypA) has been previously linked to its catalytic function, but the extent to which the different conformations of these residues are correlated is unclear. Here we compare the conformational ensembles of CypA by multitemperature synchrotron crystallography and fixed-target X-ray free-electron laser (XFEL) crystallography. The diffraction-before-destruction nature of XFEL experiments provides a radiation-damage-free view of the functionally important alternative conformations of CypA, confirming earlier synchrotron-based results. We monitored the temperature dependences of these alternative conformations with eight synchrotron datasets spanning 100-310 K. Multiconformer models show that many alternative conformations in CypA are populated only at 240 K and above, yet others remain populated or become populated at 180 K and below. These results point to a complex evolution of conformational heterogeneity between 180-–240 K that involves both thermal deactivation and solvent-driven arrest of protein motions in the crystal. The lack of a single shared conformational response to temperature within the dynamic active-site network provides evidence for a conformation shuffling model, in which exchange between rotamer states of a large aromatic ring in the middle of the network shifts the conformational ensemble for the other residues in the network. Together, our multitemperature analyses and XFEL data motivate a new generation of temperature- and time-resolved experiments to structurally characterize the dynamic underpinnings of protein function. DOI: http://dx.doi.org/10.7554/eLife.07574.001 PMID:26422513
Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology.
Mizohata, Eiichi; Nakane, Takanori; Fukuda, Yohta; Nango, Eriko; Iwata, So
2018-04-01
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi
2016-01-01
The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams. PMID:27799539
Accounting for partiality in serial crystallography using ray-tracing principles
Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet
2015-01-01
Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography. PMID:26327370
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Thor, Jasper J.; Madsen, Anders
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
Life in the fast lane for protein crystallization and X-ray crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2005-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi
2016-11-15
The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.
Life in the Fast Lane for Protein Crystallization and X-Ray Crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2004-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Gupta, Rupal; Hou, Guangjin; Renirie, Rokus; Wever, Ron; Polenova, Tatyana
2015-04-29
Vanadium-dependent haloperoxidases (VHPOs) perform two-electron oxidation of halides using hydrogen peroxide. Their mechanism, including the factors determining the substrate specificity and the pH-dependence of the catalytic rates, is poorly understood. The vanadate cofactor in the active site of VHPOs contains "spectroscopically silent" V(V), which does not change oxidation state during the reaction. We employed an NMR crystallography approach based on (51)V magic angle spinning NMR spectroscopy and Density Functional Theory, to gain insights into the structure and coordination environment of the cofactor in the resting state of vanadium-dependent chloroperoxidases (VCPO). The cofactor environments in the wild-type VCPO and its P395D/L241V/T343A mutant exhibiting 5-100-fold improved catalytic activity are examined at various pH values. Optimal sensitivity attained due to the fast MAS probe technologies enabled the assignment of the location and number of protons on the vanadate as a function of pH. The vanadate cofactor changes its protonation from quadruply protonated at pH 6.3 to triply protonated at pH 7.3 to doubly protonated at pH 8.3. In contrast, in the mutant, the vanadate protonation is the same at pH 5.0 and 8.3, and the cofactor is doubly protonated. This methodology to identify the distinct protonation environments of the cofactor, which are also pH-dependent, could help explain the different reactivities of the wild-type and mutant VCPO and their pH-dependence. This study demonstrates that (51)V-based NMR crystallography can be used to derive the detailed coordination environments of vanadium centers in large biological molecules.
Huang, Chia-Ying; Olieric, Vincent; Ma, Pikyee; Howe, Nicole; Vogeley, Lutz; Liu, Xiangyu; Warshamanage, Rangana; Weinert, Tobias; Panepucci, Ezequiel; Kobilka, Brian; Diederichs, Kay; Wang, Meitian; Caffrey, Martin
2016-01-01
Here, a method for presenting crystals of soluble and membrane proteins growing in the lipid cubic or sponge phase for in situ diffraction data collection at cryogenic temperatures is introduced. The method dispenses with the need for the technically demanding and inefficient crystal-harvesting step that is an integral part of the lipid cubic phase or in meso method of growing crystals. Crystals are dispersed in a bolus of mesophase sandwiched between thin plastic windows. The bolus contains tens to hundreds of crystals, visible with an in-line microscope at macromolecular crystallography synchrotron beamlines and suitably disposed for conventional or serial crystallographic data collection. Wells containing the crystal-laden boluses are removed individually from hermetically sealed glass plates in which crystallization occurs, affixed to pins on goniometer bases and excess precipitant is removed from around the mesophase. The wells are snap-cooled in liquid nitrogen, stored and shipped in Dewars, and manually or robotically mounted on a goniometer in a cryostream for diffraction data collection at 100 K, as is performed routinely with standard, loop-harvested crystals. The method is a variant on the recently introduced in meso in situ serial crystallography (IMISX) method that enables crystallographic measurements at cryogenic temperatures where crystal lifetimes are enormously enhanced whilst reducing protein consumption dramatically. The new approach has been used to generate high-resolution crystal structures of a G-protein-coupled receptor, α-helical and β-barrel transporters and an enzyme as model integral membrane proteins. Insulin and lysozyme were used as test soluble proteins. The quality of the data that can be generated by this method was attested to by performing sulfur and bromine SAD phasing with two of the test proteins. PMID:26894538
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786
Electron density studies of methyl cellobioside
USDA-ARS?s Scientific Manuscript database
Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...
ERIC Educational Resources Information Center
Schewe, Phillip F., Ed.
Information is provided on some of the interesting and newsworthy developments in physics and its related fields during 1983. Areas considered include: (1) acoustics; (2) astrophysics; (3) condensed matter physics; (4) crystallography; (5) physics education; (6) electron and atomic physics; (7) elementary particle physics; (8) fluid dynamics; (9)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenborn, B P
1976-01-01
Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.
Weilandt, Torsten; Löw, Nora L; Schnakenburg, Gregor; Daniels, Jörg; Nieger, Martin; Schalley, Christoph A; Lützen, Arne
2012-12-21
A series of ten palladium-bis(pyridine) complexes, as well as their corresponding platinum complexes, have been synthesized. The pyridine ligands in each series carried different σ-donor and/or π-acceptor/donor substituents at the para-position of their pyridine rings. These complexes were analysed by NMR spectroscopy, X-ray crystallography, (tandem) MS, and isothermal titration calorimetry (ITC) to validate whether these methods allowed us to obtain a concise and systematic picture of the relative and absolute thermodynamic stabilities of the complexes, as determined by the electronic effects of the substituents. Interestingly, the NMR spectroscopic data hardly correlated with the expected substituent effects but the heteronuclear platinum-phosphorus coupling constants did. Crystallographic data were found to be blurred by packing effects. Instead, tandem MS and ITC data were in line with each other and followed the expected trends. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Banigan, James R; Mandal, Kalyaneswar; Sawaya, Michael R; Thammavongsa, Vilasak; Hendrickx, Antoni P A; Schneewind, Olaf; Yeates, Todd O; Kent, Stephen B H
2010-10-01
The 50-residue snake venom protein L-omwaprin and its enantiomer D-omwaprin were prepared by total chemical synthesis. Radial diffusion assays were performed against Bacillus megaterium and Bacillus anthracis; both L- and D-omwaprin showed antibacterial activity against B. megaterium. The native protein enantiomer, made of L-amino acids, failed to crystallize readily. However, when a racemic mixture containing equal amounts of L- and D-omwaprin was used, diffraction quality crystals were obtained. The racemic protein sample crystallized in the centrosymmetric space group P2(1)/c and its structure was determined at atomic resolution (1.33 A) by a combination of Patterson and direct methods based on the strong scattering from the sulfur atoms in the eight cysteine residues per protein. Racemic crystallography once again proved to be a valuable method for obtaining crystals of recalcitrant proteins and for determining high-resolution X-ray structures by direct methods.
TakeTwo: an indexing algorithm suited to still images with known crystal parameters
Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; Evans, Gwyndaf; Sauter, Nicholas K.; Ernst, Oliver; Meents, Alke; Mueller-Werkmeister, Henrike; Miller, R. J. Dwayne; Stuart, David Ian
2016-01-01
The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image. PMID:27487826
Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.
Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu
2014-01-01
Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography.
Roessler, Christian G; Agarwal, Rakhi; Allaire, Marc; Alonso-Mori, Roberto; Andi, Babak; Bachega, José F R; Bommer, Martin; Brewster, Aaron S; Browne, Michael C; Chatterjee, Ruchira; Cho, Eunsun; Cohen, Aina E; Cowan, Matthew; Datwani, Sammy; Davidson, Victor L; Defever, Jim; Eaton, Brent; Ellson, Richard; Feng, Yiping; Ghislain, Lucien P; Glownia, James M; Han, Guangye; Hattne, Johan; Hellmich, Julia; Héroux, Annie; Ibrahim, Mohamed; Kern, Jan; Kuczewski, Anthony; Lemke, Henrik T; Liu, Pinghua; Majlof, Lars; McClintock, William M; Myers, Stuart; Nelsen, Silke; Olechno, Joe; Orville, Allen M; Sauter, Nicholas K; Soares, Alexei S; Soltis, S Michael; Song, Heng; Stearns, Richard G; Tran, Rosalie; Tsai, Yingssu; Uervirojnangkoorn, Monarin; Wilmot, Carrie M; Yachandra, Vittal; Yano, Junko; Yukl, Erik T; Zhu, Diling; Zouni, Athina
2016-04-05
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miao, Jianwei; Ishikawa, Tetsuya; Shen, Qun; Earnest, Thomas
2008-05-01
In 1999, researchers extended X-ray crystallography to allow the imaging of noncrystalline specimens by measuring the X-ray diffraction pattern of a noncrystalline specimen and then directly phasing it using the oversampling method with iterative algorithms. Since then, the field has evolved moving in three important directions. The first is the 3D structural determination of noncrystalline materials, which includes the localization of the defects and strain field inside nanocrystals, and quantitative 3D imaging of disordered materials such as nanoparticles and biomaterials. The second is the 3D imaging of frozen-hydrated whole cells at a resolution of 10 nm or better. A main thrust is to localize specific multiprotein complexes inside cells. The third is the potential of imaging single large protein complexes using extremely intense and ultrashort X-ray pulses. In this article, we review the principles of this methodology, summarize recent developments in each of the three directions, and illustrate a few examples.
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging
Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-01-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-07-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
Drop-on-Demand Sample Delivery for Studying Biocatalysts in Action at XFELs
Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; Burgie, Ernest S.; Young, Iris D.; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S.; Michels-Clark, Tara; Clinger, Jonathan A.; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J.; Zhang, Miao; Stan, Claudiu A.; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D.; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G.; Allaire, Marc; Sierra, Raymond G.; Docker, Peter T.; Glownia, James M.; Nelson, Silke; Koglin, Jason E.; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K.; Bollinger, J. Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N.; Vierstra, Richard D.; Sauter, Nicholas K.; Orville, Allen M.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko
2017-01-01
X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. Implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method. PMID:28250468
Building a pseudo-atomic model of the anaphase-promoting complex.
Kulkarni, Kiran; Zhang, Ziguo; Chang, Leifu; Yang, Jing; da Fonseca, Paula C A; Barford, David
2013-11-01
The anaphase-promoting complex (APC/C) is a large E3 ubiquitin ligase that regulates progression through specific stages of the cell cycle by coordinating the ubiquitin-dependent degradation of cell-cycle regulatory proteins. Depending on the species, the active form of the APC/C consists of 14-15 different proteins that assemble into a 20-subunit complex with a mass of approximately 1.3 MDa. A hybrid approach of single-particle electron microscopy and protein crystallography of individual APC/C subunits has been applied to generate pseudo-atomic models of various functional states of the complex. Three approaches for assigning regions of the EM-derived APC/C density map to specific APC/C subunits are described. This information was used to dock atomic models of APC/C subunits, determined either by protein crystallography or homology modelling, to specific regions of the APC/C EM map, allowing the generation of a pseudo-atomic model corresponding to 80% of the entire complex.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
NASA Astrophysics Data System (ADS)
Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.
2015-12-01
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.
New Beamlines For Protein Crystallography At The EMBL-Outstation Hamburg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, C.; Gehrmann, T.; Jahn, D.
2004-05-12
Three new beamlines for Protein Crystallography were built up on a bending magnet fan of the DORIS III storage ring. A 10 mrad wide fan of white Synchrotron Radiation (SR) is evenly distributed among 3 individual stations: X12, a central, wavelength-tunable station intended for anomalous scattering experiments (MAD) and fixed wavelength, high intensity stations symmetrically on either side. The fixed wavelength beamlines X11 and X13 comprise triangular, asymmetrically cut Si (111) monochromators as horizontally focusing optical elements. The tunable station is based on a fixed-exit, horizontally focusing double crystal monochromator system. Vertical focusing is achieved on all three lines bymore » trapezoidal shaped, continuous Rh-coated mirrors which can be dynamically bent. In all three lines the X-ray beam can be examined at various points on its way through the optical system by removable screens and PIN-diode based intensity monitors. Purpose built crystallographic end-stations complete the set-up. The design of individual components and their performance will be described.« less
Structural and Molecular Modeling Features of P2X Receptors
Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos
2014-01-01
Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936
The Cambridge Structural Database in retrospect and prospect.
Groom, Colin R; Allen, Frank H
2014-01-13
The Cambridge Crystallographic Data Centre (CCDC) was established in 1965 to record numerical, chemical and bibliographic data relating to published organic and metal-organic crystal structures. The Cambridge Structural Database (CSD) now stores data for nearly 700,000 structures and is a comprehensive and fully retrospective historical archive of small-molecule crystallography. Nearly 40,000 new structures are added each year. As X-ray crystallography celebrates its centenary as a subject, and the CCDC approaches its own 50th year, this article traces the origins of the CCDC as a publicly funded organization and its onward development into a self-financing charitable institution. Principally, however, we describe the growth of the CSD and its extensive associated software system, and summarize its impact and value as a basis for research in structural chemistry, materials science and the life sciences, including drug discovery and drug development. Finally, the article considers the CCDC's funding model in relation to open access and open data paradigms. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.; ...
2017-01-12
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...
2016-08-22
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity
Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.; ...
2015-03-03
Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less
Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.
Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less
Three-dimensional coordinates of individual atoms in materials revealed by electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rui; Chen, Chien-Chun; Wu, Li
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less
Nagata, Maika K C T; Brauchle, Paul S; Wang, Sen; Briggs, Sarah K; Hong, Young Soo; Laorenza, Daniel W; Lee, Andrea G; Westmoreland, T David
2016-08-16
Three new DOTAM (1,4,7,10-tetrakis(acetamido)-1,4,7,10-tetraazacyclododecane) complexes have been synthesized and characterized by X-ray crystallography: [Co(DOTAM)]Cl 2 •3H 2 O, [Ni(DOTAM)]Cl 2 •4H 2 O, and [Cu(DOTAM)](ClO 4 ) 2 •H 2 O. Solid state and solution IR spectroscopic features for a series of [M(DOTAM)] 2+ complexes (M=Mn, Co, Cu, Ni, Ca, Zn) correlate with solid state and solution coordination numbers. [Co(DOTAM)] 2+ , [Ni(DOTAM)] 2+ , and [Zn(DOTAM)] 2+ are demonstrated to be six-coordinate in both the solid state and in solution, while [Mn(DOTAM)] 2+ and [Ca(DOTAM)] 2+ are eight-coordinate in the solid state and remain so in solution. [Cu(DOTAM)] 2+ , which is five-coordinate by X-ray crystallography, is shown to increase its coordination number in solution to six-coordinate.
Neumann, Marcus A.
2017-01-01
Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956
An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine.
Reddy, G N Manjunatha; Cook, Daniel S; Iuga, Dinu; Walton, Richard I; Marsh, Andrew; Brown, Steven P
2015-02-01
An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine (Gace) is presented, together with powder X-ray diffraction and thermogravimetric analysis. (1)H double-quantum and (14)N-(1)H HMQC spectra recorded at 850MHz and 75kHz MAS (using a JEOL 1mm probe) are presented together with a (1)H-(13)C refocused INEPT spectrum recorded at 500MHz and 12.5kHz MAS using eDUMBO-122(1)H homonuclear decoupling. NMR chemical shieldings are calculated using the GIPAW (gauge-including projector augmented wave) method; good two-dimensional agreement between calculation and experiment is observed for (13)C and (1)H chemical shifts for directly bonded CH and CH3 peaks. There are two Gace molecules in the asymmetric unit cell: differences in specific (1)H chemical shifts are rationalised in terms of the strength of CH-π and intermolecular hydrogen bonding interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko
2017-04-01
X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-02-10
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
Aishima, Jun; Cherukuvada, Hima; Clarken, Robert; Clift, Mark; Ericsson, Daniel Jesper; Macedo, Sofia; Mudie, Nathan; Price, Jason Roy; Rostan, Robert; Williamson, Rachel
2018-01-01
MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8–21 keV to a focal spot of 22 × 12 µm FWHM (H × V). At 13 keV the flux at the sample is 3.4 × 1012 photons s−1. The beamline endstation allows robotic handling of cryogenic samples via an updated SSRL SAM robot. This beamline is ideal for weakly diffracting hard-to-crystallize proteins, virus particles, protein assemblies and nucleic acids as well as smaller molecules such as inorganic catalysts and organic drug molecules. The beamline is now mature and has enjoyed a full user program for the last nine years. This paper describes the beamline status, plans for its future and some recent scientific highlights. PMID:29714201
Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.
2013-01-01
The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W.
Understanding structure–function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metalmore » centers, and different kinetics of the S-state transition in microcrystals compared to solution. Lastly, we summarize recent advances and outstanding challenges in PSII structure–function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.« less
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; ...
2015-01-23
Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox( cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set ofmore » diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
Solar granulation and statistical crystallography: A modeling approach using size-shape relations
NASA Technical Reports Server (NTRS)
Noever, D. A.
1994-01-01
The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography
Roessler, Christian G.; Agarwal, Rakhi; Allaire, Marc; ...
2016-03-17
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallizationmore » conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. Lastly, we report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). In addition, samples were screened to demonstrate that these methods can be applied to rare samples« less
Johnstone, Timothy C; Nolan, Elizabeth M
2017-10-25
Enterobactin is a secondary metabolite produced by Enterobacteriaceae for acquiring iron, an essential metal nutrient. The biosynthesis and utilization of enterobactin permits many Gram-negative bacteria to thrive in environments where low soluble iron concentrations would otherwise preclude survival. Despite extensive work carried out on this celebrated molecule since its discovery over 40 years ago, the ferric enterobactin complex has eluded crystallographic structural characterization. We report the successful growth of single crystals containing ferric enterobactin using racemic crystallization, a method that involves cocrystallization of a chiral molecule with its mirror image. The structures of ferric enterobactin and ferric enantioenterobactin obtained in this work provide a definitive assignment of the stereochemistry at the metal center and reveal secondary coordination sphere interactions. The structures were employed in computational investigations of the interactions of these complexes with two enterobactin-binding proteins, which illuminate the influence of metal-centered chirality on these interactions. This work highlights the utility of small-molecule racemic crystallography for obtaining elusive structures of coordination complexes.
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; ...
2017-02-27
X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less
Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roessler, Christian G.; Agarwal, Rakhi; Allaire, Marc
X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallizationmore » conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Amit; Gerlits, Oksana O.; Parks, Jerry M.
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg 2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg 2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg 2+ binds first to the M1 site as a complex with ATP and is followed by Mg 2+ binding to themore » M2 site. Furthermore, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. In conclusion, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.« less