Sample records for csf cell count

  1. Evaluation of the automated hematology analyzer ADVIA® 120 for cerebrospinal fluid analysis and usage of unique hemolysis reagent.

    PubMed

    Tanada, H; Ikemoto, T; Masutani, R; Tanaka, H; Takubo, T

    2014-02-01

    In this study, we evaluated the performance of the ADVIA 120 hematology system for cerebrospinal fluid (CSF) assay. Cell counts and leukocyte differentials in CSF were examined with the ADVIA 120 hematology system, while simultaneously confirming an effective hemolysis agent for automated CSF cell counts. The detection limits of both white blood cell (WBC) counts and red blood cell (RBC) counts on the measurement of CSF cell counts by the ADVIA 120 hematology system were superior at 2 cells/μL (10(-6) L). The WBC count was linear up to 9.850 cells/μL, and the RBC count was linear up to approximately 20 000 cells/μL. The intrarun reproducibility indicated good precision. The leukocyte differential of CSF cells, performed by the ADVIA120 hematology system, showed good correlation with the microscopic procedure. The VersaLyse hemolysis solution efficiently lysed the samples without interfering with cell counts and leukocyte differential, even in a sample that included approximately 50 000/μL RBC. These data show the ADVIA 120 hematology system correctly measured the WBC count and leukocyte differential in CSF. The VersaLyse hemolysis solution is considered to be optimal for hemolysis treatment of CSF when measuring cell counts and differentials by the ADVIA 120 hematology system. © 2013 John Wiley & Sons Ltd.

  2. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    PubMed

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2018-02-01

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  3. The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization.

    PubMed

    Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu

    2011-05-01

    Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.

  4. Dual R3R5 tropism characterizes cerebrospinal fluid HIV-1 isolates from individuals with high cerebrospinal fluid viral load.

    PubMed

    Karlsson, Ulf; Antonsson, Liselotte; Ljungberg, Bengt; Medstrand, Patrik; Esbjörnsson, Joakim; Jansson, Marianne; Gisslen, Magnus

    2012-09-10

    To study the use of major and alternative coreceptors by HIV-1 isolates obtained from paired plasma and cerebrospinal fluid (CSF) samples. Paired plasma and CSF isolates from HIV-1-infected individuals with varying clinical, virologic, and immunologic parameters were assessed for the ability to infect indicator cells expressing a panel of coreceptors with documented expression in the central nervous system (CNS). HIV-1 isolates obtained from plasma and CSF in 28 individuals with varying viral load, CD4 T-cell counts, and with or without AIDS-defining disease were analyzed for the ability to infect NP2.CD4 cells stably expressing a panel of HIV coreceptors (CCR5, CXCR4, CCR3, CXCR6, GPR1, APJ, ChemR23, RDC-1 or BLT1). All isolates from both plasma and CSF utilized CCR5 and/or CXCR4. However, the ability to use both CCR3 and CCR5 (R3R5) was more pronounced in CSF isolates and correlated with high CSF viral load and low CD4 T-cell count. Notably, four out of five CSF isolates of subtype C origin exhibited CXCR6 use, which coincided with high CSF viral load despite preserved CD4 T-cell counts. The use of other alternative coreceptors was less pronounced. Dual-tropic R3R5 HIV-1 isolates in CSF coincide with high CSF viral load and low CD4 T-cell counts. Frequent CXCR6 use by CSF-derived subtype C isolates indicates that subtype-specific differences in coreceptor use may exist that will not be acknowledged when assessing plasma virus isolates. The findings may also bare relevance for HIV-1 replication within the CNS, and consequently, for the neuropathogenesis of AIDS.

  5. Modifications of haematology analyzers to improve cell counting and leukocyte differentiating in cerebrospinal fluid controls of the Joint German Society for Clinical Chemistry and Laboratory Medicine.

    PubMed

    Kleine, Tilmann O; Nebe, C Thomas; Löwer, Christa; Lehmitz, Reinhard; Kruse, Rolf; Geilenkeuser, Wolf-Jochen; Dorn-Beineke, Alexandra

    2009-08-01

    Flow cytometry (FCM) is used with haematology analyzers (HAs) to count cells and differentiate leukocytes in cerebrospinal fluid (CSF). To evaluate the FCM techniques of HAs, 10 external DGKL trials with CSF controls were carried out in 2004 to 2008. Eight single platform HAs with and without CSF equipment were evaluated with living blood leukocytes and erythrocytes in CSF like DGKL controls: Coulter (LH750,755), Abbott CD3200, CD3500, CD3700, CD4000, Sapphire, ADVIA 120(R) CSF assay, and Sysmex XE-2100(R). Results were compared with visual counting of native cells in Fuchs-Rosenthal chamber, unstained, and absolute values of leukocyte differentiation, assayed by dual platform analysis with immune-FCM (FACSCalibur, CD45, CD14) and the chamber counts. Reference values X were compared with HA values Y by statistical evaluation with Passing/Bablock (P/B) linear regression analysis to reveal conformity of both methods. The HAs, studied, produced no valid results with DGKL CSF controls, because P/B regression revealed no conformity with the reference values due to:-blank problems with impedance analysis,-leukocyte loss with preanalytical erythrocyte lysis procedures, especially of monocytes,-inaccurate results with ADVIA cell sphering and cell differentiation with algorithms and enzyme activities (e.g., peroxidase). HA techniques have to be improved, e.g., using no erythrocyte lysis and CSF adequate techniques, to examine CSF samples precise and accurate. Copyright 2009 International Society for Advancement of Cytometry.

  6. Analysis of serum and cerebrospinal fluid in clinically normal adult miniature donkeys.

    PubMed

    Mozaffari, A A; Samadieh, H

    2013-09-01

    To establish reference intervals for serum and cerebrospinal fluid (CSF) parameters in clinically healthy adult miniature donkeys. Experiments were conducted on 10 female and 10 male clinically normal adult miniature donkeys, randomly selected from five herds. Lumbosacral CSF collection was performed with the sedated donkey in the standing position. Cell analysis was performed immediately after the samples were collected. Blood samples were obtained from the jugular vein immediately after CSF sample collection. Sodium, potassium, glucose, urea nitrogen, total protein, calcium, chloride, phosphorous and magnesium concentrations were measured in CSF and serum samples. A paired t-test was used to compare mean values between female and male donkeys. The CSF was uniformly clear, colourless and free from flocculent material, with a specific gravity of 1.002. The range of total nucleated cell counts was 2-4 cells/μL. The differential white cell count comprised only small lymphocytes. No erythrocytes or polymorphonuclear cells were observed on cytological examination. Reference values were obtained for biochemical analysis of serum and CSF. Gender had no effect on any variables measured in serum or CSF (p>0.05). CSF analysis can provide important information in addition to that gained by clinical examination. CSF analysis has not previously been performed in miniature donkeys; this is the first report on the subject. In the present study, reference intervals for total nucleated cell count, total protein, glucose, urea nitrogen, sodium, potassium, chloride, calcium, phosphorous and magnesium concentrations of serum and CSF were determined for male and female miniature donkeys.

  7. Paradoxical drop in circulating neutrophil count following granulocyte-colony stimulating factor and stem cell factor administration in rhesus macaques.

    PubMed

    Gordon, Brent C; Revenis, Amy M; Bonifacino, Aylin C; Sander, William E; Metzger, Mark E; Krouse, Allen E; Usherson, Tatiana N; Donahue, Robert E

    2007-06-01

    Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.

  8. Predictive value of cerebrospinal fluid parameters in neonates with intraventricular drainage devices.

    PubMed

    Lenfestey, Robert W; Smith, P Brian; Moody, M Anthony; Clark, Reese H; Cotten, C Michael; Seed, Patrick C; Benjamin, Daniel K

    2007-09-01

    Infection is a common and potentially devastating complication following placement of ventriculoperitoneal (VP) shunts and cerebrospinal fluid (CSF) reservoirs in neonates. The goal of this study was to determine the normal ranges for cell count parameters in neonates with VP shunts and CSF reservoirs, as well as to determine the predictive value of CSF parameters as markers of infection. The authors evaluated neonates from 150 different neonatal intensive care units of the Pediatrix Medical Group who had undergone a lumbar puncture, VP shunt insertion, or CSF reservoir placement between 1997 and 2004. Data were collected from 9704 neonates with a mean birthweight of 2573 g and a mean gestational age of 35 weeks. Of these neonates, 181 had VP shunt insertions or CSF reservoir placements. In neonates with negative CSF cultures, significant differences were found between those with and without VP shunts or CSF reservoirs when comparing red blood cell (RBC) count (620/mm' compared with 155/mm3, p < 0.05), absolute eosinophil count (4/mm3 compared with 2/mm3, p < 0.001), protein levels (179 mg/dl compared with 115 mg/dl, p < 0.001), and glucose levels (27.5 mg/dl compared with 49 mg/dl, p < 0.001). No significant difference was found between white blood cell (WBC) counts in neonates with or without VP shunts who had negative CSF cultures. The sensitivity and specificity of a cutoff value of 20 WBCs/mm3 for diagnosing meningitis in neonates with positive cultures and intraventricular drainage devices were 67% and 62%, respectively. Although differences exist between CSF parameters found in neonates with or without VP shunts or CSF reservoirs, only the difference in RBC count is large enough to be clinically significant. The authors found that the utility of CSF parameters in neonates with VP shunts or CSF reservoirs was limited due to poor diagnostic sensitivity and specificity.

  9. Role of quantitative CSF microscopy to predict culture status and outcome in HIV-associated cryptococcal meningitis in a Brazilian cohort.

    PubMed

    Vidal, José E; Gerhardt, Juliana; Peixoto de Miranda, Erique J; Dauar, Rafi F; Oliveira Filho, Gilberto S; Penalva de Oliveira, Augusto C; Boulware, David R

    2012-05-01

    This retrospective study aimed to evaluate the clinical, laboratory, and quantitative cerebrospinal fluid (CSF) cryptococcal cell counts for associations with in-hospital outcomes of HIV-infected patients with cryptococcal meningitis. Ninety-eight HIV-infected adult patients with CSF culture-proven cryptococcal meningitis were admitted between January 2006 and June 2008 at a referral center in Sao Paulo, Brazil. Cryptococcal meningitis was the first AIDS-defining illness in 69%, of whom 97% (95/98) had known prior HIV infection. The median CD4+ T-cell count was 39 cells/μL (interquartile range 17-87 cells/μL). Prior antiretroviral therapy was reported in 50%. Failure to sterilize the CSF by 7-14 days was associated with baseline fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy (odds ratio [OR] = 15.3, 95% confidence interval [CI] 4.1-56.7; P < 0.001) and positive blood cultures (OR = 11.5, 95% CI 1.2-109; P = 0.034). At 7-14 days, ≥ 10 yeasts/μL CSF was associated with positive CSF cultures in 98% versus 36% with <10 yeasts/μL CSF (P < 0.001). In-hospital mortality was 30% and was associated with symptoms duration for >14 days, altered mental status (P < 0.001), CSF white blood cell counts <5 cells/μL (P = 0.027), intracranial hypertension (P = 0.011), viral loads >50,000 copies/mL (P = 0.036), ≥ 10 yeasts/μL CSF at 7-14 days (P = 0.038), and intracranial pressure >50 cmH(2)0 at 7-14 days (P = 0.007). In conclusion, most patients were aware of their HIV status. Fungal burden of ≥ 10 yeasts/μL by quantitative CSF microscopy predicted current CSF culture status and may be useful to customize the induction therapy. High uncontrolled intracranial pressure was associated with mortality. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Analysis of clinical outcomes in pediatric bacterial meningitis focusing on patients without cerebrospinal fluid pleocytosis.

    PubMed

    Lin, Wen-Li; Chi, Hsin; Huang, Fu-Yuan; Huang, Daniel Tsung-Ning; Chiu, Nan-Chang

    2016-10-01

    Cerebrospinal fluid (CSF) cell count and biochemical examinations and cultures form the basis for the diagnosis of bacterial meningitis. However, some patients do not have typical findings and are at a higher risk of being missed or having delayed treatment. To better understand the correlation between CSF results and outcomes, we evaluated CSF data focusing on the patients with atypical findings. This study enrolled CSF culture-proven bacterial meningitis patients aged from 1 month to 18 years in a medical center. The patients were divided into "normal" and "abnormal" groups for each laboratory result and in combination. The correlations between the laboratory results and the outcomes were analyzed. A total of 175 children with confirmed bacterial meningitis were enrolled. In CSF examinations, 16.2% of patients had normal white blood cell counts, 29.5% had normal glucose levels, 24.5% had normal protein levels, 10.2% had normal results in two items, and 8.6% had normal results in all three items. In logistic regression analysis, a normal CSF leukocyte count and increased CSF protein level were related to poor outcomes. Patients with meningitis caused by Streptococcus pneumoniae and hyponatremia were at a higher risk of mortality and the development of sequelae. In children with bacterial meningitis, nontypical CSF findings and, in particular, normal CSF leukocyte count and increased protein level may indicate a worse prognosis. Copyright © 2014. Published by Elsevier B.V.

  11. [Therapeutic effect of rmIL-12 combined with G-CSF on acute radiation sickness produced by γ-ray irradiation in mice].

    PubMed

    Wang, Li; Zhai, Rui-Ren; Pang, Zhao-Xia; Zhang, Chao; Yu, Chang-Lin

    2012-08-01

    The aim of this study is to observe the therapeutic effect of recombinant murine interleukin 12 (rmIL-12) combining with granulocyte colony stimulating factor (G-CSF) on mice irradiated by γ-rays. 56 BALB/c mice were totally irradiated by 6.0 Gy of (60)Co γ-ray and randomly divided into irradiation control group, rmIL-12 treatment group, G-CSF treatment group and combination therapy (rmIL-12 plus G-CSF) group. rmIL-12 20 µg/kg was administrated intraperitoneally at 1 h following irradiation, and was administrated every 3 days after irradiation for 4 times in rmIL-12 treatment group. G-CSF 100 µg/kg was administrated subcutaneously the 2 h following irradiation for 14 d in G-CSF treatment group. The dose and method of rmIL-12 and G-CSF in combination therapy group were same as in rmIL-12 group and G-CSF group. The general status of mice were observed twice a day, the changes in body weight, peripheral blood cell (WBC and Plt) counts were examined once every three days, bone marrow cells were collected to perform colony cultivation on day 14 and 28 after irradiation. The results showed that WBC count recovery time in combination therapy group was significantly earlier than that of the control group (7 d vs 11 d), WBC count recovery velocity in the combination therapy group was no significant different from that of the G-CSF treatment group. Combined therapy significantly promoted Plt count recovery, resulting in less profound nadirs (16.5% vs 8.1%, P < 0.01) and rapid recovery to normal levels (11 d vs 14 d), Plt count recovery velocity in the combination therapy group was no significant different from that of the rmIL-12 treatment group. Culture of bone marrow cells in semi-solid medium also demonstrated that combination of rmIL-12 and G-CSF could stimulate bone marrow cells to form more CFU-GM and CFU-Mix than those of the irradiation control group in vitro on day 14 and 28 after irradiation (P < 0.05). It is concluded that the combination of rmIL-12 and G-CSF can significantly accelerate the recovery of hematopoietic function in mice with acute radiation sickness.

  12. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.M.; Zsebo, K.M.; Inoue, H.

    1987-04-01

    Osmotic pumps containing Escherichia coli-derived recombinant human granulocyte colony-stimulating factor (rhG-CSF) were attached to indwelling jugular vein catheters and implanted subcutaneously into Golden Syrian hamsters. Within 3 days, peripheral granulocyte counts had increased > 10-fold with a concomitant 4-fold increase in total leukocytes. Microscopic examination of Wright-Giemsa-stained blood smears from rhG-CSF hamsters showed that only the neutrophil subpopulation of granulocytes had increased. After subcutaneous injection at /sup 35/S-labeled rhG-CSF doses of up to 10 ..mu..g x kg/sup -1/ x day/sup -1/ only granulocyte counts were affected. However, at higher dose levels, a transient thrombocytopenia was noted. Erythrocyte and lymphocyte/monocyte countsmore » remained unaffected by rhG-CSF over the entire dose range studied. Total leukocyte counts increased 3-fold within 12 hr after a single s.c. injection of rhG-CSF. This early effect was associated with an increase in the total number of colony-forming cells and the percent of active cycling cells in the marrow. A sustained elevation of peripheral leukocyte and marrow progenitor counts was observed following seven daily s.c. injections of rhG-CSF. The ability of rhG-CSF to increase the production and release of granulocytes from the marrow may underlie the beneficial effect it produced on the restoration of peripheral leukocyte counts in hamsters made leukopenic by treatment with 5-fluorouracil.« less

  13. Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in normal volunteers.

    PubMed

    Huhn, R D; Yurkow, E J; Tushinski, R; Clarke, L; Sturgill, M G; Hoffman, R; Sheay, W; Cody, R; Philipp, C; Resta, D; George, M

    1996-06-01

    To identify a precisely timed and safe protocol for progenitor cell mobilization, we studied the effects of rhIL-3 and rhG-CSF administration to normal volunteers. rhG-CSF 5 micrograms/kg/d was administered subcutaneously (s.c.) for 7 consecutive days either alone or preceded by rhIL-3 5 micrograms/kg/d s.c. for 4 consecutive days in sequential or partially overlapping schedules. The combined cytokines were well-tolerated--adverse effects were similar to those of the individual agents. Total white blood cell (WBC) and neutrophil counts rose briskly in response to rhG-CSF, and peak mean values were similar between treatment cohorts. Mean platelet counts were modestly elevated during rhG-CSF treatment only in the cohorts receiving rhIL-3 and rhG-CSF. Mean circulating CD34+ cells peaked on day 5 in the rhG-CSF group (38.9+/-14.3/microliter), day 6 in the sequential rhIL-3/rhG-CSF group (56.4+/-12.4/microliter), and day 6 in the partial overlap group (46.1+/-10.9/microliter). On day 3, mean CD34+ cell counts of the subjects who received sequential treatment were markedly higher than observed in the other groups (p<0.05) and were estimated to have been sufficient for collection of adequate grafts by single 10-L leukapheresis procedures in 60% of subjects. Circulating clonogenic cells (CFU-GM and/or BFU-E) were substantially higher in the sequential group than the rhG-CSF group on days 3-6 but were only minimally elevated above baseline in the partial overlap group. The numbers of circulating CD34+/Lin-/Thy-1+ cells (putative stem cells) were increased substantially, especially in the sequential group. On the basis of this pilot trial, we conclude that priming with rhIL-3 is a safe and well-tolerated method for enhancing the mobilization of human blood progenitors and stem cells by rhG-CSF.

  14. [Clinical, epidemiological, and etiological studies of adult aseptic meningitis: a report of 12 cases of herpes simplex meningitis, and a comparison with cases of herpes simplex encephalitis].

    PubMed

    Himeno, Takahiro; Shiga, Yuji; Takeshima, Shinichi; Tachiyama, Keisuke; Kamimura, Teppei; Kono, Ryuhei; Takemaru, Makoto; Takeshita, Jun; Shimoe, Yutaka; Kuriyama, Masaru

    2018-01-26

    We treated 437 cases of adult aseptic meningitis and 12 cases (including 2 recurrent patients; age, 31.8 ± 8.9 years; 7 females) of herpes simplex meningitis from 2004 to 2016. The incidence rate of adult herpes simplex meningitis in the cases with aseptic meningitis was 2.7%. One patient was admitted during treatment of genital herpes, but no association was observed between genital herpes and herpes simplex meningitis in the other cases. The diagnoses were confirmed in all cases as the cerebrospinal fluid (CSF) was positive for herpes simplex virus (HSV)-DNA. For diagnosis confirmation, the DNA test was useful after 2-7 days following initial disease onset. Among other types of aseptic meningitis, the patients with herpes simplex meningitis showed relatively high white blood cell counts and relatively high CSF protein and high CSF cell counts. CSF cells showed mononuclear cell dominance from the initial stage of the disease. During same period, we also experienced 12 cases of herpes simplex encephalitis and 21 cases of non-hepatic acute limbic encephalitis. Notably, the patients with herpes simplex meningitis were younger and their CSF protein and cells counts were higher than those of the patients with herpes simplex encephalitis.

  15. Flow cytometric characterization of cerebrospinal fluid cells.

    PubMed

    de Graaf, Marieke T; de Jongste, Arjen H C; Kraan, Jaco; Boonstra, Joke G; Sillevis Smitt, Peter A E; Gratama, Jan W

    2011-09-01

    Flow cytometry facilitates the detection of a large spectrum of cellular characteristics on a per cell basis, determination of absolute cell numbers and detection of rare events with high sensitivity and specificity. White blood cell (WBC) counts in cerebrospinal fluid (CSF) are important for the diagnosis of many neurological disorders. WBC counting and differential can be performed by microscopy, hematology analyzers, or flow cytometry. Flow cytometry of CSF is increasingly being considered as the method of choice in patients suspected of leptomeningeal localization of hematological malignancies. Additionally, in several neuroinflammatory diseases such as multiple sclerosis and paraneoplastic neurological syndromes, flow cytometry is commonly performed to obtain insight into the immunopathogenesis of these diseases. Technically, the low cellularity of CSF samples, combined with the rapidly declining WBC viability, makes CSF flow cytometry challenging. Comparison of flow cytometry with microscopic and molecular techniques shows that each technique has its own advantages and is ideally combined. We expect that increasing the number of flow cytometric parameters that can be simultaneously studied within one sample, will further refine the information on CSF cell subsets in low-cellular CSF samples and enable to define cell populations more accurately. Copyright © 2011 International Clinical Cytometry Society.

  16. Cerebrospinal fluid white cell count: discriminatory or otherwise for enteroviral meningitis in infants and young children?

    PubMed

    Tan, Natalie Woon Hui; Lee, Elis Yuexian; Khoo, Gloria Mei Chin; Tee, Nancy Wen Sim; Krishnamoorthy, Subramania; Choong, Chew Thye

    2016-04-01

    Non-polio enteroviruses (EV) are the most common viruses causing aseptic meningitis in children. We aim to evaluate the cerebrospinal fluid (CSF) characteristics of neonates and children with EV meningitis with a view to determine whether it could be discriminatory or otherwise in making a positive diagnosis. We performed a 3-year (July 2008-July 2011) retrospective study of children ≤16 years, treated at a tertiary children's hospital, with positive CSF EV polymerase chain reaction (PCR) and negative blood and CSF bacterial cultures. A total of 206 children were studied. The median CSF white cell count was 79 cells/mm(3) (range 0-4608 cells/mm(3)). CSF pleocytosis was observed in 99/150 (66%) aged ≤90 days, 3/4 (75%) aged 90 days-1 year, and 49/52 (94%) children ≥3 years. There was a huge variability in CSF pleocytosis in infants ≤90 days, where 34% of them had no pleocytosis, while in 66%, a wide range of pleocytosis that might even suggest bacterial meningitis was noted. CSF red cells were low, and protein or sugar values were not discriminatory. CSF pleocytosis in relation to increasing age was found to be statistically significant (p < 0.001). Early lumbar puncture within 48 h of symptoms and absence of CSF pleocytosis was also statistically significant (p = 0.039). CSF pleocytosis in EV meningitis is commoner in older children. As there was a huge variability in CSF pleocytosis in infants ≤90 days particularly, CSF analysis including EV PCR could avoid unnecessary antibiotic therapy.

  17. Repeated Lentivirus-Mediated Granulocyte Colony-Stimulating Factor Administration to Treat Canine Cyclic Neutropenia

    PubMed Central

    Yanay, Ofer; Dale, David C.

    2012-01-01

    Abstract Cyclic neutropenia occurs in humans and gray collie dogs, is characterized by recurrent neutropenia, and is treated by repeated injections of recombinant granulocyte colony-stimulating factor (rG-CSF). As dose escalation of lentivirus may be clinically necessary, we monitored the outcome of four sequential intramuscular injections of G-CSF-lentivirus (3×107 IU/kg body weight) to a normal dog and a gray collie. In the normal dog absolute neutrophil counts were significantly increased after each dose of virus, with mean levels of 27.75±3.00, 31.50±1.40, 35.05±1.68, and 43.88±2.94×103 cells/μl, respectively (p<0.001), and elevated neutrophil counts of 31.18±7.81×103 cells/μl were maintained for more than 6 years with no adverse effects. A gray collie dog with a mean count of 1.94±1.48×103 cells/μl received G-CSF-lentivirus and we observed sustained elevations in neutrophil levels for more than 5 months with a mean of 26.00±11.00×103 cells/μl, significantly increased over the pretreatment level (p<0.001). After the second and third virus administrations mean neutrophil counts of 15.80±6.14 and 11.52±4.90×103 cells/μl were significantly reduced compared with cell counts after the first virus administration (p<0.001). However, after the fourth virus administration mean neutrophil counts of 15.21±4.50×103 cells/μl were significantly increased compared with the previous administration (p<0.05). Throughout the nearly 3 years of virus administrations the dog gained weight, was healthy, and showed neutrophil counts significantly higher than pretreatment levels (p<0.001). These studies suggest that patients with cyclic and other neutropenias may be treated with escalating doses of G-CSF-lentivirus to obtain a desired therapeutic neutrophil count. PMID:22845776

  18. Effects of granulocyte-colony-stimulating factor on potential normal granulocyte donors.

    PubMed

    McCullough, J; Clay, M; Herr, G; Smith, J; Stroncek, D

    1999-10-01

    The use of granulocyte-colony-stimulating factor (G-CSF) to increase the granulocyte count and the yield from leukapheresis in normal donors is leading to renewed interest in granulocyte transfusion. Therefore, it is important to understand the side effects of G-CSF. We studied the effect of G-CSF on peripheral blood counts and recorded the side effects experienced 24 hours after an injection of G-CSF in normal subjects donating peripheral blood progenitor cells for research. Following administration of G-CSF to 261 donors, the neutrophil count increased to 20.6 to 24.5 x 10(9) per microL depending on the dose of G-CSF. This represented a 6.2 to 7.4-fold increase over the neutrophil count before G-CSF administration. Of all donors, 69 percent experienced one or more side effects. The most common effects were: muscle and bone pain, headache, fatigue, and nausea. There was a relationship between the dose of G-CSF and the likelihood of experiencing a side effect. Most side effects were mild, but about 75 percent of donors took analgesics because of them. In a granulocyte donation program involving G-CSF stimulation, about two-thirds of donors would experience one or more side effects, but these would usually be mild and well tolerated.

  19. Neutrophil-to-lymphocyte ratio in the differential diagnosis of acute bacterial meningitis.

    PubMed

    Mentis, A-F A; Kyprianou, M A; Xirogianni, A; Kesanopoulos, K; Tzanakaki, G

    2016-03-01

    The differential diagnosis of acute community-acquired meningitis is of paramount importance in both therapeutic and healthcare-related economic terms. Despite the routinely used markers, novel, easily calculated, and rapidly available biomarkers are needed particularly in resource-poor settings. A promising, exponentially studied inflammatory marker is the neutrophil-to-lymphocyte ratio (NLR), albeit not assessed in meningitis. The aim of this study was to investigate the utility of the NLR in the differential diagnosis of acute meningitis. Data on cerebrospinal fluid (CSF) and blood leukocyte parameters from more than 4,000 patients diagnosed with either bacterial or viral meningitis in Greece during the period 2006-2013 were retrospectively examined. The diagnostic accuracy of the NLR and neutrophil counts in CSF and blood were evaluated by receiver operating characteristic curves. The discrimination ability of both the NLR and neutrophil counts was significantly higher in CSF than in blood. The optimal cutoff values of the NLR and neutrophil counts were 2 in CSF vs 8 in blood, and 287 cells in CSF vs 12,100 cells in blood, respectively. For these values, sensitivity, negative predictive value, and odds ratio were statistically significantly higher in CSF than blood for both markers. Logistic regression analysis showed that the CSF NLR carries independent and additive information to neutrophil counts in the differential diagnosis of acute meningitis. This study is the first one to assess NLR in acute meningitis, providing promising results for its differential diagnosis.

  20. Viral meningitis: which patients can be discharged from the emergency department?

    PubMed

    Mohseni, Michael M; Wilde, James A

    2012-12-01

    Even in an era when cases of viral meningitis outnumber bacterial meningitis by at least 25:1, most patients with clinical meningitis are hospitalized. We describe the clinical characteristics of an unusual outbreak of viral meningitis that featured markedly elevated cerebrospinal fluid white blood cell counts (CSF WBC). A validated prediction model for viral meningitis was applied to determine which hospital admissions could have been avoided. Data were collected retrospectively from patients presenting to our tertiary care center. Charts were reviewed in patients with CSF pleocytosis (CSF WBC > 7 cells/mm(3)) and a clinical diagnosis of meningitis between March 1, 2003 and July 1, 2003. Cases were identified through hospital infection control and by surveying all CSF specimens submitted to the microbiology laboratory during the outbreak. There were 78 cases of viral meningitis and 1 case of bacterial meningitis identified. Fifty-eight percent of the viral meningitis cases were confirmed by culture or polymerase chain reaction to be due to Enterovirus. Mean CSF WBC count was 571 cells/mm(3), including 20 patients with a CSF WBC count > 750 cells/mm(3) (25%) and 11 patients with values > 1000 cells/mm(3) (14%). Sixty-four of 78 patients (82%) were hospitalized. Rates of headache, photophobia, nuchal rigidity, vomiting, and administration of intravenous fluids in the Emergency Department were no different between admitted and discharged patients. Only 26/78 (33%) patients with viral meningitis would have been admitted if the prediction model had been used. Although not all cases of viral meningitis are necessarily suitable for outpatient management, use of a prediction model for viral meningitis may have helped decrease hospitalization by nearly 60%, even though this outbreak was characterized by unusually high levels of CSF pleocytosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. 6-Mercaptopurine modifies cerebrospinal fluid T cell abnormalities in paediatric opsoclonus-myoclonus as steroid sparer.

    PubMed

    Pranzatelli, M R; Tate, E D; Allison, T J

    2017-11-01

    The purpose of this study was to evaluate the capacity of 6-mercaptopurine (6-MP), a known immunosuppressant, to normalize cerebrospinal fluid (CSF) lymphocyte frequencies in opsoclonus-myoclonus syndrome (OMS) and function as a steroid sparer. CSF and blood lymphocytes were immunophenotyped in 11 children with OMS (without CSF B cell expansion) using a comprehensive panel of cell surface adhesion, activation and maturation markers by flow cytometry, and referenced to 18 paediatric controls. Drug metabolites, lymphocyte counts and liver function tests were used clinically to monitoring therapeutic range and toxicity. In CSF, adjunctive oral 6-MP was associated with a 21% increase in the low percentage of CD4 + T cells in OMS, restoring the CD4/CD8 ratio. The percentage of CD4 + T cells that were interferon (IFN)-γ + was reduced by 66%, shifting the cytokine balance away from T helper type 1 (Th1) (proinflammatory) predominance. The percentage of natural killer (NK) cells decreased significantly in CSF (-32%) and blood (-67 to -82%). Low blood absolute lymphocyte count was more predictive of improvement in CSF lymphocyte proportions (correlated with % CD4 + T cells) than the 6-thioguanine level (no correlation). 6-MP was difficult to titrate: 50% achieved the target absolute lymphocyte count (< 1·5 K/mm); 20%, the 'therapeutic' 6-thioguanine level; and 40% the non-toxic 6-methylmercaptopurine level. Side effects and transaminase elevation were mild and reversible. Clinical steroid-sparing properties and lowered relapse frequency were demonstrated. 6-MP displayed unique pharmacodynamic properties that may be useful in OMS and other autoimmune disorders. Its steroid sparer capacity is limited to children in whom the therapeutic window can be reached without limiting pharmacokinetic factors or side effects. © 2017 British Society for Immunology.

  2. Pragmatic and evidence-based approach to paediatric cerebrospinal fluid reference limits for white cell count and concentrations of total protein and glucose.

    PubMed

    Josman, Nicky; Tee, Nancy W S; Maiwald, Matthias; Loo, Liat Hui; Ho, Clement K M

    2018-06-15

    It is often impractical for each laboratory to establish its own paediatric reference intervals. This is particularly true for specimen types collected using invasive procedures, for example, cerebrospinal fluid (CSF). Published CSF reference intervals for white cell count, and concentrations of total protein and glucose were reviewed by stakeholders in a paediatric hospital. Consensus reference intervals for the three CSF parameters were then subjected to verification using guidelines from the Clinical Laboratory Standards Institute and residual CSF specimens. Consensus paediatric reference intervals adapted from published studies with minor modifications were locally verified as follows. White cell count (x10 6 cells/L): 0-20 (<1 month); 0-10 (1-2 months); 0-5 (>2 months). Total protein (g/L): 0.3-1.2 (<1 month); 0.2-0.6 (1-3 months); 0.1-0.4 (>3 months). Glucose (mmol/L): 2.0-5.6 (<6 months); 2.4-4.3 (6 months or older). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV.

    PubMed

    Anesten, Birgitta; Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J; Fuchs, Dietmar; Price, Richard W; Gisslén, Magnus

    2016-12-01

    Although blood-brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals.

  4. Effect of epileptic seizures on the cerebrospinal fluid--A systematic retrospective analysis.

    PubMed

    Tumani, Hayrettin; Jobs, Catherine; Brettschneider, Johannes; Hoppner, Anselm C; Kerling, Frank; Fauser, Susanne

    2015-08-01

    Analyses of the cerebrospinal fluid (CSF) are obligatory when epileptic seizures manifest for the first time in order to exclude life-threatening causes or treatable diseases such as acute infections or autoimmune encephalitis. However, there are only few systematic investigations on the effect of seizures themselves on CSF parameters and the significance of these parameters in differential diagnosis. CSF samples of 309 patients with epileptic and 10 with psychogenic seizures were retrospectively analyzed. CSF samples were collected between 1999 and 2008. Cell counts, the albumin quotient, lactate and Tau-protein levels were determined. Findings were correlated with seizure types, seizure etiology (symptomatic, cryptogenic, occasional seizure), and seizure duration. Pathological findings were only observed in patients with epileptic but not with psychogenic seizures. The lactate concentration was elevated in 14%, the albumin quotient in 34%, and the Tau protein level in 36% of CSF samples. Cell counts were only slightly elevated in 6% of patients. Different seizure types influenced all parameters except for the cell count: In status epilepticus highest, in simple partial seizures lowest values were seen. Symptomatic partial and generalized epileptic seizures had significantly higher Tau-protein levels than cryptogenic partial seizures. In patients with repetitive and occasional epileptic seizures, higher Tau-protein levels were seen than in those with psychogenic seizures. Duration of epileptic seizures was positively correlated with the albumin quotient, lactate and Tau-protein levels. High variability of investigated CSF parameters within each subgroup rendered a clear separation between epileptic and psychogenic seizures impossible. Elevated cell counts are infrequently observed in patients with epileptic seizures and should therefore not uncritically be interpreted as a postictal phenomenon. However, blood-CSF barrier disruption, increased glucose metabolism and elevation of neuronal damage markers are observed in considerable percentages of patients and depend on many factors such as etiology, seizure type and duration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    PubMed

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P < or = 0.0001) increased WBC counts, CFC frequencies, and CFC absolute numbers by 2-, 13-, and 27-fold, respectively. As compared with control mice, the combined administration of Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P < or = 0.0001) increased WBC counts, frequencies and absolute numbers of CFCs by 4-, 38-, and 119-fold, respectively. As compared with rhG-CSF alone, administration of Defibrotide plus rhG-CSF resulted in a significant increase (P < or = 0.001) of the frequency of circulating long-term culture-initiating cells. In addition, transplantation of 2 x 10(5) rhG-CSF- or Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P < or = 0.001), suggesting that the mobilizing effect of Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed progenitor cells. These data might have relevant implications for autologous and allogeneic anticancer therapy in humans.

  6. Blood–brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

    PubMed Central

    Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J.; Fuchs, Dietmar; Price, Richard W.; Gisslén, Magnus

    2016-01-01

    Objective: Although blood–brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). Results: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. Conclusions: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals. PMID:27868081

  7. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patients before and during treatment with G-CSF.

    PubMed

    Haurie, C; Dale, D C; Mackey, M C

    1999-03-01

    Using techniques developed in astrophysics to deal with unequally sampled data sets, we have analyzed serial differential cell counts from 45 congenital, idiopathic, and cyclic neutropenic patients before and during treatment with recombinant human G-CSF (rhG-CSF). Our results show that the occurrence of significant cycling in the absolute neutrophil count (ANC) of neutropenics not classified as cyclical is much more prevalent than had been previously thought, and that not all the patients classified as cyclic show significant ANC periodicity. In these patients, cycling in more than one cell line may be involved. The range of periods encountered in these patients is much broader (between 11 and 52 days) than is usually associated with classical cyclical neutropenia, and there is no obvious connection between the range of periods and the patient's diagnostic category. Administration of rhG-CSF is able to induce significant cycling in neutropenic patients that were not cycling prior to treatment. In patients who had significant cycling before treatment, rhG-CSF may either decrease the period to between 11 and 14 days, or may obliterate any statistical evidence of cycling.

  8. A comparison of neonatal Gram-negative rod and Gram-positive cocci meningitis.

    PubMed

    Smith, P B; Cotten, C M; Garges, H P; Tiffany, K F; Lenfestey, R W; Moody, M A; Li, J S; Benjamin, D K

    2006-02-01

    Neonatal meningitis is an illness with potentially devastating consequences. Early identification of potential risk factors for Gram-negative rod (GNR) infections versus Gram-positive cocci (GPC) infection prior to obtaining final culture results is of value in order to appropriately guide expirical therapy. We sought to compare laboratory and clinical parameters of GNR and GPC meningitis in a cohort of term and premature infants. We evaluated lumbar punctures from neonates cared for at 150 neonatal intensive care units managed by the Pediatrix Medical Group Inc. We compared cerebrospinal fluid (CSF) parameters (white blood cell count, red blood cell count, glucose, and protein), demographics, and outcomes between infants with GNR and GPC meningitis. CSF cultures positive with coagulase-negative staphylococci were excluded. We identified 77 infants with GNR and 86 with GPC meningitis. There were no differences in gestational age, birth weight, infant sex, race, or rate of Caesarean section. GNR meningitis was more often diagnosed after the third postnatal day and was associated with higher white blood cell and red blood cell counts. GNR meningitis diagnosed in the first 3 days of life was associated with antepartum antibiotic exposure. No difference was noted in either CSF protein or glucose levels. After correcting for gestational age, there was no observed difference in mortality between infants infected with GNR or GPC. Compared to GPC meningitis, GNR meningitis was associated with several aspects of the clinical history and laboratory findings including older age of presentation, antepartum exposure to antibiotics, and elevated CSF white blood cell and red blood cell counts.

  9. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population

    PubMed Central

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-01-01

    Abstract We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment. PMID:27043692

  10. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population.

    PubMed

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-03-01

    We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment.

  11. Effect of intramammary injection of rboGM-CSF on milk levels of chemiluminescence activity, somatic cell count, and Staphylococcus aureus count in Holstein cows with S. aureus subclinical mastitis

    PubMed Central

    2004-01-01

    Abstract The effect of intramammary injection of recombinant bovine granulocyte-macrophage colony-stimulating factor (rboGM-CSF, 400 μg/10 mL) on quarter milk levels of chemiluminescence (CL) activity, and somatic cell count (SCC) and shedding pattern of Staphylococcus aureus was investigated. Ten Holstein cows, naturally infected with S. aureus were used, with either early-stage or late-stage subclinical mastitis. Injection of rboGM-CSF caused a remarkable increase in milk CL activity with a peak at 6 h after the cytokine injection in the early- and late-stage groups. In the early-stage group, milk SCC stayed around preinjection level at 6 h, rose significantly on days 1 and 2, and was followed by a smooth and significant decline to an under preinjection level (below 200 000 cells/mL) on day 7 postinjection. Alternatively, in the late-stage group, milk SCC rose significantly at 6 h after the cytokine injection and maintained high levels thereafter. The milk S. aureus count decreased drastically by the cytokine injection in the early-stage group. The bacterial count was moderately decreased in the late-stage group, but increased back to preinoculation levels on day 7 after the cytokine injection. The results suggest that the rboGM-CSF has a potential as a therapeutic agent for S. aureus infection causing subclinical mastitis of dairy cows, if the cytokine is applied at the initial stage of infection. PMID:15352542

  12. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice

    PubMed Central

    Jiang, Shuqi; Shen, Xianrong; Liu, Yuming; He, Ying; Jiang, Dingwen; Chen, Wei

    2015-01-01

    This study investigated the radioprotective effect of Sipunculus nudus L. polysaccharide (SNP) in combination with WR-2721, rhIL-11 and rhG-CSF on irradiated mice. A total of 70 Imprinting Control Region (ICR) mice were divided into seven groups: the control group, the model group and five administration groups. All groups, except the control group, were exposed to a 5 Gy 60Co γ-ray beam. Blood parameters [including white blood cell (WBC), red blood cell (RBC) and platelet counts and hemoglobin level] were assessed three days before irradiation, and the on the 3rd, 7th and 14th days after irradiation. Spleen, thymus and testicular indices, DNA contents of bone marrow cells, bone marrow nucleated cells, sperm counts, superoxide dismutase (SOD), malondialdehyde (MDA), testosterone and estradiol levels in the serum were assessed on the 14th day after irradiation. The combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF exerted synergistic recovery effects on peripheral blood WBC, RBC and platelet counts and hemoglobin levels in irradiated mice, and synergistic promotion effects on spleen, thymus, testicle, bone marrow nucleated cells and sperm counts in irradiated mice. The synergistic administration increased the serum SOD activities and serum testosterone content of irradiated mice, but synergy decreased the content of serum MDA and estradiol in irradiated mice. These results suggest that the combined administration of SNP, WR-2721, rhIL-11 and rhG-CSF should increase the efficacy of these drugs for acute radiation sickness, protect immunity, hematopoiesis and the reproductive organs of irradiated-damaged mice, and improve oxidation resistance in the body. PMID:25852150

  13. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation.

    PubMed

    Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu

    2004-11-01

    The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a potential approach to clinical application for HPC peripheral mobilization.

  14. Granulocyte colony-stimulating factor improves host defense to resuscitated shock and polymicrobial sepsis without provoking generalized neutrophil-mediated damage.

    PubMed

    Patton, J H; Lyden, S P; Ragsdale, D N; Croce, M A; Fabian, T C; Proctor, K G

    1998-05-01

    Granulocyte colony-stimulating factor (G-CSF) increases production and release of neutrophil precursors and activates multiple functions of circulating polymorphonuclear neutrophils (PMNs). G-CSF has therapeutic effects in many experimental models of sepsis; its actions with superimposed reperfusion insults are unknown. In traumatic conditions, G-CSF could exacerbate unregulated, PMN-dependent injury to otherwise normal host tissue or, it could partially reverse trauma-induced immune suppression, which may improve long-term outcome. This study tested whether stimulating PMN proliferation and function with G-CSF during recovery from trauma+sepsis potentiated reperfusion injury or whether it improved host defense. Anesthetized swine were subjected to cecal ligation and incision, 35% hemorrhage, and 1 hr of hypotension. Resuscitation consisted of intravenous G-CSF (5 microg/kg) or placebo followed by shed blood and 40 mL/kg of lactated Ringer's solution. The control group received laparotomy only. G-CSF or placebo was given daily. Animals were killed at 4 days. Observers, blind to the protocol, graded autopsy samples for localization of infection and quality of abscess wall formation. Data included complete blood count, granulocyte oxidative burst after phorbol myristate acetate stimulation in vitro (GO2B), bronchoalveolar lavage (BAL) cell count, BAL noncellular protein, lipopolysaccharide-stimulated tumor necrosis factor production in whole blood in vitro (lipopolysaccharide-tumor necrosis factor), and lung tissue myeloperoxidase (MPO). Neutrophilia and localization of infection, were significantly improved by G-CSF. Variables altered by G-CSF, though not significantly, showed GO2B potential increased by 50%, lipopolysaccharide-tumor necrosis factor decreased by 50%, and improved survival versus placebo (100% vs. 70%). G-CSF did not increase lung MPO, BAL cell count, or BAL protein. Both arterial and venous O2 saturations were unaltered. Our data show that G-CSF initiated at the time of resuscitation reduced the sequelae of posttrauma sepsis by increasing PMN proliferation and function without potentiating PMN-mediated lung reperfusion injury.

  15. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis.

    PubMed

    Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito

    2017-09-01

    The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.

  16. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling.

    PubMed

    Koch, Corinna; Samareh, Bardia; Morishima, Tatsuya; Mir, Perihan; Kanz, Lothar; Zeidler, Cornelia; Skokowa, Julia; Welte, Karl

    2017-03-01

    Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

  17. Normocellular CSF in herpes simplex encephalitis.

    PubMed

    Saraya, Abhinbhen W; Wacharapluesadee, Supaporn; Petcharat, Sininat; Sittidetboripat, Nuntaporn; Ghai, Siriporn; Wilde, Henry; Hemachudha, Thiravat

    2016-02-15

    Herpes simplex virus (HSV) is the most common cause of sporadic encephalitis worldwide. The high mortality rate (70-80 %) of herpes simplex encephalitis (HSE) can be reduced to 20-30 % by antiviral therapy. However, normocellular CSF can lure physicians to look for non-infectious causes, resulting in delayed treatment. This study aimed to investigate, characterize and differentiate HSE patients, with normocellular and pleocytosis CSF, according to neuroimaging patterns, underlying disease, CSF viral load and clinical outcome. Patients with proven (by PCR positive CSF) or presumed viral infections of the CNS admitted to King Chulalongkorn Memorial Hospital between January 2002 and 2011 were analyzed. HSV was detected in the CSF of 43 patients but only 23 patients had encephalitis. Among these 23 patients, 6 cases (26.1 %) had normal CSF WBC (<5 cells/mm(3)). One patient in this normocellular CSF group had HIV infection. Although this patient had low CD4 counts (<200 cells/mm(3)), the peripheral WBC counts showed only mild leukopenia. The CSF HSV viral load in the pleocytosis group was higher than the normocellular group, with an average of 12,200 vs 3027 copies/ml respectively. There was no correlation between the viral load and the clinical outcome. With respect to neuroimaging, 4 (66.7 %) patients in the normocellular group had unremarkable/non-specific results. Normocellular CSF in HSE is not rare, and can be seen in normal as well as immunocompromised hosts. Clinicians should not exclude CNS infection, especially HSE, merely based on the absence of CSF pleocytosis and/or unremarkable neuroimaging study.

  18. Defining active progressive multiple sclerosis.

    PubMed

    Sellebjerg, Finn; Börnsen, Lars; Ammitzbøll, Cecilie; Nielsen, Jørgen Erik; Vinther-Jensen, Tua; Hjermind, Lena Elisabeth; von Essen, Marina; Ratzer, Rikke Lenhard; Soelberg Sørensen, Per; Romme Christensen, Jeppe

    2017-11-01

    It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.

  19. Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis.

    PubMed

    Klein, Matthias; Brouwer, Matthijs C; Angele, Barbara; Geldhoff, Madelijn; Marquez, Gabriel; Varona, Rosa; Häcker, Georg; Schmetzer, Helga; Häcker, Hans; Hammerschmidt, Sven; van der Ende, Arie; Pfister, Hans-Walter; van de Beek, Diederik; Koedel, Uwe

    2014-01-01

    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.

  20. Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis

    PubMed Central

    Angele, Barbara; Geldhoff, Madelijn; Marquez, Gabriel; Varona, Rosa; Häcker, Georg; Schmetzer, Helga; Häcker, Hans; Hammerschmidt, Sven; van der Ende, Arie; Pfister, Hans-Walter

    2014-01-01

    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment. PMID:24699535

  1. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice.

    PubMed

    Chen, Chong; Cao, Jiang; Song, Xuguang; Zeng, Lingyu; Li, Zhenyu; Li, Yong; Xu, Kailin

    2013-01-01

    A high dose of granulocyte colony stimulating factor (G-CSF) is widely used to mobilize hematopoietic stem and progenitor cells (HSPC), but G-CSF is relatively inefficient and may cause adverse effects. Recently, adrenaline has been found to play important roles in HSPC mobilization. In this study, we explored whether adrenaline combined with G-CSF could induce HSPC mobilization in a mouse model. Mice were treated with adrenaline and either a high or low dose of G-CSF alone or in combination. Peripheral blood HSPC counts were evaluated by flow cytometry. Levels of bone marrow SDF-1 were measured by ELISA, the transcription of CXCR4 and SDF-1 was measured by real-time RT-PCR, and CXCR4 protein was detected by Western blot. Our results showed that adrenaline alone fails to mobilize HSPCs into the peripheral blood; however, when G-CSF and adrenaline are combined, the WBC counts and percentages of HSPCs are significantly higher compared to those in mice that received G-CSF alone. The combined use of adrenaline and G-CSF not only accelerated HSPC mobilization, but also enabled the efficient mobilization of HSPCs into the peripheral blood at lower doses of G-CSF. Adrenaline/G-CSF treatment also extensively downregulated levels of SDF-1 and CXCR4 in mouse bone marrow. These results demonstrated that adrenaline combined with G-CSF can induce HSPC mobilization by down-regulating the CXCR4/SDF-1 axis, indicating that the use of adrenaline may enable the use of reduced dosages or durations of G-CSF treatment, minimizing G-CSF-associated complications.

  2. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients.

    PubMed

    Provencio, J Javier; Kivisäkk, Pia; Tucky, Barbara H; Luciano, Mark G; Ransohoff, Richard M

    2005-06-01

    The aim of the present study was to define the cellular composition of ventricular, as compared with lumbar, cerebrospinal fluid (CSF) in patients with non-inflammatory neurological disorders (NIND). We addressed this issue by determining the cellular composition of lumbar CSF from patients with normal pressure hydrocephalus (NPH) who were undergoing lumbar CSF drainage during evaluation for shunting procedures, and evaluating ventricular CSF from a subset of these who underwent subsequent placement of ventriculoperitoneal shunts. We determined the cellular composition of lumbar CSF from 18 patients with NPH, and found that the leukocyte differentials, and relative proportions of CD4+ and CD8+ central memory (TCM), effector memory (TEM) and naive cell (TNaive) populations, were equivalent to those found previously in studies of CSF from patients with NIND. We further evaluated cells in the ventricular CSF of five patients who had previously undergone lumbar drainage. Leukocyte differential counts, as well as CD4+ and CD8+ TCM, TEM, and TNaive proportions, were equivalent in matched ventricular and lumbar CSF samples. These observations support the hypothesis that leukocytes enter the CSF in a selective fashion, at its site of formation in the choroid plexus. The results implicate CSF T cells in the immune surveillance of the central nervous system.

  3. Clinical Prediction and Diagnosis of Neurosyphilis in HIV-Infected Patients with Early Syphilis

    PubMed Central

    Langevin, Stéphanie; Gagnon, Simon; Serhir, Bouchra; Deligne, Benoît; Tremblay, Cécile; Tsang, Raymond S. W.; Fortin, Claude; Coutlée, François; Roger, Michel

    2013-01-01

    The diagnosis of neurosyphilis (NS) is a challenge, especially in HIV-infected patients, and the criteria for deciding when to perform a lumbar puncture (LP) in HIV-infected patients with syphilis are controversial. We retrospectively reviewed demographic, clinical, and laboratory data from 122 cases of HIV-infected patients with documented early syphilis who underwent an LP to rule out NS, and we evaluated 3 laboratory-developed validated real-time PCR assays, the Treponema pallidum particle agglutination (TPPA) assay, the fluorescent treponemal antibody absorption (FTA-ABS) assay, and the line immunoassay INNO-LIA Syphilis, for the diagnosis of NS from cerebrospinal fluid (CSF) samples of these patients. NS was defined by a reactive CSF-VDRL test result and/or a CSF white blood cell (WBC) count of >20 cells/μl. Thirty of the 122 patients (24.6%) had early NS. Headache, visual symptoms, a CD4 cell count of <500 cells/μl, and viremia, as defined by an HIV-1 RNA count of ≥50 copies/ml, were associated with NS in multivariate analysis (P = <0.001 for each factor). Blood serum rapid plasma reagin (RPR) titers were not associated with early NS (P = 0.575). For the diagnosis of NS, the PCR, FTA-ABS, TPPA, and INNO-LIA assays had sensitivities of 58%, 100%, 68%, and 100%, specificities of 67%, 12%, 49%, and 13%, and negative predictive values of 85%, 100%, 84%, and 100%, respectively. Visual disturbances, headache, uncontrolled HIV-1 viremia, and a CD4 cell count of <500 cells/μl were predictors of NS in HIV-infected patients with early syphilis, while blood serum RPR titers were not; therefore, RPR titers should not be used as the sole criterion for deciding whether to perform an LP in early syphilis. When applied to CSF samples, the INNO-LIA Syphilis assay easily helped rule out NS. PMID:24088852

  4. Clinical prediction and diagnosis of neurosyphilis in HIV-infected patients with early Syphilis.

    PubMed

    Dumaresq, Jeannot; Langevin, Stéphanie; Gagnon, Simon; Serhir, Bouchra; Deligne, Benoît; Tremblay, Cécile; Tsang, Raymond S W; Fortin, Claude; Coutlée, François; Roger, Michel

    2013-12-01

    The diagnosis of neurosyphilis (NS) is a challenge, especially in HIV-infected patients, and the criteria for deciding when to perform a lumbar puncture (LP) in HIV-infected patients with syphilis are controversial. We retrospectively reviewed demographic, clinical, and laboratory data from 122 cases of HIV-infected patients with documented early syphilis who underwent an LP to rule out NS, and we evaluated 3 laboratory-developed validated real-time PCR assays, the Treponema pallidum particle agglutination (TPPA) assay, the fluorescent treponemal antibody absorption (FTA-ABS) assay, and the line immunoassay INNO-LIA Syphilis, for the diagnosis of NS from cerebrospinal fluid (CSF) samples of these patients. NS was defined by a reactive CSF-VDRL test result and/or a CSF white blood cell (WBC) count of >20 cells/μl. Thirty of the 122 patients (24.6%) had early NS. Headache, visual symptoms, a CD4 cell count of <500 cells/μl, and viremia, as defined by an HIV-1 RNA count of ≥50 copies/ml, were associated with NS in multivariate analysis (P = <0.001 for each factor). Blood serum rapid plasma reagin (RPR) titers were not associated with early NS (P = 0.575). For the diagnosis of NS, the PCR, FTA-ABS, TPPA, and INNO-LIA assays had sensitivities of 58%, 100%, 68%, and 100%, specificities of 67%, 12%, 49%, and 13%, and negative predictive values of 85%, 100%, 84%, and 100%, respectively. Visual disturbances, headache, uncontrolled HIV-1 viremia, and a CD4 cell count of <500 cells/μl were predictors of NS in HIV-infected patients with early syphilis, while blood serum RPR titers were not; therefore, RPR titers should not be used as the sole criterion for deciding whether to perform an LP in early syphilis. When applied to CSF samples, the INNO-LIA Syphilis assay easily helped rule out NS.

  5. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis

    PubMed Central

    Rodríguez-Martín, E; Picón, C; Costa-Frossard, L; Alenda, R; Sainz de la Maza, S; Roldán, E; Espiño, M; Villar, L M; Álvarez-Cermeño, J C

    2015-01-01

    Changes in blood natural killer (NK) cells, important players of the immune innate system, have been described in multiple sclerosis (MS). We studied percentages and total cell counts of different effector and regulatory NK cells in cerebrospinal fluid (CSF) of MS patients and other neurological diseases to gain clearer knowledge of the role of these cells in neuroinflammation. NK cell subsets were assessed by flow cytometry in CSF of 85 consecutive MS patients (33 with active disease and 52 with stable MS), 16 with other inflammatory diseases of the central nervous system (IND) and 17 with non-inflammatory neurological diseases (NIND). MS patients showed a decrease in percentages of different CSF NK subpopulations compared to the NIND group. However, absolute cell counts showed a significant increase of all NK subsets in MS and IND patients, revealing that the decrease in percentages does not reflect a real reduction of these immune cells. Remarkably, MS patients showed a significant increase of regulatory/effector (CD56bright/CD56dim) NK ratio compared to IND and NIND groups. In addition, MS activity associated with an expansion of NK T cells. These data show that NK cell subsets do not increase uniformly in all inflammatory neurological disease and suggest strongly that regulatory CD56bright and NK T cells may arise in CSF of MS patients as an attempt to counteract the CNS immune activation characteristic of the disease. PMID:25565222

  6. Sex differences in the pharmacokinetics of recombinant human granulocyte colony-stimulating factor in the rat.

    PubMed

    Tanaka, H; Kaneko, T

    1991-01-01

    The pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) were studied in male and female rats. The serum concentration of rhG-CSF after iv and sc administration to male and female Sprague-Dawley rats at a dose of 5 and 100 micrograms/kg was investigated by a sandwich enzyme-linked immunosorbent assay. After iv administration, AUC and half-lives of rhG-CSF in female rats were smaller than those for male rats. The volume of distribution of rhG-CSF in female rats was not significantly different from that in male rats. After sc administration, AUC, mean residence time, and half-lives of elimination phase in female rats were smaller than those for male rats. The in vitro biological activities of rhG-CSF were investigated using [3H]thymidine uptake assay in cultures of bone marrow cells obtained from male and female rat femur. Female rat bone marrow cells showed a similar dose-response profile to rhG-CSF to that of male rat bone marrow cells. The effect of rhG-CSF administration in rats was a specific activity on the neutrophil lineage with an increase of neutrophils in peripheral blood. The in vivo effects of rhG-CSF after iv and sc administration to male and female rats at 5 and 100 micrograms/kg doses were determined. After 100 micrograms/kg administration, the neutrophil count in female rats was similar to that in male rats in the early period; however, the neutrophil count in female rats was lower than that in male rats 24 hr after administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Targeting of colony-stimulating factor 1 receptor (CSF1R) in the CLL microenvironment yields antineoplastic activity in primary patient samples.

    PubMed

    Edwards V, David K; Sweeney, David Tyler; Ho, Hibery; Eide, Christopher A; Rofelty, Angela; Agarwal, Anupriya; Liu, Selina Qiuying; Danilov, Alexey V; Lee, Patrice; Chantry, David; McWeeney, Shannon K; Druker, Brian J; Tyner, Jeffrey W; Spurgeon, Stephen E; Loriaux, Marc M

    2018-05-15

    In many malignancies, the tumor microenvironment includes CSF1R-expressing supportive monocyte/macrophages that promote tumor cell survival. For chronic lymphocytic leukemia (CLL), these supportive monocyte/macrophages are known as nurse-like cells (NLCs), although the potential effectiveness of selective small-molecule inhibitors of CSF1R against CLL is understudied. Here, we demonstrate the preclinical activity of two inhibitors of CSF1R, GW-2580 and ARRY-382, in primary CLL patient samples. We observed at least 25% of CLL samples showed sub-micromolar sensitivity to CSF1R inhibitors. This sensitivity was observed in samples with varying genetic and clinical backgrounds, although higher white cell count and monocyte cell percentage was associated with increased sensitivity. Depleting CD14-expressing monocytes preferentially decreased viability in samples sensitive to CSF1R inhibitors, and treating samples with CSF1R inhibitors eliminated the presence of NLCs in long-term culture conditions. These results indicate that CSF1R small-molecule inhibitors target CD14-expressing monocytes in the CLL microenvironment, thereby depriving leukemia cells of extrinsic support signals. In addition, significant synergy was observed combining CSF1R inhibitors with idelalisib or ibrutinib, two current CLL therapies that disrupt tumor cell intrinsic B-cell receptor signaling. These findings support the concept of simultaneously targeting supportive NLCs and CLL cells and demonstrate the potential clinical utility of this combination.

  8. Recombinant Granulocyte-Macrophage Colony-Stimulating Factor (rGM-CSF) : A Review of its Pharmacological Properties and Prospective Role in the Management of Myelosuppression.

    PubMed

    Grant, Susan M; Heel, Rennie C

    1992-04-01

    Recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a polypeptide hormone produced through recombinant DNA technologies in glycosylated (yeast or mammalian expression systems) or nonglycosylated (Escherichia coli expression system) form. It is a multilineage haematopoietin which stimulates proliferation and differentiation of bone marrow myeloid progenitors and increases peripheral white blood cell counts when administered systemically. Treatment is generally well tolerated, although mild to moderate flu-like symptoms are common and rGM-CSF-induced fever and fluid retention may be problematic in occasional patients. rGM-CSF accelerates recovery of peripheral neutrophil counts after bone marrow transplantation, and results of a placebo-controlled randomised trial correlate this with reduced infectious episodes and shortened length of hospitalisation in patients with lymphoid malignancies. A substantial number of patients with graft failure after bone marrow transplantation also respond to rGM-CSF. The duration of myelosuppression secondary to cancer chemotherapy can be significantly reduced by rGM-CSF which has permitted investigation of antineoplastic dose-intensity escalation. In some haematopoietic disorders (e.g. aplastic anaemia, myelodysplasia and neutropenia secondary to HIV infection and antiviral therapy), rGM-CSF produces clinically useful increases in peripheral blood granulocyte counts, although the effect is generally not sustained after drug withdrawal. The potential for rGM-CSF to stimulate proliferation of the abnormal clone in myelodysplasia and in acute myelogenous leukaemia following induction therapy is of concern. Available data suggest, however, that with appropriate monitoring and exclusion of high-risk patients this serious potential risk can be avoided, and that myelopoiesis is enhanced in such patients by rGM-CSF treatment. Recombinant colony-stimulating factors are a new therapeutic modality; hence many aspects of their use remain to be clarified. Nonetheless, as one of a small group of novel agents rGM-CSF has major potential in the management of myelosuppression secondary to cytoreductive therapy with or without bone marrow transplantation, and in amelioration of disturbed myelopoiesis. It represents an important application of biotechnology to a difficult area of therapeutics. Endogenous GM-CSF is produced by T-lymphocytes, macrophages, fibroblasts and endothelial cells, and participates both in the complex regulation of blood cell formation and in activation of mature leucocytes. It is a polypeptide which is variably glycosylated in its native state although the carbohydrate content is not essential for its biological effects, and the 3 available recombinant forms (which differ in extent of glycosylation) are similarly active in vivo. Proliferative activity and priming of mature cells are manifest at similar picomolar concentrations of GM-CSF, and it is the programming of the cell which appears to determine the response to binding of GM-CSF to its cell surface receptor. In concert with other colony-stimulating factors, GM-CSF facilitates lineage commitment and subsequently supports or amplifies the clonogenic activity of lineage-restricted factors, with the strongest effect seen on the granulocyte-macrophage lineage. A biphasic response was seen when rGM-CSF was administered in doses up to 1000 µg/m 2 /day or 60 µg/kg/day by subcutaneous or intravenous routes in phase I/II trials. Peripheral blood leucocyte counts decreased rapidly and profoundly secondary to sequestration within the lungs. Re-entry of these cells into the circulation restores counts to baseline in 2 to 4 hours and thereafter an increase in the proliferative fraction of haematopoietic cells in bone marrow probably accounts for the progressive rise in the number of neutrophils, eosinophils and monocytes. This effect is dose-proportional. GM-CSF stimulates proliferation of leukaemic progenitors from patients with acute myeloid leukaemia without stimulating differentiation. In contrast, the abnormal clone from myelodysplastic patients can be induced with GM-CSF to differentiate in vitro although karyotype anomalies persist. In vitro studies suggest that stimulation of nonhaematological cancer cells at physiological concentrations of GM-CSF is unlikely. The priming effects of GM-CSF on mature leucocytes which include increased expression of other cytokines, secretion of granule contents, augmentation of antigen presentation, altered chemotaxis, and enhanced phagocytosis, oxidative metabolism and antibody dependent cell-mediated cytotoxicity probably serve to increase the host response to infection. Administration of murine rGM-CSF to mice injected with lethal inocula of, for example, Pseudomonas aeruginosa improved their survival relative to controls. There are several reports of refractory infection in seriously ill neutropenic patients resolving after addition of rGM-CSF to ongoing antimicrobial therapy and subsequent neutrophil recovery; however, the role of rGM-CSF in management of established infection in patients with neutropenia remains to be more thoroughly investigated. The pharmacokinetic properties of rGM-CSF depend on the route of administration. After intravenous administration, serum levels decline rapidly with a half-life of distribution (t 1/2α ) of 5 to 15 minutes and half-life of elimination (t 1/2β ) of 1.5 to 2 hours. Maximum serum concentrations are reached 2 hours after subcutaneous injection, then decline with a t 1/2β of 3 hours. Serum levels of rGM-CSF increase with dose and a proposed therapeutic target level of 1 µg/L is maintained for 8 to 22 and 16 hours after administration of 15 µg/kg of rGM-CSF by intravenous bolus and subcutaneous injection, respectively. The correlation between duration and severity of neutropenia and incidence of serious infection is well established. Administration of rGM-CSF to bone marrow transplant recipients is aimed at reducing morbidity in the early post-transplant period by shortening the duration of agranulocytosis. Intravenous administration of rGM-CSF up to 16 µg/kg/day (approximately 640 µg/m 2 /day) is well tolerated, and when begun within 24 hours of autologous marrow infusion produces the earlier appearance of > 0.5 × 10 9 /L neutrophils in the peripheral circulation as compared with historical controls. Early studies indicate that treated patients have a lower incidence of culture-proven bacteraemia, and recent reports, some preliminary, of placebo-controlled and randomised trials confirm that patients with nonHodgkin's lymphoma or acute lymphocytic leukaemia who receive rGM-CSF 250 µg/m 2 by daily 2-hour infusion for 21 days or more post transplantation, have significant reductions in duration of infectious episodes, antibiotic administration and hospitalisation. More limited data support a similar acceleration of neutrophil recovery in allogeneic bone marrow transplant recipients treated with rGM-CSF, with no apparent effect on the incidence or severity of graft-versus-host disease. rGM-CSF is less effective in patients in whom progenitor cell numbers are reduced by chemical purging of the marrow whether administered immediately after marrow infusion or when used as salvage therapy in patients with graft failure. A substantial proportion of patients with failure of autologous or allogeneic bone marrow grafts respond to prompt administration of rGM-CSF after diagnosis of graft failure, with an increase in absolute neutrophil count and bone marrow cellularity. In 1 study of 37 such patients, overall survival was significantly improved compared with historical controls. rGM-CSF increases the number of progenitor cells in peripheral circulation and, either alone or in combination with cyclophosphamide, facilitates the harvest of stem cells by apheresis for subsequent transplantation. Similar to the effect seen after myeloablative therapy and marrow transplantation, rGM-CSF accelerates neutrophil recovery following cytoreductive chemotherapy in patients with nonhaematological malignancies. Less frequent and less severe mucositis was also observed in rGM-CSF-treated versus control patients in several studies. Importantly, adjunctive use of rGM-CSF facilitated delivery of planned cycles of high or escalated doses of antineoplastic drugs although the value of such chemotherapy regimens remains to be proven. There has been no evidence to date that rGM-CSF increases the rate of relapse of patients with haematological malignancies when administered after myeloablative therapy and bone marrow transplantation or, in patients with acute myelogenous leukaemia, after induction therapy. Use of rGM-CSF to recruit quiescent leukaemic blast cells into S phase prior to chemotherapy is under investigation. rGM-CSF has been investigated in various disorders of haematopoiesis. A substantial number of adults and children with refractory aplastic anaemia respond to treatment with increases in bone marrow cellularity and peripheral blood granulocyte count; however, the response is generally not sustained after withdrawal of rGM-CSF. Elevation of neutrophil counts may not occur in patients with long-standing and severe aplasia; however, beneficial stimulation of macrophage function may still occur. Generally, rGM-CSF induces eosinophilia without correcting the neutropenia in patients with congenital neutropenic conditions. In myelodysplasia, rGM-CSF is capable of increasing the neutrophil count in a proportion of patients for the duration of administration. Caution is appropriate in administering this drug to patients with high (> 14% blasts) initial leukaemic burdens or with chronic myelomonocytic leukaemia in view of the potential for rGM-CSF to stimulate the leukaemic clone and precipitate acute leukaemia. Despite this concern, encouraging preliminary results from a trial with rGM-CSF (3 µg/kg/day by subcutaneous injection) and observation-only treatment groups suggest that, after > 6 months, the rate of transformation to acute leukaemia is similar in both groups but that rGM-CSF recipients have a sustained increase in neutrophil counts and an associated reduction in infection rate. rGM-CSF 1 to 5 µg/kg/day by subcutaneous injection ameliorates leucopenia associated with HIV infection and corrects zidovudine (azidothymidine)-induced neutropenia without affecting the disease course as determined by p24 antigen levels, CD4: CD8 ratios and recovery of HIV from mononuclear cells. Similar dosages ameliorate myelosuppression induced by ganciclovir in the treatment of AIDS-associated cytomegalovirus retinitis and by the combination of zidovudine and interferon-α in treating Kaposi's sarcoma. A trilineage response to rGM-CSF has been seen occasionally (e.g. some children with aplastic anaemia and some patients with myelodysplasia). Disease-or drug-induced anaemia or thrombocytopenia is generally not improved; however, both significant increases and decreases in platelet count have been reported, and the effect of rGM-CSF on megakaryocytosis and splenic phagocyte function require clarification. The combination of rGM-CSF with other recombinant colony-stimulating factors to expand the lineages stimulated is an exciting future possibility. At clinically useful dosages rGM-CSF is generally well tolerated. Limited comparison with placebo suggests that the type and incidence of adverse reactions reported are generally similar in both groups with the possible exception of slightly higher incidences of diarrhoea, asthenia, rash and malaise. However, reports from noncomparative and open-label trials indicate that mild to moderate flu-like symptoms (myalgias, bone pain, fatigue and headache) are common with rGM-CSF. Management of patients in whom this agent is indicated may be complicated by rGM-CSF-induced fever and, rarely, by a capillary leak syndrome causing fluid retention and potentially peripheral oedema, pericardial or pleural effusions which necessitate drug withdrawal. Also reported are rash (particularly at sites of subcutaneous injection), and occasional incidents of central venous catheter thrombosis. The occasional report of respiratory distress has led to the recommendation that respiratory symptoms be monitored and caution exercised in patients with preexisting lung disease. The approved (USA) dosage of yeast-derived rGM-CSF (sargramostim) for myeloid reconstitution after autologous bone marrow transplantation is 250 µg/m 2 by daily 2-hour intravenous infusions, beginning 2 to 4 hours after marrow infusion and continued for 21 days. For management of bone marrow transplantation failure or delayed engraftment, the approved (USA) dosage of yeast-derived rGM-CSF is 250 µg/m 2 /day by 2-hour intravenous infusion. Treatment should be continued for 14 days and, if clinically indicated, may be repeated after 7 days off therapy. A third 14-day course of rGM-CSF at the increased dosage of 500 µg/m 2 /day by 2-hour infusion may be administered after a further 7 days off therapy. Further dose escalation in non-responding patients is unlikely to be of benefit. rGM-CSF has also been successfully administered by continuous intravenous infusion and by subcutaneous injection, including self-administration of long term therapy by the subcutaneous route. The optimal route for administration, dose and duration of therapy for indications other than autologous bone marrow transplantation and failure or delay of engraftment have not been established.

  9. Antiretroviral Treatment Effect on Immune Activation Reduces Cerebrospinal Fluid HIV-1 Infection

    PubMed Central

    Sinclair, Elizabeth; Ronquillo, Rollie; Lollo, Nicole; Deeks, Steven G.; Hunt, Peter; Yiannoutsos, Constantin T.; Spudich, Serena; Price, Richard W.

    2012-01-01

    Objective To define the effect of antiretroviral therapy (ART) on activation of T cells in cerebrospinal fluid (CSF) and blood, and interactions of this activation with CSF HIV-1 RNA concentrations. Design Cross-sectional analysis of 14 HIV-negative subjects and 123 neuroasymptomatic HIV-1–infected subjects divided into 3 groups: not on ART (termed “offs”), on ART with plasma HIV-1 RNA >500 copies/mL (“failures”), and on ART with plasma HIV-1 RNA ≤500 copies/mL (“successes”). T-cell activation was measured by coexpression of CD38 and human leukocyte antigen DR (HLA-DR). Other measurements included CSF neopterin and white blood cell (WBC) counts. Results CD8 T-cell activation in CSF and blood was highly correlated across all subjects and was highest in the offs, lower in the failures, and lower still in the successes. While CD8 activation was reduced in failures compared to offs across the range of plasma HIV-1, it maintained a coincident relation to CSF HIV-1 in both viremic groups. In addition to correlation with CSF HIV-1 concentrations, CD8 activation in blood and CSF correlated with CSF WBCs and CSF neopterin. Multivariate analysis confirmed the association of blood CD8 T-cell activation, along with plasma HIV-1 RNA and CSF neopterin, with CSF HIV-1 RNA levels. Conclusions The similarity of CD8 T-cell activation in blood and CSF suggests these cells move from blood to CSF with only minor changes in CD38/HLA-DR expression. Differences in the relation of CD8 activation to HIV-1 concentrations in the blood and CSF in the 2 viremic groups suggest that changes in immune activation not only modulate CSF HIV-1 replication but also contribute to CSF treatment effects. The magnitude of systemic HIV-1 infection and intrathecal macrophage activation are also important determinants of CSF HIV-1 RNA levels. PMID:18362693

  10. Prevention of myelosuppression by combined treatment with enterosorbent and granulocyte colony-stimulating factor.

    PubMed

    Shevchuk, O O; Posokhova, К А; Todor, I N; Lukianova, N Yu; Nikolaev, V G; Chekhun, V F

    2015-06-01

    Hematotoxicity and its complication are the prominent limiting factors for rational treatment of malignancies. Granulocyte colony-stimulating factor (G-CSF) is used to increase granulocyte production. It has been shown previously that enterosorption causes prominent myeloprotective activity also. Still, no trial was performed to combine both of them. To study the influence of combination of enterosorption and pharmaceutical analogue of naturally occurring G-CSF (filgrastim) on bone marrow protection and the growth of grafted tumor in a case of injection of melphalan (Mel). Mel injections were used for promotion of bone marrow suppression in rats. Carbon granulated enterosorbent C2 (IEPOR) was used for providing of enteral sorption detoxifying therapy. Filgrastim was used to increase white blood cells (WBC) count. The simultaneous usage of enterosorption and filgrastim had maximum effectiveness for restoring of all types of blood cells. WBC count was higher by 138.3% compared with the Mel group. The increase of platelets count by 98.5% was also observed. In the group (Mel + C2 + filgrastim) the absolute neutrophils count was twofold higher, in comparison with rats of Mel group. Simultaneous administration of G-CSF-analogue and carbonic enterosorbent C2 is a perspective approach for bone marrow protection, when the cytostatic drug melphalan is used. Such combination demonstrates prominent positive impact on restoring of all types of blood cells and had no influence on the antitumor efficacy.

  11. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  12. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: a retrospective longitudinal study.

    PubMed

    Mounier, Roman; Lobo, David; Cook, Fabrice; Fratani, Alexandre; Attias, Arie; Martin, Mathieu; Chedevergne, Karin; Bardon, Jean; Tazi, Sanaa; Nebbad, Biba; Bloc, Sébastien; Plaud, Benoît; Dhonneur, Gilles

    2015-12-01

    Our aim was to describe the pattern of ventriculostomy-related infection (VRI) development using a dynamic approach. Retrospective longitudinal study. We analyzed the files of 449 neurosurgical patients who underwent placement of external ventricular drain (EVD). During the study period, CSF sampling was performed on a daily base setting. VRI was defined as a positive CSF culture resulting in antibiotic treatment. For VRI patients, we arbitrary defined day 0 (D0) as the day antibiotic treatment was started. In these patients, we compared dynamic changes in clinical and biological parameters at four pre-determined time points: (D-4, D-3, D-2, D-1) with those of D0. For all CSF-positive cultures, we compared CSF biochemical markers' evolution pattern between VRI patients and the others, considered as a control cohort. Thirty-two suffered from VRI. Peripheral white blood cell count did not differ between D-4-D0. Median body temperature, CSF cell count, median Glasgow Coma Scale, CSF protein, and glucose concentrations were significantly different between D-4, D-3, D-2, and D0. At D0, 100 % of CSF samples yielded organisms in culture. The physician caring for the patient decided to treat VRI based upon positive CSF culture in only 28 % (9/32) of cases. In the control cohort, CSF markers' profile trends to normalize, while it worsens in the VRI patients. We showed that clinical symptoms and biological abnormalities of VRI evolved over time. Our data suggest that VRI decision to treat relies upon a bundle of evidence, including dynamic changes in CSF laboratory exams combined with microbiological analysis.

  13. A case of squamous cell carcinoma of the head and neck producing granulocyte-colony stimulating factor with marked leukocytosis.

    PubMed

    Toyoda, Minoru; Chikamatsu, Kazuaki; Sakakura, Koichi; Fukuda, Yoichiro; Takahashi, Katsumasa; Miyashita, Motoaki; Shimamura, Kazuo; Furuya, Nobuhiko

    2007-06-01

    In squamous cell carcinoma of the head and neck (SCCHN), tumor cells have been shown to secrete detectable amounts of various cytokines, such as interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-beta. These tumor-derived factors might be responsible for promoting malignancy. Here, we describe a SCCHN patient with tumor produced G-CSF and characterized by marked leukocytosis. In this 45-year-old man, severe leukocytosis developed in parallel with aggressive tumor growth. G-CSF production by the tumor was confirmed by immunohistochemistry (IHC). Serum G-CSF levels were elevated. The leukocyte counts and the blood G-CSF level decreased following a course of radiotherapy. Tumor cells were also positive for G-CSF receptor, suggesting autocrine growth regulation by G-CSF. Moreover, the tumor cells were also investigated by IHC with anti-p53, anti-P-glycoprotein (P-gp), anti-thymidylate synthase (TS), and anti-dihydropyrimidine dehydrogenase (DPD), which molecules are thought to contribute the acquisition of therapeutic resistance. The tumor cells were positively stained for TS and DPD, but neither p53 nor P-gp. These results suggest that a variety of molecules may be responsible for acquisition of high malignancy.

  14. Attenuated cerebrospinal fluid leukocyte count and sepsis in adults with pneumococcal meningitis: a prospective cohort study

    PubMed Central

    Weisfelt, Martijn; van de Beek, Diederik; Spanjaard, Lodewijk; Reitsma, Johannes B; de Gans, Jan

    2006-01-01

    Background A low cerebrospinal fluid (CSF) white-blood cell count (WBC) has been identified as an independent risk factor for adverse outcome in adults with bacterial meningitis. Whereas a low CSF WBC indicates the presence of sepsis with early meningitis in patients with meningococcal infections, the relation between CSF WBC and outcome in patients with pneumococcal meningitis is not understood. Methods We examined the relation between CSF WBC, bacteraemia and sepsis in a prospective cohort study that included 352 episodes of pneumococcal meningitis, confirmed by CSF culture, occurring in patients aged >16 years. Results CSF WBC was recorded in 320 of 352 episodes (91%). Median CSF WBC was 2530 per mm3 (interquartile range 531–6983 per mm3) and 104 patients (33%) had a CSF WBC <1000/mm3. Patients with a CSF WBC <1000/mm3 were more likely to have an unfavourable outcome (defined as a Glasgow Outcome Scale score of 1–4) than those with a higher WBC (74 of 104 [71%] vs. 87 of 216 [43%]; P < 0.001). CSF WBC was significantly associated with blood WBC (Spearman's test 0.29), CSF protein level (0.20), thrombocyte count (0.21), erythrocyte sedimentation rate (-0.15), and C-reactive protein levels (-0.18). Patients with a CSF WBC <1000/mm3 more often had a positive blood culture (72 of 84 [86%] vs. 138 of 196 [70%]; P = 0.01) and more often developed systemic complications (cardiorespiratory failure, sepsis) than those with a higher WBC (53 of 104 [51%] vs. 69 of 216 [32%]; P = 0.001). In a multivariate analysis, advanced age (Odds ratio per 10-year increments 1.22, 95%CI 1.02–1.45), a positive blood culture (Odds ratio 2.46, 95%CI 1.17–5.14), and a low thrombocyte count on admission (Odds ratio per 100,000/mm3 increments 0.67, 95% CI 0.47–0.97) were associated with a CSF WBC <1000/mm3. Conclusion A low CSF WBC in adults with pneumococcal meningitis is related to the presence of signs of sepsis and systemic complications. Invasive pneumococcal infections should possibly be regarded as a continuum from meningitis to sepsis. PMID:17038166

  15. Validation of the bacterial meningitis score in adults presenting to the ED with meningitis.

    PubMed

    McArthur, Robert; Edlow, Jonathan A; Nigrovic, Lise E

    2016-07-01

    The Bacterial Meningitis Score classifies children with meningitis and none of the following high-risk predictors at very low risk for bacterial meningitis: positive cerebrospinal fluid (CSF) Gram stain, CSF protein ≥80mg/dL, CSF absolute neutrophil count (ANC) ≥1000 cells/mm(3), peripheral ANC ≥10,000 cells/mm(3), and seizure at or prior to presentation. Although extensively validated in children, the Bacterial Meningitis Score has not been rigorously evaluated in adults. We performed a single-center cross-sectional retrospective study of adults presenting to the emergency department between 2003 and 2013 with meningitis (defined by CSF white blood cell count ≥10 cells/mm(3)). We defined a case of bacterial meningitis with either a positive CSF or blood culture. We report the performance of the Bacterial Meningitis Score in the study population. We identified 441 eligible patients of which, 4 (1%) had bacterial meningitis. The Bacterial Meningitis Score had a sensitivity of 100% [95% confidence interval (CI) 40%-100%], specificity 51% (95% CI, 46%-56%) and negative predictive value of 100% (95% CI, 98%-100%). None of the low risk adults had bacterial meningitis. If Bacterial Meningitis Score had been applied prospectively, the hospital admission rate would have dropped from 84% to 49% without missing any patients with bacterial meningitis. The Bacterial Meningitis Score accurately identified patients at low risk for bacterial meningitis and could assist clinical decision-making for adults with meningitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo.

    PubMed

    Nedosekin, Dmitry A; Juratli, Mazen A; Sarimollaoglu, Mustafa; Moore, Christopher L; Rusch, Nancy J; Smeltzer, Mark S; Zharov, Vladimir P; Galanzha, Ekaterina I

    2013-06-01

    Circulating cells, bacteria, proteins, microparticles, and DNA in cerebrospinal fluid (CSF) are excellent biomarkers of many diseases, including cancer and infections. However, the sensitivity of existing methods is limited in their ability to detect rare CSF biomarkers at the treatable, early-stage of diseases. Here, we introduce novel CSF tests based on in vivo photoacoustic flow cytometry (PAFC) and ex vivo photothermal scanning cytometry. In the CSF of tumor-bearing mice, we molecularly detected in vivo circulating tumor cells (CTCs) before the development of breast cancer brain metastasis with 20-times higher sensitivity than with current assays. For the first time, we demonstrated assessing three pathways (i.e., blood, lymphatic, and CSF) of CTC dissemination, tracking nanoparticles in CSF in vivo and their imaging ex vivo. In label-free CSF samples, we counted leukocytes, erythrocytes, melanoma cells, and bacteria and imaged intracellular cytochromes, hemoglobin, melanin, and carotenoids, respectively. Taking into account the safety of PAFC, its translation for use in humans is expected to improve disease diagnosis beyond conventional detection limits. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pharmacokinetic and pharmacodynamic comparisons between human granulocyte colony-stimulating factor purified from human bladder carcinoma cell line 5637 culture medium and recombinant human granulocyte colony-stimulating factor produced in Escherichia coli.

    PubMed

    Tanaka, H; Kaneko, T

    1992-07-01

    The pharmacokinetics and biological activities of recombinant human granulocyte colony-stimulating factor (hG-CSF) produced in Escherichia coli were compared with those of hG-CSF purified from human bladder carcinoma cell line 5637 culture medium (5637-hG-CSF). Recombinant hG-CSF was biologically active in a bone marrow cell proliferation assay in vitro, with a dose-response curve similar to that of 5637-hG-CSF. The effects of 5637- and recombinant hG-CSF administered via i.v. injection to rats showed similar response patterns of neutrophil counts in peripheral blood. From these results, it is concluded that the O-linked sugar chain of hG-CSF does not contribute to the in vitro and in vivo biological activities. The pharmacokinetics of both forms of hG-CSF in rats were investigated using a sandwich enzyme-linked immunosorbent assay. After i.v. administration, the serum concentration-time curves of 5637- and recombinant hG-CSF declined biexponentially. Total body clearance and steady-state volume of distribution of 5637-hG-CSF were smaller than those for the recombinant form. After s.c. administration, a lower peak serum level, smaller AUC, and lower bioavailability of 5637-hG-CSF were observed compared to recombinant hG-CSF.

  18. CXCL13 as a Cerebrospinal Fluid Marker for Neurosyphilis in HIV-infected Patients with Syphilis

    PubMed Central

    Marra, Christina M.; Tantalo, Lauren C.; Sahi, Sharon K.; Maxwell, Clare L.; Lukehart, Sheila A.

    2010-01-01

    Background Asymptomatic neurosyphilis is more difficult to diagnose in HIV-infected patients because HIV itself can cause cerebrospinal fluid (CSF) pleocytosis. The proportion of CSF lymphocytes that are B cells is elevated in neurosyphilis, suggesting that the CSF concentration of the B cell chemoattractant, chemokine (C-X-C motif) ligand 13 (CXCL13) concentration may also be elevated. Methods CSF and blood were collected from 199 HIV-infected patients with syphilis and neurosyphilis. Serum and CSF CXCL13 concentrations were determined. Results Patients with neurosyphilis had higher CSF and serum CXCL13 concentrations compared to patients with syphilis but not neurosyphilis. The odds of having symptomatic neurosyphilis were increased by 2.23 fold for every log increase in CSF CXCL13 concentration and were independent of CSF WBC and plasma HIV RNA concentrations, peripheral blood CD4+ T cell count and use of antiretroviral medications. A cut-off of 10 pg/mL CSF CXCL13 had high sensitivity and a cut-off of 250 pg/mL or evidence of intrathecal synthesis of CXCL13 had high specificity for diagnosis of both symptomatic and asymptomatic neurosyphilis. CSF concentrations of CXCL13 declined after treatment for neurosyphilis. Conclusions CSF CXCL13 concentration may be particularly useful for diagnosis of neurosyphilis in HIV-infected patients because it is independent of CSF pleocytosis and markers of HIV disease. PMID:20393380

  19. USE OF SCORE AND CEREBROSPINAL FLUID LACTATE DOSAGE IN DIFFERENTIAL DIAGNOSIS OF BACTERIAL AND ASEPTIC MENINGITIS.

    PubMed

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    To evaluate Bacterial Meningitis Score (BMS) on its own and in association with Cerebrospinal Fluid (CSF) lactate dosage in order to distinguish bacterial from aseptic meningitis. Children diagnosed with meningitis at a tertiary hospital between January/2011 and December/2014 were selected. All data were obtained upon admission. BMS was applied and included: CSF Gram staining (2 points); CSF neutrophil count ≥1,000 cells/mm3 (1 point); CSF protein ≥80 mg/dL (1 point); peripheral blood neutrophil count ≥10,000 cells/mm3 (1 point) and seizures upon/before arrival (1 point). Cutoff value for CSF lactate was ≥30 mg/dL. Sensitivity, specificity and negative predictive value of several BMS cutoffs and BMS associated with high CSF lactate were evaluated for prediction of bacterial meningitis. Among 439 eligible patients, 94 did not have all data available to complete the score, and 345 patients were included: 7 in bacterial meningitis group and 338 in aseptic meningitis group. As predictive factors of bacterial meningitis, BMS ≥1 had 100% sensitivity (95%CI 47.3-100), 64.2% specificity (58.8-100) and 100% negative predictive value (97.5-100); BMS ≥2 or BMS ≥1 associated with high CSF lactate also showed 100% sensitivity (47.3-100); but 98.5% specificity (96.6-99.5) and 100% negative predictive value (98.3-100). 2 point BMS in association with CSF lactate dosage had the same sensitivity and negative predictive value, with increased specificity for diagnosis of bacterial meningitis when compared with 1-point BMS.

  20. Hematopoietic Progenitor Cell Mobilization is More Robust in Healthy African American Compared to Caucasian Donors and is not Affected by the Presence of Sickle Cell Trait

    PubMed Central

    Panch, Sandhya R.; Yau, Yu Ying; Fitzhugh, Courtney D.; Hsieh, Matthew M.; Tisdale, John F.; Leitman, Susan F.

    2016-01-01

    Background G-CSF-stimulated hematopoietic progenitor cells (HPCs) collected by apheresis have become the predominant graft source for HPC transplantation in adults. Among healthy allogeneic donors, demographic characteristics (age, sex, BMI) and baseline hematologic counts affect HPC mobilization, leading to variability in CD34+ apheresis yields. Racial differences in HPC mobilization are less well characterized. Methods We retrospectively analyzed data from 1,096 consecutive G-CSF-stimulated leukapheresis procedures in healthy allogeneic African American (AA) or Caucasian donors. Results In a multivariate analysis, after adjusting for age, sex, BMI, baseline platelet and MNC counts, and daily G-CSF dose, peak CD34+ cell mobilization was significantly higher among AAs (n=215) than Caucasians (n=881) (123 ± 87 vs 75 ± 47 cells/uL; p<0.0001). A ceiling effect was observed with increasing G-CSF dose (10 vs 16 mcg/kg/day) in AAs (123 ± 88 vs 123 ± 87) but not in Caucasians (74 ± 46 vs 93 ± 53, p<0.001). In AA donors, presence of sickle cell trait (SCT, n=41) did not affect CD34+ mobilization (peak CD34+ 123 ± 91 vs 107 ±72 cells/uL, HbAS vs HbAA, p=0.34). Adverse events were minimal and similar across race. Conclusions AAs demonstrated significantly better CD34 mobilization responses to G-CSF than Caucasians. This was independent of other demographic and hematologic parameters. Studying race-associated pharmacogenomics in relation to G-CSF may improve dosing strategies. Adverse event profile and CD34 mobilization were similar in AA donors with and without SCT. Our findings suggest that it would be safe to include healthy AA donors with SCT in unrelated donor registries. PMID:27167356

  1. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery.

    PubMed

    Faucher, C; Le Corroller, A G; Chabannon, C; Viens, P; Stoppa, A M; Bouabdallah, R; Camerlo, J; Vey, N; Gravis, G; Gastaut, J A; Novakovitch, G; Mannoni, P; Bardou, V J; Moatti, J P; Maraninchi, D; Blaise, D

    1996-12-01

    High-dose chemotherapy (HDC) supported by autologous transplantation of blood stem cells (BSC) is used increasingly for patients with poor-risk malignancies. We report our experience with 93 consecutive patients who were mobilized with recombinant human granulocyte colony-stimulating factor (rhG-CSF) alone. They received a fixed dose of G-CSF for 5 or 6 days, and BSC were collected by leukapheresis. Aphereses were evaluated for MNC, CD34+ cells, and CFU-GM counts and cryopreserved. All patients received a conditioning regimen without TBI. Engraftment was assessed as the first of 2 consecutive days on which patients achieved 0.5 and 1 x 10(9)/L neutrophils and an unsupported platelet count of 25 x 10(9)/L. Multivariate analysis was performed to study patients and graft characteristics that could influence reconstitution. The G-CSF priming regimen was well tolerated and allowed collection of BSC for all patients, 66% of them achieving >3 x 10(6)/kg CD34+ cells, and 86% achieving >10 x 10(4) CFU-GM/kg. The numbers of collected CD34 and CFU-GM cells were highly correlated. The number of courses of chemotherapy prior to collection, a diagnosis of breast cancer, the use of rhG-CSF posttransplant, and the numbers of CFU-GM and CD34+ cells reinfused were correlated with hematologic recovery. In a multivariate analysis, however, the number of CD34+ cells was the only factor independently influencing both granulocyte and platelet recovery. Patients who received at least 3 x 10(6)/kg CD34+ cells achieved granulocyte reconstitution on day 11 after reinfusion (range 8-15) and an unsupported platelet count of 25 x 10(9)/l on day 14 (range 12-180), significantly earlier than patients who received fewer cells (p < 0.001). In addition, G-CSF administration postreinfusion independently enhanced granulocyte reconstitution but not platelet recovery. In conclusion, CD34+ cell number appears to be the only factor predicting both granulocyte and platelet reconstitution. Based on this study, the collection of a minimal number of 3 x 10(6)/kg CD34+ cells appears desirable.

  2. [Hematopoietic cells raising with plerixafor in non-Hodgkin lymphoma].

    PubMed

    Pérez-Lozano, Uendy; Tripp-Villanueva, Francisco; Ramírez-Alvarado, Aline; Vela-Ojeda, Jorge; Limón-Flores, Alejandro; Kramis-Cerezo, José Luis

    2012-01-01

    bone marrow autologous transplantation (BMAT) has proven benefits in patients treated for non-Hodgkin's lymphoma (NHL). Plerixafor is an inhibitor of CXCR4 receptor. The aim was to report the raise of hematopoietic cells with plerixafor in patients with NHL. patient 1 with follicular NHL, GI, intermediate FLIPI, CD20+, CD45+, BCL-2+, who reached complete response after three chemotherapy regimes. Mobilization failed after use of filgrastim (G-CSF) alone and G-CSF + cyclophosphamide. A new attempt was made with G-CSF + plerixafor (G-CSF, 10 μg/kg for 7 days + plerixafor, 240 μg/kg in days 4 to 7). Patient 2 with follicular NHL and CD20+ reached complete remission with MINE after therapeutic failure with other regimes, but develops severe marrow toxicity. Mobilization was supported with G-CSF 10 μg/kg/d + plerixafor in days 4 and 5. In case one, proper cell counts where obtained after three aphaeresis. In the second case, two harvests add of 2.7 × 106/kg were obtained. plerixafor raised the hematopoietic stem cells in peripheral blood and improves mobilization of proper cell population.

  3. Improved Survival of HIV-1-Infected Patients with Progressive Multifocal Leukoencephalopathy Receiving Early 5-Drug Combination Antiretroviral Therapy

    PubMed Central

    Hendel-Chavez, Houria; Dulioust, Anne; Pakianather, Sophie; Mazet, Anne-Aurélie; de Goer de Herve, Marie-Ghislaine; Lancar, Rémi; Lascaux, Anne-Sophie; Porte, Lydie; Delfraissy, Jean-François; Taoufik, Yassine

    2011-01-01

    Background Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery. Methods and Findings All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008). Conclusions The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death. Trial Registration ClinicalTrials.gov NCT00120367 PMID:21738597

  4. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism

    PubMed Central

    Sasaki, T.; Akagi, R.; Akatsu, Y.; Fukawa, T.; Hoshi, H.; Yamamoto, Y.; Enomoto, T.; Sato, Y.; Nakagawa, R.; Takahashi, K.; Yamaguchi, S.

    2017-01-01

    Objectives The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083. PMID:28258115

  5. USE OF SCORE AND CEREBROSPINAL FLUID LACTATE DOSAGE IN DIFFERENTIAL DIAGNOSIS OF BACTERIAL AND ASEPTIC MENINGITIS

    PubMed Central

    Pires, Frederico Ribeiro; Franco, Andréia Christine Bonotto Farias; Gilio, Alfredo Elias; Troster, Eduardo Juan

    2017-01-01

    ABSTRACT Objective: To evaluate Bacterial Meningitis Score (BMS) on its own and in association with Cerebrospinal Fluid (CSF) lactate dosage in order to distinguish bacterial from aseptic meningitis. Methods: Children diagnosed with meningitis at a tertiary hospital between January/2011 and December/2014 were selected. All data were obtained upon admission. BMS was applied and included: CSF Gram staining (2 points); CSF neutrophil count ≥1,000 cells/mm3 (1 point); CSF protein ≥80 mg/dL (1 point); peripheral blood neutrophil count ≥10,000 cells/mm3 (1 point) and seizures upon/before arrival (1 point). Cutoff value for CSF lactate was ≥30 mg/dL. Sensitivity, specificity and negative predictive value of several BMS cutoffs and BMS associated with high CSF lactate were evaluated for prediction of bacterial meningitis. Results: Among 439 eligible patients, 94 did not have all data available to complete the score, and 345 patients were included: 7 in bacterial meningitis group and 338 in aseptic meningitis group. As predictive factors of bacterial meningitis, BMS ≥1 had 100% sensitivity (95%CI 47.3-100), 64.2% specificity (58.8-100) and 100% negative predictive value (97.5-100); BMS ≥2 or BMS ≥1 associated with high CSF lactate also showed 100% sensitivity (47.3-100); but 98.5% specificity (96.6-99.5) and 100% negative predictive value (98.3-100). Conclusions: 2 point BMS in association with CSF lactate dosage had the same sensitivity and negative predictive value, with increased specificity for diagnosis of bacterial meningitis when compared with 1-point BMS. PMID:29185620

  6. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study.

    PubMed

    Thomas, Xavier; Raffoux, Emmanuel; Renneville, Aline; Pautas, Cecile; de Botton, Stephane; Terre, Christine; Gardin, Claude; Hayette, Sandrine; Preudhomme, Claude; Dombret, Herve

    2010-04-01

    : Priming with granulocytic hematopoietic growth factors may modulate cell cycle kinetics of leukemic cells and render them more susceptible to phase-specific chemotherapeutic agents. In a first report, we have shown that priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) may enhance complete remission (CR) rate and event-free survival (EFS) in younger adults with acute myeloid leukemia (AML). : In this randomized trial, 259 patients with AML were randomized at baseline to receive or not receive GM-CSF concurrently with all cycles of chemotherapy. The effects of GM-CSF on survival were reported herein with a long-term follow-up and studied according to distinct biological subgroups defined on cytogenetics and molecular markers. : The EFS rate was better in the GM-CSF group (43% vs 34%; P = .04). GM-CSF did not improve the outcome in patients from good risk subgroups, while patients from poor risk subgroups benefited from GM-CSF therapy. In this population, the difference in terms of EFS probability was mainly observed in patients with high initial white blood cell count and in those with FLT3-ITD or MLL rearrangement. When combining these 2 molecular abnormalities for comparison of the effect of GM-CSF priming, the difference in terms of EFS was highly significant (5-year EFS, 39% with GM-CSF vs 8% without GM-CSF; P = .007). : Sensitization of leukemic cells and their progenitors by GM-CSF appears as a plausible strategy for improving the outcome of patients with newly diagnosed AML. Patients with poor-prognosis FLT3-ITD or MLL rearrangement might be a good target population to further investigate priming strategies. Cancer 2010. (c) 2010 American Cancer Society.

  7. Mobilization of primitive and committed hematopoietic progenitors in nonhuman primates treated with defibrotide and recombinant human granulocyte colony-stimulating factor.

    PubMed

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Longoni, Paolo; Milani, Raffaella; Milanesi, Marco; Guidetti, Anna; Haanstra, Krista; Jonker, Margaret; Cleris, Loredana; Magni, Michele; Formelli, Franca; Gianni, Alesssandro M

    2004-01-01

    The aim of this study was to evaluate the capacity of defibrotide in enhancing cytokine-induced hematopoietic mobilization in rhesus monkeys. Animals received recombinant human granulocyte colony-stimulating factor (rhG-CSF, 100 microg/kg/day SC for 5 days) and, after a 4- to 6-week washout period, were remobilized with defibrotide (15 mg/kg/hour continuous intravenous for 5 days) plus rhG-CSF. Hematopoietic mobilization was evaluated by complete blood counts, differential counts, as well as frequency and absolute numbers of colony-forming cells (CFCs), high-proliferative potential CFCs (HPP-CFCs), and long-term culture-initiating cells (LTC-ICs). Compared to baseline values, rhG-CSF increased circulating CFCs, HPP-CFCs, and LTC-ICs by 158-, 125-, and 67-fold, respectively; the same figures for defibrotide/rhG-CSF were 299-, 1452-, and 295-fold, respectively. Defibrotide/rhG-CSF treatment compared to rhG-CSF alone increased CFCs, HPP-CFCs, and LTC-ICs by 1.4- (35,089 vs 25,825, p< or =0.02), 6- (4358 vs 748, p< or =0.02), and 5-fold (884 vs 168, p< or =0.04), respectively. We then evaluated the effects of a 2-day defibrotide treatment associated with a 5-day rhG-CSF treatment. Compared to rhG-CSF, defibrotide/rhG-CSF increased the mobilization of CFCs, HPP-CFCs, and LTC-ICs by 2- (31,128 vs 15,527, p< or =0.05), 8- (5361 vs 660, p< or =0.01), and 8-fold (954 vs 119, p< or =0.01), respectively. Our data demonstrate that in nonhuman primates: 1) defibrotide enhances rhG-CSF-elicited mobilization of primitive and committed progenitors; and 2) a 2-day defibrotide injection is as effective as a 5-day injection.

  8. Total Raltegravir Concentrations in Cerebrospinal Fluid Exceed the 50-Percent Inhibitory Concentration for Wild-Type HIV-1▿

    PubMed Central

    Croteau, David; Letendre, Scott; Best, Brookie M.; Ellis, Ronald J.; Breidinger, Sheila; Clifford, David; Collier, Ann; Gelman, Benjamin; Marra, Christina; Mbeo, Gilbert; McCutchan, Allen; Morgello, Susan; Simpson, David; Way, Lauren; Vaida, Florin; Ueland, Susan; Capparelli, Edmund; Grant, Igor

    2010-01-01

    HIV-associated neurocognitive disorders continue to be common. Antiretrovirals that achieve higher concentrations in cerebrospinal fluid (CSF) are associated with better control of HIV and improved cognition. The objective of this study was to measure total raltegravir (RAL) concentrations in CSF and to compare them with matched concentrations in plasma and in vitro inhibitory concentrations. Eighteen subjects with HIV-1 infection were enrolled based on the use of RAL-containing regimens and the availability of CSF and matched plasma samples. RAL was measured in 21 CSF and plasma pairs by liquid chromatography-tandem mass spectrometry, and HIV RNA was detected by reverse transcription-PCR (RT-PCR). RAL concentrations were compared to the 50% inhibitory concentration (IC50) for wild-type HIV-1 (3.2 ng/ml). Volunteers were predominantly middle-aged white men with AIDS and without hepatitis C virus (HCV) coinfection. The median concurrent CD4+ cell count was 276/μl, and 28% of CD4+ cell counts were below 200/μl. HIV RNA was detectable in 38% of plasma specimens and 4% of CSF specimens. RAL was present in all CSF specimens, with a median total concentration of 14.5 ng/ml. The median concentration in plasma was 260.9 ng/ml, with a median CSF-to-plasma ratio of 0.058. Concentrations in CSF correlated with those in with plasma (r2, 0.24; P, 0.02) but not with the postdose sampling time (P, >0.50). RAL concentrations in CSF exceeded the IC50 for wild-type HIV in all specimens by a median of 4.5-fold. RAL is present in CSF and reaches sufficiently high concentrations to inhibit wild-type HIV in all individuals. As a component of effective antiretroviral regimens or as the main antiretroviral, RAL likely contributes to the control of HIV replication in the nervous system. PMID:20876368

  9. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair.

    PubMed

    Sasaki, T; Akagi, R; Akatsu, Y; Fukawa, T; Hoshi, H; Yamamoto, Y; Enomoto, T; Sato, Y; Nakagawa, R; Takahashi, K; Yamaguchi, S; Sasho, T

    2017-03-01

    The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF.Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. G-CSF promoted proliferation of MSCs in vitro . The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article : T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123-131. DOI: 10.1302/2046-3758.63.BJR-2016-0083. © 2017 Sasho et al.

  10. Recombinant human granulocyte colony-stimulating factor after kidney transplantation: a retrospective analysis to evaluate the benefit or risk of immunostimulation.

    PubMed

    Schmaldienst, S; Bekesi, G; Deicher, R; Franz, M; Hörl, W H; Pohanka, E

    2000-02-27

    Leukopenia due to immunosuppressive drugs represents a well-known complication in graft recipients, which might put patients at an increased risk for infections. In this study, recombinant human granulocyte colony-stimulating factor (rhG-CSF), a hematopoietic growth factor that selectively stimulates neutrophil colony formation and neutrophil cell differentiation, was tested for safety and efficacy. We evaluated 30 episodes of leukopenia (<2000/mm3) in 19 kidney graft recipients treated with rhG-CSF. This cohort was compared with an age- and sex-matched historical control group without therapy. Peripheral and differential blood cell counts were analyzed, and the duration of leukopenia was estimated. Furthermore, the occurrence of infections associated with leukopenia was investigated. All patients responded to rhG-CSF therapy. Peripheral leukocyte counts increased from 1756+/-582 to a peak of 8723+/-3038/mm3 (P<0.0001). On the average, the peak was reached after 2.7 days (range 1 to 8). Furthermore, the effect was fairly persistent, because in 22 of 30 episodes leukocyte counts were within the normal range after 7 days. The elevation of total leukocytes was mainly due to a specific increase in neutrophil granulocytes from 1143+/-514 to 6895+/-1950/mm3 on the peak day (P<0.0001). Patients in the G-CSF group were leukopenic for a mean of 1.29+/-0.59 days, whereas in the control group leukopenia persisted for at least 7 days. Consequently, the rate of infections was significantly higher (P<0.045) in nontreated patients. rhG-CSF was safe and effective in leukopenic kidney graft recipients. Leukopenic episodes in treated patients were significantly shorter, and infections occurred at a significantly lower rate. No evidence was found that rhG-CSF therapy might trigger rejection episodes, and no side effects were observed.

  11. Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF.

    PubMed

    Marmotti, A; Bonasia, D E; Bruzzone, M; Rossi, R; Castoldi, F; Collo, G; Realmuto, C; Tarella, C; Peretti, G M

    2013-08-01

    Minced chondral fragments are becoming popular as a source of cells for cartilage repair, as a growing interest is developing towards one-stage procedures to treat cartilage lesions. The purpose of this study is to (A) compare cell outgrowth from cartilage fragments of adult and young donors using two different types of scaffolds and (B) evaluate the influence of transforming-growth-factor-β1 (TGF-β1) and granulocyte colony-stimulating factor (G-CSF) on chondrocyte behaviour. In part (A) cartilage fragments from adult and young donors were either loaded onto an HA-derivative injectable paste scaffold or onto an HA-derivative membrane scaffold. Construct sections were then examined for cell counting after 1, 2 and 3 months. In part (B) only membrane scaffolds were prepared using cartilage fragments from young donors. Constructs were cultured either in standard growth medium or in the presence of specific growth factors, such as TGF-β1 or G-CSF or TGF-β1 + G-CSF. After 1 month, construct sections were examined for cell counting. Expression of chondrocyte markers (SOX9, CD151, CD49c) and proliferative markers (β-catenin, PCNA) was assessed using immunofluorescence techniques, both in unstimulated construct sections and in cells from unstimulated and stimulated construct cultures. Part (A): histological analysis showed age-dependent and time-dependent chondrocyte migration. A significant difference (p < 0.05) was observed between young and older donors at the same time point. No difference was detected between the two types of scaffolds within the same group at the same time point. Part (B): after 1 month, the number of migrating cells/area significantly increased due to exposure to TGF-β1 and/or G-CSF (p < 0.05). Immunofluorescence revealed that outgrowing cells from unstimulated scaffold sections were positive for SOX9, CD151, CD49c and G-CSF receptor. Immunofluorescence of cells from construct cultures showed an increase in β-catenin in all stimulated groups and an increased PCNA expression in G-CSF-exposed cultures (p < 0.05). Outgrowing cells may represent a subset of chondrocytes undergoing a phenotypic shift towards a proliferative state. TGF-β1, and to a greater extent G-CSF, may accelerate this outgrowth. The clinical relevance of this study may involve a potential future clinical application of scaffolds preloaded with growth factors as an additional coating for chondral fragments. Indeed, a controlled delivery of G-CSF, widely employed in various clinical settings, might improve the repair process driven by minced human cartilage fragments during one-stage cartilage repair.

  12. Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection.

    PubMed

    Cinque, Paola; Bestetti, Arabella; Marenzi, Roberta; Sala, Serena; Gisslen, Magnus; Hagberg, Lars; Price, Richard W

    2005-11-01

    Interferon-gamma-inducible protein (IP-10 or CXCL10) is a potent chemoattractant and has been suggested to enhance retrovirus infection and mediate neuronal injury. In order to assess this chemokine in central nervous system (CNS) HIV infection, we measured the cerebrospinal fluid (CSF) and plasma concentrations of CXCL10 by immunoassay in samples derived from 97 HIV-infected subjects across a spectrum of immunological progression and CNS complications and from 16 HIV seronegative control subjects studied at three clinical centers between 1994 and 2001. We also examined changes in the CSF and plasma CXCL10 concentrations in 30 subjects starting and three stopping antiretroviral therapy. CSF CXCL10 concentrations: (1) correlated with CSF HIV RNA and white blood cell (WBC) counts, but not with blood CXCL10, HIV RNA, or CD4 counts; (2) were increased in subjects with primary and asymptomatic HIV infections and AIDS dementia complex, but less frequently in those with more advanced infection, with or without CNS opportunistic diseases except cytomegalovirus encephalitis; (3) decreased in subjects starting antiretroviral in association with decreases in CSF and plasma HIV RNA and CSF WBCs; and (4) conversely, increased in subjects stopping treatment in parallel with CSF HIV RNA and WBCs. These results confirm that CSF CXCL10 associates closely with both CSF HIV and WBCs and suggest that this chemokine may be both a response to and contributing determinant of local infection. High CSF levels may be useful in the diagnosis of ADC in subjects with advanced immunosuppression in whom CMV encephalitis has been ruled out, though this issue requires further study.

  13. CSF cell count

    MedlinePlus

    ... into the cerebrospinal fluid. Some causes include: Abscess Encephalitis Hemorrhage Meningitis Multiple sclerosis Other infections Stroke Tumor ... D.A.M. Editorial team. Cancer Read more Encephalitis Read more Infectious Diseases Read more A.D. ...

  14. Effect of recombinant human granulocyte colony-stimulating factor on efficacy of radiation therapy in tumor-bearing rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koji Kabaya; Masahiko Watanabe; Masaru Kusaka

    The effect of recombinant human granulocyte colony-stimulating factor on radiation-induced neutropenia and on growth of transplanted tumors treated by irradiation was investigated using tumor-bearing rats as a model for radiation therapy. In a preliminary study using normal rats, neutropenia induced by upper hemi-body irradiation at 3 Gy/day 5 times a week for 3 weeks was prevented by consecutive subcutaneous injections of rhG-CSF at 100 {mu}g/kg/day. Rats bearing Walker-256, a mammary tumor, were scheduled to receive upper hemibody irradiation at 3 Gy/day for 15 times in 3 weeks if white blood cell (WBC) counts were maintained above 3,000/{mu}l. In control tumor-bearingmore » rats not receiving rhG-CSF, irradiation was often withheld because of the decrease in WBC counts below 3,000/{mu}l. In contrast, a decrease in WBC counts below 3,000/{mu}l was rarely found in tumor-bearing rats injected daily with rhG-CSF. The average number of radiation treatments in control rats and rats treated with rhG-CSF was about 8 and 14, respectively, out of the scheduled 15 treatments in 3 weeks. Treatment with rgG-CSF made it possible to complete the radiation therapy regimen and thus inhibit the growth of the transplanted tumor more effectively. These results suggest that rgG-CSF may be useful to ensure radiation therapy on schedule in cancer patients. 20 refs., 4 figs., 1 tab.« less

  15. The dopamine-related polymorphisms BDNF, COMT, DRD2, DRD3, and DRD4 are not linked with changes in CSF dopamine levels and frequency of HIV infection.

    PubMed

    Horn, Anne; Scheller, C; du Plessis, S; Burger, R; Arendt, G; Joska, J; Sopper, S; Maschke, C M; Obermann, M; Husstedt, I W; Hain, J; Riederer, P; Koutsilieri, E

    2017-04-01

    We showed previously that higher levels in CSF dopamine in HIV patients are associated with the presence of the dopamine transporter (DAT) 10/10-repeat allele which was also detected more frequently in HIV-infected individuals compared to uninfected subjects. In the current study, we investigated further whether other genetic dopamine (DA)-related polymorphisms may be related with changes in CSF DA levels and frequency of HIV infection in HIV-infected subjects. Specifically, we studied genetic polymorphisms of brain-derived neurotrophic factor, catechol-O-methyltransferase, and dopamine receptors DRD2, DRD3, and DRD4 genetic polymorphisms in uninfected and HIV-infected people in two different ethnical groups, a German cohort (Caucasian, 72 individuals with HIV infection and 22 individuals without HIV infection) and a South African cohort (Xhosan, 54 individuals with HIV infection and 19 individuals without HIV infection). We correlated the polymorphisms with CSF DA levels, HIV dementia score, CD4 + T cell counts, and HIV viral load. None of the investigated DA-related polymorphisms was associated with altered CSF DA levels, CD4 + T cell count, viral load, and HIV dementia score. The respective allele frequencies were equally distributed between HIV-infected patients and controls. Our findings do not show any influence of the studied genetic polymorphisms on CSF DA levels and HIV infection. This is in contrast to what we found previously for the DAT 3'UTR VNTR and highlights the specific role of the DAT VNTR in HIV infection and disease.

  16. Granulocyte colony stimulating factor treatment for neonatal neutropenia.

    PubMed Central

    Russell, A. R.; Davies, E. G.; Ball, S. E.; Gordon-Smith, E.

    1995-01-01

    In a pilot study recombinant human granulocyte colony-stimulating factor (rhG-CSF) was administered to 12 neutropenic preterm infants to determine if neonatal neutropenia is secondary to decreased endogenous G-CSF production. Respiratory variables were monitored because of the possible link between inflammatory cells and hyaline membrane disease. All infants showed increased neutrophil counts. The only possible side effect observed was an exacerbation of thrombocytopenia. PMID:7538031

  17. Felty's syndrome treated with rhG-CSF associated with flare of arthritis and skin rash.

    PubMed

    McMullin, M F; Finch, M B

    1995-03-01

    A patient with Felty's syndrome and rheumatoid arthritis was treated with recombinant granulocyte stimulating factor rhG-CSF (Neupogen) in view of severe neutropenia. He had a prompt rise in his neutrophil count and associated with this a severe flare of his arthritis and a skin rash. rhG-CSF was stopped, his neutrophil count fell rapidly and his symptoms resolved. rhG-CSF and the resulting rise in neutrophil count may be associated with flare of autoimmune disease in susceptible individuals.

  18. Effects of granulocyte colony stimulating factor on retinal leukocyte and erythrocyte flux in the human retina.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Malec, Magdalena; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2002-05-01

    The blue-field entoptic technique was introduced more than 20 years ago to quantify perimacular white blood cell flux. However, a final confirmation that the perceived corpuscles represent leukocytes is still unavailable. The study design was randomized, placebo-controlled, and double masked with two parallel groups. Fifteen healthy male subjects received a single dose of granulocyte colony stimulating factor (G-CSF, 300 microg) and 15 other subjects received placebo. The following parameters were assessed at baseline and at 12 minutes and 8 hours after administration: retinal white blood cell flux, with the blue-field entoptic technique; retinal blood velocities, with bidirectional laser Doppler velocimetry; retinal venous diameter determined with a retinal vessel analyzer; and blood pressure and pulse rate determined by automated oscillometry and pulse oxymetry, respectively. After 12 minutes, G-CSF reduced total leukocyte count from 5.5 +/- 1.4 10(9)/L at baseline to 1.9 +/- 0.4 10(9)/L. This was paralleled by a 35% +/- 11% decrease in retinal white blood cell density. After 8 hours G-CSF increased total leukocyte counts to 20.0 +/- 4.4 10(9)/L. Again, this increase in circulating leukocytes was reflected by an increase in retinal white blood cell density (110% +/- 48%). All effects were significant at P < 0.001. By contrast, none of the other hemodynamic parameters was changed by administration of G-CSF. The results clearly indicate that the blue-field entoptic technique assesses leukocyte movement in the perimacular capillaries of the retina. Moreover, white blood cell density appears to adequately reflect the number of circulating leukocytes within the retinal microvasculature. Hence, an increase in retinal white blood cell density does not necessarily reflect retinal vasodilatation.

  19. Differential diagnosis of scrub typhus meningitis from tuberculous meningitis using clinical and laboratory features.

    PubMed

    Valappil, Ashraf V; Thiruvoth, Sohanlal; Peedikayil, Jabir M; Raghunath, Praveenkumar; Thekkedath, Manojan

    2017-12-01

    The involvement of the central nervous system in the form of meningitis or meningoencephalitis is common in scrub typhus and is an important differential diagnosis of other lymphocytic meningitis like tuberculous meningitis (TBM). The aim of this study was to identify the clinical and laboratory parameters that may be helpful in differentiating scrub typhus meningitis from TBM. We compared of the clinical and laboratory features of 57 patients admitted with scrub typhus meningitis or TBM during a 3-year period. Patients who had abnormal cerebrospinal fluid (CSF) and positive scrub typhus enzyme-linked immunosorbent assay serology (n=28) were included in the scrub typhus meningitis group, while the TBM group included those who satisfied the consensus diagnostic criteria of TBM (n=29). Compared with the TBM group, the mean duration of symptoms was less in patients with scrub typhus meningitis, who also had a lower magnitude of neurological deficits, such as altered mental status and cranial nerve and motor deficits. Patients with scrub typhus meningitis had a lower CSF white blood-cell count (WBC) than the TBM group (130.8±213 195±175 cells/mm 3 , P=0.002), lower CSF protein elevation (125±120 vs. 195.2±108.2mg/dl, P=0.002), and higher CSF sugar (70.1±32.4 vs. 48.7±23.4mg/dl, P=0.006). Features predictive of the diagnosis of scrub typhus meningitis included the absence of neurological impairment at presentation, blood serum glutamic-oxaloacetic transaminase>40 international units (IU)/L, serum glutamic-pyruvic transaminase>60 IU/L, total blood leukocyte count>10,000/mm 3 , CSF protein<100mg/dl, CSF sugar>50mg/dl, CSF WBC<100 cells/mm 3 . All patients with scrub typhus meningitis recovered completely following doxycycline therapy CONCLUSIONS: This study suggests that, clinical features, including duration of fever, neurological deficits at presentation and laboratory parameters such as CSF pleocytosis,CSF protein elevation, CSF sugar levels and liver enzyme values are helpful in differentiating scrub typhus meningitis from tuberculous meningits. These features with scrub IgM serology may be helpful in identifying patients with scrub meningitis and in avoiding prolonged empirical antituberculous therapy in cases of lymphocytic meningitis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor.

    PubMed

    Bilgin, Yavuz M; Visser, Otto; Beckers, Erik A M; te Boome, Liane C J; Huisman, Cynthia; Ypma, Paula F; Croockewit, Alexandra J; Netelenbos, Tanja; Kramer, Ellen P A; de Greef, Georgine E

    2015-05-01

    Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 10(6) /L on 2 consecutive days accompanied by increasing white blood cells. In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies. In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 10(6) /L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 10(6) /L) circulating CD34+ cell counts the success rate was 44.2%. Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach. © 2014 AABB.

  1. Effectiveness and cost analysis of "just-in-time" salvage plerixafor administration in autologous transplant patients with poor stem cell mobilization kinetics.

    PubMed

    Li, Jie; Hamilton, Ellie; Vaughn, Louette; Graiser, Michael; Renfroe, Heather; Lechowicz, Mary Jo; Langston, Amelia; Prichard, Jefferson Mark; Anderson, Darlene; Gleason, Charise; Lonial, Sagar; Flowers, Christopher R; Kaufman, Jonathan L; Waller, Edmund K

    2011-10-01

    Plerixafor is a recently Food and Drug Administration (FDA)-approved CXCR4 antagonist, which is combined with granulocyte-colony-stimulating factor (G-CSF) to facilitate stem cell mobilization of lymphoma and myeloma patients. To evaluate the effectiveness and the related costs of a "just-in-time" strategy of plerixafor administration, we performed a retrospective cohort study comparing 148 consecutive lymphoma and myeloma patients in whom mobilization was attempted during 2008 before the Food and Drug Administration (FDA) approval of plerixafor with 188 consecutive patients mobilized during 2009 after FDA approval. Plerixafor was administered to 64 of 188 patients considered to be at risk for mobilization failure due to either their medical history ("high risk," n = 23) or the occurrence of peripheral blood CD34+ count of fewer than 15 × 10(6) cells/L with a white blood cell count of greater than 10 × 10(9) cells/L after at least 5 days of G-CSF administration (just-in-time, n = 41). The success rates of collecting a minimum transplant CD34+ cell dose (≥2 × 10(6) cells/kg) or target cell dose (≥5 × 10(6) lymphoma or ≥10 × 10(6) CD34+ cells/kg myeloma) in the just-in-time patients compared favorably with the 36 poor mobilizers collected with G-CSF alone: 93% versus 72% and 42% versus 22%, respectively. The use of plerixafor in selected high-risk patients and poor mobilizers did not increase the total charges associated with stem cell collection when compared with poor mobilizers treated with G-CSF alone. The targeted use of plerixafor increased the overall success rate of mobilizing a minimum number of CD34+ cells from 93% to 98% in patients with hematologic malignancies scheduled for autotransplant and increased the overall charges associated with stem cell collection in all patients by an average of 17%. © 2011 American Association of Blood Banks.

  2. Evaluation of trypan blue stain in a haemocytometer for rapid detection of cerebrospinal fluid sterility in HIV patients with cryptococcal meningitis.

    PubMed

    Kwizera, Richard; Akampurira, Andrew; Kandole, Tadeo K; Nielsen, Kirsten; Kambugu, Andrew; Meya, David B; Boulware, David R; Rhein, Joshua

    2017-08-22

    Quantitative culture is the most common method to determine the fungal burden and sterility of cerebrospinal fluid (CSF) among persons with cryptococcal meningitis. A major drawback of cultures is a long turnaround-time. Recent evidence demonstrates that live and dead Cryptococcus yeasts can be distinguished using trypan blue staining. We hypothesized that trypan blue staining combined with haemocytometer counting may provide a rapid estimation of quantitative culture count and detection of CSF sterility. To test this, we evaluated 194 CSF specimens from 96 HIV-infected participants with cryptococcal meningitis in Kampala, Uganda. Cryptococcal meningitis was diagnosed by CSF cryptococcal antigen (CRAG). We stained CSF with trypan blue and quantified yeasts using a haemocytometer. We compared the haemocytometer readings versus quantitative Cryptococcus CSF cultures. Haemocytometer counting with trypan blue staining had a sensitivity of 98% (64/65), while CSF cultures had a sensitivity of 95% (62/65) with reference to CSF CRAG for diagnostic CSF specimens. For samples that were positive in both tests, the haemocytometer had higher readings compared to culture. For diagnostic specimens, the median of log 10 transformed counts were 5.59 (n = 64, IQR = 5.09 to 6.05) for haemocytometer and 4.98 (n = 62, IQR = 3.75 to 5.79) for culture; while the overall median counts were 5.35 (n = 189, IQR = 4.78-5.84) for haemocytometer and 3.99 (n = 151, IQR = 2.59-5.14) for cultures. The percentage agreement with culture sterility was 2.4% (1/42). Counts among non-sterile follow-up specimens had a median of 5.38 (n = 86, IQR = 4.74 to 6.03) for haemocytometer and 2.89 (n = 89, IQR = 2.11 to 4.38) for culture. At diagnosis, CSF quantitative cultures correlated with haemocytometer counts (R 2  = 0.59, P < 0.001). At 7-14 days, quantitative cultures did not correlate with haemocytometer counts (R 2  = 0.43, P = 0.4). Despite a positive correlation, the haemocytometer counts with trypan blue staining did not predict the outcome of quantitative cultures in patients receiving antifungal therapy.

  3. Allogeneic blood stem cell transplantation: considerations for donors.

    PubMed

    Anderlini, P; Körbling, M; Dale, D; Gratwohl, A; Schmitz, N; Stroncek, D; Howe, C; Leitman, S; Horowitz, M; Gluckman, E; Rowley, S; Przepiorka, D; Champlin, R

    1997-08-01

    Allogeneic transplantation of cytokine-mobilized peripheral blood stem cells (PBSCs) is now being increasingly performed, but safety considerations for hematologically normal PBSC donors have not been fully addressed. Progenitors are generally mobilized for collection from normal donors using recombinant human granulocyte colony-stimulating factor (rhG-CSF). Although the short-term safety profile of rhG-CSF seems acceptable, experience remains limited and its optimal dose and schedule have not been defined. Minimal data exist regarding long-term safety of rhG-CSF, primarily derived from experience in patients with chronic neutropenia or cancer. An "ad hoc" workshop was recently convened among a group of investigators actively involved in the field of allogeneic stem cell transplantation to discuss the safety issues pertaining to normal PBSC donors. There was agreement on the following points: (1) On the basis of available data, it appears that rhG-CSF treatment and PBSC collection have an acceptable short-term safety profile in normal donors. However, the need for continued safety monitoring was recognized. (2) rhG-CSF doses up to 10 microg/kg/d show a consistent dose-response relationship with the mobilization (and collection) of CD34+ progenitor cells, and this dose is acceptable for routine clinical use. Whether higher doses are superior (or cost effective) remains to be determined, and they may produce more severe side effects. The potential risks of marked leukocytosis (arbitrarily defined as a leukocyte count of more than 70 x 10(9)/L) have been a concern, and rhG-CSF dose reduction is performed by many centers to maintain leukocyte counts below this level. (3) Transient post donation cytopenias, involving granulocytes, lymphocytes, and platelets, may occur and are at least partly related to the leukapheresis procedure. These are generally asymptomatic and self-limited; follow-up blood counts are not necessarily required. Reinfusion of autologous platelet-rich plasma should be considered for donors with expected postdonation thrombocytopenia (platelet count < 80 to 100 x 10(9)/L). (4) Donors should meet the eligibility criteria which apply to donors of apheresis platelets, with the exception that pediatric donors may also be considered. Any deviation from these criteria should have supporting documentation. There is insufficient information at this time to clearly establish definite contraindications for PBSC collection in a hematologically normal donor. Potential contraindications include the presence of inflammatory, autoimmune, or rheumatologic disorders, as well as atherosclerotic or cerebrovascular disease. (5) The creation of an International PBSC Donor Registry is desirable to facilitate monitoring the long-term effects of the procedure. Individual institutions or donor centers are encouraged to establish their own PBSC donor follow-up system, preferably with a standardized approach to data collection.

  4. Crystals seen on CSF microscopy in a case of suspected subarachnoid haemorrhage

    PubMed Central

    Weiand, Daniel; Hanning, Ian; Mouhamadou, Moussa; Wearmouth, Debbie

    2015-01-01

    Although crystals are rarely identified on cerebrospinal fluid (CSF) microscopy, their presence can be of significant diagnostic value. We report a case of oxalate crystals seen on CSF microscopy of a 43-year-old woman. The patient presented with headaches, nausea and vomiting. CT of the head showed a small focus of hyper-density, suspicious of haemorrhage, in the right side of the pontine cistern. CSF cell count was within the normal range. Although no organisms were seen on microscopy, copious oxalate crystals were seen. The same crystals were seen on microscopy of CSF collected in a fluoride oxalate container used for glucose analysis. A follow-up contrast-enhanced CT angiogram did not demonstrate any abnormalities. It transpired that excess CSF had been collected into a fluoride oxalate container. This had subsequently been decanted into a plain container for microbiological analysis. Correct specimen collection should be emphasised when teaching lumbar puncture technique. PMID:26139652

  5. Sequential promotion of normal and leukemic hemopoiesis by recombinant human granulocyte colony-stimulating factor during the course of myelodysplastic syndrome.

    PubMed

    Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T

    1993-12-01

    A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.

  6. Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia.

    PubMed

    Kocherlakota, P; La Gamma, E F

    1997-07-01

    To determine whether adjunctive therapy with recombinant human granulocyte colony-stimulating factor (rhG-CSF) could reverse sepsis-associated neonatal neutropenia and improve neonatal survival compared with conventional therapy in a phase I/II-type trial. An intravenous infusion of rhG-CSF (10 microg/kg/d x 3 d) was administered to 14 septic neutropenic neonates. Neutrophilic responses and outcome of these neonates were compared with 11 concurrently treated, retrospectively selected, case-matched control septic patients identified by using a search of medical records coded for sepsis with neutropenia (>/=24 hours). Seven neonates with early-onset sepsis with neutropenia at birth and seven neonates with late-onset sepsis plus neutropenia (all with necrotizing enterocolitis) were entered in the rhG-CSF treatment group. Results were compared with a conventional therapy control group (five early onset, six late onset). No significant differences existed in the birth weight, gestational age, use of antibiotic therapy, magnitude of respiratory support, severity of metabolic acidosis, use of vasopressors, or other supportive therapy between the two groups. In the rhG-CSF-treated group and in the conventionally treated control group, the absolute neutrophil count (ANC) (mean +/- SEM) was 585 +/- 138 and 438 +/- 152, respectively. The ANC increased to more than baseline in the rhG-CSF-treated group by 10-fold versus 2-fold at 24 hours, 18-fold versus 4-fold at 48 hours, 24-fold versus 5-fold at 72 hours (significant by one-way analysis of variance in the rhG-CSF group only), and 29-fold versus 16-fold at 7 to 10 days when compared with the conventional therapy group. There were no nonresponders in the rhG-CSF group by 24 hours after the first dose of study drug. Monocyte cell counts also increased significantly in both groups by 7 days after entry into this protocol but remained within normal range for age. No clinically significant effect on lymphocytes, erythrocytes, or platelet counts was noted. Thirteen patients in the rhG-CSF-treated group (92%; 13 out of 14) and five in the conventionally treated group (55%; 5 out of 11) survived to 28 days after the onset of the signs of sepsis. No adverse effects were noted in the rhG-CSF-treated group. rhG-CSF can increase the neutrophil count in critically ill septic neutropenic neonates. This finding suggests that rhG-CSF may be effective in a therapeutically useful time frame to treat septic neonates with neonatal neutropenia attributable to bone marrow suppression or neutrophil consumption. Future randomized trials are needed to validate the beneficial effects of rhG-CSF and to determine whether any significant side effects of therapy exist.

  7. A novel hematopoietic progenitor cell mobilization regimen, utilizing bortezomib and filgrastim, for patients undergoing autologous transplant.

    PubMed

    Abhyankar, Sunil; Lubanski, Philip; DeJarnette, Shaun; Merkel, Dean; Bunch, Jennifer; Daniels, Kelly; Aljitawi, Omar; Lin, Tara; Ganguly, Sid; McGuirk, Joseph

    2016-12-01

    Adequate hematopoietic progenitor cell (HPC) collection is critical for patients undergoing autologous HPC transplant (AHPCT). Historically, 15 - 30% of patients failed HPC mobilization with granulocyte-colony stimulating factor (G-CSF) alone. Bortezomib, a proteasome inhibitor, has been shown to down regulate very late antigen-4 (VLA-4), an adhesion molecule expressed on HPCs. In this pilot study, bortezomib was administered on days -11 and -8 at a dose of 1.3 mg/m 2 intravenously (IV) or subcutaneously (SQ), followed by G-CSF 10 mcg/kg SQ, on days -4 to -1 prior to HPC collection (Day 1). Nineteen patients, with multiple myeloma (n = 12) or non-Hodgkin lymphoma (n = 7) undergoing AHPCT for the first time, were enrolled. Patients were excluded if they had worse than grade II neuropathy or platelet count less than 100 x 10 9 /L. Bortezomib was well tolerated and all patients had adequate HPC collections with no mobilization failures. One patient (6%) had a CD34 + cell count of 3.9 cells/µL on Day 1 and received plerixafor per institutional algorithm. Eleven patients completed HPC collection in 1 day and eight in 2 days. All patients underwent AHPCT and had timely neutrophil and platelet engraftment. Comparison with a historical control group of 70 MM and lymphoma patients, who were mobilized with G-CSF, showed significantly higher CD 34+ cells/kg collected in the bortezomib mobilization study group. Bortezomib plus G-CSF is an effective HPC mobilizing regimen worth investigating further in subsequent studies. J. Clin. Apheresis 31:559-563, 2016. © 2015 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients.Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients. Electronic supplementary information (ESI) available: Additional data are available in the supplementary tables and supplementary figures. See DOI: 10.1039/c3nr06465d

  9. Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell Mobilization in Healthy Donors after Administration of Granulocyte Colony-Stimulating Factor: A Longitudinal, Prospective, Observational, Single-Center, Cohort Study.

    PubMed

    Martino, Massimo; Gori, Mercedes; Pitino, Annalisa; Gentile, Massimo; Dattola, Antonia; Pontari, Antonella; Vigna, Ernesto; Moscato, Tiziana; Recchia, Anna Grazia; Barilla', Santina; Tripepi, Giovanni; Morabito, Fortunato

    2017-07-01

    A longitudinal, prospective, observational, single-center, cohort study on healthy donors (HDs) was designed to identify predictors of CD34 + cells on day 5 with emphasis on the predictive value of the basal CD34 + cell count. As potential predictors of mobilization, age, sex, body weight, height, blood volume as well as white blood cell count, peripheral blood (PB) mononuclear cells, platelet count, hematocrit, and hemoglobin levels were considered. Two different evaluations of CD34 + cell counts were determined for each donor: baseline (before granulocyte colony-stimulating factor [G-CSF] administration) and in PB after G-CSF administration on the morning of the fifth day (day 5). A total of 128 consecutive HDs (66 males) with a median age of 43 years were enrolled. CD34 + levels on day 5 displayed a non-normal distribution, with a median value of 75.5 cells/µL. To account for the non-normal distribution of the dependent variable, a quantile regression analysis to predict CD34 + on day 5 using the baseline value of CD34 + as the key predictor was performed. On crude analysis, a baseline value of CD34 + ranging from .5 cells/µL to 1 cells/µL predicts a median value of 50 cells/µL on day 5; a value of 2 cells/µL predicts a median value of 70.7 cells/µL; a value of 3 cells/µL to 4 cells/µL predicts a median value of 91.3 cells/µL, and a value ≥ 5 predicts a median value of 112 cells/µL. In conclusion, the baseline PB CD34 + cell count correlates with the effectiveness of allogeneic PB stem cell mobilization and could be useful to plan the collection. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  10. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden.

    PubMed

    Spudich, Serena; Gisslen, Magnus; Hagberg, Lars; Lee, Evelyn; Liegler, Teri; Brew, Bruce; Fuchs, Dietmar; Tambussi, Giuseppe; Cinque, Paola; Hecht, Frederick M; Price, Richard W

    2011-09-01

    Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.

  11. Enterovirus infection in febrile neonates: A hospital-based prospective cohort study.

    PubMed

    Lv, Xiao-Qing; Qian, Ling-He; Wu, Tai; Yuan, Tian-Ming

    2016-08-01

    This study aims to investigate clinical characteristics and microbiological results and to assess the predictors for enterovirus infection in febrile neonates. A prospective cohort study was conducted on 334 febrile patients (age: 0.33-28 days) in 2011-2012 years. Enterovirus RNA was detected by reverse transcription polymerase chain reaction on faeces or cerebrospinal fluid (CSF). Clinical characteristics were compared, and non-conditional logistic regression analysis was performed to determine independent predictors for enterovirus infection. There were 131 episodes of neonatal enterovirus infection (39.22%). Forty-eight (36.64%) developed respiratory symptoms, 69 (52.67%) had diarrhoea, 22 (16.79%) had poor feeding and 34 (25.95%) had rash. Eighteen (13.74%) had lower platelet counts, and CSF specimens were positive for enterovirus RNA in 44.27% (58/131) whose CSF revealed a mean white blood cell counts of 100.38 ± 147.97 cells/mm(3) (range: 2-668 cells/mm(3) ). The positivity of stool 38.92% (130/334) was significantly higher than that of CSF specimens 26.24% (58/221) for enterovirus RNA (P < 0.01). By logistic regression analysis, the following independently predicted enterovirus infection: abnormal CSF test (odds ratio (OR): 12.426, 95% confidence interval (CI): 5.633-27.413), thrombocytopenia (OR: 3.647, 95% CI: 1.312-10.136), duration of fever >3.25 (d) (OR: 2.293, 95% CI: 1.279-4.113), highest temperature >38.35 (°C) (OR: 2.094, 95% CI: 1.342-4.123) and negative bacterial culture (OR: 5.073, 95% CI: 1.504-17.114). Our data indicated that enteroviruses should be routinely considered in the differential diagnosis of febrile neonates. The factors, which may predict the risk of neonatal enterovirus infection, were abnormal CSF test, thrombocytopenia, duration of fever >3.25 (d), highest temperature >38.35 (°C) and negative bacterial culture. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  12. Cerebrospinal fluid cytokines in the diagnosis of bacterial meningitis in infants.

    PubMed

    Srinivasan, Lakshmi; Kilpatrick, Laurie; Shah, Samir S; Abbasi, Soraya; Harris, Mary C

    2016-10-01

    Bacterial meningitis poses diagnostic challenges in infants. Antibiotic pretreatment and low bacterial density diminish cerebrospinal fluid (CSF) culture yield, while laboratory parameters do not reliably identify bacterial meningitis. Pro and anti-inflammatory cytokines are elevated in bacterial meningitis and may be useful diagnostic adjuncts when CSF cultures are negative. In a prospective cohort study of infants, we used cytometric bead arrays to measure tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), IL-6, IL-8, IL-10, and IL-12 in CSF. Receiver operating characteristic (ROC) analyses and Principal component analysis (PCA) were used to determine cytokine combinations that identified bacterial meningitis. Six hundred and eighty four infants < 6 mo were included; 11 had culture-proven bacterial meningitis. IL-6 and IL-10 were the individual cytokines possessing greatest accuracy in diagnosis of culture proven bacterial meningitis (ROC analyses; area under the concentration-time curve (AUC) 0.91; 0.9103 respectively), and performed as well as, or better than combinations identified using ROC and PCA. CSF cytokines were highly correlated with each other and with CSF white blood cell count (WBC) counts in infants with meningitis. A subset of antibiotic pretreated culture-negative subjects demonstrated cytokine patterns similar to culture positive subjects. CSF cytokine levels may aid diagnosis of bacterial meningitis, and facilitate decision-making regarding treatment for culture negative meningitis.

  13. Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia.

    PubMed

    Smith, M A; Smith, J G

    2002-04-01

    This paper outlines the impact of granulocyte-colony stimulating factor (G-CSF) used as a single modality therapy in 17 patients with secondary autoimmune neutropenia (S-AIN) who had been treated a multiple number of times previously. Fifteen of these patients had demonstrable antineutrophil antibodies and two had cellular S-AIN with haemopoietic inhibitory T-cells present in the marrow. Prior to treatment, all had had problems with infection. All patients responded within 7 days of commencement of treatment. Provided G-CSF neutrophil counts were maintained above 1 x 109/l, no further infections occurred. This was achievable by using G-CSF administered as infrequently as once every 8 days. Eight of the 17 patients remained on G-CSF, although five switched to the glycosylated form because of side-effects. None have developed osteoporosis despite 47.29 patient years of total experience with G-CSF. In conclusion both glycosylated and nonglycosylated G-CSF can be used effectively in treating AIN on a long-term basis.

  14. STUDIES ON THE PATHOGENESIS OF MENINGITIS. I. INTRATHECAL INFECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersdorf, R.G.; Luttrell, C.N.

    1962-02-01

    Meningitis was produced in dogs by inoculation with 10/sup 3/10/sup 6/ type III pneumococci via the subarachnoid space. This produced an infection lasting 48-96 hrs and characterized by cerebrospinal fluid (CSF) changes, including an increase of leukocytes and bacteria and a decrease in glucose concentration. This concentration was inversely related to the cell and bacteria counts of CSF. Pretreatment for 5 dogs with prednisolone did not alter the course of infection. When leukopenia was produced by 450 r whole-body irradiation, the number of inflammatory cells in the CSF was reduced in infected animals and survival was prolonged. This indicates thatmore » exudation into the subarachnoid space may have a harmful effect on the ventricular cavities where it may cause hydrocephalus. (H.H.D.)« less

  15. How frequently external ventricular drainage device should be changed in children with ventriculoperitonel shunt infection?

    PubMed Central

    Gulsen, Ismail; Ak, Hakan; Demir, Nihat; Sosuncu, Enver; Arslan, Mehmet

    2015-01-01

    Objective: The purpose of the presenting study was to determine how frequently external ventricular drainage (EVD) device should be changed in children with ventriculopertienal shunt (VPS) infection during prolonged intravenous antimicrobial therapy. Methods: In this retrospective study, 25 children with VPS infection were evaluated between January 2012 and December 2013. In these children VPS was surgically removed and appropriate antimicrobial therapy was administered according to cerebrospinal culture results. Data noted about how frequently EVD device had been changed, the number of cells on direct observation of cerebrospinal fluid (CSF), glucose and protein levels of CSF, and CSF culture results were obtained from patients’ records. Results: Total 25 children were included in the study. The median age was three months (1 and 65 months). In 44% of children, Staphylococcus epidermidis was isolated. During treatment period, EVD catheter has changed one to six times. A total of 68 EVD catheters were changed in these patients. When the duration of ventriculostomy catheter and leukocyte count in CSF were evaluated on daily basis, leukocyte count was decreased 5 units per day in children whose catheter remained less than 10 days. However, in children whose catheter remained more than 10 days leukocyte count was decreased 2.21 units per day. Conclusions: In children with VPS infection, EVD device should be changed at every 10 days for the rapid resolution of the infection. PMID:26101506

  16. Peripheral blood stem cell collection for allogeneic hematopoietic stem cell transplantation: Practical implications after 200 consequent transplants.

    PubMed

    Goren Sahin, Deniz; Arat, Mutlu

    2017-12-01

    Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Age-specific application of neutrophil-to-lymphocyte ratio in meningitis: a nationwide study.

    PubMed

    Mentis, A-F A; Kyprianou, M A; Tzanakaki, G

    2017-09-01

    Cerebrospinal fluid (CSF) neutrophil counts and neutrophil-to-lymphocyte ratio (NLR) are useful in distinguishing bacterial and viral meningitis. Given that meningitis is clinically heterogeneous with regard to age, here we investigated the validity of the CSF NLR and neutrophil assay according to age group. Data from the nationwide referral of >4,000 meningitis cases to the Hellenic Meningitis Reference Laboratory between 2006 and 2013 were examined. CSF NLR and neutrophil counts were stratified according to age, and assay performance was determined using previous cut-off values of 2 and 287 cells/μl for CSF NLR and neutrophils respectively. The distribution of bacterial versus viral meningitis was heterogenous across age groups, with a low proportion of bacterial meningitis in patients aged 5-14. CSF neutrophil count and NLR were significantly more discriminatory for bacterial meningitis in patients aged over 14 years than those aged 0-14. The odds ratio (OR), sensitivity, specificity and positive predictive value (PPV) were significantly higher in older patients for both biomarkers. When combined, the false-positive and false-negative detection of bacterial meningitis was 3.9 and 8.5% respectively, and the OR of 262.2 was 2.5-fold greater than expected from a multiplicative effect alone in patients aged >14 years. Care is required when applying diagnostic tests for meningitis in different age groups because of patient heterogeneity. This is the first description of the age distribution of meningitis cases in Greece, and knowledge of the age-related distribution of neutrophils and NLR in meningitis cases could help towards developing age-specific meningitis diagnostic assays.

  18. Feline meningoencephalomyelitis of unknown origin: A retrospective analysis of 16 cases

    PubMed Central

    Negrin, Arianna; Spencer, Sarah; Cherubini, Giunio Bruto

    2017-01-01

    This study aimed to describe the signalment, clinical signs, magnetic resonance imaging (MRI) findings, cerebrospinal fluid (CSF) analysis, treatment, and outcome of feline meningoencephalomyelitis of unknown origin (FMUO). Medical records from 16 cats meeting the inclusion criteria of CSF pleocytosis, negative CSF polymerase chain reaction (PCR)-infectious disease results, and characteristic MRI findings were retrospectively reviewed. Median age was 9.4 years. Clinical signs included ataxia, proprioceptive deficits, seizures, and spinal hyperesthesia. The CSF nucleated cell count was increased (median 70.7 cells/μL), with predominantly mixed pleocytosis and CSF protein concentration was increased in 15/16 cats. Magnetic resonance imaging showed intraparenchymal infiltrative ill-defined lesions in 13 cases. All cats received a corticosteroid-based treatment protocol; additional therapies included lomustine, cytarabine, and anticonvulsant medications. Mild neurological signs were recorded in 5/12 cats but 7/12 cats were neurologically normal at re-examination. This represents the first study of feline MUO, highlighting FMUO as an important differential diagnosis in cats with variable neurological presentation. Prognosis appears to be good with immunomodulatory therapy. PMID:28966357

  19. G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics

    NASA Astrophysics Data System (ADS)

    Grivtsova, L. Yu; Melkova, K. N.; Kupryshkina, N. A.; Vorotnikov, I. K.; Grigoryeva, T. A.; Selchuk, V. Yu; Grebennikova, O. P.; Titova, G. V.; Tupitsyn, N. N.

    2018-01-01

    60 samples of G-CSF-primed bone marrow (39 cancer patients and 21 healthy donors) to be used for transplantation to cancer patients were analyzed and compared by main characteristics with historical control and 13 bone marrow samples from control patient with mastopathy. Basing on morphological and multicolor flow cytometry findings certain characteristics of G-CSF-primed bone marrow were discovered, such as a significant increase in blast count in cancer patients as compared to donors and control patients (p<0.037), a higher neutrophil maturation index (p<0.001) and a lower percentage of mature lymphocytes (p<0.008) as compared to the control group. Among lymphocyte populations G-CSF-priming was associated with a significant increase in the total of mature CD3+ T-cells and CD8+ T-killers (p<0.0001) and a decrease in CD56+CD3- and/or CD16+CD3- NK-cells (p<0.006) both in cancer patients and healthy donors in comparison with the controls.

  20. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties.

    PubMed

    Pelus, Louis M; Fukuda, Seiji

    2006-08-01

    Chemokines direct the movement of leukocytes, including hematopoietic stem and progenitor cells, and can mobilize hematopoietic cells from marrow to peripheral blood where they can be used for transplantation. In this review, we will discuss the stem cell mobilizing activities and mechanisms of action of GRObeta, a CXC chemokine ligand for the CXCR2 receptor. GRObeta rapidly mobilizes short- and long-term repopulating cells in mice and/or monkeys and synergistically enhances mobilization responses when combined with the widely used clinical mobilizer, granulocyte colony-stimulating factor (G-CSF). The hematopoietic graft mobilized by GRObeta contains significantly more CD34(neg), Sca-1+, c-kit+, lineage(neg) (SKL) cells than the graft mobilized by G-CSF. In mice, stem cells mobilized by GRObeta demonstrate a competitive advantage upon long-term repopulation analysis and restore neutrophil and platelet counts significantly faster than cells mobilized by G-CSF. Even greater advantage in repopulation and restoration of hematopoiesis are observed with stem cells mobilized by the combination of GRObeta and G-CSF. GRObeta-mobilized SKL cells demonstrate enhanced adherence to vascular cell adhesion molecule-1 and VCAM(pos) endothelial cells and home more efficiently to bone marrow in vivo. The marrow homing ability of GRObeta-mobilized cells is less dependent on the CXCR4/SDF-1 axis than cells mobilized by G-CSF. The mechanism of mobilization by GRObeta requires active matrix metalloproteinase-9 (MMP-9), which results from release of pro-MMP-9 from peripheral blood, and marrow neutrophils, which alters the stoichiometry between pro-MMP-9 and its inhibitor tissue inhibitor of metalloproteinase-1, resulting in MMP-9 activation. The efficacy and rapid action of GRObeta and lack of proinflammatory activity make it an attractive agent to supplement mobilization by G-CSF. In addition, GRObeta may also have clinical mobilizing efficacy on its own, reducing the overall time and costs associated with peripheral blood stem cell transplantation.

  1. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation.

    PubMed

    Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A

    1999-05-01

    Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.

  2. Confirmed viral meningitis with normal CSF findings.

    PubMed

    Dawood, Naghum; Desjobert, Edouard; Lumley, Janine; Webster, Daniel; Jacobs, Michael

    2014-07-17

    An 18-year-old woman presented with a progressively worsening headache, photophobia feverishness and vomiting. Three weeks previously she had returned to the UK from a trip to Peru. At presentation, she had clinical signs of meningism. On admission, blood tests showed a mild lymphopenia, with a normal C reactive protein and white cell count. Chest X-ray and CT of the head were normal. Cerebrospinal fluid (CSF) microscopy was normal. CSF protein and glucose were in the normal range. MRI of the head and cerebral angiography were also normal. Subsequent molecular testing of CSF detected enterovirus RNA by reverse transcriptase PCR. The patient's clinical syndrome correlated with her virological diagnosis and no other cause of her symptoms was found. Her symptoms were self-limiting and improved with supportive management. This case illustrates an important example of viral central nervous system infection presenting clinically as meningitis but with normal CSF microscopy. 2014 BMJ Publishing Group Ltd.

  3. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor.

    PubMed

    Cavallaro, A M; Lilleby, K; Majolino, I; Storb, R; Appelbaum, F R; Rowley, S D; Bensinger, W I

    2000-01-01

    One hundred and one donors who had received filgrastim (rhG-CSF) for the purpose of donating either granulocytes or peripheral blood stem cells (PBSC) for their relatives more than 3 years ago were contacted. All donors had received daily rhG-CSF at a median dose of 16 microg/kg/day (range 3-16) for a median of 6 days (range 3-15 days). All collection procedures were completed and short-term side-effects of rhG-CSF were mild in the majority of the donors. At a median time interval of 43.13 months (range 35-73), the donors were contacted to assess whether adverse effects related to rhG-CSF administration had occurred. Prior to rhG-CSF two donors had cancer, one had a myocardial infarction, one was hepatitis C virus positive, one had a history of sinusitis, one had Graves' disease and two had arterial hypertension. None worsened with the rhG-CSF administration but the donor with a history of infarction had an episode of angina following apheresis, and the donor with Graves' disease had a stroke 15 months after rhG-CSF. Two pregnancies occurred after the rhG-CSF administration and one donor was 2-3 weeks pregnant during rhG-CSF treatment. Three pregnancies resulted in two normal births and one in a spontaneous abortion of a pregnancy which occurred more than 2 years following rhG-CSF. In the time following rhG-CSF administration two donors developed cancer (breast and prostate cancer) at a follow-up of 70 and 11 months, respectively. One donor developed lymphadenopathy 38 months after the rhG-CSF, which spontaneously resolved. Blood counts were obtained in 70 donors at a median follow up of 40.4 months (range 16.8-70.8). Hematocrit was 43% (median, range 36.8-48), white blood cells were 5.7 x 109/l (median, range 3-14), granulocytes 3.71 x 109/l (median, range 1. 47-10.36), lymphocytes 1.67 x 109/l (median, range 0.90-3.96), monocytes 0.46 x 109/l (median, range 0.07-0.87) and platelet counts were 193.0 x 109/l (median, range 175.0-240.0). This study indicates that short-term administration of rhG-CSF to normal donors for the purpose of mobilizing the PBSC or granulocytes appears safe and without any obvious adverse effects more than 3 years after the donation. Bone Marrow Transplantation (2000) 25, 85-89.

  4. Evaluation of cell count and classification capabilities in body fluids using a fully automated Sysmex XN equipped with high-sensitive Analysis (hsA) mode and DI-60 hematology analyzer system.

    PubMed

    Takemura, Hiroyuki; Ai, Tomohiko; Kimura, Konobu; Nagasaka, Kaori; Takahashi, Toshihiro; Tsuchiya, Koji; Yang, Haeun; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Tabe, Yoko; Ohsaka, Akimichi

    2018-01-01

    The XN series automated hematology analyzer has been equipped with a body fluid (BF) mode to count and differentiate leukocytes in BF samples including cerebrospinal fluid (CSF). However, its diagnostic accuracy is not reliable for CSF samples with low cell concentration at the border between normal and pathologic level. To overcome this limitation, a new flow cytometry-based technology, termed "high sensitive analysis (hsA) mode," has been developed. In addition, the XN series analyzer has been equipped with the automated digital cell imaging analyzer DI-60 to classify cell morphology including normal leukocytes differential and abnormal malignant cells detection. Using various BF samples, we evaluated the performance of the XN-hsA mode and DI-60 compared to manual microscopic examination. The reproducibility of the XN-hsA mode showed good results in samples with low cell densities (coefficient of variation; % CV: 7.8% for 6 cells/μL). The linearity of the XN-hsA mode was established up to 938 cells/μL. The cell number obtained using the XN-hsA mode correlated highly with the corresponding microscopic examination. Good correlation was also observed between the DI-60 analyses and manual microscopic classification for all leukocyte types, except monocytes. In conclusion, the combined use of cell counting with the XN-hsA mode and automated morphological analyses using the DI-60 mode is potentially useful for the automated analysis of BF cells.

  5. The effect of short G-CSF administration on the numbers and clonogenic efficiency of hematopoietic progenitor cells in bone marrow and peripheral blood of normal donors.

    PubMed

    Zaucha, J M; Knopińska-Posłuszny, W; Bieniaszewska, M; Myśliwski, A; Hellmann, A

    2000-01-01

    We have analysed the cellularity, the number of clonogenic cells and their clonogenic efficiency (the number of clonogenic cells/2 x 10(5) MNC) in peripheral blood (PB) and bone marrow (BM) during and after filgrastim (rhG-CSF) mobilization of CD34+ cells in 12 healthy donors for allogeneic stem cell donation. G-CSF was administrated subcutaneously for 5 consecutive days at a dose of 10 micrograms/kg/day. WBC, MNC, CD34+ cell counts, CFU-GM and BFU-E assays in PB were performed at baseline and then daily 12 hours after each G-CSF dose. BM was assayed before start (day 1) and after the last dose (day 6) of G-CSF. Results are given as medians, with ranges in parentheses. In PB the total WBC and MNC increased 7.4-fold (6.0-12.3) and 3.3-fold (1.5-9.4), respectively, reaching a peak of 49.4 x 10(9)/l (32.5-66.6) on day 6 for WBC and 6.28 x 10(9)/l (4.7-13.3) for MNC on day 5. CD34+ cell number reached a peak value of 48.0 x 10(6)/l (45.6-285) on day 6 whereas CFU-GM and BFU-E reached their peaks on day 5, 0.95 x 10(4)/ml (0.05-6.08) and 1.04 x 10(4)/ml, respectively. CFU-MIX, not detectable at baseline, reached a peak of 0.95 x 10(4)/ml (0.006-0.51) on day 5 as well. This was accompanied by an increase in CFU-GM, BFU-E and CFU-MIX clonogenic efficiency: 23-fold (3-150), 9.75-fold (2.2-27.8) and 20-fold (2.5-210), respectively. In BM the total WBC number increased 2.5-fold (1.3-4.9) from the baseline value of 52.6 x 10(9)/l (7.9-137.0) whereas the MNC count increased 2.0-fold (0.81-3.7) from a baseline of 13.6 x 10(9)/l (3.5-54.8). This was, however, not significant. The number of CD34+ cells increased significantly 2.9-fold (0.8-8.3). In 8 donors CFU-MIX were detectable before but not after G-CSF treatment. A similar decrease in CFU-GM and BFU-E clonogenic efficiency occurred but was not significant. CFU-GM and BFU-E numbers did not change. We conclude that the total body numbers of lineage committed progenitors increased during G-CSF administration, which indicate their proliferation in addition to mobilization. The effect of G-CSF on the number of more primitive progenitors in BM is less clear and needs further investigation.

  6. Granulocyte-Colony Stimulating Factor (G-CSF) Administration for Chemotherapy-Induced Neutropenia.

    PubMed

    Yalçin, Ş; Güler, N; Kansu, E; Ertenli, I; Güllü, I; Barişta, I; Çelik, I; Kars, A; Tekuzman, G; Baltali, E; Firat, D

    1996-01-01

    This study was aimed to evaluate the efficacy of G-CSF (Granulocyte colony stimulating factor) administration to 37 patients with neutropenia following intensive combination chemotherapy. The patients were divided into two subgroups including solid tumors given ifosfamide and etoposide combination chemotherapy (IMET subgroup) and acute myeloid leukemia (AML) patients treated with mitoxantrone and cytarabine. Control group consisted of 31 acute myeloid leukemia patients. G-CSF was started on the first day of absolute neutropenia until the absolute neutrophil count was above 1000/mm(3) for two consecutive days. G-CSF was found to be effective for early recovery of neutrophil count. Expected response was achieved within 14 days in 91.5% of the courses with a median of fifth day of G-CSF treatment. In conclusion, this study showed the efficacy of G-CSF in early recovery of neutrophil count without any reduction in the incidence of febrile episodes and documented rates of bacterial and fungal infections in patients with acute myeloid leukemia.

  7. Analysis of stem cell apheresis products using intermediate-dose filgrastim plus large volume apheresis for allogeneic transplantation.

    PubMed

    Engelhardt, M; Bertz, H; Wäsch, R; Finke, J

    2001-04-01

    Previously, a dose-dependent influence of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on CD34+ mobilization was demonstrated. In this single-center prospective analysis, 52 healthy donors were investigated to determine the efficacy of intermediate-dose rhG-CSF 2x8 microg/kg donor body weight (bw) and intermediate large volume apheresis (LVA, median 12 l) to mobilize peripheral blood progenitor cells (PBPC) for allogeneic transplantation. The median number of CD34+ cells in apheresis products was 0.45% and 2.2x10(6)/kg recipient bw per single apheresis. A total of 5.4x10(6)/kg CD34+ cells were collected with two (range: one to three) LVA. In the analysis of donor subgroups, higher peripheral blood (PB) and apheresis results were obtained in male vs female donors; however, donor weight significantly differed in both groups. Heavier donors displayed higher PB and apheresis CD34+ counts; however, when CD34+ cells/kg were adjusted to a constant bw, similar harvest results were calculated in males and females, demonstrating that gender per se does not, whereas bw does affect apheresis results. Younger donors had significantly higher PB CD34+ counts, higher CD34+ numbers per single apheresis, increased CFU, more T, B, and CD61+, comparable NK, and less CD14+ cells. A correlation analysis of donor age and apheresis results displayed an age-related decline of 0.46x10(6)/kg CD34 cells per decade of donor aging. Cell subsets in apheresis products were CD14 (49%), CD3 (22%), CD4 (13%), CD8 (7%), CD61 (20%), CD19 (5%), and CD16/56+ (3%) cells, with increasing CD14+ cells and decreasing CD3, CD4, CD8, CD61, CD19, and CD16/56+ cells on subsequent days of apheresis. Compared to our previous analysis using high- (2x12 microg) and low-dose (1x10 microg) rhG-CSF for allogeneic PBPC mobilization, the intermediate-dose showed a similar CD34+ mobilization potential to 1x10 microg rhG-CSF; however, with use of LVA, two instead of three (p<0.05) aphereses were sufficient to mobilize > or =4x10(6)/kg bw CD34+ cells in most donors. Taken together, our results demonstrate that intermediate-dose rhG-CSF sufficiently mobilizes > or =4x10(6)/kg x bw CD34+ cells with use of LVA and that especially younger donors display increased CD34+ cell numbers.

  8. Clinical and Microbiological Features of HIV-Associated Tuberculous Meningitis in Vietnamese Adults

    PubMed Central

    Torok, M. Estee; Chau, Tran Thi Hong; Mai, Pham Phuong; Phong, Nguyen Duy; Dung, Nguyen Thi; Chuong, Ly Van; Lee, Sue J.; Caws, M.; de Jong, Menno D.; Hien, Tran Tinh; Farrar, Jeremy J.

    2008-01-01

    Methods The aim of this prospective, observational cohort study was to determine the clinical and microbiological features, outcome, and baseline variables predictive of death, in Vietnamese adults with HIV-associated tuberculous meningitis (TBM). 58 patients were admitted to the Hospital for Tropical Diseases in Ho Chi Minh City and underwent routine clinical and laboratory assessments. Treatment was with standard antituberculous therapy and adjunctive dexamethasone; antiretroviral therapy was not routinely available. Patients were followed up until the end of TB treatment or death. Results The median symptom duration was 11 days (range 2–90 days), 21.8% had a past history of TB, and 41.4% had severe (grade 3) TBM. The median CD4 count was 32 cells/mm3. CSF findings were as follows: median leucocyte count 438×109cells/l (63% neutrophils), 69% smear positive and 87.9% culture positive. TB drug resistance rates were high (13% mono-resistance 32.6% poly-resistance 8.7% multidrug resistance). 17% patients developed further AIDS-defining illnesses. 67.2% died (median time to death 20 days). Three baseline variables were predictive of death by multivariate analysis: increased TBM grade [adjusted hazard ratio (AHR) 1.73, 95% CI 1.08–2.76, p = 0.02], lower serum sodium (AHR 0.93, 95% CI 0.89 to 0.98, p = 0.002) and decreased CSF lymphocyte percentage (AHR 0.98, 95% CI 0.97 to 0.99, p = 0.003). Conclusions HIV-associated TBM is devastating disease with a dismal prognosis. CSF findings included CSF neutrophil predominance, high rates of smear and culture positivity, and high rates of antituberculous drug resistance. Three baseline variables were independently associated with death: increased TBM grade; low serum sodium and decreased CSF lymphocyte percentage. PMID:18350135

  9. Hematological remission and long term hematological control of acute myeloblastic leukemia induced and maintained by granulocyte-colony stimulating factor (G-CSF) therapy.

    PubMed

    Xavier, Luciana; Cunha, Manuel; Gonçalves, Cristina; Teixeira, Maria dos Anjos; Coutinho, Jorge; Ribeiro, António Carlos Pinto; Lima, Margarida

    2003-12-01

    We describe a case of a patient with CD34+, TdT+, CD13-, CD33-, MPO- undifferentiated acute leukemia who refused chemotherapy and who achieved complete hematological remission 14 months after the diagnosis, during a short course of granulocyte-colony stimulating factor (G-CSF) for neutropenia and life threatening infection. Relapse occurred approximately one year later and G-CSF was reintroduced, being maintained for 4 months, at a dose and frequency adapted to maintain normal blood counts, a complete hematological remission being achieved again. Five months after withdrawing the G-CSF therapy a second relapse was observed; G-CSF was tried again with success, resulting in a very good hematological response that was sustained by G-CSF maintenance therapy. One year latter there was the need of increasing the doses of G-CSF in order to obtain the same hematological effect, at same time blast cells acquired a more mature CD34+, TdT-, CD13+, CD33-, MPO+ myeloid phenotype. Finally, the patient developed progressive neutropenia, anemia, thrombocytopenia and acute leukemia in spite of G-CSF therapy, dying 64 months after initial diagnosis (50 months after starting G-CSF therapy) with overt G-CSF resistant acute myeloblastic leukemia (AML), after failure of conventional induction chemotherapy.

  10. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  11. rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes.

    PubMed

    Sica, S; Rutella, S; Di Mario, A; Salutari, P; Rumi, C; Ortu la Barbera, E; Etuk, B; Menichella, G; D'Onofrio, G; Leone, G

    1996-08-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) 16 micrograms/kg/day was given to 9 healthy donors to recruit hemopoietic progenitors (HP) for allogeneic transplantation or donor leukocyte infusion. rhG-CSF was administered s.c. for 5 days. No side effects were encountered except for moderate bone pain and lumbago. Mobilization was effective, reaching a peak median value of 187 x 10(3) CD34+ cells/ml (range 51.2-1127) and 2170 x 10(3) colony-forming units-granulocyte macrophage (CFU-GM)/ml (range 1138-4190). Peak values were obtained at a median of 4 days of rhG-CSF and represented, respectively, a 13-fold and a 37-fold increase from baseline values (p = 0.0007 and p = 0.006). White blood cell (WBC) counts increased 6-fold from baseline values (p < 0.0007) and reached a median peak of 34 x 10(6)/ml (23.5-59). Polymorphonuclear (PMN), and mononuclear (MNC) cells increased 10-fold and 2-fold, respectively (p = 0.0039 and p = 0.0026) and reached a median peak of 32.1 x 10(6)/ml (18.2-52) and 4.42 x 10(6)/ml (3.14-12.42). Absolute lymphocyte and monocyte counts increased at peak day in all donors 1.5-fold and 5.7-fold from baseline values (p = 0.0017 and p = 0.0018). In 7 of 9 donors, lymphocyte subsets were analyzed in detail. CD3+ and CD19+ lymphocytes increased 1.5-fold and 3-fold, respectively (p = 0.032 for both). NK and activated T lymphocytes doubled at a median of 4 days of rhG-CSF (p = 0.032 and p = NS, respectively). Similar changes were observed in lymphocytes collected in leukapheresis product. T helper and T suppressor subsets displayed a similar increase. Thus, besides the anticipated priming effect on HP and PMN, rhG-CSF in healthy donors produced an unexpected and still unexplained modification of lymphocyte subsets in peripheral blood.

  12. Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor and Granulocyte Colony-Stimulating Factor Prolong the Survival of Neutrophils Infiltrating Bronchoalveolar Subtype Pulmonary Adenocarcinoma

    PubMed Central

    Wislez, Marie; Fleury-Feith, Jocelyne; Rabbe, Nathalie; Moreau, Joelle; Cesari, Danielle; Milleron, Bernard; Mayaud, Charles; Antoine, Martine; Soler, Paul; Cadranel, Jacques

    2001-01-01

    We evaluated the role of the tumor environment in the regulation of apoptosis of tumor-infiltrating neutrophils, the number of which correlates negatively with outcome, in patients with adenocarcinoma of the bronchioloalveolar (BAC) subtype. We examined three different parameters of apoptosis, namely morphological aspect, annexin-V expression, and DNA fragmentation. Bronchoalveolar lavage fluid (BALF) supernatants from patients with BAC significantly inhibited the 24-hour spontaneous apoptosis of normal peripheral blood neutrophils in vitro compared to BALF supernatants from control patients (64 ± 4% versus 90 ± 2% measured by annexin-V flow cytometry, P = 0.04). The alveolar neutrophil count correlated positively with the granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations in the patient’s BALF. Furthermore, neutralizing antibodies (Abs) against GM-CSF and G-CSF significantly inhibited BALF anti-apoptotic activity (15 to 40% and 34 to 63% inhibition, respectively), whereas neutralizing Abs against interleukin (IL)-8, IL-6, IL-1β and tumor necrosis factor-α had no significant effect. In an attempt to identify the cell origin of anti-apoptotic cytokines, we tested in vitro the effect of BAC cells (A549 cell line and primary culture derived from a patient’s BAC tumor) on the apoptosis of peripheral blood neutrophils. Cell-free supernatants from tumor cells did not inhibit neutrophil apoptosis. In contrast, cell-free supernatants from tumor cells previously exposed to conditioned media from peripheral blood mononuclear cells and alveolar macrophages significantly inhibited spontaneous neutrophil apoptosis. This inhibition was partially lifted when conditioned media from mononuclear cells were previously treated with Abs against IL-1β and tumor necrosis factor-α. As in vivo, neutralizing Abs against GM-CSF significantly inhibited the anti-apoptotic activity of cell culture supernatants, and combination with Abs against G-CSF had an additive effect. In vivo, GM-CSF and G-CSF were strongly expressed by tumor cells and moderately or not expressed by the normal epithelium, as assessed by immunohistochemical studies. These findings demonstrate that the tumor environment generates local conditions that prolong alveolar neutrophil survival through the production of soluble factors, thereby contributing to the persistence of the neutrophil alveolitis observed in BAC. PMID:11583970

  13. Impact of Antiretroviral Regimens on CSF Viral Escape in a Prospective Multicohort Study of ART-Experienced HIV-1 Infected Adults in the United States.

    PubMed

    Mukerji, Shibani S; Misra, Vikas; Lorenz, David R; Uno, Hajime; Morgello, Susan; Franklin, Donald; Ellis, Ronald J; Letendre, Scott; Gabuzda, Dana

    2018-04-03

    Cerebrospinal fluid (CSF) viral escape occurs in 4-20% of HIV-infected adults, yet the impact of antiretroviral therapy (ART) on CSF escape is unclear. Prospective study of 1063 participants with baseline plasma viral load (VL) ≤400 copies/ml between 2005-2016. Odds ratio for ART regimens (PI with nucleoside reverse transcriptase inhibitor [PI+NRTI] versus other ART) and CSF escape was estimated using mixed-effects models. Drug resistance mutation frequencies were calculated. Baseline mean age was 46, median plasma VL, CD4 nadir, and CD4 count were 50 copies/mL, 88 cells/μL, and 424 cells/μL, respectively; 48% on PI+NRTI, 33% on non-NRTI, and 6% on integrase inhibitors. During median follow-up of 4.4 years, CSF escape occurred in 77 participants (7.2%). PI+NRTI use was an independent predictor of CSF escape (OR 3.1 [95% CI 1.8-5.0]) in adjusted analyses and models restricted to plasma VL ≤50 copies/ml (p<0.001). Regimens containing atazanavir (ATV) were a stronger predictor of CSF viral escape than non-ATV PI+NRTI regimens. Plasma and CSF M184V/I combined with thymidine-analog mutations were more frequent in CSF escape versus no escape (23% vs. 2.3%). Genotypic susceptibility score-adjusted CNS penetration-effectiveness (CPE) values were calculated for CSF escape with M184V/I mutations (n=34). Adjusted CPE values were low (<5) for CSF and plasma in 27 (79%) and 13 (38%), respectively, indicating suboptimal CNS drug availability. PI+NRTI regimens are independent predictors of CSF escape in HIV-infected adults. Reduced CNS ART bioavailability may predispose to CSF escape in patients with M184V/I mutations. Optimizing ART regimens may reduce risk of CSF escape.

  14. Therapy with granulocyte colony-stimulating factor in the chronic stage, but not in the acute stage, improves experimental autoimmune myocarditis in rats via nitric oxide.

    PubMed

    Shimada, Kana; Okabe, Taka-aki; Mikami, Yu; Hattori, Miki; Fujita, Masatoshi; Kishimoto, Chiharu

    2010-09-01

    We systematically investigated serial efficacy of granulocyte colony-stimulating factor (G-CSF) therapy upon experimental autoimmune myocarditis (EAM) in rats treated with and without the inhibition of nitric oxide (NO) with the analyses of tissue regeneration. G-CSF could mobilize multipotent progenitor cells of bone marrow into the peripheral blood and may improve ventricular function. A rat model of porcine myosin-induced EAM was used. After the immunization of myosin, G-CSF (10 microg/kg/day) or saline was injected intraperitoneally on days 0-21 in experiment 1 and on days 21-42 in experiment 2. Additional myosin-immunized rats were orally given 25 mg/kg/day of N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase (NOS), in each experiment (each group; n=8-21). Serum cytokines and peripheral blood cell counts were measured in each group. In experiment 1, G-CSF treatment aggravated cardiac pathology associated with increased macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) levels and enhanced superoxide production. In experiment 2, G-CSF treatment reduced the severity of myocarditis with increased capillary density and improved left ventricular ejection fraction. In the rats with EAM treated with G-CSF associated with oral L-NAME treatment in experiment 2, the severity of myocarditis was not reduced. Myocardial c-kit(+) cells were demonstrated only in G-CSF-treated group in experiment 2 but not in other groups. G-CSF has differential effects on EAM in rats associated with the modulation of cytokine network. The overwhelming superoxide production by G-CSF administration in the acute stage may worsen the disease. G-CSF therapy improved cardiac function via NO system in a rat model of myocarditis in the chronic stage, but not in the acute stage, possibly through the myocardial regeneration and acceleration of healing process. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load.

    PubMed

    Peluso, Michael J; Ferretti, Francesca; Peterson, Julia; Lee, Evelyn; Fuchs, Dietmar; Boschini, Antonio; Gisslén, Magnus; Angoff, Nancy; Price, Richard W; Cinque, Paola; Spudich, Serena

    2012-09-10

    To characterize HIV-infected patients with neurosymptomatic cerebrospinal fluid (CSF) 'escape', defined as detectable CSF HIV RNA in the setting of treatment-suppressed plasma levels or CSF RNA more than 1-log higher than plasma RNA. Retrospective case series. Four urban medical centers in the United States and Europe. Virologically controlled HIV-infected patients on antiretroviral therapy (ART) with progressive neurologic abnormalities who were determined to have CSF 'escape'. INTERVENTION Optimization of ART based upon drug susceptibility and presumed central nervous system exposure. Levels of CSF HIV RNA and inflammatory markers, clinical signs and symptoms, and MRI findings. Ten patients presented with new neurologic abnormalities, which included sensory, motor, and cognitive manifestations. Median CSF HIV RNA was 3900 copies/ml (range 134-9056), whereas median plasma HIV RNA was 62 copies/ml (range <50 to 380). Median CD4 T-cell count was 482 cells/μl (range 290-660). All patients had been controlled to less than 500 copies/ml for median 27.5 months (range 2-96) and five of 10 had been suppressed to less than 50 copies/ml for median 19.5 months (range 2-96). Patients had documentation of a stable ART regimen for median 21 months (range 9-60). All had CSF pleocytosis or elevated CSF protein; seven of eight had abnormalities on MRI; and six of seven harbored CSF resistance mutations. Following optimization of ART, eight of nine patients improved clinically. The development of neurologic symptoms in patients on ART with low or undetectable plasma HIV levels may be an indication of CSF 'escape'. This study adds to a growing body of literature regarding this rare condition in well controlled HIV infection.

  16. Cerebrospinal Fluid HIV Escape Associated with Progressive Neurologic Dysfunction in Patients on Antiretroviral Therapy with Well-Controlled Plasma Viral Load

    PubMed Central

    Peluso, Michael J.; Ferretti, Francesca; Peterson, Julia; Lee, Evelyn; Fuchs, Dietmar; Boschini, Antonio; Gisslén, Magnus; Angoff, Nancy; Price, Richard W.; Cinque, Paola; Spudich, Serena

    2013-01-01

    Objective To characterize HIV-infected patients with neuro-symptomatic CSF ‘escape,’ defined as detectable CSF HIV RNA in the setting of treatment-suppressed plasma levels or CSF RNA >1 log higher than plasma RNA. Design Retrospective case series. Setting 4 urban medical centers in the United States and Europe. Subjects Virologically controlled HIV-infected patients on antiretroviral therapy (ART) with progressive neurologic abnormalities who were determined to have CSF ‘escape.’ Intervention Optimization of ART based upon drug susceptibility and presumed CNS exposure. Main outcome measures Levels of CSF HIV RNA and inflammatory markers, clinical signs and symptoms, magnetic resonance imaging findings. Results 10 patients presented with new neurological abnormalities, which included sensory, motor, and cognitive manifestations. Median CSF HIV RNA was 3900 copies/mL (range 134-9056), while median plasma HIV RNA was 62 copies/mL (range <50-380). Median CD4+ T cell count was 482 cells/mm3 (range, 290-660). All patients had been controlled <500 copies/mL for median 27.5 months (range, 2-96) and 5/10 had been suppressed <50 copies/mL for median 19.5 months (range, 2-96). Patients had documentation of a stable ART regimen for median 21 months (range 9-60). All had CSF pleocytosis or elevated CSF protein; 7/8 had abnormalities on MRI; and 6/7 harbored CSF resistance mutations. Following optimization of ART, 8/9 patients improved clinically. Conclusions The development of neurologic symptoms in patients on ART with low or undetectable plasma HIV levels may be an indication of CSF ‘escape.’ This study adds to a growing body of literature regarding this rare condition in well-controlled HIV infection. PMID:22614889

  17. [Validation of a clinical prediction rule to distinguish bacterial from aseptic meningitis].

    PubMed

    Agüero, Gonzalo; Davenport, María C; Del Valle, María de la P; Gallegos, Paulina; Kannemann, Ana L; Bokser, Vivian; Ferrero, Fernando

    2010-02-01

    Despite most meningitis are not bacterial, antibiotics are usually administered on admission because bacterial meningitis is difficult to be rule-out. Distinguishing bacterial from aseptic meningitis on admission could avoid inappropriate antibiotic use and hospitalization. We aimed to validate a clinical prediction rule to distinguish bacterial from aseptic meningitis in children, on arriving to the emergency room. This prospective study included patients aged < 19 years with meningitis. Cerebrospinal fluid (CSF) and peripheral blood neutrophil count were obtained from all patients. The BMS (Bacterial Meningitis Score) described by Nigrovic (Pediatrics 2002; 110: 712), was calculated: positive CSF Gram stain= 2 points, CSF absolute neutrophil count > or = 1000 cells/mm(3), CSF protein > or = 80 mg/dl, peripheral blood absolute neutrophil count > or = 10.000/mm(3), seizure = 1 point each. Sensitivity (S), specificity (E), positive and negative predictive values (PPV and NPV), positive and negative likelihood ratios (PLR and NLR) of the BMS to predict bacterial meningitis were calculated. Seventy patients with meningitis were included (14 bacterial meningitis). When BMS was calculated, 25 patients showed a BMS= 0 points, 11 BMS= 1 point, and 34 BMS > or = 2 points. A BMS = 0 showed S: 100%, E: 44%, VPP: 31%, VPN: 100%, RVP: 1,81 RVN: 0. A BMS > or = 2 predicted bacterial meningitis with S: 100%, E: 64%, VPP: 41%, VPN: 100%, PLR: 2.8, NLR:0. Using BMS was simple, and allowed identifying children with very low risk of bacterial meningitis. It could be a useful tool to assist clinical decision making.

  18. Donor lymphocyte apheresis for adoptive immunotherapy compared with blood stem cell apheresis.

    PubMed

    Körbling, M; Giralt, S; Khouri, I; Mirza, N; Donato, M; Anderlini, P; Fischer, H; Andreeff, M; McMannis, J; Champlin, R

    2001-01-01

    Donor lymphocyte transfusion has gained considerable interest as adoptive cellular immunotherapy for prevention or treatment of relapse after allogeneic stem cell transplantation. This study was designed to compare the yield of CD3(+), CD3(+)4(+), CD3(+)8(+), CD19(+), CD3(-)56(+)16(+), and CD34(+) cells contained in apheresis products from 61 consecutive non-cytokine treated, human leukocyte antigen (HLA)-matched donors for lymphocyte collection with the corresponding apheresis-derived cell yield from 112 consecutive, HLA-matched donors for blood stem cell collection who received recombinant human granulocyte colony stimulating factor (rhG-CSF, filgrastim) 6 microg/kg every 12 hours until cell collection was completed. Apheresis was started on day 4 or 5 of rhG-CSF treatment. The yield of lymphoid subsets was significantly different in the two sample groups, rhG-CSF treated product yields exceeding untreated product yields by a median of 2.1-fold (range: 1.3-2.6). However, the CD34(+) cell yield in rhG-CSF-treated apheresis products exceeded untreated products by 26-fold. A single untreated apheresis procedure was usually sufficient to collect a target dose of 1 x 10(8)/kg CD3(+) cells. Untreated apheresis products contained a median of 0.2 x 10(6)/kg CD34(+) cells. A potential engraftment dose of > or =0.5 x 10(6) CD34(+) cells per kg of recipient body weight was contained in 16% of 57 untreated apheresis products. One single apheresis performed in a normal, untreated donor provides a sufficient amount of CD3(+) cells for adoptive immunotherapy. Compared with that of an rhG-CSF stimulated apheresis product, the CD34(+) cell count is usually, but not always, below the engraftment dose range. RhG-CSF treatment has little effect on the yield of lymphoid subsets collected by apheresis but is highly selective of the release of CD34(+) cells. This report provides baseline data for studies that will show whether other cytokines such as granulocyte macrophage colony stimulating factor (GM-CSF) and/or Flt-3 Ligand can immunomodulate allotransfusates in vivo to improve the graft-vs.-leukemia (GVL) effect after allogeneic stem cell transplantation, while lowering the incidence and severity of graft-vs.-host disease (GVHD). Copyright 2001 Wiley-Liss, Inc.

  19. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study.

    PubMed

    Cordone, Iole; Masi, Serena; Summa, Valentina; Carosi, Mariantonia; Vidiri, Antonello; Fabi, Alessandra; Pasquale, Alessia; Conti, Laura; Rosito, Immacolata; Carapella, Carmine Maria; Villani, Veronica; Pace, Andrea

    2017-04-11

    Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs) which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM). Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The tumor-associated leukocyte population was also characterized. Despite a low absolute cell number (8 cell/μl, range 1-86), the flow cytometry characterization was successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02). Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results for diagnosis and management of LM.

  20. Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.

    PubMed

    Zhang, Wan-Ming; Natowicz, Marvin R

    2013-05-01

    Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. CSF profile in primary progressive multiple sclerosis: Re-exploring the basics.

    PubMed

    Abdelhak, Ahmed; Hottenrott, Tilman; Mayer, Christoph; Hintereder, Gudrun; Zettl, Uwe K; Stich, Oliver; Tumani, Hayrettin

    2017-01-01

    The aim of this study was to report the basic cerebrospinal fluid (CSF) profile in patients with primary progressive multiple sclerosis (PPMS). The results of CSF analysis from 254 patients with PPMS were collected at four university hospitals in Germany. Routine CSF parameters and different indices of intrathecal immunoglobulin synthesis were evaluated. We assessed possible correlations between the various CSF parameters and the expanded disability status scale (EDSS) both at the time of lumbar puncture and during the course of the disease. The median cell count and albumin concentration in the CSF did not deviate from normal values. The CSF-serum albumin-quotient (QALB) was elevated in 29.6% of the patients, while intrathecal immunoglobulin G (IgG) oligoclonal bands (OCBs) were detected in 91.1% of the patients. CSF-lactate levels as well as local IgM- and IgA-synthesis were correlated with the yearly disease progression rate, as assessed by EDSS. We present the results of the hitherto largest and most detailed CSF biomarker profile in a cohort of 254 patients with PPMS. As reported previously, OCBs are the most sensitive marker for intrathecal IgG synthesis. CSF-lactate concentrations are positively correlated with the progression rate, which might suggest that mitochondrial dysfunction plays a relevant role in PPMS. The negative correlation between intrathecally produced IgM and IgA and disease progression may indicate their hitherto unexplored protective role.

  2. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    PubMed

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W; Swanstrom, Ronald

    2009-04-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  3. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia

    PubMed Central

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W.; Swanstrom, Ronald

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1–associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1–associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t1/2 mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t1/2 range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD. PMID:19390619

  4. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis.

    PubMed

    Giulieri, S; Chapuis-Taillard, C; Jaton, K; Cometta, A; Chuard, C; Hugli, O; Du Pasquier, R; Bille, J; Meylan, P; Manuel, O; Marchetti, O

    2015-10-01

    CSF lactate measurement is recommended when nosocomial meningitis is suspected, but its value in community-acquired bacterial meningitis is controversial. We evaluated the diagnostic performance of lactate and other CSF parameters in a prospective cohort of adult patients with acute meningitis. Diagnostic accuracy of lactate and other CSF parameters in patients with microbiologically documented episodes was assessed by receiver operating characteristic (ROC) curves. The cut-offs with the best diagnostic performance were determined. Forty-five of 61 patients (74%) had a documented bacterial (n = 18; S. pneumoniae, 11; N. meningitidis, 5; other, 2) or viral (n = 27 enterovirus, 21; VZV, 3; other, 3) etiology. CSF parameters were significantly different in bacterial vs. viral meningitis, respectively (p < 0.001 for all comparisons): white cell count (median 1333 vs. 143/mm(3)), proteins (median 4115 vs. 829 mg/l), CSF/blood glucose ratio (median 0.1 vs. 0.52), lactate (median 13 vs. 2.3 mmol/l). ROC curve analysis showed that CSF lactate had the highest accuracy for discriminating bacterial from viral meningitis, with a cutoff set at 3.5 mmol/l providing 100% sensitivity, specificity, PPV, NPV, and efficiency. CSF lactate had the best accuracy for discriminating bacterial from viral meningitis and should be included in the initial diagnostic workup of this condition.

  5. Early Dynamics of Cerebrospinal CD14+ Monocytes and CD15+ Granulocytes in Patients after Severe Traumatic Brain Injury: A Cohort Study

    PubMed Central

    Postl, Lukas Kurt; Bogner, Viktoria; Beirer, Marc; Kanz, Karl Georg; Egginger, Christoph; Schmitt-Sody, Markus; Biberthaler, Peter; Kirchhoff, Chlodwig

    2015-01-01

    In traumatic brain injury (TBI) the analysis of neuroinflammatory mechanisms gained increasing interest. In this context certain immunocompetent cells might play an important role. Interestingly, in the actual literature there exist only a few studies focusing on the role of monocytes and granulocytes in TBI patients. In this regard it has recently reported that the choroid plexus represents an early, selective barrier for leukocytes after brain injury. Therefore the aim of this study was to evaluate the very early dynamics of CD14+ monocytes and CD15+ granulocyte in CSF of patients following severe TBI with regard to the integrity of the BBB. Cytometric flow analysis was performed to analyze the CD14+ monocyte and CD15+ granulocyte population in CSF of TBI patients. The ratio of CSF and serum albumin as a measure for the BBB's integrity was assessed in parallel. CSF samples of patients receiving lumbar puncture for elective surgery were obtained as controls. Overall 15 patients following severe TBI were enrolled. 10 patients were examined as controls. In patients, the monocyte population as well as the granulocyte population was significantly increased within 72 hours after TBI. The BBB's integrity did not have a significant influence on the cell count in the CSF. PMID:26568661

  6. Immunophenotyping of the cerebrospinal fluid as a prognostic factor at diagnosis of acute lymphoblastic leukemia in children and adolescents.

    PubMed

    Cancela, Camila Silva Peres; Murao, Mitiko; Assumpção, Juliana Godoy; Souza, Marcelo Eduardo de Lima; de Macedo, Antonio Vaz; Viana, Marcos Borato; De Oliveira, Benigna Maria

    2017-03-01

    This study aimed at evaluating the use of immunophenotyping (IMP) in the identification of blast cells in the cerebrospinal fluid (CSF) of children and adolescents with acute lymphoblastic leukemia (ALL). Sixty-seven patients aged 18 years or younger were included. Fifty-five CSF samples were analyzed at initial diagnosis and 17 at the time of relapse. A cytological analysis (CA) was performed in all 72 samples, while IMP was done in 63. Blasts were identified in only three samples by CA, whereas all three samples were found negative by IMP, one of which had no isolation of nucleated cells after centrifugation. Among the samples analyzed by IMP, 11 showed a positive blast count, two of which had been inconclusive using CA. No equivalence was found between CA and IMP results (p = 0.55). CSF IMP positivity was not associated with other risk factors for ALL relapse. Among the 55 patients included at the time of diagnosis of ALL, eight relapsed during follow-up. Considering the cases of central nervous system (CNS) relapse, one of the patients belonged to the CSF IMP-positive group (11%) at diagnosis, and the other two cases, to the IMP-negative (5%) group. Detection of CSF blast cells using IMP was associated with a worse overall (p < 0.0001) and event-free survival (p < 0.0001). These results show that CSF IMP may be a useful additional method to conventional CA in the diagnosis of CNS involvement in ALL, and for the identification of high-risk subgroups that would benefit from an intensified therapy.

  7. Pleocytosis is not fully responsible for low CSF glucose in meningitis.

    PubMed

    Baud, Maxime O; Vitt, Jeffrey R; Robbins, Nathaniel M; Wabl, Rafael; Wilson, Michael R; Chow, Felicia C; Gelfand, Jeffrey M; Josephson, S Andrew; Miller, Steve

    2018-01-01

    The mechanism of hypoglycorrhachia-low CSF glucose-in meningitis remains unknown. We sought to evaluate the relative contribution of CSF inflammation vs microorganisms (bacteria and fungi) in lowering CSF glucose levels. We retrospectively categorized CSF profiles into microbial and aseptic meningitis and analyzed CSF leukocyte count, glucose, and protein concentrations. We assessed the relationship between these markers using multivariate and stratified linear regression analysis for initial and repeated CSF sampling. We also calculated the receiver operating characteristics of CSF glucose and CSF-to-serum glucose ratios to presumptively diagnose microbial meningitis. We found that increasing levels of CSF inflammation were associated with decreased CSF glucose levels in the microbial but not aseptic category. Moreover, elevated CSF protein levels correlated more strongly than the leukocyte count with low CSF glucose levels on initial ( R 2 = 36%, p < 0.001) and repeated CSF sampling ( R 2 = 46%, p < 0.001). Hypoglycorrhachia (<40 mg/dL) was observed in 50.1% of microbial cases, but only 9.6% of aseptic cases, most of which were neurosarcoidosis. Absolute CSF glucose and CSF-to-serum glucose ratios had similar low sensitivity and moderate-to-high specificity in diagnosing microbial meningitis at thresholds commonly used. The main driver of hypoglycorrhachia appears to be a combination of microbial meningitis with moderate to high degrees of CSF inflammation and proteins, suggesting that the presence of microorganisms capable of catabolizing glucose is a determinant of hypoglycorrhachia in meningitis. A major notable exception is neurosarcoidosis. Low CSF glucose and CSF-to-serum glucose ratios are useful markers for the diagnosis of microbial meningitis.

  8. F-spondin inhibits migration and differentiation of osteoclastic precursors.

    PubMed

    Oka, Hiroko; Mori, Maya; Kihara, Hisae

    2011-12-01

    Clinically, severe cemental resorption is a rare consequence of periodontitis, although alveolar bone resorption by osteoclasts is one of the main pathologic changes. F-spondin is a secreted neuronal glycoprotein that localizes to the cementum. F-spondin is among the cementum-specific factors in periodontal tissue that have been reported. However, the effects of F-spondin on osteoclastogenesis have not yet been established. We examined the effects of F-spondin on stages of osteoclastogenesis, migration, and differentiation in a mouse osteoclastic precursor model, RAW 264 cells. RAW 264 cells were treated with recombinant F-spondin. Macrophage colony stimulating factor (M-CSF)-induced cell migration was examined by migration assay performed with cell culture inserts. Osteoclastic differentiation was measured by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. In a transmigration assay, F-spondin significantly downregulated M-CSF-induced cell migration. Further, F-spondin significantly reduced the number of receptor activator of nuclear factor-kappa B ligand-induced TRAP-positive multinucleated cells. The receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, blocked the effects of F-spondin on M-CSF-induced migration. The suppressive effect of F-spondin on M-CSF-induced cell migration was blocked by knockdown of LDL receptor-related protein 8 (LRP8), a member of the LDL receptor family. Our findings suggest that F-spondin downregulates recruitment to the root side of periodontal tissue via LRP8 and inhibits differentiation of osteoclastic precursors. It is suggested that F-spondin is essential to protect the root surface from resorption.

  9. Immune Response to Hepatitis B Vaccine in HIV-Infected Subjects Using Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) as a Vaccine Adjuvant: ACTG Study 5220

    PubMed Central

    Overton, ET; Kang, M; Peters, MG; Umbleja, T; Alston-Smith, BL; Bastow, B; Demarco-Shaw, D; Koziel, MJ; Mong-Kryspin, L; Sprenger, HL; Yu, JY; Aberg, JA

    2010-01-01

    HIV-infected persons are at risk for HBV co-infection which is associated with increased morbidity and mortality. Unfortunately, protective immunity following HBV vaccination in HIV-infected persons is poor. This randomized, phase II, open label study aimed to evaluate efficacy and safety of 40 mcg HBV vaccine with or without 250 mcg GM-CSF administered at day 0, weeks 4 and 12. HIV-infected individuals ≥18 years of age, CD4 count ≥200 cells/mm3, seronegative for HBV and HCV, and naïve to HBV vaccination were eligible. Primary endpoints were quantitative HBsAb titers and adverse events. The study enrolled 48 subjects. Median age and baseline CD4 were 41 years and 446 cells/mm3, 37 were on ART, and 26 subjects had undetectable VL. Vaccination was well tolerated. Seven subjects in the GM-CSF group reported transient Grade ≥2 signs/symptoms (six Grade 2, one Grade 3), mostly aches and nausea. GM-CSF had no significant effect on VL or CD4. Four weeks after vaccination, 26 subjects (59%) developed a protective antibody response (HBsAb ≥10mIU/mL; 52% in the GM-CSF arm and 65% in the control arm) without improved Ab titer in the GM-CSF versus control arm (median 11 mIU/mL vs. 92 mIU/mL, respectively). Response was more frequent in those with CD4 ≥350 cells/mm3 (64%) than with CD4 <350 cells/mm3 (50%), though not statistically significant. GM-CSF as an adjuvant did not improve the Ab titer or the development of protective immunity to HBV vaccination in those receiving an accelerated vaccine schedule. Given the common routes of transmission for HIV and HBV, additional HBV vaccine research is warranted. PMID:20600512

  10. Mobilisation of Hematopoietic CD34+ Precursor Cells in Patients with Acute Stroke Is Safe - Results of an Open-Labeled Non Randomized Phase I/II Trial

    PubMed Central

    Kraemer, Mathias; Schormann, Thorsten; Schlachetzki, Felix; Schuierer, Gerhard; Luerding, Ralph; Hennemann, Burkhard; Orso, Evelyn; Dabringhaus, Andreas; Winkler, Jürgen; Bogdahn, Ulrich

    2011-01-01

    Background Regenerative strategies in the treatment of acute stroke may have great potential. Hematopoietic growth factors mobilize hematopoietic stem cells and may convey neuroprotective effects. We examined the safety, potential functional and structural changes, and CD34+ cell–mobilization characteristics of G-CSF treatment in patients with acute ischemic stroke. Methods and Results Three cohorts of patients (8, 6, and 6 patients per cohort) were treated subcutaneously with 2.5, 5, or 10 µg/kg body weight rhG-CSF for 5 consecutive days within 12 hrs of onset of acute stroke. Standard treatment included IV thrombolysis. Safety monitoring consisted of obtaining standardized clinical assessment scores, monitoring of CD34+ stem cells, blood chemistry, serial neuroradiology, and neuropsychology. Voxel-guided morphometry (VGM) enabled an assessment of changes in the patients' structural parenchyma. 20 patients (mean age 55 yrs) were enrolled in this study, 5 of whom received routine thrombolytic therapy with r-tPA. G-CSF treatment was discontinued in 4 patients because of unrelated adverse events. Mobilization of CD34+ cells was observed with no concomitant changes in blood chemistry, except for an increase in the leukocyte count up to 75,500/µl. Neuroradiological and neuropsychological follow-up studies did not disclose any specific G-CSF toxicity. VGM findings indicated substantial atrophy of related hemispheres, a substantial increase in the CSF space, and a localized increase in parenchyma within the ischemic area in 2 patients. Conclusions We demonstrate a good safety profile for daily administration of G-CSF when begun within 12 hours after onset of ischemic stroke and, in part in combination with routine IV thrombolysis. Additional analyses using VGM and a battery of neuropsychological tests indicated a positive functional and potentially structural effect of G-CSF treatment in some of our patients. Trial Registration German Clinical Trial Register DRKS 00000723 PMID:21887230

  11. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  12. Expression of CXCR3 and its ligands CXCL9, -10 and -11 in paediatric opsoclonus–myoclonus syndrome

    PubMed Central

    Pranzatelli, M R; Tate, E D; McGee, N R; Travelstead, A L; Verhulst, S J; Ransohoff, R M

    2013-01-01

    Opsoclonus–myoclonus syndrome (OMS) is a neuroinflammatory disorder associated with remote cancer. To understand more clearly the role of inflammatory mediators, the concentration of CXCR3 ligands CXCL10, CXCL9 and CXCL11 was measured in 245 children with OMS and 81 paediatric controls using enzyme-linked immunosorbent assay (ELISA), and CXCR3 expression on CD4+ T cells was measured by flow cytometry. Mean cerebrospinal fluid (CSF) CXCL10 was 2·7-fold higher in untreated OMS than controls. Intrathecal production was demonstrated by significantly different CXCL10 CSF : serum ratios. The dichotomized ‘high’ CSF CXCL10 group had higher CSF leucocyte count (P = 0·0007) and B cell activating factor (BAFF) and CXCL13 concentrations (P < 0·0001). CSF CXCL10 did not correlate with clinical severity or relapse using grouped data, although it did in some patients. Among seven types of immunotherapy, including rituximab or chemotherapy, only adrenocorticotrophic hormone (ACTH) monotherapy showed reduced CSF CXCL10, but prospective longitudinal studies of ACTH combination therapies indicated no reduction in CXCL10 despite clinical improvement (P < 0·0001). CXCL10 concentrations were 11-fold higher in CSF and twofold higher in serum by multiplexed fluorescent bead-based immunoassay than enzyme-linked immunosorbent assay, but the two correlated (r = 0·7 and 0·83). In serum, no group differences for CXCL9 or CXCL11 were found. CXCR3 expression on CD4+ T cells was fivefold higher in those from CSF than blood, but was not increased in OMS or altered by conventional immunotherapy. These data suggest alternative roles for CXCL10 in OMS. Over-expression of CXCL10 was not reduced by clinical immunotherapies as a whole, indicating the need for better therapeutic approaches. PMID:23600831

  13. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys

    PubMed Central

    2011-01-01

    Background Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Methods Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. Results In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of clyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. Conclusion G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild-type counterpart both in vitro and in vivo. G-CSFa can be explored for the development of a new generation of recombinant therapeutic drug for leukopenia. PMID:21668998

  14. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys.

    PubMed

    Jiang, Yongping; Jiang, Wenhong; Qiu, Yuchang; Dai, Wei

    2011-06-13

    Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of cyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild-type counterpart both in vitro and in vivo. G-CSFa can be explored for the development of a new generation of recombinant therapeutic drug for leukopenia.

  15. The effect of macrophage colony-stimulating factor on haemopoietic recovery after autologous bone marrow transplantation.

    PubMed

    Khwaja, A; Yong, K; Jones, H M; Chopra, R; McMillan, A K; Goldstone, A H; Patterson, K G; Matheson, C; Ruthven, K; Abramson, S B

    1992-06-01

    Macrophage colony-stimulating factor (M-CSF) is active in the late stages of monocyte maturation, activates mature monocyte-macrophages and enhances their production of various other cytokines. We have examined the effects of a 21 d course of escalating doses of M-CSF purified from human urine (hM-CSF) on recovery following autologous bone marrow transplantation (ABMT) in 20 patients with malignant lymphomas. Four patients were treated at each dose level of 4, 8, 16, 32 and 64 x 10(6) U/m2/d and results compared to 46 concurrent controls. There was no significant difference in recovery to an absolute neutrophil count (ANC) of 0.5 x 10(9)/l (median 20 d in hM-CSF group versus 22 in controls) or in recovery of platelets to 50 x 10(9)/l (32 d versus 39 d, 0.05 less than P less than 0.1); hM-CSF patients received a median of 81 platelet units following ABMT (controls 112 units, P = NS). hM-CSF patients had a median of 5.5 d with fever greater than 37.5 degrees C (control 8, P = NS), received parenteral antibiotics for 14.5 d (control 17, P = NS) and had a 50% incidence of bacteraemia (control 48%). hM-CSF treated patients were discharged by a median of day 29 following transplantation (control 33, P less than 0.05). Platelet and neutrophil recovery correlated significantly with the number of marrow mononuclear cells (MNC) reinfused in the hM-CSF group (P = 0.05 and P = 0.014 respectively) but not in controls. Subgroup analysis showed that hM-CSF patients receiving greater than 2 x 10(8) MNC/kg body weight reached an ANC of 0.5 x 10(9)/l by a median of day 16.5 (control 18.5, NS), became platelet transfusion independent by day 17 (control 29, P less than 0.05) and reached a platelet count of 50 x 10(9)/l by day 21 (control 40, P less than 0.05). No significant toxicity attributable to hM-CSF treatment was seen. These results suggest that hM-CSF accelerates platelet recovery following ABMT and that relatively large marrow innocula are required to see this effect.

  16. Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim.

    PubMed

    van Der Auwera, P; Platzer, E; Xu, Z X; Schulz, R; Feugeas, O; Capdeville, R; Edwards, D J

    2001-04-01

    Ro 25-8315 is produced by conjugation of rhG-CSF mutant with polyethylene glycol (PEG). The purpose of this study was to examine the pharmacodynamics and pharmacokinetics of Ro 25-8315 in comparison with Filgrastim (rhG-CSF). Subjects received single subcutaneous doses of Ro 25-8315 ranging from 10 to 150 microg/kg using a double-blind, randomized, placebo-controlled design. Filgrastim was administered as a single dose (5 or 10 microg/kg) and, following a 14-day washout period, daily for 7 days. Ro 25-8315 increased absolute neutrophil count (ANC) by 6- to 8-fold and CD34+ cell count more than 30-fold at the highest doses tested. Single doses (60-150 microg/kg) of Ro 25-8315 and multiple doses of Filgrastim had similar effects on ANC and CD34+, although Ro 25-8315 had a greater effect on CFU-GM. The pharmacokinetics of Ro 25-8315 were dose-dependent, with peak concentrations and area under the serum concentration-time curve (AUC) increasing 100-fold over the range of doses studied. Time to reach peak concentration (T(max)) and half-life of Ro 25-8315 averaged 20-30 hr at all doses, approximately three times longer than with Filgrastim. Adverse events were not serious and occurred with similar frequency with both products. Pegylation of rhG-CSF mutant results in more desirable pharmacokinetic properties and a longer duration of action with effective increases in ANC and measures of peripheral blood progenitor cell mobilization for at least 1 week. Copyright 2001 Wiley-Liss, Inc.

  17. Role of Clinical Presentations and Routine CSF Analysis in the Rapid Diagnosis of Acute Bacterial Meningitis in Cases of Negative Gram Stained Smears

    PubMed Central

    Fouad, Rabab; El-Kholy, Badawy; Yosry, Ayman

    2014-01-01

    Background and Aim. Bacterial meningitis is a lethal, disabling endemic disease needing prompt antibiotic management. Gram stained smears is rapid accurate method for diagnosis of bacterial meningitis. In cases of negative gram stained smears diagnosis is delayed till culture results. We aim to assess the role of clinical presentations and routine CSF analysis in the cost-effective rapid diagnosis of negative gram stained smears bacterial meningitis. Methods. Cross sectional study including 623 acute meningitis patients divided into two groups: bacterial meningitis and nonbacterial meningitis groups. The clinical presentations, systemic inflammatory parameters, and CSF analysis were evaluated and compared in both groups. Results. Altered conscious level, localizing neurological signs, Kernig's and Brudzinski's signs together with peripheral leucocytosis (>10.000/mm3), high CRP (>6) together with high CSF protein (>50 gl/dL), CSF neutrophilic count (≥50% of total CSF leucocytic count), and low CSF glucose level (<45 gm/dL) and CSF/serum glucose ≤0.6 were significantly diagnostic in bacterial meningitis patients. From the significant CSF analysis variables CSF protein carried the higher accuracy of diagnosis 78% with sensitivity 88% and specificity 72%. Conclusions. High CSF protein (>50 mg/dL) together with plasma inflammatory markers and CSF cytochemical parameters can diagnose bacterial meningitis in gram stain negative smear till culture results. PMID:24803939

  18. Improved progression-free and event-free survival in myeloma patients undergoing PBSCH receiving a cyclophosphamide + G-CSF regimen than G-CSF alone.

    PubMed

    Tanimura, Akira; Hirai, Risen; Nakamura, Miki; Takeshita, Masataka; Hagiwara, Shotaro; Miwa, Akiyoshi

    2018-05-01

    Two regimens are commonly used for peripheral blood hematopoietic stem cell harvesting (PBSCH) in multiple myeloma: high-dose cyclophosphamide (HD-CY) + granulocyte-colony stimulating factor (G-CSF), and G-CSF alone. The objective of the present study was to evaluate the anti-myeloma effect of the PBSCH regimen including HD-CY. We retrospectively assessed harvesting efficiency, complications, and anti-myeloma effects in 115 patients receiving HD-CY + G-CSF (HD-CY group) and 32 patients receiving G-CSF alone (G-alone group). We collected > 2 × 10 6 CD34-positive cells/kg from 93 and 75% of patients in the HD-CY and G-alone groups, respectively (P = 0.0079). The mean HSC count was also higher in the HD-CY group. No severe complications were observed in the G-alone group, whereas 66% of patients in the HD-CY group were treated with intravenous antibiotics. The median progression-free and event-free survival (PFS and EFS) were longer in the HD-CY group than in the G-alone group (28 vs. 18 months and 25 vs. 13 months, respectively; P = 0.0127 and 0.0139), with no difference in median overall survival. HD-CY showed anti-myeloma effect, as verified by prolonged EFS and PFS, when a vincristine, doxorubicin, and dexamethasone regimen was administered as induction before PBSCH.

  19. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  20. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    PubMed

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P < 0.05) in the 28 dogs treated with rcG-CSF compared to disease-matched dogs not treated with rcG-CSF. In addition, the mean duration of hospitalization was reduced (P = 0.01) in rcG-CSF treated dogs compared to untreated dogs. However, survival times were decreased in dogs treated with rcG-CSF compared to untreated dogs. These results suggest that treatment with rcG-CSF was effective in stimulating neutrophil recovery and shortening the duration of hospitalization in dogs with parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  1. Imaging diagnosis--necrotizing meningomyelitis and polyarthritis.

    PubMed

    Parry, Andrew T; Penning, Victoria A; Smith, Ken C; Kenny, Patrick J; Lamb, Christopher R

    2009-01-01

    A vaccinated 2-year-old female neutered Weimaraner had bilateral pelvic limb ataxia that progressed over 12 h. The dog became nonambulatory, with signs of pain on palpation of the lumbar spine. The dog also developed multiple joint effusions. On magnetic resonance (MR) imaging, there was a diffuse, asymmetric T2-hyperintensity in the thoracolumbar spinal cord which was characterized by contrast enhancement. Lumbar cerebrospinal fluid (CSF) analysis had an elevated white blood cell count and protein. On the basis of MR images and CSF analysis, a presumptive diagnosis of diffuse myelitis was made. The dog became paraplegic and was euthanized. Postmortem examination confirmed the presence of myelitis with vasculitis and nonerosive polyarthritis.

  2. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION).

    PubMed

    Chang, Chung-Hsing; Huang, Tzu-Lun; Huang, Shun-Ping; Tsai, Rong-Kung

    2014-01-01

    The purpose of this study was to investigate the neuroprotective effects of recombinant human granulocyte colony stimulating factor (G-CSF), as administered in a rat model of anterior ischemic optic neuropathy (rAION). Using laser-induced photoactivation of intravenously administered Rose Bengal in the optic nerve head of 60 adult male Wistar rats, an anterior ischemic optic neuropathy (rAION) was inducted. Rats either immediately received G-CSF (subcutaneous injections) or phosphate buffered saline (PBS) for 5 consecutive days. Rats were euthanized at 4 weeks post infarct. Density of retinal ganglion cells (RGCs) was counted using retrograde labeling of Fluoro-gold. Visual function was assessed by flash visual-evoked potentials (FVEP) at 4 weeks. TUNEL assay in the retinal sections and immunohistochemical staining of ED1 (marker of macrophage/microglia) were investigated in the optic nerve (ON) specimens. The RGC densities in the central and mid-peripheral retinas in the G-CSF treated rats were significantly higher than those of the PBS-treated rats (survival rate was 71.4% vs. 33.2% in the central retina; 61.8% vs. 22.7% in the mid-peripheral retina, respectively; both p < 0.05). FVEP measurements showed a significantly better preserved latency and amplitude of the p1 wave in the G-CSF-treated rats than that of the PBS-treated rats (latency120 ± 11 ms vs. 142 ± 12 ms, p = 0.03; amplitude 50 ± 11 μv vs. 31 ± 13 μv, p = 0.04). TUNEL assays showed fewer apoptotic cells in the retinal ganglion cell layers of G-CSF treated rats [2.1 ± 1.0 cells/high power field (HPF) vs. 8.0 ± 1.5/HPF; p = 0.0001]. In addition, the number of ED1 positive cells was attenuated at the optic nerve sections of G-CSF-treated rats (16 ± 6/HPF vs. 35 ± 10/HPF; p = 0.016). In conclusion, administration of G-CSF is neuroprotective in the rat model of anterior ischemic optic neuropathy, as demonstrated both structurally by RGC density and functionally by FVEP. G-CSF may work via the dual actions of anti-apoptosis for RGC surviving as well as anti-inflammation in the optic nerves as evidenced by less infiltration of ED1-povitive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluation of a standardized procedure for [corrected] microscopic cell counts [corrected] in body fluids.

    PubMed

    Emerson, Jane F; Emerson, Scott S

    2005-01-01

    A standardized urinalysis and manual microscopic cell counting system was evaluated for its potential to reduce intra- and interoperator variability in urine and cerebrospinal fluid (CSF) cell counts. Replicate aliquots of pooled specimens were submitted blindly to technologists who were instructed to use either the Kova system with the disposable Glasstic slide (Hycor Biomedical, Inc., Garden Grove, CA) or the standard operating procedure of the University of California-Irvine (UCI), which uses plain glass slides for urine sediments and hemacytometers for CSF. The Hycor system provides a mechanical means of obtaining a fixed volume of fluid in which to resuspend the sediment, and fixes the volume of specimen to be microscopically examined by using capillary filling of a chamber containing in-plane counting grids. Ninety aliquots of pooled specimens of each type of body fluid were used to assess the inter- and intraoperator reproducibility of the measurements. The variability of replicate Hycor measurements made on a single specimen by the same or different observers was compared with that predicted by a Poisson distribution. The Hycor methods generally resulted in test statistics that were slightly lower than those obtained with the laboratory standard methods, indicating a trend toward decreasing the effects of various sources of variability. For 15 paired aliquots of each body fluid, tests for systematically higher or lower measurements with the Hycor methods were performed using the Wilcoxon signed-rank test. Also examined was the average difference between the Hycor and current laboratory standard measurements, along with a 95% confidence interval (CI) for the true average difference. Without increasing labor or the requirement for attention to detail, the Hycor method provides slightly better interrater comparisons than the current method used at UCI. Copyright 2005 Wiley-Liss, Inc.

  4. Comparison of Different Stem Cell Mobilization Regimens in AL Amyloidosis Patients.

    PubMed

    Lisenko, Katharina; Wuchter, Patrick; Hansberg, Marion; Mangatter, Anja; Benner, Axel; Ho, Anthony D; Goldschmidt, Hartmut; Hegenbart, Ute; Schönland, Stefan

    2017-11-01

    High-dose melphalan (HDM) and autologous blood stem cell transplantation (ABSCT) is an effective treatment for transplantation-eligible patients with systemic light chain (AL) amyloidosis. Whereas most centers use granulocyte colony-stimulating factor (G-CSF) alone for mobilization of peripheral blood stem cells (PBSC), the application of mobilization chemotherapy might offer specific advantages. We retrospectively analyzed 110 patients with AL amyloidosis who underwent PBSC collection. Major eligibility criteria included age <70 years and cardiac insufficiency New York Heart Association ≤III°. Before mobilization, 67 patients (61%) had been pretreated with induction therapy, including 17 (15%) patients who had received melphalan. Chemo-mobilization was performed with either cyclophosphamide, doxorubicin, dexamethasone (CAD)/G-CSF (n = 78, 71%); ifosfamide/G-CSF (n = 14, 13%); or other regimens (n = 8, 7%). AL amyloidosis patients with predominant heart involvement and/or status post heart transplantation were mobilized with G-CSF only (n = 10, 9%). PBSC collection was successful in 101 patients (92%) at first attempt. The median number of CD34 + cells was 8.7 (range, 2.1 to 45.5) × 10 6 CD34 + /kg collected in a median of 1 leukapheresis (LP) session. Compared with G-CSF-only mobilization, a chemo-mobilization with CAD/G-CSF or ifosfamide/G-CSF had a positive impact on the number of collected CD34 + cell number/kg per LP (P <.001, multivariate). Melphalan-containing previous therapy and higher age had a significant negative impact on quantity of collected CD34 + cells. Median common toxicity criteria (CTC) grade of nonhematologic toxicity was II (range, 0 to IV). Life-threatening CTC grade IV adverse events were observed in 3 patients with no fatalities. Cardiovascular events were observed in 17 patients (22%) upon CAD/G-CSF mobilization (median CTC: grade 3; range, 1 to 4). Toxicity in patients undergoing ifosfamide/G-CSF mobilization was higher than in with those who received G-CSF-only mobilization. HDM and ABSCT were performed in 100 patients. Compared with >6.5 × 10 6 transplanted CD34 + cells/kg, an ABSCT with <3 × 10 6 CD34 + cells/kg was associated with a longer duration to leukocyte reconstitution >1 × 10 9 /L and a reduced platelet count <150 × 10 9 /L 1 year after ASCT. Our results show that CAD chemotherapy is very effective in PBSC mobilization and has a tolerable toxicity profile in AL amyloidosis patients. A further toxicity reduction by omission of doxorubicin might be considered. Because of advanced nonhematologic toxicity, ifosfamide administration cannot be recommended. However, G-CSF mobilization alone is also safe and effective. Considering the hematopoietic reconstitution and long-term stem cell function, our results provide a rationale to collect and transplant as many as >6.5 × 10 6 CD34 + cells/kg, if feasible with reasonable effort. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Quantification and regulation of the adipokines resistin and progranulin in human cerebrospinal fluid.

    PubMed

    Berghoff, Martin; Hochberg, Alexandra; Schmid, Andreas; Schlegel, Jutta; Karrasch, Thomas; Kaps, Manfred; Schäffler, Andreas

    2016-01-01

    Adipokines bearing the potential to cross the blood-brain barrier (BBB) are promising candidates for the endocrine regulation of central nervous processes and of a postulated fat-brain axis. Resistin and progranulin concentrations in paired serum and cerebrospinal fluid (CSF) samples of patients undergoing neurological evaluation and spinal puncture were investigated. Samples of n = 270 consecutive patients with various neurological diseases were collected without prior selection. Adipokine serum and CSF concentrations were measured by enzyme-linked immunosorbent assay and serum and CSF routine parameters by standard procedures. Anthropometric data, medication and patient history were available. Serum levels of resistin and progranulin were positively correlated among each other, with respective CSF levels, low-density lipoprotein cholesterol levels and markers of systemic inflammation. CSF resistin concentrations were generally low. Progranulin CSF concentrations and CSF/serum progranulin ratio were significantly higher in patients with infectious diseases, with disturbed BBB function and with elevated CSF cell count and presence of oligoclonal bands. Both adipokines are able to cross the BBB depending on a differing patency that increases with increasing grade of barrier dysfunction. Whereas resistin represents a systemic marker of inflammation, CSF progranulin levels strongly depend on the underlying disease and dysfunction of blood-CSF barrier. Resistin and progranulin represent novel and putative regulators of the fat-brain axis by their ability to cross the BBB under physiological and pathophysiological conditions. The presented data provide insight into the characteristics of BBB function regarding progranulin and resistin and the basis for future establishment of normal values for CSF concentrations and CSF/serum ratios. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Drug-indiced aseptic meningitis: development of subacute sclerosing panencephalitis following repeated intraventricular infusion therapy with interferon alpha/beta.

    PubMed

    Imataka, George; Nakagawa, Eiji; Yamanouchi, Hideo; Arisaka, Osamu

    2011-12-01

    Interferon (IFN)-α was reported to be effective in longterm intrathecal treatment of subacute sclerosing panencephalitis (SSPE). However, the side effects related with longterm use of IFN-α/β are unclear. We evaluated the therapeutic effects of IFN-α/β in a 13-years-old patient with SSPE. The cerebrospinal fluid (CSF) measles antibody titer was 64 × NT/128×HI, IgG-index was 4.5, and the SSPE diagnosis was based on electroencephalography (Jabbour-stage II on admission). With Inosiplex (INP) given orally, IFN-α (3 × 10(6) units) was infused intraventricularly twice-a-week for 1-year. Resultantly, CSF cell count was elevated (2502/3), total protein and glucose levels were normal; however, DIAM occurred repeatedly. Consequently, reduced IFN-α (5 × 10(5) units) with hydrocorton was administered at 2-months interval for 19 months, during which, DIAM occurred four times. Therefore, IFN-β (3 × 10(6) units; twice-a-week) therapy was started and continued for 3 years. Although the symptoms were improved considerably, DIAM recurred after 15-months therapy and CSF cell counts were also elevated (2121/3). Since SSPE progressed to Jabbour-stage IV, indicated by irreversible consciousness disorder, IFN therapy was discontinued and INP monotherapy was followed for another 3 years. We, therefore, concluded that the longterm intraventricular IFN-α/β infusion therapy of SSPE involved the potential risk of DIAM with serious irreversible neurological sequelae and should be monitored carefully.

  7. Cerebrospinal Fluid Glucose and Lactate: Age-Specific Reference Values and Implications for Clinical Practice

    PubMed Central

    Leen, Wilhelmina G.; Willemsen, Michèl A.; Wevers, Ron A.; Verbeek, Marcel M.

    2012-01-01

    Cerebrospinal fluid (CSF) analysis is an important tool in the diagnostic work-up of many neurological disorders, but reference ranges for CSF glucose, CSF/plasma glucose ratio and CSF lactate based on studies with large numbers of CSF samples are not available. Our aim was to define age-specific reference values. In 1993 The Nijmegen Observational CSF Study was started. Results of all CSF samples that were analyzed between 1993 and 2008 at our laboratory were systematically collected and stored in our computerized database. After exclusion of CSF samples with an unknown or elevated erythrocyte count, an elevated leucocyte count, elevated concentrations of bilirubin, free hemoglobin, or total protein 9,036 CSF samples were further studied for CSF glucose (n = 8,871), CSF/plasma glucose ratio (n = 4,516) and CSF lactate values (n = 7,614). CSF glucose, CSF/plasma glucose ratio and CSF lactate were age-, but not sex dependent. Age-specific reference ranges were defined as 5–95th percentile ranges. CSF glucose 5th percentile values ranged from 1.8 to 2.9 mmol/L and 95th percentile values from 3.8 to 5.6 mmol/L. CSF/plasma glucose ratio 5th percentile values ranged from 0.41 to 0.53 and 95th percentile values from 0.82 to 1.19. CSF lactate 5th percentile values ranged from 0.88 to 1.41 mmol/L and 95th percentile values from 2.00 to 2.71 mmol/L. Reference ranges for all three parameters were widest in neonates and narrowest in toddlers, with lower and upper limits increasing with age. These reference values allow a reliable interpretation of CSF results in everyday clinical practice. Furthermore, hypoglycemia was associated with an increased CSF/plasma glucose ratio, whereas hyperglycemia did not affect the CSF/plasma glucose ratio. PMID:22880096

  8. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    PubMed

    Jessen Krut, Jan; Mellberg, Tomas; Price, Richard W; Hagberg, Lars; Fuchs, Dietmar; Rosengren, Lars; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2014-01-01

    Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL) in CSF with a novel, sensitive method. With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL) (marker of neuronal injury), neopterin (intrathecal immunoactivation) and CSF/Plasma albumin ratio (blood-brain barrier integrity) were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200), HIV-associated dementia (HAD) (n = 14) and on combinations antiretroviral treatment (cART) (n = 85), and healthy controls (n = 204). 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation. While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups. Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further assessment for broader clinical use.

  9. Clinical features of viral meningitis in adults: significant differences in cerebrospinal fluid findings among herpes simplex virus, varicella zoster virus, and enterovirus infections.

    PubMed

    Ihekwaba, Ugo K; Kudesia, Goura; McKendrick, Michael W

    2008-09-15

    In this retrospective study, our objective was to review the epidemiology of viral meningitis and to compare clinical features associated with enterovirus, herpes simplex virus (HSV), and varicella zoster virus (VZV) infections in immunocompetent adults. Data on cerebrospinal fluid (CSF) samples submitted to the Trust Virology Laboratory (Sheffield, UK) from April 2004 through April 2007 were reviewed. Notes on immunocompetent adults who were polymerase chain reaction (PCR) positive for enterovirus, HSV type 2, or VZV and who had presented to local clinical departments were scrutinized (4 patients were positive for HSV type 1 and did not meet the inclusion criteria). A total of 2045 samples were analyzed for viral pathogens during the 3-year period. Of the 109 PCR-positive samples, 38 (35%) were from immunocompetent adults, of whom 22 were infected with enterovirus, 8 were infected with HSV type 2, and 8 were infected with VZV. The median ages were 32 years (range, 16-39 years), 39 years (range, 22-53 years), and 47.5 years (range, 26-80 years), respectively. Rash occurred after the meningitis symptoms in 5 patients infected with VZV (median time from meningitis symptoms to rash, 6 days). Protein levels were significantly higher in CSF samples from patients infected with HSV type 2 (median, 1205 mg/L) and in samples from those infected with VZV (median, 974 mg/L) than in samples from those infected with enterovirus (median, 640 mg/L; P = .001 and P = .01, respectively). White blood cell counts were significantly higher in CSF samples from patients infected with HSV type 2 (median, 240 x 10(6) cells/L) than in samples from those infected with enterovirus (median, 51 x 10(6) cells/L; P = .01). Enterovirus infection was the most common cause of viral meningitis in immunocompetent adults in this study. White blood cell counts and protein levels were significantly higher in CSF samples from patients infected with HSV type 2 than in samples from patients with enterovirus infection. Zoster rash often occurs after meningitis. PCR testing provides a rapid and specific etiological diagnosis.

  10. The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma.

    PubMed

    Hiwase, D K; Hiwase, S; Bailey, M; Bollard, G; Schwarer, A P

    2008-01-01

    The lymphocyte dose (LY-DO) infused during an autograft influences absolute lymphocyte (ALC) recovery and survival following autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients. Factors influencing lymphocyte yield (LY-C) during leukapheresis have been poorly studied. Factors that could influence survival, LY-C and CD34(+) cell yield were analyzed in 122 MM patients. Three mobilization regimens were used, granulocyte-colony-stimulating factor (G-CSF) alone (n=13), cyclophosphamide 1-2 g/m(2) plus G-CSF (LD-CY, n=62) and cyclophosphamide 3-4 g/m(2) and G-CSF (ID-CY, n=47). Using multivariate analysis, age, LY-C, ALC on day 30 (ALC-30) and International Staging System stage significantly influenced overall (OS) and progression-free survival (PFS) following ASCT. PFS (56 versus 29 months, P=0.05) and OS (72 versus 49 months; P=0.07) were longer in the LY-C>or=0.12x10(9)/kg group than the LY-C<0.12x10(9)/kg group. LY-C also influenced ALC on day 15 (ALC-15). Mobilization regimen, lymphocytes on the day of leukapheresis, prior radiotherapy and number of leukaphereses significantly influenced LY-C. Significantly higher LY-C was obtained with G-CSF alone compared with the LD-CY and ID-CY groups. CD34(+) count on the day of leukapheresis, prior chemotherapy with prednisone, cyclophosphamide, adriamycin and BCNU or melphalan, and stem cell mobilization regimen significantly influenced CD34(+) cell yield. LY-C influenced ALC-15 and survival following ASCT. Factors that influenced CD34(+) cell yield and LY-C during leukapheresis were different. Mobilization should be tailored to maximize the LY-C and CD34(+) cell yield.

  11. Hematopoietic Progenitor Cell Mobilization with “Just-in-Time” Plerixafor Approach is a Cost Effective Alternative to Routine Plerixafor Use

    PubMed Central

    Veltri, Lauren; Cumpston, Aaron; Shillingburg, Alexandra; Wen, Sijin; Luo, Jin; Leadmon, Sonia; Watkins, Kathy; Craig, Michael; Hamadani, Mehdi; Kanate, Abraham S.

    2015-01-01

    Hematopoietic progenitor cell (HPC) mobilization with granulocyte-colony stimulating factor (G-CSF) and plerixafor results in superior CD34+ cell yield, when compared to mobilization with G-CSF alone in patients with myeloma and lymphoma. However, plerixafor-based approaches are associated with high costs. To circumvent this, several institutions use a so-called “just-in-time” plerixafor (JIT-P) approach, where plerixafor is only administered to patients likely to fail mobilization with G-CSF alone. Whether such a JIT-P approach is cost effective has not been confirmed to date. We present here, results of 136 patients with myeloma or lymphoma who underwent mobilization with two different approaches of plerixafor utilization. Between Jan 2010-Oct 2012 (n=76) patients uniformly received mobilization with G-CSF and plerixafor (routine G+P cohort). To reduce mobilization costs, between Nov 2012-Jun 2014 (n=60) patients were mobilized with JIT-P where plerixafor was only administered to patients likely to fail mobilization with G-CSF alone. Patients in routine G+P group had a higher median peak peripheral blood CD34+ cell count (62 vs. 29 cells/μL, p<0.001) and a higher median day 1 CD34+ cell yield (2.9 × 106 CD34+ cells/kg vs. 2.1 × 106 CD34+ cells/kg, p=0.001). The median total CD34+ cell collection was also higher in routine G+P group (5.8 × 106 CD34+ cells/kg vs. 4.5 × 106 CD34+ cells/kg, p=0.007). In the JIT-P group 40% (n=24) completed adequate HPC collection without plerixafor. There was no difference in mobilization failure rates. The mean number of plerixafor doses utilized in JIT-P was lower (1.3 vs. 2.1, p=0.0002). The mean estimated cost in the routine G+P group was higher than that in the JIT-P group (USD 27,513 vs. USD 23,597, p=0.01). Our analysis demonstrates that mobilization with a JIT-P approach is a safe, effective and cost efficient strategy for HPC collection. PMID:26475754

  12. Clinical and laboratory features of HTLV-I asymptomatic carriers and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis from the Brazilian Amazon

    PubMed Central

    Takatani, Massanobu; Crispim, Myuki Esashika; Fraiji, Nelson; Stefani, Mariane Martins Araujo; Kiesslich, Dagmar

    2017-01-01

    ABSTRACT Clinical and laboratory parameters including blood and cerebrospinal fluid (CSF) neopterin were investigated in human-T-lymphotropic-virus-type-I associated-myelopathy/tropical-spastic-paraparesis-HAM/TSP and in HTLV-I carriers. HAM/TSP (n = 11, 2 males/9 females, median age = 48 years), recently diagnosed HTLV-I carriers (n = 21, 15 females/6 males, median age = 44 years), healthy individuals (n = 20, 10 males/10 females, median age = 34.6 years) from the Brazilian Amazon (Manaus, Amazonas State) were investigated. Neopterin was measured (IBL ELISA Neopterin, Germany) in serum samples of all the participants, in CSF of 9 HAM/TSP patients as well as in 6 carriers. In HAM/TSP patients, CSF cell counts, protein and glucose were measured, the Osame’s motor-disability-score/OMDS was determined, and brain/spinal cord magnetic-resonance-imaging (MRI) was performed. HAM/TSP patients had normal CSF glucose, leukocyte counts; and normal protein levels predominated. Brain-MRI showed white-matter lesions in 7 out of 11 HAM/TSP patients. OMDS varied from 2-8: 9 were able to walk, 2 were wheel-chair-users. The median serum neopterin concentration in HAM/TSP patients was 6.6 nmol/ L; min. 2.8- max. 12.5 nmol/ L); was lower in carriers (4.3 nmol/L; min. 2.7- max. 7.2 nmol/ L) as well as in healthy participants (4.7 nmol/ L; min. 2.7- max. 8.0 nmol/ L) (p < 0.05). CSF neopterin concentrations in HAM/TSP patients were higher than in serum samples, and higher compared to carriers (p < 0.05). Carriers had similar serum-CSF neopterin concentrations compared to healthy participants. Variable clinical and laboratory profiles were seen in HAM/TSP patients, however our results support the neopterin measurement as a potential biomarker of disease activity. PMID:28380116

  13. Evaluation and Management of Patients with Isolated Neutropenia

    PubMed Central

    Newburger, Peter E.; Dale, David C.

    2013-01-01

    Neutropenia, defined as an absolute neutrophil count below 1.5 × 109/L, encompasses a wide range of diagnoses, from normal variants to life-threatening acquired and congenital disorders. This review addresses the diagnosis and management of isolated neutropenia, not multiple cytopenias due to splenomegaly, bone marrow replacement, or myelosuppression by chemotherapy or radiation. Laboratory evaluation generally includes repeat complete blood counts with differentials and bone marrow examination with cytogenetics. Neutrophil antibody testing may be useful, but only in the context of clinical and bone marrow findings. The discovery of genes responsible for congenital neutropenias now permits genetic diagnosis in many cases. Management of severe chronic neutropenia includes common-sense precautions to avoid infection; aggressive treatment of bacterial or fungal infections; and administration of granulocyte colony-stimulating factor (G-CSF). Patients with severe congenital neutropenia, particularly those who respond poorly to G-CSF, have a risk of eventually developing myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) and require monitoring for this complication, which can also occur without G-CSF therapy. Patients with cyclic, idiopathic and autoimmune neutropenia have virtually no risk of evolving to MDS or AML. Hematopoietic stem cell transplantation is a curative therapy for congenital neutropenia with MDS/AML or with cytogenetic abnormalities indicating impending conversion. PMID:23953336

  14. [Effects of Naomaitong combined with mobilization of bone marrow mesenchymal stem cells on neuron apoptosis and expressions of Fas, FasL and caspase-3 proteins in rats with cerebral ischemia].

    PubMed

    Li, Jian-sheng; Liu, Jing-xia; Tian, Yu-shou; Ren, Wei-hong; Zhang, Xin-feng; Wang, Ding-chao

    2009-09-01

    To observe the effects of Naomaitong, a compound traditional Chinese herbal medicine, combined with mobilization of bone marrow mesenchymal stem cells (BMSCs) on neuron apoptosis in rats with cerebral ischemia, and to explore the possible mechanism by detecting the expressions of Fas, FasL and caspase-3 proteins. Two hundred and two SD rats were divided into sham-operated group, untreated group, recombinant granulocyte colony-stimulating factor (rG-CSF) group, Naomaitong group and Naomaitong plus rG-CSF group (combination group). Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion using a nylon thread with some modification. Rats in the rG-CSF group and the untreated group were administered with rG-CSF 10 microg/(kg x d) by subcutaneous injection 3 d before and 2 d after the operation respectively, once a day, and rats in the Naomaitong group and the combination group were intragastrically administered Naomaitong before and after the operation until sacrificed. Two, three, seven and fourteen days after operation, count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were determined. General neural function score (GNFS) was evaluated. Neuron apoptosis, expressions of Fas, FasL and caspase-3 in rat's brain were all measured. Count of CD34-positive cells in peripheral blood and CD34 expression in brain tissue were high in the untreated group, and reached the peak at 3 d and 7 d respectively. CD34 expression in brain tissue was increased in each treated group, especially in the combination group. GNFS was increased at 3 d and 7 d in the untreated group, 7 d and 14 d in the rG-CSF group and the combination group. Expressions of Fas, FasL and caspase-3 were increased 2, 3 and 7 d after operation, while expression of FasL at 2 d in the rG-CSF group, expressions of Fas, FasL and caspase-3 in the combination group were decreased. Expressions of Fas, FasL and caspase-3 at 7 d and 14 d in the combination group were lower than those in the rG-CSF group. Meanwhile, expressions of Fas, FasL and caspase-3 were decreased in each group at 14 d as compared with those at 3 d. There exists interaction between Naomaitong and BMSC mobilization in the effect of improving nerve function and inhibiting neuron apoptosis in rats after cerebral ischemia. It is implied that Naomaitong combined with BMSC mobilization down-regulates the expressions of Fas and FasL in early phase and then inhibits the apoptosis cascade reaction caused by caspase-3, which causes further inhibition of Fas and FasL expression after cerebral ischemia.

  15. Effects of rhG-CSF (filgrastim) on the recovery of hematopoiesis after high-dose chemotherapy and autologous peripheral blood stem cell transplantation in children: a report from the Children's Cancer and Leukemia Study Group of Japan.

    PubMed

    Suzue, T; Takaue, Y; Watanabe, A; Kawano, Y; Watanabe, T; Abe, T; Kuroda, Y; Matsushita, T; Kikuta, A; Iwai, A

    1994-11-01

    In a nonrandomized study, hematopoietic recovery kinetics were evaluated in 98 consecutive patients who underwent high-dose chemotherapy without total body irradiation (TBI) and autologous peripheral blood stem cell transplantation (PBSCT). Fifty-three patients received recombinant human granulocyte colony-stimulating factor (rhG-CSF) (filgrastim) therapy after PBSCT, and the data were compared by actuarial analysis to those of 45 historic controls. The number of days required to achieve a white blood cell count (WBC) of 1 x 10(9)/L, an absolute granulocyte count (AGC) of 5 x 10(8)/L, and a platelet count (PLT) of 5 x 10(10)/L were, respectively, 12.8 +/- 6.4 (mean +/- standard deviation [SD]), 13.4 +/- 6.4, and 49.2 +/- 78.2 in treated patients vs. 12.8 +/- 4.6, 14.4 +/- 10.3, and 31.4 +/- 38.8 days in historic controls, with no significant differences. There was no significant difference between the average number of days with fever in the treated group (6.0 +/- 6.6) and that in the control group (4.0 +/- 2.8). All febrile episodes responded promptly and successfully to parenteral antibiotic therapy. Thus, the data may suggest the possibility that therapy with filgrastim has only a limited ability to enhance hematopoietic recovery after PBSCT. To confirm this notion, we initiated a prospective randomized trial by recruiting a larger number of patients.

  16. Hematopoietic progenitor cell mobilization with "just-in-time" plerixafor approach is a cost-effective alternative to routine plerixafor use.

    PubMed

    Veltri, Lauren; Cumpston, Aaron; Shillingburg, Alexandra; Wen, Sijin; Luo, Jin; Leadmon, Sonia; Watkins, Kathy; Craig, Michael; Hamadani, Mehdi; Kanate, Abraham S

    2015-12-01

    Hematopoietic cell mobilization with granulocyte-colony stimulating factor (G-CSF) and plerixafor results in superior CD34+ cell yield compared with G-CSF alone in patients with myeloma and lymphoma. However, plerixafor-based approaches may be associated with high costs. Several institutions use a "just-in-time" plerixafor approach, in which plerixafor is only administered to patients likely to fail mobilization with G-CSF alone. Whether such an approach is cost-effective is unknown. We evaluated 136 patients with myeloma or lymphoma who underwent mobilization with 2 approaches of plerixafor utilization. Between January 2010 and October 2012, 76 patients uniformly received mobilization with G-CSF and plerixafor. Between November 2012 and June 2014, 60 patients were mobilized with plerixafor administered only to those patients likely to fail mobilization with G-CSF alone. The routine plerixafor group had a higher median peak peripheral blood CD34+ cell count (62 versus 29 cells/μL, P < 0.001) and a higher median day 1 CD34+ yield (2.9 × 10(6) CD34+ cells/kg versus 2.1 × 10(6) CD34+ cells/kg, P = 0.001). The median total CD34+ collection was higher with routine plerixafor use (5.8 × 10(6) CD34+ cells/kg versus 4.5 × 10(6) CD34+ cells/kg, P = 0.007). In the "just-in-time" group, 40% (n = 24) completed adequate collection without plerixafor. There was no difference in mobilization failure rates. The mean plerixafor doses used was lower with "just-in-time" approach (1.3 versus 2.1, P = 0.0002). The mean estimated cost in the routine plerixafor group was higher (USD 27,513 versus USD 23,597, P = 0.01). Our analysis demonstrates that mobilization with a just-in-time plerixafor approach is a safe, effective, and cost-efficient strategy for HPC collection. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection.

    PubMed

    Hagberg, Lars; Cinque, Paola; Gisslen, Magnus; Brew, Bruce J; Spudich, Serena; Bestetti, Arabella; Price, Richard W; Fuchs, Dietmar

    2010-06-03

    HIV-1 invades the central nervous system (CNS) in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF). In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients.In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays (<50 copies HIV RNA/mL), CSF neopterin often remains mildly elevated, indicating persistent low-level intrathecal immune activation and raising the important questions of whether this elevation is driven by continued CNS infection and whether it causes continued indolent CNS injury.Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.

  18. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation

    PubMed Central

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W.

    2015-01-01

    Objective and design Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. Methods CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. Results CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P <0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P =0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4+ cell count or CNS penetration-efficacy score. Conclusion Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury. PMID:25022595

  19. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation.

    PubMed

    Dahl, Viktor; Peterson, Julia; Fuchs, Dietmar; Gisslen, Magnus; Palmer, Sarah; Price, Richard W

    2014-09-24

    Though combination antiretroviral therapy reduces the concentration of HIV-1 RNA in both plasma and cerebrospinal fluid (CSF) below the detection limit of clinical assays, low levels of HIV-1 RNA are frequently detectable in plasma using more sensitive assays. We examined the frequency and magnitude of persistent low-level HIV-1 RNA in CSF and its relation to the central nervous system (CNS) immune activation. CSF and plasma HIV-1 RNA were measured using the single-copy assay with a detection limit of 0.3 copies/ml in 70 CSF and 68 plasma samples from 45 treated HIV-1-infected patients with less than 40 copies/ml of HIV-1 RNA in both fluids by standard clinical assays. We also measured CSF neopterin to assess intrathecal immune activation. Theoretical drug exposure was estimated using the CNS penetration-efficacy score of treatment regimens. CSF HIV-1 RNA was detected in 12 of the 70 CSF samples (17%) taken after up to 10 years of suppressive therapy, compared to 39 of the 68 plasma samples (57%) with a median concentration of less than 0.3 copies/ml in CSF compared to 0.3 copies/ml in plasma (P < 0.0001). CSF samples with detectable HIV-1 RNA had higher CSF neopterin levels (mean 8.2 compared to 5.7 nmol/l; P = 0.0085). Patients with detectable HIV-1 RNA in CSF did not differ in pretreatment plasma HIV-1 RNA levels, nadir CD4 cell count or CNS penetration-efficacy score. Low-level CSF HIV-1 RNA and its association with elevated CSF neopterin highlight the potential for the CNS to serve as a viral reservoir and for persistent infection to cause subclinical CNS injury.

  20. Three Adult Cases of HPV-B19 Infection with Concomitant Leukopenia and Low Platelet Counts

    PubMed Central

    Yaguchi, Daizo; Marui, Nobuyuki; Matsuo, Masaki

    2015-01-01

    We encountered three adult patients with flu-like symptoms diagnosed with human parvovirus B19 (HPV-B19) infection. Blood serum analysis also revealed leukopenia, with white blood cell counts (WBCs) of 1,000–2,000/mL and low platelet counts of 89–150 × 109/L. Typical skin rash was absent in one patient. Bone marrow examination of another patient showed hypoplastic marrow with <5% blast cells. All patients recovered without administration of granulocyte colony-stimulating factor (G-CSF). Therefore, HPV-B19 infection with leukopenia should be considered in adult patients with leukopenia during erythema infectiosum epidemics, even if typical clinical findings (ie, skin rash) are absent. Further, the fact that three cases were observed over the stated time period at our hospital, which is located in Nagoya city, showed a transition to a slightly higher level of incidence than the annual average. PMID:25780346

  1. Clinical and laboratory characteristics of ocular syphilis: a new face in the era of HIV co-infection.

    PubMed

    Lee, Sun Young; Cheng, Vincent; Rodger, Damien; Rao, Narsing

    2015-12-01

    Ocular syphilis is reemerging as an important cause of uveitis in the new era of common co-infection with HIV. This study will reveal the clinical and laboratory characteristics in the group of individuals co-infected with ocular syphilis and HIV compared with HIV-negative individuals. In this retrospective observational case series, medical records of patients diagnosed with ocular syphilis with serologic support from 2008 to 2014 were reviewed. Ocular and systemic manifestation and laboratory profiles were reviewed. Twenty-nine eyes of 16 consecutive patients (10 HIV-positive and 6 HIV-negative) were included. All patients were males, and mean age of onset for ocular syphilis was 43 (mean 42.65 ± 13.13). In both HIV-positive and HIV-negative groups, ocular manifestations of syphilis were variable including anterior uveitis (4 eyes), posterior uveitis (8 eyes), panuveitis (13 eyes), and isolated papillitis (4 eyes). In HIV-positive patients, panuveitis was the most common feature (12/18 eyes, 67 %) and serum rapid plasma reagin (RPR) titers were significantly higher (range 1:64-1:16,348; mean 1:768; p = 0.018) than in HIV-negative patients. Upon the diagnosis of ocular syphilis in HIV-positive patients, HIV-1 viral load was high (median 206,887 copies/ml) and CD4 cell count ranged from 127 to 535 cells/ml (mean 237 ± 142; median 137). Regardless of HIV status, cerebrospinal fluid (CSF) exam was frequently abnormal: positive CSF fluorescent treponemal antibody absorption (FTA-ABS) or Venereal Disease Research Laboratory (VDRL) test results in seven patients or either elevated CSF WBC count or elevated CSF protein in six patients. Our results reveal that the patients with ocular syphilis with high serum RPR titers may have concomitant HIV infection requiring further testing for HIV status and ocular syphilis is likely associated with the central nervous system involvement and therefore needs to be managed according to the treatment recommendations for neurosyphilis.

  2. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis: A cross-sectional study.

    PubMed

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-09-01

    There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children.All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated.Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%).The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis.

  3. Diagnostic value of lactate, procalcitonin, ferritin, serum-C-reactive protein, and other biomarkers in bacterial and viral meningitis

    PubMed Central

    Sanaei Dashti, Anahita; Alizadeh, Shekoofan; Karimi, Abdullah; Khalifeh, Masoomeh; Shoja, Seyed Abdolmajid

    2017-01-01

    Abstract There are many difficulties distinguishing bacterial from viral meningitis that could be reasonably solved using biomarkers. The aim of this study was to evaluate lactate, procalcitonin (PCT), ferritin, serum-CRP (C-reactive protein), and other known biomarkers in differentiating bacterial meningitis from viral meningitis in children. All children aged 28 days to 14 years with suspected meningitis who were admitted to Mofid Children's Hospital, Tehran, between October 2012 and November 2013, were enrolled in this prospective cross-sectional study. Children were divided into 2 groups of bacterial and viral meningitis, based on the results of cerebrospinal fluid (CSF) culture, polymerase chain reaction, and cytochemical profile. Diagnostic values of CSF parameters (ferritin, PCT, absolute neutrophil count [ANC], white blood cell count, and lactate) and serum parameters (PCT, ferritin, CRP, and erythrocyte sedimentation rate [ESR]) were evaluated. Among 50 patients with meningitis, 12 were diagnosed with bacterial meningitis. Concentrations of all markers were significantly different between bacterial and viral meningitis, except for serum (P = .389) and CSF (P = .136) PCT. The best rates of area under the receiver operating characteristic (ROC) curve (AUC) were achieved by lactate (AUC = 0.923) and serum-CRP (AUC = 0.889). The best negative predictive values (NPV) for bacterial meningitis were attained by ANC (100%) and lactate (97.1%). The results of our study suggest that ferritin and PCT are not strong predictive biomarkers. A combination of low CSF lactate, ANC, ESR, and serum-CRP could reasonably rule out the bacterial meningitis. PMID:28858084

  4. Acute exposure to cadmium induces prolonged neutrophilia along with delayed induction of granulocyte colony-stimulating factor in the livers of mice.

    PubMed

    Horiguchi, Hyogo; Oguma, Etsuko

    2016-12-01

    Acute exposure to cadmium (Cd), a toxic heavy metal, causes systemic inflammation characterized by neutrophilia. To elucidate the mechanism of neutrophilia induced by Cd, we investigated the induction of granulocyte colony-stimulating factor (G-CSF), which regulates neutrophil production, in mice with acute Cd toxicity, and compared it with mice injected with lipopolysaccharide (LPS) as an inducer of general inflammatory responses. We injected BALB/c mice with Cd at 2.5 mg/kg i.p. or LPS at 0.5 mg/kg i.p. and sampled the peripheral blood and organs at time points up to 24 h. In Cd-treated mice, the peripheral neutrophil count increased steadily up to 24 h, whereas LPS-treated mice showed a more rapid increase with a peak at 12 h. The serum G-CSF level increased gradually to reach a plateau at 12-18 h in Cd-treated mice, but LPS-treated mice showed a marked increase, reaching a peak at 2-3 h. A gradual elevation of G-CSF mRNA expression up to 24 h was detected by real-time PCR in the livers of Cd-treated mice, but in LPS-treated mice its highest expression was observed in the liver with a rapid increase at 2 h. By in situ hybridization using G-CSF RNA probes, hepatic Kupffer cells were identified as G-CSF-producing cells in the liver. These results indicated that Cd has a characteristic effect of delayed induction of G-CSF in the liver, causing systemic inflammation accompanied by prolonged neutrophilia.

  5. Does more favourable handling of the cerebrospinal fluid increase the diagnostic sensitivity of Borrelia burgdorferi sensu lato-specific PCR in Lyme neuroborreliosis?

    PubMed

    Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne

    2018-04-01

    Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.

  6. Treatment intensification has no effect on the HIV-1 central nervous system infection in patients on suppressive antiretroviral therapy.

    PubMed

    Yilmaz, Aylin; Verhofstede, Chris; D'Avolio, Antonio; Watson, Victoria; Hagberg, Lars; Fuchs, Dietmar; Svennerholm, Bo; Gisslén, Magnus

    2010-12-15

    Antiretroviral treatment (ART) significantly reduces cerebrospinal fluid (CSF) HIV-1 RNA levels and residual viremia is less frequently found in CSF than in blood. However, persistent intrathecal immunoactivation is common, even after several years of ART. To investigate whether low-level CSF viremia and residual immunoactivation within the central nervous system (CNS) derive from ongoing local viral replication, we conducted a study of treatment intensification in patients on effective ART. Ten patients on ART with plasma HIV RNA <50 copies per milliliter for >18 months were included. Intensification was given for in total 8 weeks: 4 weeks with maraviroc or lopinavir/ritonavir (good CNS penetration), and 4 weeks with enfuvirtide (poor CNS penetration). Lumbar punctures were performed 4 weeks before, at intensification commencement, at switchover after 4 weeks, at the conclusion of, and 4 weeks after the intensification period. No significant changes in HIV RNA, neopterin, β2-microglobulin, immunoglobulin G index, albumin ratio, and CD4(+) T-cell count were observed, either in CSF or blood, neither before, during, nor after the intensification periods. ART intensification did not reduce residual CSF HIV RNA levels or intrathecal immunoactivation in patients on ART. These findings do not support an ongoing viral replication in CNS.

  7. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  8. Transverse myelitis caused by hepatitis E: previously undescribed in adults

    PubMed Central

    Sarkar, Pamela; Morgan, Catherine; Ijaz, Samreen

    2015-01-01

    We report the case of a 62-year-old Caucasian woman who was admitted with urinary retention and lower limb paraesthesia following a week's prodromal illness of headache and malaise. Liver function tests showed a picture of acute hepatocellular dysfunction. She developed reduced lower limb power, brisk reflexes, extensor plantars, a sensory level at T8 and reduced anal sphincter tone, establishing a clinical diagnosis of transverse myelitis. A spinal MRI showed no evidence of cauda equina or spinal cord compression. Cerebrospinal fluid (CSF) analysis showed raised protein and raised white cell count. Hepatitis E IgM and IgG were positive and hepatitis E virus was found in her CSF. She was treated with methylprednisolone and is slowly recovering with physiotherapy. PMID:26150621

  9. Combination therapy for radiation-induced bone marrow aplasia in nonhuman primates using synthokine SC-55494 and recombinant human granulocyte colony-stimulating factor.

    PubMed

    MacVittie, T J; Farese, A M; Herodin, F; Grab, L B; Baum, C M; McKearn, J P

    1996-05-15

    Combination cytokine therapy continues to be evaluated in an effort to stimulate multilineage hematopoietic reconstitution after bone marrow myelosuppression. This study evaluated the efficacy of combination therapy with the synthetic interleukin-3 receptor agonist, Synthokine-SC55494, and recombinant methionyl human granulocyte colony-stimulating factor (rhG-CSF) on platelet and neutrophil recovery in nonhuman primates exposed to total body 700 cGy 60Co gamma radiation. After irradiation on day (d) 0, cohorts of animals subcutaneously received single-agent protocols of either human serum albumin (HSA; every day [QD], 15 micrograms/kg/d, n = 10), Synthokine (twice daily [BID], 100, micrograms/kg/d, n = 15), rhG-CSF (QD, 10 micrograms/kg/d, n = 5), or a combination of Synthokine and rhG-CSF (BID, 100 and 10 micrograms/kg/d, respectively, n = 5) for 23 days beginning on d1. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (absolute neutrophil count < 500/microL) and thrombocytopenia (platelet count < 20,000/microL) were assessed. Animals were provided clinical support in the form of antibiotics, fresh irradiated whole blood, and fluids. All cytokine protocols significantly (P < .05) reduced the duration thrombocytopenia versus the HSA-treated animals. Only the combination protocol of Synthokine + rhG-CSF and rhG-CSF alone significantly shortened the period neutropenia (P < .05). The combined Synthokine/rhG-CSF protocol significantly improved platelet nadir versus Synthokine alone and HSA controls and neutrophil nadir versus rhG-CSF alone and HSA controls. All cytokine protocols decreased the time to recovery to preirradiation neutrophil and platelet values. The Synthokine/rhG-CSF protocol also reduced the transfusion requirements per treatment group to 0 among 5 animals as compared with 2 among 5 animals for Synthokine alone, 8 among 5 animals for rhG-CSF, and 17 among 10 animals for HSA. These data showed that the combination of Synthokine, SC-55494, and rhG-CSF further decreased the cytopenic periods and nadirs for both platelets and neutrophils relative to Synthokine and rhG-CSF monotherapy and suggest that this combination therapy would be effective against both neutropenia and thrombocytopenia consequent to drug- or radiation- induced myelosuppression.

  10. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis.

    PubMed

    Grygorczuk, Sambor; Świerzbińska, Renata; Kondrusik, Maciej; Dunaj, Justyna; Czupryna, Piotr; Moniuszko, Anna; Siemieniako, Agnieszka; Pancewicz, Sławomir

    2018-04-20

    Tick-borne encephalitis (TBE) is a clinically variable but potentially severe Flavivirus infection, with the outcome strongly dependent on secondary immunopathology. Neutrophils are present in cerebrospinal fluid (CSF) of TBE patients, but their pathogenetic role remains unknown. In animal models, neutrophils contributed both to the Flavivirus entry into central nervous system (CNS) and to the control of the encephalitis, which we attempted to evaluate in human TBE. We analyzed records of 240 patients with TBE presenting as meningitis (n = 110), meningoencephalitis (n = 114) or meningoencephalomyelitis (n = 16) assessing CSF neutrophil count on admission and at follow-up 2 weeks later, and their associations with other laboratory and clinical parameters. We measured serum and CSF concentrations of Th17-type cytokines (interleukin-17A, IL-17F, IL-22) and chemokines attracting neutrophils (IL-8, CXCL1, CXCL2) in patients with TBE (n = 36 for IL-8, n = 15 for other), with non-TBE aseptic meningitis (n = 6) and in non-meningitis controls (n = 7), using commercial ELISA assays. The results were analyzed with non-parametric tests with p < 0.05 considered as significant. On admission, neutrophils were universally present in CSF constituting 25% (median) of total pleocytosis, but on follow-up, they were absent in most of patients (58%) and scarce (< 10%) in 36%. CSF neutrophil count did not correlate with lymphocyte count and blood-brain barrier integrity, did not differ between meningitis and meningoencephalitis, but was higher in meningoencephalomyelitis patients. Prolonged presence of neutrophils in follow-up CSF was associated with encephalitis and neurologic sequelae. All the studied cytokines were expressed intrathecally, with IL-8 having the highest CSF concentration index. Additionally, IL-17A concentration was significantly increased in serum. IL-17F and CXCL1 CSF concentrations correlated with neutrophil count and CXCL1 concentration was higher in patients with encephalitis. The neutrophil CNS infiltrate does not correlate directly with TBE severity, but is associated with clinical features like myelitis, possibly being involved in its pathogenesis. Th17 cytokine response is present in TBE, especially intrathecally, and contributes to the CNS neutrophilic inflammation. IL-8 and CXCL1 may be chemokines directly responsible for the neutrophil migration.

  11. Biomarker Evidence of Axonal Injury in Neuroasymptomatic HIV-1 Patients

    PubMed Central

    Price, Richard W.; Hagberg, Lars; Fuchs, Dietmar; Rosengren, Lars; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2014-01-01

    Background Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL) in CSF with a novel, sensitive method. Methods With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL) (marker of neuronal injury), neopterin (intrathecal immunoactivation) and CSF/Plasma albumin ratio (blood-brain barrier integrity) were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200), HIV-associated dementia (HAD) (n = 14) and on combinations antiretroviral treatment (cART) (n = 85), and healthy controls (n = 204). 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation. Results While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups. Conclusions Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further assessment for broader clinical use. PMID:24523921

  12. CSF-1R regulates non-small cell lung cancer cells dissemination through Wnt3a signaling.

    PubMed

    Yu, Yan Xia; Wu, Hai Jian; Tan, Bing Xu; Qiu, Chen; Liu, Hui Zhong

    2017-01-01

    Therapeutic antibodies targeting colony stimulating factor 1 receptor (CSF-1R) to block colony stimulating factor-1/colony stimulating factor 1 receptor (CSF-1/CSF-R) signaling axis have exhibit remarkable efficacy in the treatment of malignant tumor. Yet, little is known about the effects of intrinsic CSF-1R in human non-small-cell carcinoma (NSCLC). Here we demonstrated that NSCLC cell-intrinsic CSF-1R promoted cells growth and metastasis both in vitro and in vivo. CSF-1R knocked-down by transfecting with shRNA target CSF-1R suppressed NSCLC cells proliferation and tumor growth in nude mice. Conversely, ectopic expression of CSF-1R promoted cells proliferation and accelerated tumor growth. Mechanistically, the NSCLC CSF-1R modulated downstream effectors of phosphatidylinositol 3-kinase (PI3K) signaling. In addition, CSF-1R overexpression significantly enhanced NSCLC cells mobility, invasion and epithelial-mesenchymal transition (EMT) process, whereas silencing CSF-1R inhibits these phenotypes. Microarray analysis suggested that Wnt family member 3a (Wnt3a) function as a downstream factor of CSF-1R. On account of this, we future identified CSF-1R/Wnt3a a signaling pathway sustained NSCLC cells metastasis. Finally, in patients, CSF-1R and Wnt3a expression positively correlated with the of NSCLC patients. Our results identify NSCLC cell intrinsic functions of CSF-1R/Wnt3a axis in dissemination of NSCLC.

  13. CSF-1R regulates non-small cell lung cancer cells dissemination through Wnt3a signaling

    PubMed Central

    Yu, Yan Xia; Wu, Hai Jian; Tan, Bing Xu; Qiu, Chen; Liu, Hui Zhong

    2017-01-01

    Therapeutic antibodies targeting colony stimulating factor 1 receptor (CSF-1R) to block colony stimulating factor-1/colony stimulating factor 1 receptor (CSF-1/CSF-R) signaling axis have exhibit remarkable efficacy in the treatment of malignant tumor. Yet, little is known about the effects of intrinsic CSF-1R in human non-small-cell carcinoma (NSCLC). Here we demonstrated that NSCLC cell-intrinsic CSF-1R promoted cells growth and metastasis both in vitro and in vivo. CSF-1R knocked-down by transfecting with shRNA target CSF-1R suppressed NSCLC cells proliferation and tumor growth in nude mice. Conversely, ectopic expression of CSF-1R promoted cells proliferation and accelerated tumor growth. Mechanistically, the NSCLC CSF-1R modulated downstream effectors of phosphatidylinositol 3-kinase (PI3K) signaling. In addition, CSF-1R overexpression significantly enhanced NSCLC cells mobility, invasion and epithelial-mesenchymal transition (EMT) process, whereas silencing CSF-1R inhibits these phenotypes. Microarray analysis suggested that Wnt family member 3a (Wnt3a) function as a downstream factor of CSF-1R. On account of this, we future identified CSF-1R/Wnt3a a signaling pathway sustained NSCLC cells metastasis. Finally, in patients, CSF-1R and Wnt3a expression positively correlated with the of NSCLC patients. Our results identify NSCLC cell intrinsic functions of CSF-1R/Wnt3a axis in dissemination of NSCLC. PMID:29218239

  14. Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT)

    PubMed Central

    Arepalli, Sampath; Britton, Angela; Chen, Zhao; Couper, David; Curb, J. David; Eaton, Charles B.; Fornage, Myriam; Grant, Struan F. A.; Harris, Tamara B.; Hernandez, Dena; Kamatini, Naoyuki; Keating, Brendan J.; Kubo, Michiaki; LaCroix, Andrea; Lange, Leslie A.; Liu, Simin; Lohman, Kurt; Meng, Yan; Mohler, Emile R.; Musani, Solomon; Nakamura, Yusuke; O'Donnell, Christopher J.; Okada, Yukinori; Palmer, Cameron D.; Papanicolaou, George J.; Patel, Kushang V.; Singleton, Andrew B.; Takahashi, Atsushi; Tang, Hua; Taylor, Herman A.; Taylor, Kent; Thomson, Cynthia; Yanek, Lisa R.; Yang, Lingyao; Ziv, Elad; Zonderman, Alan B.; Folsom, Aaron R.; Evans, Michele K.; Liu, Yongmei; Becker, Diane M.; Snively, Beverly M.; Wilson, James G.

    2011-01-01

    Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS. PMID:21738479

  15. Accelerated lymphocyte reconstitution and long-term recovery after transplantation of lentiviral-transduced rhesus CD34+ cells mobilized by G-CSF and plerixafor.

    PubMed

    Uchida, Naoya; Bonifacino, Aylin; Krouse, Allen E; Metzger, Mark E; Csako, Gyorgy; Lee-Stroka, Agnes; Fasano, Ross M; Leitman, Susan F; Mattapallil, Joseph J; Hsieh, Matthew M; Tisdale, John F; Donahue, Robert E

    2011-07-01

    Granulocyte colony-stimulating factor (G-CSF) in combination with plerixafor produces significant mobilization of CD34(+) cells in rhesus macaques. We sought to evaluate whether these CD34(+) cells can stably reconstitute blood cells with lentiviral gene marking. We performed hematopoietic stem cell transplantation using G-CSF and plerixafor-mobilized rhesus CD34(+) cells transduced with a lentiviral vector, and these data were compared with those of G-CSF and stem cell factor mobilization. G-CSF and plerixafor mobilization resulted in CD34(+) cell yields that were twofold higher than yields with G-CSF and stem cell factor. CD123 (interleukin-3 receptor) expression was greater in G-CSF and plerixafor-mobilized CD34(+) cells when compared to G-CSF alone. Animals transplanted with G-CSF and plerixafor-mobilized cells showed engraftment of all lineages, similar to animals who received G-CSF and stem cell factor-mobilized grafts. Lymphocyte engraftment was accelerated in animals receiving the G-CSF and plerixafor-mobilized CD34(+) cells. One animal in the G-CSF and plerixafor group developed cold agglutinin-associated skin rash during the first 3 months of rapid lymphocyte recovery. One year after transplantation, all animals had 2% to 10% transgene expression in all blood cell lineages. G-CSF and plerixafor-mobilized CD34(+) cells accelerate lymphocyte engraftment and contain hematopoietic stem cell capable of reconstituting multilineage blood cells. These findings indicate important differences to consider in plerixafor-based hematopoietic stem cell mobilization protocols in rhesus macaques. Published by Elsevier Inc.

  16. Antiretroviral-treated HIV-1 patients can harbour resistant viruses in CSF despite an undetectable viral load in plasma.

    PubMed

    Soulie, Cathia; Grudé, Maxime; Descamps, Diane; Amiel, Corinne; Morand-Joubert, Laurence; Raymond, Stéphanie; Pallier, Coralie; Bellecave, Pantxika; Reigadas, Sandrine; Trabaud, Mary-Anne; Delaugerre, Constance; Montes, Brigitte; Barin, Francis; Ferré, Virginie; Jeulin, Hélène; Alloui, Chakib; Yerly, Sabine; Signori-Schmuck, Anne; Guigon, Aurélie; Fafi-Kremer, Samira; Haïm-Boukobza, Stéphanie; Mirand, Audrey; Maillard, Anne; Vallet, Sophie; Roussel, Catherine; Assoumou, Lambert; Calvez, Vincent; Flandre, Philippe; Marcelin, Anne-Geneviève

    2017-08-01

    HIV therapy reduces the CSF HIV RNA viral load (VL) and prevents disorders related to HIV encephalitis. However, these brain disorders may persist in some cases. A large population of antiretroviral-treated patients who had a VL > 1.7 log 10 copies/mL in CSF with detectable or undetectable VL in plasma associated with cognitive impairment was studied, in order to characterize discriminatory factors of these two patient populations. Blood and CSF samples were collected at the time of neurological disorders for 227 patients in 22 centres in France and 1 centre in Switzerland. Genotypic HIV resistance tests were performed on CSF. The genotypic susceptibility score was calculated according to the last Agence Nationale de Recherche sur le Sida et les hépatites virales Action Coordonnée 11 (ANRS AC11) genotype interpretation algorithm. Among the 227 studied patients with VL > 1.7 log 10 copies/mL in CSF, 195 had VL detectable in plasma [median (IQR) HIV RNA was 3.7 (2.7-4.7) log 10 copies/mL] and 32 had discordant VL in plasma (VL < 1.7 log 10 copies/mL). The CSF VL was lower (median 2.8 versus 4.0 log 10 copies/mL; P  <   0.001) and the CD4 cell count was higher (median 476 versus 214 cells/mm 3 ; P  <   0.001) in the group of patients with VL < 1.7 log 10 copies/mL in plasma compared with patients with plasma VL > 1.7 log 10 copies/mL. Resistance to antiretrovirals was observed in CSF for the two groups of patients. Fourteen percent of this population of patients with cognitive impairment and detectable VL in CSF had well controlled VL in plasma. Thus, it is important to explore CSF HIV (VL and genotype) even if the HIV VL is controlled in plasma because HIV resistance may be observed. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    PubMed

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis In this study, we demonstrate that CD4 + , CD8 + , and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs. Copyright © 2017 Rothchild et al.

  18. Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study.

    PubMed

    Jespersen, Sofie; Pedersen, Karin Kæreby; Anesten, Birgitta; Zetterberg, Henrik; Fuchs, Dietmar; Gisslén, Magnus; Hagberg, Lars; Trøseid, Marius; Nielsen, Susanne Dam

    2016-04-21

    HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality.

  19. Delayed effects of rhG-CSF mobilization treatment and apheresis on circulating CD34+ and CD34+ Thy-1dim CD38- progenitor cells, and lymphoid subsets in normal stem cell donors for allogeneic transplantation.

    PubMed

    Körbling, M; Anderlini, P; Durett, A; Maadani, F; Bojko, P; Seong, D; Giralt, S; Khouri, I; Andersson, B; Mehra, R; vanBesien, K; Mirza, N; Przepiorka, D; Champlin, R

    1996-12-01

    Allogeneic transplantation of peripheral blood progenitor cells (PBPC) is emerging as a new stem cell transplant modality. Rather than undergoing general anesthesia for bone marrow harvest, normal blood stem cell donors are subjected to rhG-CSF mobilization treatment followed by single or multiple apheresis. Whereas the effects of cytokine treatment and apheresis on stem cell peripheralization and collection have been described, little is known about delayed effects of rhG-CSF treatment and apheresis on a normal hematopoietic system, and there are no long-term data that address safety issues. Ten normal, patient-related donors underwent a 3 or 4 day rhG-CSF (filgrastim) treatment (12 micrograms/kg/day) followed by single or tandem apheresis. We monitored peripheral blood (PB) cellularity including CD34+ and lymphoid subsets at baseline, during cytokine treatment, prior to apheresis, and at days 2, 4, 7, 30 and 100 post-apheresis. The PB progenitor cell concentration peak prior to apheresis was followed by a nadir by day 7 and normalized by day 30, with the exception of the most primitive CD34+ Thy-1dim CD38- progenitor subset that reached a nadir by day 30. Lymphoid subsets such as CD3, 4, 8, suppressor cells (CD3+ 4- 8- TCR+ alpha beta), and B cells (CD19+) showed a similar pattern with a nadir concentration by day 7, followed, except for B cells, by a rebound by day 30 and subnormal counts at day 100. The PB concentrations of hemoglobin and platelets dropped mainly due to the apheresis procedure itself, and normalized by day 30. With cytokine treatment, the PB alkaline phosphatase and lactate dehydrogenase concentrations increased 2.2- and 2.8-fold, respectively, over baseline, and returned to normal range by day 30. Based on the preliminary nature of this study, the clinical relevance of these findings is still unclear.

  20. A Safety Study on Intrathecal Delivery of Autologous Mesenchymal Stromal Cells in Rabbits Directly Supporting Phase I Human Trials

    PubMed Central

    Chen, Bingkun K.; Staff, Nathan P.; Knight, Andrew M.; Nesbitt, Jarred J.; Butler, Greg W.; Padley, Douglas J.; Parisi, Joseph E.; Dietz, Allan B.; Windebank, Anthony J.

    2014-01-01

    Background There are no effective treatments that slow the progression of neurodegenerative diseases. A major challenge of treatment in neurodegenerative diseases is appropriate delivery of pharmaceuticals into the cerebrospinal fluid (CSF) of affected individuals. Mesenchymal stromal cells (MSCs – either naïve or modified) are a promising therapy in neurodegenerative diseases and may be delivered directly into the CSF where they can reside for months. In this preclinical study, we evaluated the safety of intrathecal autologous MSCs in a rabbit model. Methods Autologous adipose-derived MSCs (or a-CSF) were delivered intrathecally, either with single or repeated injections into the foramen magnum of healthy rabbits, and monitored for 4 and 12 weeks, respectively. Results Rabbits tolerated injections well and no definitive MSC-related side effects were observed apart from three rabbits that had delayed death secondary to traumatic foramen magnum puncture. Functional assessments and body weights were equivalent between groups. Gross pathology and histology did not reveal any abnormalities or tumor growth. Complete blood count (CBC) data were normal and there were no differences in CSF IL-6 levels in all groups tested. Discussion Our data suggest that intrathecal delivery of autologous MSCs is safe in a rabbit model. Data from this study has supported two successful Investigational New Drug (IND) applications to the FDA, resulting in the initiation of two clinical trials using autologous MSCs in amyotrophic lateral sclerosis and multiple system atrophy. PMID:25413276

  1. Hypoglycorrhachia in adults with community-acquired meningitis: etiologies and prognostic significance.

    PubMed

    Shrikanth, Vandana; Salazar, Lucrecia; Khoury, Nabil; Wootton, Susan; Hasbun, Rodrigo

    2015-10-01

    Hypoglycorrhachia (cerebrospinal fluid (CSF) glucose <45 mg/dl) has been identified as a prognostic factor in patients with meningitis. The differential diagnosis of hypoglycorrhachia and its clinical significance was analyzed in the present study. This was a retrospective study of 620 adult patients with community-acquired meningitis (CSF white blood cell count >5 × 10(6) cells/l and absence of a CSF shunt or recent neurosurgical procedure (<1 month)) at eight Memorial Hermann hospitals in Houston, Texas, from January 2005 to December 2010. An adverse clinical outcome was defined as a Glasgow outcome scale score of ≤ 4. Out of 620 patients with meningitis, 116 (19%) had hypoglycorrhachia. Etiologies of hypoglycorrhachia were idiopathic (n=40), bacterial (n=27), cryptococcal (n=26), viral (n=15), and tuberculous (n=4). Patients with hypoglycorrhachia were more likely to be immunosuppressed, have a history of intravenous drug use, and present with a vesicular or petechial rash, nausea or vomiting, nuchal rigidity, sinusitis/otitis, abnormal mental status, and focal neurological deficits compared to those patients without hypoglycorrhachia (p<0.05). Additionally, patients in the hypoglycorrhachia group had significantly higher rates of positive CSF and blood cultures, urgent treatable conditions, and abnormal cranial imaging (p<0.05). Furthermore, patients with hypoglycorrhachia had more adverse clinical outcomes (26/116 (22.4%) vs. 45/504 (8.9%); p<0.001). Hypoglycorrhachia has significant clinical and prognostic value in the evaluation of adult patients with community-acquired meningitis. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    PubMed Central

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  3. Tsutsugamushi Disease (Scrub Typhus) Meningoencephalitis in North Eastern India: A Prospective Study.

    PubMed

    Sharma, S R; Masaraf, H; Lynrah, K G; Lyngdoh, M

    2015-01-01

    Scrub typhus is rampant in northern, eastern, and southern India. Central nervous system involvement in the form of meningitis or meningoencephalitis is common in scrub typhus. As specific laboratory methods remain inadequate or inaccessible in developing countries, prompt diagnosis is often difficult. The aim of this study was to characterize neurological complications in scrub typhus from northeastern region of India. We did a prospective study of scrub meningoencephalitis at North Eastern Indira Gandhi Regional Institute of Medical Sciences among patients admitted to hospital between October 2009 and November 2011. The diagnosis was made based on the clinical pictures, presence of an eschar, and a positive Weil-Felix test (WFT) with a titer of >1:160 and if required a positive scrub IgM enzyme-linked immunosorbent assay. Lumbar puncture was performed in patients with headache, nuchal rigidity, altered sensorium or cranial nerve deficits, and magnetic resonance imaging (MRI) brain performed if needed. Twenty-three patients of scrub typhus meningitis that were serologically confirmed were included in the study. There were 13 males and 10 females. Fever ≥1 week was the most common manifestation (39.1%). Interestingly, none had an eschar. Median cerebrospinal fluid (CSF) cell count, lymphocyte percentage, CSF protein, CSF glucose/blood glucose, CSF ADA were 17 cells/μL, 90%, 86 mg/dL, 0.6605 and 3.6 U/mL, respectively. All patients were treated with doxycycline. There was no mortality in our study. Absence of Eschar does not rule out scrub typhus. Clinical features and CSF findings can mimic tuberculous meningitis so misdiagnosis may lead to unwarranted prolonged empirical antituberculous therapy in cases of lymphocytic meningoencephalitis. Delay in treatment can be potentially fatal. WFT still serves as a useful and affordable diagnostic tool for this disease in resource-poor countries.

  4. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis.

    PubMed

    Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R

    2001-07-01

    Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.

  5. CCR6+ Th cells in the cerebrospinal fluid of persons with multiple sclerosis are dominated by pathogenic non-classic Th1 cells and GM-CSF-only-secreting Th cells.

    PubMed

    Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J

    2017-08-01

    Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. CSF-1 Receptor-Dependent Colon Development, Homeostasis and Inflammatory Stress Response

    PubMed Central

    Huynh, Duy; Akçora, Dilara; Malaterre, Jordane; Chan, Chee Kai; Dai, Xu-Ming; Bertoncello, Ivan; Stanley, E. Richard; Ramsay, Robert G.

    2013-01-01

    The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1op/op mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r−/− and Csf1op/op mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r−/− colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r +/− male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r +/− female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice. PMID:23451116

  7. Effects of granulocyte colony-stimulating factor (G-CSF) treatment on granulocyte function and receptor expression in patients with ventilator-dependent pneumonia

    PubMed Central

    Hustinx, W N M; Van Kessel, C P M; Heezius, E; Burgers, S; Lammers, J-W; Hoepelman, I M

    1998-01-01

    Considerable experimental evidence in animals suggests that treatment with G-CSF may have a beneficial effect in the management of severe infections in non-neutropenic hosts. This beneficial effect is attributed to an enhancement of granulopoiesis and neutrophil function, the latter possibly involving up-regulation of receptors on neutrophils that are involved in antibody-mediated cytotoxicity and killing of microorganisms. We compared neutrophil function and phenotype in blood and bronchoalveolar lavage fluid (BALF) of 10 patients with severe ventilator-dependent pneumonia, at baseline and following initiation of G-CSF treatment as adjunct to standard therapy. G-CSF treatment was associated with three-fold increased blood neutrophil counts at day 3 of treatment compared with baseline counts. Mean serum G-CSF concentration increased from 313 to 2007 pg/ml. After correction for lavage dilution effects, BALF G-CSF levels did not differ significantly from baseline, nor did neutrophil receptor expression (FcγRI, FcγRII, FcγRIII, CR3, and l-selectin) or indicators of neutrophil function such as respiratory burst activity, phagocytosis and killing of Candida albicans in BALF or blood. The mortality in this group of patients was 30% and compared favourably to the APACHE II-derived predicted mortality of 60%. We conclude that the possible therapeutic benefit of G-CSF administration in the early phase of severe bacterial pneumonia is not readily explained by its effect on baseline indicators of neutrophil function or receptor expression. PMID:9649199

  8. Effect of granulocyte-colony stimulating factor on empiric therapy with flomoxef sodium and tobramycin in febrile neutropenic patients with hematological malignancies. Kan-etsu Hematological Disease and Infection Study Group.

    PubMed

    Yoshida, M; Karasawa, M; Naruse, T; Fukuda, M; Hirashima, K; Oh, H; Ninomiya, H; Abe, T; Saito, K; Shishido, H; Moriyama, Y; Shibata, A; Motoyoshi, K; Nagata, N; Miura, Y

    1999-02-01

    The clinical effects of concomitant use of granulocyte-colony stimulating factor (G-CSF) on empiric antibiotic therapy in febrile neutropenic patients were evaluated in a randomized fashion. Two hundred and fourteen neutropenic febrile episodes (neutrophil counts < 1.0 x 10(9)/l) were treated with flomoxef sodium and tobramycin with or without G-CSF. The resolution of fever at day 4 (excellent response) or at day 7 (good response) was deemed effective. Among 157 evaluable episodes, the observed excellent responses were 31 (38.8%) and the good responses were 20 (25.0%) in the G-CSF group; those in the control group were 26 (33.8%) and 25 (32.5%), respectively. The overall efficacy rate was 63.8% (51/80) in the G-CSF group and 66.2% (51/77) in the control group (not significant). The initial neutrophil count was 0.186 +/- 0.249 x 10(9)/l in the G-CSF group and 0.235 +/- 0.290 x 10(9)/l in the control group, and rose to 2.889 +/- 4.198 x 10(9)/l and 0.522 +/- 0.844 x 10(9)/l, respectively, at day 7. These results indicate that G-CSF does not affect the rate of response to empiric antibiotic therapy in febrile neutropenic patients, although a significant effect of G-CSF was observed on neutrophil recovery.

  9. Aseptic meningitis in children--the Singapore experience.

    PubMed

    Tee, W S N; Choong, C T; Lin, R V T P; Ling, A E

    2002-11-01

    To study the incidence, aetiology, clinical characteristics and management of paediatric aseptic meningitis in a paediatric hospital in Singapore. Patients with cerebrospinal fluid (CSF) pleocytosis, a negative Gram stain and bacterial culture were reviewed retrospectively from 1 January to 31 December 2000. Eighty-seven patients who fulfilled the criteria for aseptic meningitis and without neurological deficits were studied. In addition, reverse transcriptase polymerase chain reaction (RT-PCR) using pan enterovirus primers was subsequently performed on 73 of these CSF specimens which were available for storage. The incidence of aseptic meningitis was approximately 37 cases per 10,000 admissions. Non-polio enteroviruses were isolated from 29 of 64 (45.3%) CSF and 38 of 52 (73.1%) stool samples. RT-PCR was positive in 43 (58.9%) of the archived CSF specimens. The aetiologies of the remaining cases were mostly unidentified. Their ages ranged from 5 days to 12 years (median, 2 months). All patients except 1 had fever. Vomiting or poor feeding occurred in 44.7%, cough or running nose in 35.3%, irritability was observed in 35.3%, seizures in 7.1%, a rash in 10.6% and diarrhoea in 5.9%. All patients recovered without sequelae. The median CSF white cell count was 212 cells/mm3 (range, 7 to 12,000). The median glucose concentration was 2.7 mmol/L (range, 1.6 to 4.4). The median CSF/blood glucose ratio was 0.52 (range, 0.23 to 0.73). Median length of stay was 7 days (range, 4 to 17). Eighty-four patients (96.6%) received antibiotics for a median of 5.5 days (range, 2 to 14). Enteroviruses were the most common aetiologic agent identified. A method of early diagnosis using RT-PCR for enteroviruses is necessary to reduce the current duration of antibiotic usage and to decrease the length of hospital stay.

  10. [Effect of G-CSF in vitro Stimulation on Distribution of Peripheral Lymphocyte Subsets in the Healthy Persons].

    PubMed

    Zhao, Sha-Sha; Fang, Shu; Zhu, Cheng-Ying; Wang, Li-Li; Gao, Chun-Ji

    2018-02-01

    To investigate the effect of granulocyte-colony stimulating factor (G-CSF) in vitro stimulation on the distribution of lymphocyte subset in healthy human. Peripheral blood mononuclear cells (PBMNCs) were collected from 8 healthy volunteers by density gradient centrifugation on Ficoll-Paque TM . In vitro 200 ng/ml G-CSF or 200 ng/ml G-CSF plus 10 µg/ml ConA directly act on PBMNCs, then the colleted cells were cultivated for 3 days. Lymphocyte subsets were stained with the corresponding fluoresce labeled antibodies and detected by flow cytometry. The levels of T cells in G-CSF group and G-CSF+ConA group were both higher than that in the control group (P<0.001, P<0.05). However, there were not significantly different in B cells and NK cells levels among the 3 groups. Furthermore, analysis of the effect of G-CSF on T cell subsets indicated that the levels of CD4 + T cells and CD8 + T cells in G-CSF group were both significantly higher than those in control group (P<0.01, P<0.05), Treg cells was not different between G-CSF and control group. Compared with the control group, the level of CD4 + T cells, CD8 + T cells and Treg cells in G-CSF+ConA group significantly increased (P<0.05, P<0.01, P<0.01). Analysis of G-CSF receptor (G-CSFR) expression showed that G-CSFR expression on T cells in G-CSF+ConA group dramatically increased, as compared with control group (P<0.01). The levels of CD4 + T cells and CD8 + T cells in healthy human peripheral blood can be increased by G-CSF stimulation. ConA can enhance the level of T cells and induce G-CSFR expression on T cells.

  11. Extensive subclinical sinusitis leading to Moraxella osloensis meningitis.

    PubMed

    Fox-Lewis, A; Coltart, G; Rice, S; Sen, R; Gourtsoyannis, Y; Hyare, H; Gupta, R K

    2016-01-01

    We report a case of a 31 year old male with extensive subclinical sinusitis leading to erosion in the cribriform plate and subsequent meningitis caused by the organism Moraxella osloensis . The patient presented to the emergency department with rapid onset confusion, neck stiffness and headache. Inflammatory markers, renal and liver function, and a chest radiograph were all normal. CT Head showed extensive polyp disease in the paranasal sinuses with expansion of the left frontal sinus and CT Sinuses revealed an area of low attenuation in the cribriform plate consistent with bony erosion. MRI Head showed thick loculated sinus inflammation. Lumbar puncture yielded CSF with a high white cell count of predominantly mononuclear cells, no visible organisms and an elevated protein. CSF microscopy, culture and viral PCR were not diagnostic, and so the CSF was sent for 16S rDNA PCR screening, which identified the rDNA of Moraxella osloensis . Moraxella osloensis is a rare cause of bacterial meningitis, with only a few reported cases. This case illustrates that sinusitis, while a common condition, when severe can predispose to intracranial infection with atypical and low virulence organisms such as Moraxella species, which do not commonly cause invasive CNS disease. This case represents the first case of Moraxella osloensis meningitis reported from the United Kingdom.

  12. [A case of acute cerebellar ataxia following infectious mononucleosis accompanied by intrathecal anti-glutamate receptor δ2 antibody].

    PubMed

    Murakami, Hidetomo; Iijima, Shoji; Kawamura, Mitsuru; Takahashi, Yukitoshi; Ichikawa, Hiroo

    2013-01-01

    An 18-year-old woman was admitted because of sore throat and pain in the epigastric region. On admission, she presented with swollen tonsils and hepatosplenomegaly. Blood examinations revealed the presence of atypical lymphocytes, liver damage and anti-VCA IgM and IgG antibodies. These findings led to diagnosis of infectious mononucleosis. After admission, her condition improved, but on hospital day 4, she suddenly developed cerebellar ataxia in the trunk and four limbs. Cranial MRI findings were normal. Cerebrospinal fluid (CSF) collected on hospital day 6 showed normal cell counts and normal concentrations of protein and glucose. EB virus DNA and anti-VCA IgM and IgG antibodies were negative and glutamate receptor δ2 antibody was positive in CSF collected on hospital day 11. We diagnosed acute cerebellar ataxia (ACA) and performed methylprednisolone pulse therapy. After this therapy, her cerebellar ataxia improved over a few days. This is the first reported case of ACA after EB virus infection presenting with glutamate receptor δ2 antibody in CSF. The glutamate receptor δ2 subunit is expressed on cerebellar Purkinje cells. Therefore, the presence of the antibody may be associated with cerebellar dysfunction. In the present case, secondary immune reactions after EB virus infection may have produced the antibody.

  13. Infections in the differential diagnosis of Bell's palsy: a plea for performing CSF analysis.

    PubMed

    Henkel, Katrin; Lange, Peter; Eiffert, Helmut; Nau, Roland; Spreer, Annette

    2017-04-01

    Peripheral facial nerve palsy (FP) is the most common single nerve affection. Most cases are idiopathic, but a relevant fraction is caused by potentially treatable aetiologies including infections. Not all current diagnosis and treatment guidelines recommend routine cerebrospinal fluid (CSF) analysis in the diagnostic workup of this symptom. In this study, we evaluated frequency of aetiologies and relevance of CSF analysis in an interdisciplinary cohort. We retrospectively analysed all cases of newly diagnosed FP treated at a German university medical centre in a 3-year period. Diagnostic certainty was classified for infectious aetiologies according to clinical and CSF parameters. 380 patients with FP were identified, 63 children and 317 adults. Idiopathic Bell´s palsy was predominant in 61 %. 25 % of FP was attributed to infections, and other causes were identified in 14 %. Clinical presentation alone was not conclusive for infectious aetiology, in almost half of patients with infection-attributed FP the reported symptoms or clinical signs did not differ from common symptoms of idiopathic Bell`s palsy. Determination of C-reactive protein or white blood cell count was not helpful in the identification of infectious causes, and radiological imaging was performed in a high proportion of adult patients without conclusive results. Nuchal rigidity was found only in 7 % of patients with CSF pleocytosis. The predominant infectious agents were Borrelia burgdorferi, VZV and HSV, and in most of these cases diagnosis relied on the findings of CSF analysis. This study outlines the importance of careful differential diagnosis to identify infectious causes of facial nerve palsy. The high incidence and frequent unspecific clinical presentation of infectious FP underlines the importance of including CSF analysis in the diagnostic routine workup of FP.

  14. Diagnosis of neurosyphilis: appraisal of clinical caseload.

    PubMed Central

    Rodgers, C A; Murphy, S

    1997-01-01

    OBJECTIVES: To review the management of a cohort of patients with positive treponemal serology and psychiatric and/or neurological disorders. METHODS: A retrospective case note review of 172 patients with positive treponemal serology attending the Patrick Clement's Clinic, Central Middlesex Hospital between December 1990 and November 1995 was performed. RESULTS: 101 men and 71 women were new attenders diagnosed with positive treponemal serology. A neurological problem was identified in 27 patients (12 women and 15 men) with psychiatric and/or neurological disorders, of whom 20 (six women and 14 men) underwent investigation of the cerebrospinal fluid (CSF). With the medical history and results of CSF-RPR and FTA tests, white cell count (WCC), and total protein level in the CSF, 10 patients (eight men and two women) were diagnosed with likely neurosyphilis and 17 with neurological disorders not thought to be caused by syphilis. The clinical features in those having neurosyphilis were sensorineural hearing loss (n = 5) and tabes dorsalis (n = 5). In the seven patients diagnosed with neurosyphilis who underwent CSF examination one patient had a reactive CSF-FTA, elevated protein, and elevated WCC; one patient had a reactive CSF-FTA and RPR with elevated protein; the total protein only was elevated in three cases and the WCC elevated in one case. Nine of the 10 patients with neurosyphilis received adequate neurosyphilitic treatment; one patient was lost to follow up. CONCLUSIONS: The management of patients with positive treponemal serology and psychiatric and/or neurological disorders was consistent. Patients with suspected neurosyphilis or patients with neurological signs compatible with neurosyphilis (who did not undergo CSF examination) were treated with adequate neurosyphilitic therapy. PMID:9582475

  15. HIV-associated progressive multifocal leukoencephalopathy: longitudinal study of JC virus non-coding control region rearrangements and host immunity.

    PubMed

    Iannetta, Marco; Bellizzi, Anna; Lo Menzo, Sara; Anzivino, Elena; D'Abramo, Alessandra; Oliva, Alessandra; D'Agostino, Claudia; d'Ettorre, Gabriella; Pietropaolo, Valeria; Vullo, Vincenzo; Ciardi, Maria Rosa

    2013-06-01

    John Cunningham virus (JCV), the etiological agent of progressive multifocal leukoencephalopathy (PML), contains a hyper-variable non-coding control region usually detected in urine of healthy individuals as archetype form and in the brain and cerebrospinal fluid (CSF) of PML patients as rearranged form. We report a case of HIV-related PML with clinical, immunological and virological data longitudinally collected. On admission (t0), after 8-week treatment with a rescue highly active antiretroviral therapy (HAART), the patient showed a CSF-JCV load of 16,732 gEq/ml, undetectable HIV-RNA and an increase of CD4+ cell count. Brain magnetic resonance imaging (MRI) showed PML-compatible lesions without contrast enhancement. We considered PML-immune reconstitution inflammatory syndrome as plausible because of the sudden onset of neurological symptoms after the effective HAART. An experimental JCV treatment with mefloquine and mirtazapine was added to steroid boli. Two weeks later (t1), motor function worsened and MRI showed expanded lesions with cytotoxic oedema. CSF JCV-DNA increased (26,263 gEq/ml) and JCV viremia was detected. After 4 weeks (t2), JCV was detected only in CSF (37,719 gEq/ml), and 8 weeks after admission (t3), JC viral load decreased in CSF and JCV viremia reappeared. The patient showed high level of immune activation both in peripheral blood and CSF. He died 4 weeks later. Considering disease progression, combined therapy failure and immune hyper-activation, we finally classified the case as classical PML. The archetype variant found in CSF at t0/t3 and a rearranged sequence detected at t1/t2 suggest that PML can develop from an archetype virus and that the appearance of rearranged genotypes contribute to faster disease progression.

  16. Haematopoietic growth factor in antithyroid-drug-induced agranulocytosis.

    PubMed

    Andrès, E; Kurtz, J E; Perrin, A E; Dufour, P; Schlienger, J L; Maloisel, F

    2001-08-01

    Drug-induced agranulocytosis (DIA) is often caused by antithyroid drugs. We retrospectively studied the use of granulocyte colony-stimulating factor (G-CSF) therapy in antithyroid-DIA. Data for 20 patients (10 treated with G-CSF) with antithyroid-DIA (neutrophil count <0.5x10(9)/l) were extracted from a cohort study of DIA patients (n=110). G-CSF (300 microg/day subcutaneously) was used where the neutrophil count was <0.1x10(9)/l, or the patient was aged >70 years, or there were severe features of infection or underlying disease. Mean patient age was 62 years (range 34-87); sex ratio (M/F) was 0.05. Carbimazole (n=19) and benzylthiouracile (n=1) were the causative drugs, at mean doses of 30 mg/day (range 20-60) and 100 mg/day (range 50-150), respectively, for a mean of 37 days (range 31-90). Antithyroid drugs were prescribed for Graves' disease (n=8), thyrotoxicosis related to amiodarone intake (n=6) and multinodular goitre (n=6). Clinical features included isolated fever (n=7), pneumonia (n=5), septicaemia or septic shock (n=5) and acute tonsillitis (n=3). Mean neutrophil count was 0.07+/-0.1x10(9)/l. No patient died. Mean durations of haematological recovery, antibiotic therapy and hospitalization were significantly reduced with G-CSF: 6.8+/-4 days vs. 11.6+/-5; 7.5+/-3.8 days vs. 12+/-4.5; and 7.3+/-4.8 days vs. 13+/-6.1, respectively (all p<0.05). G-CSF induced flu-like symptoms in 30% of patients, but reduced overall costs.

  17. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  18. Early ART After Cryptococcal Meningitis Is Associated With Cerebrospinal Fluid Pleocytosis and Macrophage Activation in a Multisite Randomized Trial

    PubMed Central

    Scriven, James E.; Rhein, Joshua; Hullsiek, Katherine Huppler; von Hohenberg, Maximilian; Linder, Grace; Rolfes, Melissa A.; Williams, Darlisha A.; Taseera, Kabanda; Meya, David B.; Meintjes, Graeme; Boulware, David R.

    2015-01-01

    Introduction. Earlier antiretroviral therapy (ART) initiation in cryptococcal meningitis resulted in higher mortality compared with deferred ART initiation (1–2 weeks vs 5 weeks postmeningitis diagnosis). We hypothesized this was due to ART-associated immune pathology, without clinically recognized immune reconstitution inflammatory syndrome. Methods. Three macrophage activation markers and 19 cytokines/chemokines were measured from cryopreserved cerebrospinal fluid (CSF) and serum during the Cryptococcal Optimal ART Timing (COAT) trial. Comparisons were made between trial arms (early vs deferred) at 1, 8, 14, and 21 days following meningitis diagnosis. Results. More participants with early ART initiation had CSF white cell count (WCC) ≥5/µL at day 14 (58% vs 40%; P = .047), after a median of 6-days ART. Differences were mainly driven by participants with CSF WCC <5/µL at meningitis diagnosis: 28% (10/36) of such persons in the early ART group had CSF WCC ≥5/µL by day 14, compared with 0% (0/27) in the deferred arm (P = .002). Furthermore, Kampala participants (the largest site) receiving early ART had higher day-14 CSF levels of interleukin-13 (P = .04), sCD14 (P = .04), sCD163 (P = .02), and CCL3/MIP-1α (P = .02), suggesting increased macrophage/microglial activation. Conclusions. Early ART initiation in cryptococcal meningitis increased CSF cellular infiltrate, macrophage/microglial activation, and T helper 2 responses within the central nervous system. This suggests that increased mortality from early ART in the COAT trial was immunologically mediated. PMID:25651842

  19. Ex vivo 18O-labeling mass spectrometry identifies a peripheral amyloid β clearance pathway.

    PubMed

    Portelius, Erik; Mattsson, Niklas; Pannee, Josef; Zetterberg, Henrik; Gisslén, Magnus; Vanderstichele, Hugo; Gkanatsiou, Eleni; Crespi, Gabriela A N; Parker, Michael W; Miles, Luke A; Gobom, Johan; Blennow, Kaj

    2017-02-20

    Proteolytic degradation of amyloid β (Aβ) peptides has been intensely studied due to the central role of Aβ in Alzheimer's disease (AD) pathogenesis. While several enzymes have been shown to degrade Aβ peptides, the main pathway of Aβ degradation in vivo is unknown. Cerebrospinal fluid (CSF) Aβ42 is reduced in AD, reflecting aggregation and deposition in the brain, but low CSF Aβ42 is, for unknown reasons, also found in some inflammatory brain disorders such as bacterial meningitis. Using 18 O-labeling mass spectrometry and immune-affinity purification, we examined endogenous proteolytic processing of Aβ in human CSF. The Aβ peptide profile was stable in CSF samples from healthy controls but in CSF samples from patients with bacterial meningitis, showing increased leukocyte cell count, 18 O-labeling mass spectrometry identified proteolytic activities degrading Aβ into several short fragments, including abundant Aβ1-19 and 1-20. After antibiotic treatment, no degradation of Aβ was detected. In vitro experiments located the source of the proteolytic activity to blood components, including leukocytes and erythrocytes, with insulin-degrading enzyme as the likely protease. A recombinant version of the mid-domain anti-Aβ antibody solanezumab was found to inhibit insulin-degrading enzyme-mediated Aβ degradation. 18 O labeling-mass spectrometry can be used to detect endogenous proteolytic activity in human CSF. Using this technique, we found an enzymatic activity that was identified as insulin-degrading enzyme that cleaves Aβ in the mid-domain of the peptide, and could be inhibited by a recombinant version of the mid-domain anti-Aβ antibody solanezumab.

  20. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    PubMed

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P < 0.001). Mean CSF protein concentration and cell count were significantly higher in the bacterial meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  1. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment

    PubMed Central

    2014-01-01

    Background Haematotoxicity of conventional chemotherapies often results in delays of treatment or reduction of chemotherapy dose. To ameliorate these side-effects, patients are routinely treated with blood transfusions or haematopoietic growth factors such as erythropoietin (EPO) or granulocyte colony-stimulating factor (G-CSF). For the latter ones, pharmaceutical derivatives are available, which differ in absorption kinetics, pharmacokinetic and -dynamic properties. Due to the complex interaction of cytotoxic effects of chemotherapy and the stimulating effects of different growth factor derivatives, optimal treatment is a non-trivial task. In the past, we developed mathematical models of thrombopoiesis, granulopoiesis and erythropoiesis under chemotherapy and growth-factor applications which can be used to perform clinically relevant predictions regarding the feasibility of chemotherapy schedules and cytopenia prophylaxis with haematopoietic growth factors. However, interactions of lineages and growth-factors were ignored so far. Results To close this gap, we constructed a hybrid model of human granulopoiesis and erythropoiesis under conventional chemotherapy, G-CSF and EPO applications. This was achieved by combining our single lineage models of human erythropoiesis and granulopoiesis with a common stem cell model. G-CSF effects on erythropoiesis were also implemented. Pharmacodynamic models are based on ordinary differential equations describing proliferation and maturation of haematopoietic cells. The system is regulated by feedback loops partly mediated by endogenous and exogenous EPO and G-CSF. Chemotherapy is modelled by depletion of cells. Unknown model parameters were determined by fitting the model predictions to time series data of blood counts and cytokine profiles. Data were extracted from literature or received from cooperating clinical study groups. Our model explains dynamics of mature blood cells and cytokines after growth-factor applications in healthy volunteers. Moreover, we modelled 15 different chemotherapeutic drugs by estimating their bone marrow toxicity. Taking into account different growth-factor schedules, this adds up to 33 different chemotherapy regimens explained by the model. Conclusions We conclude that we established a comprehensive biomathematical model to explain the dynamics of granulopoiesis and erythropoiesis under combined chemotherapy, G-CSF, and EPO applications. We demonstrate how it can be used to make predictions regarding haematotoxicity of yet untested chemotherapy and growth-factor schedules. PMID:24886056

  2. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma.

    PubMed

    Kiang, Juliann G; Zhai, Min; Bolduc, David L; Smith, Joan T; Anderson, Marsha N; Ho, Connie; Lin, Bin; Jiang, Suping

    2017-11-01

    Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60 Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation alone and combined injury) when treated with pegylated G-CSF and Alxn4100TPO. Treatment with pegylated G-CSF alone increased survival after irradiation alone and combined injury by 33% and 15%, respectively, and further delayed wound healing, but increased WBC, RBC and platelet counts after irradiation alone, and only RBCs and platelets after combined injury. Treatment with Alxn4100TPO alone increased survival after both irradiation alone and combined injury by 4 and 23%, respectively, and delayed wound healing after combined injury, but increased RBCs, hemoglobin concentrations, hematocrit values and platelets after irradiation alone and only platelets after combined injury. Taken together, the results suggest that combined treatment with pegylated G-CSF and Alxn4100TPO is effective for mitigating effects of both radiation alone and in combination with injury.

  3. Recent progress in GM-CSF-based cancer immunotherapy.

    PubMed

    Yan, Wan-Lun; Shen, Kuan-Yin; Tien, Chun-Yuan; Chen, Yu-An; Liu, Shih-Jen

    2017-03-01

    Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.

  4. Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two Practices.

    PubMed

    Singh, Amrita D; Parmar, Sapna; Patel, Khilna; Shah, Shreya; Shore, Tsiporah; Gergis, Usama; Mayer, Sebastian; Phillips, Adrienne; Hsu, Jing-Mei; Niesvizky, Ruben; Mark, Tomer M; Pearse, Roger; Rossi, Adriana; van Besien, Koen

    2018-02-01

    Administration of granulocyte colony-stimulating factor (G-CSF) after autologous peripheral blood stem cell transplantation (PBSCT) is generally recommended to reduce the duration of severe neutropenia; however, data regarding the optimal timing of G-CSFs post-transplantation are limited and conflicting. This retrospective study was performed at NewYork-Presbyterian/Weill Cornell Medical Center between November 5, 2013, and August 9, 2016, of adult inpatient autologous PBSCT recipients who received G-CSF empirically starting on day +5 (early) versus on those who received G-CSF on day +12 only if absolute neutrophil count (ANC) was <0.5 × 10 9 /L (ANC-driven). G-CSF was dosed at 300 µg in patients weighing <75 kg and 480 µg in those weighing ≥75 kg. One hundred consecutive patients underwent autologous PBSCT using either the early (n = 50) or ANC-driven (n = 50) G-CSF regimen. Patient and transplantation characteristics were comparable in the 2 groups. In the ANC-driven group, 24% (n = 12) received G-CSF on day +12 and 60% (n = 30) started G-CSF earlier due to febrile neutropenia or at the physician's discretion, 6% (n = 3) started after day +12 at the physician's discretion, and 10% (n = 5) did not receive any G-CSF. The median start day of G-CSF therapy was day +10 in the ANC-driven group versus day +5 in the early group (P < .0001). For the primary outcome, the median time to neutrophil engraftment was 12 days (interquartile range [IQR] 11-13 days) in the early group versus 13 days (IQR, 12-14 days) in the ANC-driven group (P = .07). There were no significant between-group differences in time to platelet engraftment, 1-year relapse rate, or 1-year overall survival. The incidence of febrile neutropenia was 74% in the early group versus 90% in the ANC-driven group (P = .04); however, there was no significant between-group difference in the incidence of positive bacterial cultures or transfer to the intensive care unit. The duration of G-CSF administration until neutrophil engraftment was 6 days in the early group versus 3 days in the ANC-driven group (P < .0001). The median duration of post-transplantation hospitalization was 15 days (IQR, 14-19 days) in the early group versus 16 days (IQR, 15-22 days) in the ANC-driven group (P = .28). Our data show that early initiation of G-CSF (on day +5) and ANC-driven initiation of G-CSF following autologous PBSCT were associated with a similar time to neutrophil engraftment, length of stay post-transplantation, and 1-year overall survival. Published by Elsevier Inc.

  5. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    PubMed Central

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  6. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    PubMed

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  7. [Clinical study of recombinant human granulocyte colony stimulating factor (rhG-CSF) on leukopenia induced by chemotherapy in cancer patients].

    PubMed

    Shi, Y K; Zhou, J C; Feng, F Y

    1994-05-01

    The clinical usefulness of Recombinant Human Granulocyte Colony Stimulating Factor (rhG-CSF, Filgrastim, GRAN) was evaluated in patients with leukopenia and neutropenia following chemotherapy for non-Hodgkin's lymphoma, lung cancer and breast cancer. During chemotherapy when patients' leukocyte count (WBC) fell below 4.0 x 10(9)/L.rhG-CSF(GRAN) at a dose of 75 micrograms/body.day was given subcutaneously 48 hours after the termination of chemotherapy. The results indicated that rhG-CSF(GRAN) could elevate nadirs of WBC and significantly shortened leukopenic period with WBC below 4.0 x 10(9)/L and expedited the recovery of WBC. rhG-CSF (GRAN)'s side effects were mild.

  8. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj

    2013-07-12

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation,more » migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor.« less

  9. [The effect of lithium carbonate on the leukocyte count following ionizing radiation. 4. The effect of lithium carbonate on the activation of granulocytes].

    PubMed

    Wolf, G; Müller, G M; Kehrberg, G

    1989-01-01

    From numerous investigations it is known that lithium carbonate promotes granulocytopoiesis by stimulation of CSF (colony stimulating factor) in bone marrow. To prove if no immature, in their functions restricted cells are delivered from bone marrow, the activity of granulocytes was tested in vitro in patients with lithium therapy. It could be seen that granulocytes of peripheral blood show an increased in-vitro-activation after lithium influence in vivo.

  10. Host Immune Response to Bacterial Cyclic Diguanylic Acid (c-di-GMP)

    DTIC Science & Technology

    2009-07-01

    at 4°C. Sera were harvested and kept at 20°C until tested. The institutional ethics committee on animal experimentation of the Faculté des Sciences...On day 5, nonadherent DCs were harvested by gentle pipetting, counted, and plated in fresh medium containing GM-CSF and IL-4 (50 ng/ml each). On day...incubation, cells were pulsed with 1 Ci of [3H]thymidine/well for 18 h and were harvested on filter paper. Proliferative responses were measured as [3H

  11. Utility of the urine reagent strip leucocyte esterase assay for the diagnosis of meningitis in resource-limited settings: meta-analysis

    PubMed Central

    Bortcosh, William; Siedner, Mark; Carroll, Ryan W.

    2018-01-01

    OBJECTIVE Diagnosis of bacterial meningitis often requires cytometry, chemistry and/or microbiologic culture capabilities. Unfortunately, laboratory resources in low-resource settings (LRS) often lack the capacity to perform these studies. We sought to determine whether the presence of white blood cells in CSF detected by commercially available urine reagent strips could aid in the diagnosis of bacterial meningitis. METHODS We searched PubMed for studies published between 1980 and 2016 that investigated the use of urine reagent strips to identify cerebrospinal fluid (CSF) pleocytosis. We assessed studies in any language that enrolled subjects who underwent lumbar puncture and had cerebrospinal fluid testing by both standard laboratory assays and urine reagent strips. We abstracted true-positive, false-negative, false-positive and true-negative counts for each study using a diagnostic threshold of ≥10 white blood cells per microlitre for suspected bacterial meningitis and performed mixed regression modelling with random effects to estimate pooled diagnostic accuracy across studies. RESULTS Our search returned 13 studies including 2235 participants. Urine reagent strips detected CSF pleocytosis with a pooled sensitivity of 92% (95% CI: 84–96), a pooled specificity of 98% (95% CI: 94–99) and a negative predictive value of 99% when the bacterial meningitis prevalence is 10%. CONCLUSIONS Urine reagent strips could provide a rapid and accurate tool to detect CSF pleocytosis, which, if negative, can be used to exclude diagnosis of bacterial meningitis in settings without laboratory infrastructure. Further investigation of the diagnostic value of using protein, glucose and bacteria components of these strips is warranted. PMID:28627004

  12. DRV concentrations and viral load in CSF in patients on DRV/r 600/100 or 800/100mg once daily plus two NRTI.

    PubMed

    Di Yacovo, Silvana; Molto, Jose; Ferrer, Elena; Curran, Adrian; Else, Laura Jayne; Clotet, Bonaventura; Tiraboschi, Juan; Niubo, Jordi; Vila, Antonia; Podzamczer, Daniel

    2014-01-01

    Darunavir/r (DRV/r) is currently used at a dose of 800/100 mg once daily (OD) in a high proportion of patients. Pharmacokinetic data suggest that 600/100 OD may be effective, reducing toxicity and cost. However, drug concentrations in reservoirs such as cerebrospinal fluid (CSF) might not be adequate to inhibit viral replication. We aimed to evaluate concentrations of DRV and HIV-1 viral load (VL) in CSF patients receiving DRV 600/100 mg OD. DRV600 is an ongoing randomized open study comparing DRV/r 800/100 mg (DRV800) vs 600/100 mg (DRV600) OD plus TDF/FTC or ABC/3TC in 100 virologically suppressed patients (eudraCT 2011-006272-39). Here we present the results of a CSF sub-study. A lumbar puncture (LP) was performed in participating patients after at least six months of inclusion in the study, 20-28 hours after a dose of DRV/r. VL (PCR, LOD 40 copies/mL) was determined in CSF and in plasma. DRV concentrations were quantified in CSF by liquid chromatography mass spectrometry (LC/MS/MS) and in plasma using high-performance liquid chromatography (HPLC). Sixteen patients were included (eight in each arm). All DRV600 patients and four out of eight DRV800 patients received TDF/FTC, and the other four ABC/3TC. 75% were males, median (range) age was 48 (17-71) years, CD4 cell count 532 cells/mL (190-1,394). Median total time on DRV/r was 30 (11-57) months, and since the beginning of the study 8 (6-12) months in DRV800 and 10 (7-12) months in DRV600 patients. LP was performed a median of 26 (24-28) hours after the last DRV/r+TVD or KVX dose. In DRV600 patients the median DRV plasma levels were 1,674 (326-3,742) ng/mL, CSF levels 17.08 (5.79-30.19) ng/mL and DRV CSF:plasma ratio 0.0084 (0.0028-0.0388), while in the DRV800 arm, median DRV plasma levels were 1,707 (958-3,910) ng/mL, CSF levels 13.23 (3.47-32.98) ng/mL and DRV CSF:plasma ratio 0.0104 (0.0018-0.0262). All patients had VL<40 copies/mL in plasma and 14 patients VL<40 copies/mL in CSF. Two patients (1 in each arm, and taking TDF/FTC) had detectable VL in CSF (280 and 159 c/mL). These patients had the lowest CSF DRV concentrations (5.47 and 3.47 ng/mL), with plasma DRV concentrations of 802 and 958 ng/mL respectively. CSF DRV concentrations and CSF VL were similar between patients receiving DRV/r 800/100 mg or 600/100 mg OD. Low CSF DRV concentrations might be associated with viral escape in CNS. This may be taken into account in patients receiving OD DRV/r. Larger studies should confirm these findings.

  13. [Step Fisher discriminant analysis on severe clinical features of hand foot and mouth disease between enterovirus (EV) 71 and other EV].

    PubMed

    Ruan, Feng; Tan, Ai-jun; Zhang, Xue-bao; Chen, Xue-qin; Xiao, Song-jian; Ye, Zhong-wen; Wang, Song

    2011-07-01

    To compare the clinical features of severe hand foot and mouth disease between enterovirus (EV) 71 and other EV to find specific diagnosis index of EV71 severe hand foot and mouth disease. Case definition were adopted from national guideline of hand foot and mouth disease diagnose (Version 2010). Clinical data of severe hand foot and mouth disease came from case history and contents of questionnaire would include the ones between the time of onset and diagnoses being made. EV and EV71, Cox A16 nucleic acid tested were by RT-PCR in stool samples. Clinical features of severe hand foot and mouth disease between EV71 and other EV were compare. There appeared statistical differences between neurologic symptoms such as tremor, myoclonic jerk, listlessness, convulsion and white blood cell counts in CSF (P < 0.05). Results from the step Fisher discriminant analysis showed only tremor and white blood cell had an increase in CSF, with statistically significant differences. The discriminant equation of EV71 was Y = 3.059X(1) + 3.83X(5) - 2.742 and the equation of other EV was Y = 1.634X(1) + 1.623X(5) - 1.693. The specificity of EV71 was 91% and the specificity of other EV was 40%. The increase of clinical features of tremor and white blood cell in CSF could be used as diagnosis index of severe EV71.

  14. Roles of Stat3 and ERK in G-CSF signaling.

    PubMed

    Kamezaki, Kenjirou; Shimoda, Kazuya; Numata, Akihiko; Haro, Takashi; Kakumitsu, Haruko; Yoshie, Masumi; Yamamoto, Masahiro; Takeda, Kiyoshi; Matsuda, Tadashi; Akira, Shizuo; Ogawa, Katsuhiro; Harada, Mine

    2005-02-01

    G-CSF specifically stimulates the proliferation and differentiation of cells that are committed to the neutrophil-granulocyte lineage. Although Stat3 was thought to be essential for the transduction of G-CSF-induced cell proliferation and differentiation signals, mice deficient for Stat3 in hematopoietic cells show neutrocytosis and infiltration of cells into the digestive tract. The number of progenitor cells in the neutrophil lineage is not changed, and G-CSF-induced proliferation of progenitor cells and prolonged neutrophil survival were observed in Stat3-deficient mice. In hematopoietic cells from Stat3-deficient mice, trace levels of SOCS3, a negative regulator of granulopoiesis, were observed, and SOCS3 expression was not induced by G-CSF stimulation. Stat3-null bone marrow cells displayed a significant activation of extra-cellular regulated kinase 1 (ERK1)/ERK2 under basal conditions, and the activation of ERK was enhanced and sustained by G-CSF stimulation. Furthermore, the augmented proliferation of Stat3-deficient bone marrow cells in response to G-CSF was dramatically decreased by addition of a MEK1 inhibitor. These results indicate that Stat3 functions as a negative regulator of G-CSF signaling by inducing SOCS3 expression and that ERK activation is the major factor responsible for inducing the proliferation of hematopoietic cells in response to G-CSF.

  15. Cryptococcal meningitis in HIV-infected patients at Chiang Mai University Hospital: a retrospective study.

    PubMed

    Chaiwarith, Romanee; Vongsanim, Surachet; Supparatpinyo, Khuanchai

    2014-05-01

    Cryptococcal meningitis (CM) is a common central nervous system infection in HIV-infected patients. This study aimed to determine treatment outcomes among HIV-infected patients who had cryptococcal meningitis and to determine predictors of death. We conducted a retrospective cohort study among HIV-infected patients receiving care at Chiang Mai University Hospital from January 1, 2005 to December 31, 2010. We studied 79 patients; 45 (57.0%) were male and the mean age was 35.1 +/- 7.2 years. Eleven patients (13.9%) had previous opportunistic infection. The most common presenting symptoms were headache (63 patients, 79.8%), fever (49 patients, 62.0%), and altered consciousness (21 patients, 26.6%). The median CD4+ cell count was 20 cells/mm3 [Interquartile range (IQR) 10, 53]. The in-hospital, 90-day, and 1-year mortality rates were 24.1%, 32.4%, and 52.2%, respectively. The CM attributable in-hospital, 90-day and 1-year mortality rates were 13.9%, 20.3%, and 23.2%, respectively. Predictors associated with a 1-year mortality were a high cerebrospinal (CSF) cryptococcal antigen titer (> 1:10,000) [Odds Ratio (OR) =7.08, 95% confidence interval (CI): 1.62-31.00, p = 0.009], and altered consciousness at presentation (OR = 5.27; 95% CI: 1.16-24.05; p = 0.032). Cryptococcal meningitis is an important cause of death in HIV-infected patients. HIV-infected patients with a low CD4+ cell count, a headache, fever and altered consciousness should be investigated for CM and those with a high CSF cryptococcal antigen titer are at high risk for mortality.

  16. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  17. Biosimilar G-CSF Based Mobilization of Peripheral Blood Hematopoietic Stem Cells for Autologous and Allogeneic Stem Cell Transplantation

    PubMed Central

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen®) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF. PMID:24505236

  18. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation.

    PubMed

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.

  19. Low doses of GM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4 g/m2) enhance the peripheral blood progenitor cell harvest: results of two randomized studies including 120 patients

    PubMed Central

    Quittet, Philippe; Ceballos, Patrice; Lopez, Ernesto; Lu, Zhao-Yang; Latry, Pascal; Becht, Catherine; Legouffe, Eric; Fegueux, Nathalie; Exbrayat, Carole; Pouessel, Damien; Rouillé, Valérie; Daures, Jean-Pierre; Klein, Bernard; Rossi, Jean-François

    2006-01-01

    The use of a combination of G-CSF and GM-CSF to G-CSF alone, after cyclophosphamide (4g/m2) was compared in 2 randomized phase III studies, including 120 patients. In study A, 60 patients received 5 × 2 μg/kg/day of G-CSF and GM-CSF compared to 5 μg/kg/day of G-CSF. In study B, 60 patients received 2.5 × 2 μg/kg/day G-CSF and GM-CSF compared to G-CSF alone (5 μg/kg/day). With the aim to collect at least 5 × 106/kg CD34 cells in a maximum of 3 large volume leukapherisis (LK), 123 LK were performed in study A, showing significant higher number of patients reaching 10 × 106/kg CD34 cells (21/29 in G+GM-CSF arm vs 11/27 in G-CSF arm, P= .00006). In study B, 109 LK were performed, with similar results (10/27 vs 15/26, P= .003). In both the study, the total harvest of CD34 cells/kg was 2-fold higher in G-CSF plus GM-CSF group (18.3 × 106 in study A and 15.85 × 106 in study B) than in G-CSF group (9 × 106 in study A and 8.1 × 106 in study B), a difference particularly seen in multiple myeloma, with no significant difference in terms of mobilized myeloma cells between G-CSF and GM-CSF groups. PMID:16883311

  20. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis.

    PubMed

    Al-Mossawi, M H; Chen, L; Fang, H; Ridley, A; de Wit, J; Yager, N; Hammitzsch, A; Pulyakhina, I; Fairfax, B P; Simone, D; Yi, Yao; Bandyopadhyay, S; Doig, K; Gundle, R; Kendrick, B; Powrie, F; Knight, J C; Bowness, P

    2017-11-15

    Spondyloarthritis encompasses a group of common inflammatory diseases thought to be driven by IL-17A-secreting type-17 lymphocytes. Here we show increased numbers of GM-CSF-producing CD4 and CD8 lymphocytes in the blood and joints of patients with spondyloarthritis, and increased numbers of IL-17A + GM-CSF + double-producing CD4, CD8, γδ and NK cells. GM-CSF production in CD4 T cells occurs both independently and in combination with classical Th1 and Th17 cytokines. Type 3 innate lymphoid cells producing predominantly GM-CSF are expanded in synovial tissues from patients with spondyloarthritis. GM-CSF + CD4 + cells, isolated using a triple cytokine capture approach, have a specific transcriptional signature. Both GM-CSF + and IL-17A + GM-CSF + double-producing CD4 T cells express increased levels of GPR65, a proton-sensing receptor associated with spondyloarthritis in genome-wide association studies and pathogenicity in murine inflammatory disease models. Silencing GPR65 in primary CD4 T cells reduces GM-CSF production. GM-CSF and GPR65 may thus serve as targets for therapeutic intervention of spondyloarthritis.

  1. Chitosan solution enhances the immunoadjuvant properties of GM-CSF

    PubMed Central

    Zaharoff, David A.; Rogers, Connie J.; Hance, Kenneth W.; Schlom, Jeffrey; Greiner, John W.

    2008-01-01

    Sustained, local delivery of immunomodulatory cytokines is under investigation for its ability to enhance vaccine and anti-tumor responses both clinically and preclinically. This study evaluates the ability of chitosan, a biocompatible polysaccharide, to (1) control the dissemination of a cytokine, GM-CSF, and (2) enhance the immunoadjuvant properties of GM-CSF. While cytokines have previously been delivered in lipid-based adjuvants and other vehicles, these do not have the clinical safety profile or unique properties of chitosan. We found that chitosan solution maintained a measurable depot of recombinant GM-CSF (rGM-CSF) at a subcutaneous injection site for up to 9 days. In contrast, when delivered in a saline vehicle, rGM-CSF was undetectable in 12 to 24 hours. Furthermore, a single s.c. injection of 20μg rGM-CSF in chitosan solution (chitosan/rGM-CSF(20μg)) transiently expanded lymph nodes up to 4.6-fold and increased the number of MHC class II expressing cells and dendritic cells by 7.4-fold and 6.8-fold, respectively. These increases were significantly greater than those measured when rGM-CSF was administered in saline at the standard preclinical dose and schedule, i.e. 4 daily s.c. injections of 20μg. Furthermore, lymph node cells from mice injected with chitosan/rGM-CSF(20μg) induced greater allogeneic T cell proliferation, indicating enhanced antigen presenting capability, than lymph node cells from mice injected with rGM-CSF alone. Finally, in vaccination experiments, chitosan/rGM-CSF was superior to either chitosan or rGM-CSF alone in enhancing the induction of antigen-specific CD4+ proliferation, peptide-specific CD8+ pentamer staining and cytotoxic T cell lysis. Altogether, chitosan/rGM-CSF outperformed standard rGM-CSF administrations in dendritic cell recruitment, antigen presentation and vaccine enhancement. We conclude that chitosan solution is a promising delivery platform for the sustained, local delivery of rGM-CSF. PMID:18037196

  2. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    PubMed Central

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  3. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation

    PubMed Central

    Cioce, M; Canino, C; Goparaju, C; Yang, H; Carbone, M; Pass, H I

    2014-01-01

    Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention. PMID:24722292

  4. Cost Effectiveness of G:CSF in Chemotherapy and Transplant-related Neutropenia.

    PubMed

    Jacobs, P; Wood, L; Schall, R

    1998-01-01

    Sustained fever over 38°C is potentially lethal when neutrophil counts remain below 0.1 × 10(9)/L. To determine whether the addition of a haematopoietic stimulatory peptide to conventional supportive care and antibiotic management was cost-effective, 74 such episodes were analysed. Group I (5μg/kg G: CSF: n = 41); Group II (10 μg/kg: n = 19) and Group III (controls: n = 14): these were similar in respect of race, gender, age and body weight. The median days and range of neutrophil count below 0.1 × 10(9)/Lw as 6 (0-12), 7 (0-20) and 8 (0-20) and the corresponding figures for 0.5 × 10(9)/L were 8 (0-19), 8 (1-23) and 13.5 (3-30) days respectively, while the median hospital period was 26 (18-49), 30 (9-86) and 35 (13-44). Mean, standard deviation and range for bed costs in Group I was R9,528 (2125:6120-1660), the corresponding figures for Group II were Rll,453 (5570:3060-2924), and for Group III Rll,366 (2755: 4420-1496). The approximate fate of exchange is: Rl = US$5.87. When expenditure for growth factor was integrated these figures were approximately R26,071, R37,787 and R27,376. There were no advantages in 10 over 5 μg/kg G: CSF. More red cell transfusions were needed in Group III. The days requiring antimicrobial therapy were 14, 16 and 20 respectively. It is concluded from this study, carried out in reverse isolation at a University Teaching Hospital, that duration of neutropenic fever was significantly shortened on G: CSF but there was no benefit in using the higher dose. Additionally, at equivalent cost, there was a shorter period of hospitalisation thereby reducing risk of acquiring nosocomial infections. Finally, there was concurrently a decreased exposure to potentially nephrotoxic antibiotics. Accordingly, this regimen can be justified in the routine management of this category of patient.

  5. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  6. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.

    PubMed

    Wang, Rong; Feng, Wenli; Yang, Feifei; Yang, Xiao; Wang, Lina; Chen, Chong; Hu, Yuting; Ren, Qian; Zheng, Guoguang

    2018-02-01

    Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy. © 2017 Australasian Society for Immunology Inc.

  7. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice.

    PubMed

    Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A

    2009-07-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.

  8. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    PubMed Central

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  9. Mobilizing peripheral blood stem cells with high-dose G-CSF alone is as effective as with Dexa-BEAM plus G-CSF in lymphoma patients.

    PubMed

    Kröger, N; Zeller, W; Fehse, N; Hassan, H T; Krüger, W; Gutensohn, K; Lölliger, C; Zander, A R

    1998-09-01

    We compared retrospectively the efficacy of granulocyte colony stimulating factor (G-CSF) alone with chemotherapy plus G-CSF in mobilizing CD34-positive cells in patients with malignant lymphoma. 35 patients underwent peripheral blood stem cell (PBSC) collection following mobilization either with 24 microg/kg G-CSF for 4 consecutive days (n = 18) or Dexa-BEAM chemotherapy plus 5 microg/kg G-CSF (n = 17). High-dose G-CSF was well tolerated with only slight bone pain and/or myalgia. The Dexa-BEAM therapy required hospitalization with a median duration of 21 d. The median number of apheresis procedures in both groups was two (range two to four), resulting in a median of 5.3 and 5.1 x 10(6) CD34+ cells/kg. No patients in the G-CSF group, but one in the Dexa-BEAM group, failed to reach the target of collecting >2.0 x 10(6) CD34+ cells/kg. The number of CFU-GM (10.4 v 6.0 x 10(5)/kg) and of BFU-E (10.6 v 4.5 x 10(5)/kg; P = 0.04) was higher in the G-CSF group than in the Dexa-BEAM group. A subset analysis of CD34+ cells was performed in 16 patients showing a higher mean of Thy-1 (CD90w) coexpression in the G-CSF than in the Dexa-BEAM group (4.8 v 1.8%, P = 0.12). Additionally the percentage of CD34+/CD38- cells was higher in the G-CSF group (10.66% v 8.8%). However, these differences were not statistically significant. The median time to leucocyte and platelet engraftment after high-dose chemotherapy was slightly shorter in the G-CSF than in the Dexa-BEAM group (9 v 10 and 12 v 13.5 d, respectively). These results demonstrate that high-dose G-CSF is as effective as Dexa-BEAM plus G-CSF in mobilizing peripheral blood stem cells and produces prompt engraftment. The major advantages of G-CSF mobilization were the safe outpatient self-application and the fixed-day apheresis.

  10. CSF-1 Receptor Signaling in Myeloid Cells

    PubMed Central

    Stanley, E. Richard; Chitu, Violeta

    2014-01-01

    The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R. PMID:24890514

  11. A randomized case-controlled study of recombinant human granulocyte colony stimulating factor for the treatment of sepsis in preterm neutropenic infants.

    PubMed

    Aktaş, Doğukan; Demirel, Bilge; Gürsoy, Tuğba; Ovalı, Fahri

    2015-06-01

    To investigate the efficacy and safety of recombinant human granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor (rhG-CSF) to treat sepsis in neutropenic preterm infants. Fifty-six neutropenic preterm infants with suspected or culture-proven sepsis hospitalized in Zeynep Kamil Maternity and Children's Educational and Training Hospital, Kozyatağı/Istanbul, Turkey between January 2008 and January 2010 were enrolled. Patients were randomized either to receive rhG-CSF plus empirical antibiotics (Group I) or empirical antibiotics alone (Group II). Clinical features were recorded. Daily complete blood count was performed until neutropenia subsided. Data were analyzed using SPSS version 11.5. Thirty-three infants received rhG-CSF plus antibiotic treatment and 23 infants received antibiotic treatment. No drug-related adverse event was recorded. Absolute neutrophil count values were significantly higher on the 2(nd) study day and 3(rd) study day in Group I. Short-term mortality did not differ between the groups. Treatment with rhG-CSF resulted in a more rapid recovery of ANC in neutropenic preterm infants. However, no reduction in short-term mortality was documented. Copyright © 2014. Published by Elsevier B.V.

  12. Successful treatment with granulocyte-colony stimulating factor for ritodrine-induced neutropenia in a twin pregnancy.

    PubMed

    Wang, Chen-Yu; Lai, Yu-Ju; Hwang, Kwei-Shuai; Chen, Chi-Huang; Yu, Mu-Hsien; Chen, Huei-Tsung; Su, Her-Young

    2016-10-01

    Neutropenia developed after continuous intravenous infusion of ritodrine hydrochloride (Yutopar) for preterm uterine contractions in a twin pregnancy. We successfully returned the low neutrophil count to the normal range after discontinuation of infusion of ritodrine and treatment with granulocyte colony stimulating factor (G-CSF). A 34-year-old woman with twin pregnancy was treated with ritodrine for preterm uterine contractions at 27 weeks and 6 days gestation. Neutropenia developed after continuous intravenous infusion of ritodrine for about 4 weeks. We ceased the ritodrine infusion immediately and treated the neutropenia with G-CSF. A cesarean delivery was performed the day after cessation of the ritodrine infusion because of uncontrolled preterm labor. There were no adverse side effects or infectious complications in the mother or the newborns. The maternal neutrophil count recovered to the normal range 4 days after administration of G-CSF. Based on prior case reports and the clinical presentation of our case, G-CSF may be a useful treatment for pregnant women with ritodrine-induced neutropenia. However, more clinical studies are required to confirm the safety and efficacy of this treatment. Copyright © 2016. Published by Elsevier B.V.

  13. Cerebral Toxoplasmosis Mimicking Subacute Meningitis in HIV-Infected Patients; a Cohort Study from Indonesia

    PubMed Central

    Ganiem, A. Rizal; Dian, Sofiati; Indriati, Agnes; Chaidir, Lidya; Wisaksana, Rudi; Sturm, Patrick; Melchers, Willem; van der Ven, Andre; Parwati, Ida; van Crevel, Reinout

    2013-01-01

    Background HIV-associated subacute meningitis is mostly caused by tuberculosis or cryptococcosis, but often no etiology can be established. In the absence of CT or MRI of the brain, toxoplasmosis is generally not considered as part of the differential diagnosis. Methodology/Principal Findings We performed cerebrospinal fluid real time PCR and serological testing for Toxoplasma gondii in archived samples from a well-characterized cohort of 64 HIV-infected patients presenting with subacute meningitis in a referral hospital in Indonesia. Neuroradiology was only available for 6 patients. At time of presentation, patients mostly had newly diagnosed and advanced HIV infection (median CD4 count 22 cells/mL), with only 17.2% taking ART, and 9.4% PJP-prophylaxis. CSF PCR for T. Gondii was positive in 21 patients (32.8%). Circulating toxoplasma IgG was present in 77.2% of patients tested, including all in whom the PCR of CSF was positive for T. Gondii. Clinically, in the absence of neuroradiology, toxoplasmosis was difficult to distinguish from tuberculosis or cryptococcal meningitis, although CSF abnormalities were less pronounced. Mortality among patients with a positive CSF T. Gondii PCR was 81%, 2.16-fold higher (95% CI 1.04–4.47) compared to those with a negative PCR. Conclusions/Significance Toxoplasmosis should be considered in HIV-infected patients with clinically suspected subacute meningitis in settings where neuroradiology is not available. PMID:23326616

  14. Tau proteins in the cerebrospinal fluid of patients with subacute sclerosing panencephalitis.

    PubMed

    Yuksel, Deniz; Yilmaz, Deniz; Uyar, Neval Y; Senbil, Nesrin; Gurer, Yavuz; Anlar, Banu

    2010-06-01

    Neurodegenerative diseases characterized by cytoskeletal deformation and neurofibrillary tangles are associated with altered levels of tau and related proteins in cerebrospinal fluid (CSF). Neuronal or glial fibrillary tangles have been shown in 20% of subacute sclerosing panencephalitis (SSPE) patients. We therefore investigated CSF samples from 60 newly diagnosed SSPE and 31 neurological control patients for total tau (t-tau), phosphorylated tau (p-tau), and S100-B levels by ELISA. There was no difference between patient and control groups in t-tau and S100-B levels. p-Tau was lower in the SSPE group (p=0.009). Past history of measles infection, measles immunization status, latent period between measles and onset of SSPE, duration of symptoms, frequency of myoclonia, neurological deficit index, stage and progression rate of the disease, CSF glucose levels and cell counts, CSF and serum measles IgG titer, distribution of lesions on brain magnetic resonance imaging were not related to t-tau, p-tau and S100-B levels. Mental status and age were negatively correlated with t-tau, and male gender and EEG abnormalities were associated with higher t-tau levels. The levels of tau proteins in our patients suggest there is no, or only scarce and immature, neurofibrillary tangle formation in SSPE. Autopsy studies showing neurofibrillary tangles might have examined older patients with longer disease and more parenchymal involvement. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. G-CSF and GM-CSF in Neutropenia

    PubMed Central

    Mehta, Hrishikesh M.; Malandra, Michael; Corey, Seth J.

    2015-01-01

    Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte/Macrophage Colony Stimulating Factor (GM-CSF) are used widely to promote the production of granulocytes or antigen presenting cells (APC). The Food and Drug Administration approved G-CSF (filgrastim) for the treatment of congenital and acquired neutropenias and for mobilization of peripheral hematopoietic progenitor cells for stem cell transplantation. A polyethylene glycol modified (PEGylated) form of G-CSF is approved for the treatment of neutropenias. Clinically significant neutropenia, rendering an individual immunocompromised, occurs when their number is less than 1500/µl. Current guidelines recommend their use when the risk of febrile neutropenia is greater than 20%. GM-CSF (sargramostim) is approved for neutropenia associated with stem cell transplantation. Because of its promotion of APC function, GM-CSF is being evaluated as an immunostimulatory adjuvant in a number of clinical trials. More than 20 million persons have benefited worldwide, and more than $5 billion sales occur annually in the United States. PMID:26254266

  16. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    PubMed Central

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  17. Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy

    PubMed Central

    Holmgaard, Rikke B.; Brachfeld, Alexandra; Gasmi, Billel; Jones, David R.; Mattar, Marissa; Doman, Thompson; Murphy, Mary; Schaer, David; Wolchok, Jedd D.; Merghoub, Taha

    2016-01-01

    ABSTRACT Colony stimulating factor-1 (CSF-1) is produced by a variety of cancers and recruits myeloid cells that suppress antitumor immunity, including myeloid-derived suppressor cells (MDSCs.) Here, we show that both CSF-1 and its receptor (CSF-1R) are frequently expressed in tumors from cancer patients, and that this expression correlates with tumor-infiltration of MDSCs. Furthermore, we demonstrate that these tumor-infiltrating MDSCs are highly immunosuppressive but can be reprogrammed toward an antitumor phenotype in vitro upon CSF-1/CSF-1R signaling blockade. Supporting these findings, we show that inhibition of CSF-1/CSF-1R signaling using an anti-CSF-1R antibody can regulate both the number and the function of MDSCs in murine tumors in vivo. We further find that treatment with anti-CSF-1R antibody induces antitumor T-cell responses and tumor regression in multiple tumor models when combined with CTLA-4 blockade therapy. However, this occurs only when administered after or concurrent with CTLA-4 blockade, indicating that timing of each therapeutic intervention is critical for optimal antitumor responses. Importantly, MDSCs present within murine tumors after CTLA-4 blockade showed increased expression of CSF-1R and were capable of suppressing T cell proliferation, and CSF-1/CSF-1R expression in the human tumors was not reduced after treatment with CTLA-4 blockade immunotherapy. Taken together, our findings suggest that CSF-1R-expressing MDSCs can be targeted to modulate the tumor microenvironment and that timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to checkpoint based immunotherapy. Significance: Infiltration by immunosuppressive myeloid cells contributes to tumor immune escape and can render patients resistant or less responsive to therapeutic intervention with checkpoint blocking antibodies. Our data demonstrate that blocking CSF-1/CSF-1R signaling using a monoclonal antibody directed to CSF-1R can regulate both the number and function of tumor-infiltrating immunosuppressive myeloid cells. In addition, our findings suggest that reprogramming myeloid responses may be a key in effectively enhancing cancer immunotherapy, offering several new potential combination therapies for future clinical testing. More importantly for clinical trial design, the timing of these interventions is critical to achieving improved tumor protection. PMID:27622016

  18. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  19. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  20. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    PubMed Central

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  1. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes

    PubMed Central

    2013-01-01

    Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus cell expansion of in vitro matured bovine COC. However, GM-CSF did not increase oocyte nuclear or cytoplasmic maturation rates, IGF-2 expression or subsequent embryonic development. PMID:23799974

  2. Timing and Predictors of Fever and Infection after Craniotomy for Epilepsy in Children

    PubMed Central

    Phung, Jennifer; Mathern, Gary W.; Krogstad, Paul

    2013-01-01

    Background Fevers and leukocytosis after pediatric craniotomy trigger diagnostic evaluation and antimicrobial therapy for possible brain infection. This study determined the incidence and predictors of infection in infants and children undergoing epilepsy neurosurgery. Methods We reviewed the postoperative course of 100 consecutive surgeries for pediatric epilepsy, comparing those with and without infections for clinical variables and daily maximum temperatures, blood WBC and differential, and cerebrospinal fluid (CSF) studies. Results Infections were the most common adverse events following these surgeries. Four patients (4%) had CSF infections and 12 had non-CSF infections (including one with distinct CSF and bloodstream infections). Most (88%) infections occurred before postoperative day 12 and were associated with larger resections involving ventriculostomies. Fevers (T ≥38.5°C) were observed in the first 12-days postsurgery in 43 % of cases, and were associated with patients undergoing hemispherectomy and multilobar resections. Fevers in the first three days postsurgery identified infections with 73% sensitivity, 69% specificity, and 70% accuracy; two (13%) patients with infections never developed fevers. Peripheral blood WBC >15,000 was found in 49% of patients and 5 cases of infections never had elevated WBC counts. WBC differential, CSF protein, RBC, WBC, and RBC/WBC ratios were poor predictors of infections. Longer hospital stays were associated with infections and hemispherectomy and multilobar resections. Patients with and without infections were equally likely to be seizure free after surgery. Conclusions Fevers and elevated blood WBC counts were common after pediatric epilepsy surgery, but CSF infections were uncommon. Positive cultures and other confirmatory microbiologic tests should drive changes in antimicrobial therapy after surgery. PMID:23348815

  3. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    PubMed

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Allogeneic peripheral blood stem cell transplantation in patients with haematological malignancies.

    PubMed

    Shamsi, T S; Irfan, M; Ansari, S H; Farzana, T; Khalid, M Z; Panjwani, V K; Baig, M I; Shakoor, N

    2004-09-01

    To report the initial data on allogeneic peripheral blood stem cell transplantation for haematological malignancies in Pakistan. A single centre descriptive study. Bismillah Taqee Institute of Health Sciences and Blood Diseases Centre from September 1999 to June 2004. Patients with haematological malignancies were included who had received allogeneic PBSC transplantation of Filgrastim (rhG-CSF) mobilized peripheral blood stem cells from HLA-identical siblings (except one 5/6 antigen sibling) with Busulphan and Cyclophosphamide standard conditioning therapy in all patients. No patient received antibiotics for gut decontamination. Empirical antibiotics included Ceftriaxone and Amikacin for febrile neutropenia, oral Itraconazole for antifungal prophylaxis while oral acyclovir was used for antiviral prophylaxis. All donors and recipients were CMV IgG positive Cyclosporin A / Methotrexate were given for graft versus host disease (GvHD) prophylaxis. Stem cells were harvested using Haemonetics MCS+ cell separator. All patients received G-CSF starting from day +4 until their neutrophil count rose to normal. There were 21 patients with age range of 8-38 years and male to female ratio of 2:1. Engraftment was achieved in all patients; median time to absolute neutrophil count of > 0.5 x 10(9)/l was 10 days (range 8 - 12 days) and platelet count of > 20 x 10(9)/l was 14 days (12-17 days). Acute graft versus host disease ( aGvHD) was seen in 7 patients; one patient had grade IV skin and hepatic GvHD; another patient had grade III gut GvHD, grade II GvHD was seen in 3 patients while grade I skin aGvHD was seen in 2 patients. Median hospital stay was 34 days. Treatment related mortality was seen in 3 patients (18%). Chronic GvHD was seen in 5 patients. Four more patients died during the follow-up period. Malaria was seen in 2 while tuberculosis developed in one case. Relapse was seen in 2 patients. The estimated probability of survival at one hundred day, at one year and five years was 82, 47 and 40 percent respectively. Haematopoietic stem cell transplant programme can be developed in a developed country setting. Post transplant complications are similar to what have been reported in the developed countries. In endemic areas malaria could prove to be fatal if not recognised and treated early.

  5. [Influence of granulocyte colony stimulating factor on distribution of bone marrow stem cells and its role in protecting brain in rats with cerebral ischemia].

    PubMed

    Li, Jian-sheng; Liu, Jing-xia; Liu, Ke; Wang, Ding-chao; Ren, Wei-hong; Zhang, Xin-feng; Tian, Yu-shou

    2011-06-01

    To explore the influence of recombination granulocyte colony stimulating factor (rG-CSF) on mobilization and distribution of bone marrow stem cells (BMSCs) in blood and brain tissue, and its role in protecting brain in rats with cerebral ischemia. One hundred and six Sprague-Dawley (SD) rats were divided into sham-operated group (n=10),model group (n=48), rG-CSF group (n=48) according to the method of random digital table, and rats in model and rG-CSF groups were divided into four subgroups: i.e. 2, 3, 7 and 14 days subgroups, with 12 rats in each subgroup. Middle cerebral artery occlusion (MCAO) model was reproduced with nylon thread. In rats of rG-CSF group rG-CSF (10 μg/kg) was administered by subcutaneous injection 3 days before and 2 days after operation respectively, once a day. Rats in sham-operated and model groups were administered with normal saline in the same volume, once a day. At the corresponding time after operation, general neural function score (GNFS) of rats was measured. Blood was collected through abdominal aorta, then white blood cell (WBC) and CD34+ cells in peripheral blood were counted. Brain pathologic changes were observed, and expression of CD34+ cells in rats brain tissue was determined by using immunohistochemical method. (1) GNFS was lower obviously in 2-day model group compared with that in sham-operated group, and then increased gradually. At 7 days and 14 days after operation, GNFS in rG-CSF group was higher significantly than that in model group (7 days: 11.86±0.69 vs. 10.53±0.76, 14 days: 13.38±0.52 vs. 12.38±0.52, both P<0.01). (2) WBC and CD34+ cells in peripheral blood in model group increased obviously, with the highest level appeared at 3 days and lowered at 7 days and 14 days. Increase of WBC and CD34+ cells in rats of rG-CSF group was more obvious than that of model group at each time point except CD34+ in 14 days group [WBC (×10(9)/L) 2 days: 11.75±1.76 vs. 8.07±1.27, 3 days: 13.07±1.70 vs. 10.88±1.78, 7 days: 8.63±1.36 vs. 5.58±1.57, 14 days: 6.98±0.98 vs. 4.87±0.92; CD34+ (cells/μl) 2 days: 8.83±2.14 vs. 3.17±0.75, 3 days: 13.50±1.87 vs. 5.00±1.55, 7 days: 5.33±1.21 vs. 2.33±1.21, P<0.05 or P<0.01]. (3) Expression of CD34+ cells in the brain of rats in 2-day model group increased significantly, and the highest level appeared at 7 days and decreased at 14 days. Absorbance (A) value of CD34+ cells expression in rat brains of each rG-CSF group was more significant than that in model group (2 days: 43.21±4.41 vs. 22.04±2.95, 3 days: 45.79±1.76 vs. 25.69±2.44, 7 days: 52.09±2.86 vs. 33.04±2.62, 14 days: 29.73±1.99 vs. 16.91±2.95, all P<0.01). (4) The signs of injury to brain in pathological examination were less obvious in 14 days rG-CSF group. BMSCs could be induced to enter peripheral blood and "home" to brain tissue after cerebral ischemia. It was showed that BMSCs increased in number at first and then decreased in peripheral blood and brain, the peak number was found on 3rd day in peripheral blood and 7th day in brain. Mobilization with rG-CSF could increase the number of BMSCs in peripheral blood and brain tissue. The effect of mobilization of BMSCs on protecting brain was significant after cerebral ischemia, and effect appeared to be more pronounced with prolongation of mobilization.

  6. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  7. Macrophage Colony-Stimulating Factor Improves Cardiac Function after Ischemic Injury by Inducing Vascular Endothelial Growth Factor Production and Survival of Cardiomyocytes

    PubMed Central

    Okazaki, Tatsuma; Ebihara, Satoru; Asada, Masanori; Yamanda, Shinsuke; Saijo, Yoshifumi; Shiraishi, Yasuyuki; Ebihara, Takae; Niu, Kaijun; Mei, He; Arai, Hiroyuki; Yambe, Tomoyuki

    2007-01-01

    Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H2O2-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease. PMID:17717142

  8. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner.

    PubMed

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF + CD4 + T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF + subsets of human CD4 + T cells. These results are important for understanding of autoimmune disease and therapeutic considerations.

  9. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation

    PubMed Central

    Sarrazin, Sandrine; Redelberger, David

    2016-01-01

    Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus. M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation. PMID:27811055

  10. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto)reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE.

  11. Upfront plerixafor plus G-CSF versus cyclophosphamide plus G-CSF for stem cell mobilization in multiple myeloma: efficacy and cost analysis study.

    PubMed

    Afifi, S; Adel, N G; Devlin, S; Duck, E; Vanak, J; Landau, H; Chung, D J; Lendvai, N; Lesokhin, A; Korde, N; Reich, L; Landgren, O; Giralt, S; Hassoun, H

    2016-04-01

    Cyclophosphamide plus G-CSF (C+G-CSF) is one of the most widely used stem cell (SC) mobilization regimens for patients with multiple myeloma (MM). Plerixafor plus G-CSF (P+G-CSF) has demonstrated superior SC mobilization efficacy when compared with G-CSF alone and has been shown to rescue patients who fail mobilization with G-CSF or C+G-CSF. Despite the proven efficacy of P+G-CSF in upfront SC mobilization, its use has been limited, mostly due to concerns of high price of the drug. However, a comprehensive comparison of the efficacy and cost effectiveness of SC mobilization using C+G-CSF versus P+G-CSF is not available. In this study, we compared 111 patients receiving C+G-CSF to 112 patients receiving P+G-CSF. The use of P+G-CSF was associated with a higher success rate of SC collection defined as ⩾5 × 10(6) CD34+ cells/kg (94 versus 83%, P=0.013) and less toxicities. Thirteen patients in the C+G-CSF arm were hospitalized owing to complications while none in the P+G-CSF group. C+G-CSF was associated with higher financial burden as assessed using institutional-specific costs and charges (P<0.001) as well as using Medicare reimbursement rates (P=0.27). Higher rate of hospitalization, increased need for salvage mobilization, and increased G-CSF use account for these differences.

  12. GM-CSF-Induced Regulatory T cells Selectively Inhibit Anti-Acetylcholine Receptor-Specific Immune Responses in Experimental Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.

    2011-01-01

    We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723

  13. [The therapeutic effect of HSV1-hGM-CSF combined with doxorubicin on the mouse breast cancer model].

    PubMed

    Zhuang, X F; Zhang, S R; Liu, B L; Wu, J L; Li, X Q; Gu, H G; Shu, Y

    2018-03-23

    Objective: To evaluate the oncolytic effect of herpes simplex virus type 1 which carried recombined human granulocyte-macrophage colony-stimulating factor (HSV1-hGM-CSF) on the mouse breast cancer cell line 4T1 and compare the anticancer effects of HSV1-hGM-CSF, doxorubicin alone or combination on the breast cancer in mice. Methods: We investigated the cytotoxic effect on 4T1 cells in vitro, the cell growth, cell apoptosis and cell cycle of 4T1 cells treated with oncolytic HSV1-hGM-CSF at different MOIs (0, 0.5, 1 and 2) and doxorubicin at different concentrations (0, 2, 4 and 8 μg/ml). The effects of oncolytic HSV1-hGM-CSF and doxorubicin on the tumor growth, survival time and their side effects on the mouse breast cancer model were observed. Results: Both oncolytic HSV1-hGM-CSF and doxorubicin significantly inhibited the proliferation of 4T1 cells in vitro . Doxorubicin induced the G(2)/M phase arrest of 4T1 cells, while the cytotoxicity of oncolytic HSV1-hGM-CSF was no cell cycle-dependent.At day 16 after treatment with doxorubicin and HSV1-hGM-CSF, the tumor volume of 4T1 tumor bearing mice were (144.40±27.68)mm(3,) (216.80±57.18)mm(3,) (246.10±21.90)mm(3,) (327.50±44.24)mm(3,) (213.30±32.31)mm(3) and (495.80±75.87)mm(3) in the groups of doxorubicin combined with high dose HSV1-hGM-CSF, doxorubicin combined with low dose HSV1-hGM-CSF, doxorubicin alone, high dose HSV1-hGM-CSF alone, low dose HSV1-hGM-CSF alone and control, respectively.Compared with the control group, both doxorubicin and HSV1-hGM-CSF treatment exhibited significant reduction of primary tumor volume in vivo ( P <0.001). The median survival times were 48, 50, 40, 42, 43 and 37 days in the six groups mentioned above, respectively. The median survival period of doxorubicin alone, high dose HSV1-hGM-CSF alone and low dose HSV1-hGM-CSF alone were significantly longer than that of control ( P <0.05). Conclusion: Synergistic effect of sequential treatment with doxorubicin and oncolytic HSV1-hGM-CSF is observed in 4T1 mouse breast cancer.

  14. Mobilization of hematopoietic stem cells with highest self-renewal by G-CSF precedes clonogenic cell mobilization peak.

    PubMed

    Winkler, Ingrid G; Wiercinska, Eliza; Barbier, Valerie; Nowlan, Bianca; Bonig, Halvard; Levesque, Jean-Pierre

    2016-04-01

    Harvest of granulocyte colony-stimulating factor (G-CSF)-mobilized hematopoietic stem cells (HSCs) begins at day 5 of G-CSF administration, when most donors have achieved maximal mobilization. This is based on surrogate markers for HSC mobilization, such as CD34(+) cells and colony-forming activity in blood. However, CD34(+) cells or colony-forming units in culture (CFU-C) are heterogeneous cell populations with hugely divergent long-term repopulation potential on transplantation. HSC behavior is influenced by the vascular bed in the vicinity of which they reside. We hypothesized that G-CSF may mobilize sequentially cells proximal and more distal to bone marrow venous sinuses where HSCs enter the blood. We addressed this question with functional serial transplantation assays using blood and bone marrow after specific time points of G-CSF treatment in mice. We found that in mice, blood collected after only 48 hours of G-CSF administration was as enriched in serially reconstituting HSCs as blood collected at 5 days of G-CSF treatment. Similarly, mobilized Lin(-)CD34(+) cells were relatively enriched in more primitive Lin(-)CD34(+)CD38(-) cells at day 2 of G-CSF treatment compared with later points in half of human donors tested (n = 6). This suggests that in both humans and mice, hematopoietic progenitor and stem cells do not mobilize uniformly according to their maturation stage, with most potent HSCs mobilizing as early as day 2 of G-CSF. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  15. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    PubMed Central

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  16. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  17. Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome

    PubMed Central

    TIMEUS, FABIO; CRESCENZIO, NICOLETTA; BALDASSARRE, GIUSEPPINA; DORIA, ALESSANDRA; VALLERO, STEFANO; FOGLIA, LUISELDA; PAGLIANO, SARA; ROSSI, CESARE; SILENGO, MARGHERITA CIRILLO; RAMENGHI, UGO; FAGIOLI, FRANCA; DI MONTEZEMOLO, LUCA CORDERO; FERRERO, GIOVANNI BATTISTA

    2013-01-01

    Noonan syndrome (NS) is an autosomal dominant disorder, characterized by short stature, multiple dysmorphisms and congenital heart defects. A myeloproliferative disorder (NS/MPD), resembling juvenile myelomonocytic leukemia (JMML), is occasionally diagnosed in infants with NS. In the present study, we performed a functional evaluation of the circulating hematopoietic progenitors in a series of NS, NS/MPD and JMML patients. The different functional patterns were compared with the aim to identify a possible NS subgroup worthy of stringent hematological follow-up for an increased risk of MPD development. We studied 27 NS and 5 JMML patients fulfilling EWOG-MDS criteria. The more frequent molecular defects observed in NS were mutations in the PTPN11 and SOS genes. The absolute count of monocytes, circulating CD34+ hematopoietic progenitors, their apoptotic rate and the number of circulating CFU-GMs cultured in the presence of decreasing concentrations or in the absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) were evaluated. All JMML patients showed monocytosis >1,000/μl. Ten out of the 27 NS patients showed monocytosis >1,000/μl, which included the 3 NS/MPD patients. In JMML patients, circulating CD34+ cells were significantly increased (median, 109.8/μl; range, 44–232) with a low rate of apoptosis (median, 2.1%; range, 0.4–12.1%), and circulating CFU-GMs were hyper-responsive to GM-CSF. NS/MPD patients showed the same flow cytometric pattern as the JMML patients (median, CD34+ cells/μl, 205.7; range, 58–1374; median apoptotic rate, 1.4%; range, 0.2–2.4%) and their circulating CFU-GMs were hyper-responsive to GM-CSF. These functional alterations appeared 10 months before the typical clinical manifestations in 1 NS/MPD patient. In NS, the CD34+ absolute cell count and circulating CFU-GMs showed a normal pattern (median CD34+ cells/μl, 4.9; range, 1.3–17.5), whereas the CD34+ cell apoptotic rate was significantly decreased in comparison with the controls (median, 8.6%; range, 0–27.7% vs. median, 17.6%; range, 2.8–49.6%), suggesting an increased CD34+ cell survival. The functional evaluation of circulating hematopoietic progenitors showed specific patterns in NS and NS/MPD. These tests are a reliable integrative tool that, together with clinical data and other hematological parameters, could help detect NS patients with a high risk for a myeloproliferative evolution. PMID:23756559

  18. ADAM17 limits the expression of CSF1R on murine hematopoietic progenitors

    PubMed Central

    Becker, Amy M.; Walcheck, Bruce; Bhattacharya, Deepta

    2014-01-01

    All-lymphoid progenitors (ALPs) yield few myeloid cells in vivo, but readily generate such cells in vitro. The basis for this difference remains unknown. We hypothesized that ALPs limit responsiveness to in vivo concentrations of myeloid-promoting cytokines by reducing expression of the corresponding receptors, potentially through post-transcriptional mechanisms. Consistent with such a mechanism, ALPs express higher levels of Csf1r transcripts than their upstream precursors, yet show limited cell surface protein expression of CSF1R. ALPs and other hematopoietic progenitors deficient in ADAM17, a metalloprotease that can cleave CSF1R, display elevated cell surface CSF1R expression. Adam17−/− ALPs, however, fail to yield myeloid cells upon transplantation into irradiated recipients. Moreover, Adam17−/− ALPs yield fewer macrophages in vitro than control ALPs at high concentrations of M-CSF. Mice with hematopoietic-specific deletion of Adam17 have grossly normal numbers of myeloid and lymphoid progenitors and mature cells in vivo. These data demonstrate that ADAM17 limits CSF1R protein expression on hematopoietic progenitors, but that compensatory mechanisms prevent elevated CSF1R levels from altering lymphoid progenitor potential. PMID:25308957

  19. The Effects of Hematopoietic Growth Factors on Neurite Outgrowth

    PubMed Central

    Su, Ye; Cui, Lili; Piao, Chunshu; Li, Bin; Zhao, Li-Ru

    2013-01-01

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity. PMID:24116056

  20. G-CSF for mobilizing transplanted bone marrow stem cells in rat model of Parkinson's disease.

    PubMed

    Safari, Manouchehr; Jafari, Behnaz; Zarbakhsh, Sam; Sameni, Hamidreza; Vafaei, Abbas Ali; Mohammadi, Nasrin Khan; Ghahari, Laya

    2016-12-01

    Granulocyte-colony stimulating factor (G-CSF) is used in clinical practice for the treatment of neutropenia and to stimulate generation of hematopoietic stem cells in bone marrow donors. In the present study, the ability of G-CSF in mobilizing exogenous bone marrow stem cells (BMSCs) from peripheral blood into the brain was tested. We for the first time injected a small amount of BMSCs through the tail vein. We choose 25 male Wistar rats (200-250 g) were lesioned by 6-OHDA injected into the left substantia nigra, pars compacta (SNpc). G-CSF (70 µg/kg/day) was given from the 7 th day after lesion for five days. The BMSCs (2×10 5 ) were injected through the dorsal tail vein on the 7 th day after lesion. The number of rotations was significantly lower in the stem cell therapy group than in the control group. In the third test in the received G-CSF and G-CSF+stem cells groups, animals displayed significant behavioral recovery compared with the control group ( P <0.05). There was a significant difference in the average of dopaminergic neurons in SNpc between the control group and G-CSF and G-CS+stem cells groups. We didn't detect any labeling stem cells in SNpc. G-CSF can't mobilize low amounts of exogenous BMSCs from the blood stream to injured SNpc. But G-CSF (70 µg/kg) is more neuroprotective than BMSCs (2×10 5 number[w1] of BMSCs). Results of our study suggest that G-CSF alone is more neuroprotective than BMSCs.

  1. iRhom2 regulates CSF1R cell surface expression and non-steady state myelopoiesis in mice.

    PubMed

    Qing, Xiaoping; Rogers, Lindsay; Mortha, Arthur; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W; Overall, Christopher M; Blobel, Carl P; Salmon, Jane E

    2016-12-01

    CSF1R (colony stimulating factor 1 receptor) is the main receptor for CSF1 and has crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by ADAM17 (A disintegrin and metalloprotease 17). Here, we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2-/- mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2-/- BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild-type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2-/- Lin - SCA-1 + c-Kit + (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. iRhom2 regulates cell surface expression of CSF1R and non-steady state myelopoiesis in mice

    PubMed Central

    Qing, Xiaoping; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D.; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W.; Overall, Christopher M.

    2016-01-01

    The colony stimulating factor 1 receptor (CSF1R) functions as the major receptor for macrophage colony stimulating factor (CSF1) with crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by A disintegrin and metalloprotease 17 (ADAM17). Here we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2−/− mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2−/− BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2−/− Lin−SCA-1+c-Kit+ (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. PMID:27601030

  3. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma.

    PubMed

    Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben

    2008-07-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.

  4. Stem Cell Mobilization with Cyclophosphamide Overcomes the Suppressive Effect of Lenalidomide Therapy on Stem Cell Collection in Multiple Myeloma

    PubMed Central

    Mark, Tomer; Stern, Jessica; Furst, Jessica R.; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N.; Harpel, John; Shore, Tsiporah; Schuster, Michael W.; Leonard, John P.; Christos, Paul J.; Coleman, Morton; Niesvizky, Ruben

    2013-01-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte- colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P<.0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide. PMID:18541199

  5. G-CSF plus preemptive plerixafor vs hyperfractionated CY plus G-CSF for autologous stem cell mobilization in multiple myeloma: effectiveness, safety and cost analysis.

    PubMed

    Antar, A; Otrock, Z K; Kharfan-Dabaja, M A; Ghaddara, H A; Kreidieh, N; Mahfouz, R; Bazarbachi, A

    2015-06-01

    The optimal stem cell mobilization regimen for patients with multiple myeloma (MM) remains undefined. We retrospectively compared our experience in hematopoietic cell mobilization in 83 MM patients using fractionated high-dose CY and G-CSF with G-CSF plus preemptive plerixafor. All patients in the CY group (n=56) received fractionated high-dose CY (5 g/m(2) divided into five doses of 1 g/m(2) every 3 h) with G-CSF. All patients in the plerixafor group (n=27) received G-CSF and plerixafor preemptively based on an established algorithm. Compared with plerixafor, CY use was associated with higher total CD34+ cell yield (7.5 × 10(6) vs 15.5 × 10(6) cells/kg, P=0.005). All patients in both groups yielded ⩾4 × 10(6) CD34+ cells/kg. Conversely, CY use was associated with high frequency of febrile neutropenia, blood and platelet transfusions need and hospitalizations. The average total cost of mobilization in Lebanon was slightly higher in the plerixafor group ($7886 vs $7536; P=0.16). Our data indicate robust stem cell mobilization in MM patients with either fractionated high-dose CY and G-CSF or G-CSF alone with preemptive plerixafor. The chemo-mobilization approach was associated with twofold stem cell yield, slightly lower cost but significantly increased toxicity.

  6. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner

    PubMed Central

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF+ CD4+ T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF+ subsets of human CD4+ T cells. These results are important for understanding of autoimmune disease and therapeutic considerations. PMID:28066414

  7. Efficient CsF interlayer for high and low bandgap polymer solar cell

    NASA Astrophysics Data System (ADS)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrakowski, Michał, E-mail: michal.dobrakowski@po

    The aim of the study was to investigate the influence of a short-term exposure to lead on the blood morphology and the levels of selected cytokines related to hematopoiesis in occupationally exposed workers. The study population included 37 males occupationally exposed to lead for 36 to 44 days. Their blood lead level raised from 10.7 ± 7.67 μg/dl at baseline to the level of 49.1 ± 14.1 μg/dl at the end of the study. The level of hemoglobin and values of MCH and MCHC were decreased due to a short-term exposure to lead by 2%, 2%, and 1%, respectively. Themore » counts of WBC, LYM, and MXD increased significantly by 5%, 7%, and 35%. Similarly, the count of PLT increased by 7%, while PDW, MPV, and P-LCR decreased by 6%, 3%, and 9%, respectively. The levels of IL-7, G-CSF, HGF, PDGF AB/BB, SCF, and PECAM-1, decreased significantly by 30%, 33%, 8%, 30%, 25%, and 20%, respectively. A short-term occupational exposure to lead results in a decreased hemoglobin level and increased counts of WBC and PLT. Changes in counts and proportions of different types of leukocytes and decreased values of PLT indices, such as PDW, MPV, and P-LCR, due to the subacute lead-exposure may be associated with lead-induced decreased levels of cytokines related to hematopoiesis, including SCF, G-CSF, IL-7, and PDGF. - Highlights: • Subacute exposure to lead results in a decreased hemoglobin level. • Subacute exposure to lead results in increased counts of WBC and PLT. • Subacute exposure to lead decreases the levels of SCF, G-CSF, IL-7, and PDGF.« less

  9. Efficacy of just-in-time plerixafor rescue for Hodgkin's lymphoma patients with poor peripheral blood stem cell mobilization.

    PubMed

    Yuan, Shan; Nademanee, Auayporn; Kaniewski, Mark; Palmer, Joycelynne; Shayani, Sepideh; Wang, Shirong

    2014-08-01

    Plerixafor is a Food and Drug Administration-approved agent for improving peripheral blood stem cell (PBSC) mobilization in filgrastim (granulocyte-colony-stimulating factor [G-CSF])-stimulated patients with multiple myeloma and non-Hodgkin's lymphoma. Limited information is available on its use in Hodgkin's lymphoma (HL) patients. We describe our experience with plerixafor as an immediate rescue agent in HL patients with poor PBSC mobilization. We retrospectively reviewed the collection data of 27 consecutive HL patients at our center in whom plerixafor was added to rescue a failing PBSC collection after G-CSF and chemotherapy (26) or G-CSF alone (1). Plerixafor was added in 11 patients due to peripheral blood (PB) CD34+ counts that persisted below the threshold (>10 × 10(6) /L) to initiate collection (median, 1.47 × 10(6) ; range 0 × 10(6) -6.28 × 10(6) /L) and in 16 patients due to low collection yields, who had a median yield of 0.33 × 10(6) (0.14 × 10(6) -0.65 × 10(6) ) CD34+ cells/kg on the last collection before plerixafor administration. After a median of 2 (range, 2-4) collections with plerixafor, the patients collected a median of 1.82 × 10(6) (0.52 × 10(6) -11.14 × 10(6) ) CD34+ cells/kg. The addition of plerixafor enabled 20 patients (74.1%) to reach the 2.0 × 10(6) CD34+ cells/kg minimum required for autologous stem cell transplantation (ASCT) during the same collection cycle. Subsequent remobilization in three patients with plerixafor enabled all three to reach this goal. Plerixafor can be used in HL patients with poor mobilization as a rescue agent and boosts mobilization sufficiently in most patients in the same collection attempt, thus not only permitting ASCT, but also avoiding remobilization and the associated costs, treatment delays, and patient inconvenience. © 2014 AABB.

  10. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  11. [Evaluation of the increasing serum lactate dehydrogenase caused by recombinant human granulocyte-colony stimulating factor].

    PubMed

    Sawa, Toshiyuki; Yoshida, Tsutomu; Ikoma, Tetsuroh; Toyoda, Miki; Ohno, Yasushi; Fujiwara, Hisayoshi

    2003-01-01

    Increasing serum lactate dehydrogenase (LDH) is often caused by granulocyte-colony stimulating factor (G-CSF) for leukopenia following chemotherapy in patients with lung cancer. To evaluate the increase in LDH, we investigated the significance of its elevation and LDH isozyme during chemotherapy supported by recombinant human G-CSF (rhG-CSF). To exclude effects of liver diseases and chemotherapy-induced liver dysfunction, only patients in whom laboratory findings concerning liver function were within normal range were entered in this study. If leukocyte or neutrophil counts were less than grade 3, subcutaneous injection of 50 micrograms/m2 of filgrastim was given daily until leukocyte counts increased to more than 10,000/mm3. Sixty patients with unresectable lung cancer were enrolled in this study and the LDH isozyme was evaluable in 54 patients. Increasing LDH was observed in 38 patients(70.4%), and LDH isozyme was measured in these 38 patients. Increases in granulocytes and LDH isozymes were found to have a positive correlation. LDH2, LDH3, LDH4 and LDH5 increased significantly after rhG-CSF administration, although LDH 1 did not increase. It was found that a rapid increase in leukocytes by rhG-CSF induced an increase in LDH, especially LDH 3.4. Considering the results of principal component analysis and the distribution ratio of LDH isozymes in neutrophils, it is thought that elevation of LDH is reflected in the rapid production and consumption of neutrophils.

  12. Dexamethasone and interleukin-1 potently synergize to stimulate the production of granulocyte colony-stimulating factor in differentiated THP-1 cells.

    PubMed

    Wang, Y; Zhang, J J; Lei, K Y; Pike, J W

    1997-10-29

    The human monocytic leukemic cell line, THP-1, which differentiates toward macrophages in response to phorbol 12-myristate 13-acetate (PMA) was investigated for its ability to produce granulocyte colony-stimulating factor (G-CSF). G-CSF protein was neither produced during PMA-induced differentiation nor in response to dexamethasone (Dex) alone. However, when combined, PMA and Dex synergistically stimulated THP-1 cells to produce G-CSF. The synergistic interaction between PMA and Dex on G-CSF production appeared to be mediated through the production of interleukin-1 (IL-1) since neutralization of IL-1 activity completely inhibited G-CSF production. Further experiments demonstrated that in THP-1 cells pretreated with PMA, Dex potently synergized with IL-1 to stimulate G-CSF production.

  13. What is the role of biosimilar G-CSF agents in hematopoietic stem cell mobilization at present?

    PubMed

    Korkmaz, Serdal; Altuntas, Fevzi

    2017-12-01

    Mobilization of hematopoietic stem cells, which has largely replaced bone marrow harvesting as a source of hematopoietic stem cells, using recombinant agents such as filgrastim or lenograstim has become a standard procedure in both patients and healthy donors prior to peripheral blood stem cell collection for autologous and allogeneic stem cell transplantation. Published literature data suggest that mobilization with recombinant granulocyte-colony stimulating factor (G-CSF) is safe and mobilization outcomes are satisfactory. In recent years, besides G-CSF originators, biosimilar G-CSF agents have been approved by the regulatory agencies for the same indications. Current data showed that by using the biosimilar G-CSF, similar results regarding safety and efficacy of hematopoietic stem cell mobilization may be achieved compared to the originator G-CSF. Although the issues such as the similarity to a licenced biological medicine, differences in manufacturing processes, the potential to cause immunogenicity, extrapolation and interchangeability of these biosimilar products are still being discussed by the scientific area, however, more experience with these agents now exists in approved endications and there seems to be no reason to expect significant differences between biosimilar G-CSF and originator G-CSF regarding their efficacy and safety in both patients and healthy donors. Also, the significant cost savings of biosimilars in real life setting may enhance the use of these agents in the future. Nonetheless, the collection of long-term follow-up data is mandatory for both patients and healthy donors, and multicentre randomized clinical trials that directly compare biosimilar G-CSF with the originator G-CSF are needed in order to allow the transplant community to make informed decisions regarding the choice of G-CSF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages.

    PubMed

    De Nichilo, M O; Burns, G F

    1993-03-15

    The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.

  15. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    PubMed

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. More than a drainage fluid: the role of CSF in signaling in the brain and other effects on brain tissue.

    PubMed

    Illes, Sebastian

    2017-01-01

    Current progress in neuroscience demonstrates that the brain is not an isolated organ and is influenced by the systemic environment and extracerebral processes within the body. In view of this new concept, blood and cerebrospinal fluid (CSF) are important body fluids linking extracerebral and intracerebral processes. For decades, substantial evidence has been accumulated indicating that CSF modulates brain states and influences behavior as well as cognition. This chapter provides an overview of how CSF directly modulates the function of different types of brain cells, such as neurons, neural stem cells, and CSF-contacting cells. Alterations in CSF content occur in most pathologic central nervous system (CNS) conditions. In a classic view, the function of CSF is to drain waste products and detrimental factors derived from diseased brain parenchyma. This chapter presents examples for how intra- and extracerebral pathologic processes lead to alterations in the CSF content. Current knowledge about how pathologically altered CSF influences the functionality of brain cells will be presented. Thereby, it becomes evident that CSF has more than a drainage function and has a causal role for the etiology and pathogenesis of different CNS diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Epithelial GM-CSF induction by Candida glabrata.

    PubMed

    Li, L; Dongari-Bagtzoglou, A

    2009-08-01

    The main cytokine induced by the interaction of oral epithelial cells with C. glabrata is granulocyte monocyte colony-stimulating factor (GM-CSF); however, the mechanisms regulating this response are unknown. Based on previously published information on the interactions of C. albicans with oral epithelial cells, we hypothesized that interaction with viable C. glabrata triggers GM-CSF synthesis via NF-kappaB activation. We found that C. glabrata-induced GM-CSF synthesis was adhesion-dependent, enhanced by endocytosis, and required fungal viability. NF-kappaB activation was noted during interaction of epithelial cells with C. glabrata, and pre-treatment with an NF-kappaB inhibitor partly inhibited GM-CSF synthesis. Blocking TLR4 with anti-TLR4 antibody did not inhibit GM-CSF production. In contrast, an anti-CDw17 antibody triggered significant inhibition of NF-kappaB activation and GM-CSF synthesis. beta-glucans did not stimulate GM-CSF synthesis, suggesting that the CDw17/NF-kappaB/GM-CSF pathway may be beta-glucan-independent. This study provides new insights into the mechanism of GM-CSF induction by C. glabrata.

  18. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin.

    PubMed

    Yu, Rong; Jin, Hao; Jin, Congcong; Huang, Xuefeng; Lin, Jinju; Teng, Yili

    2018-03-01

    Ovarian cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely used in locally advanced ovarian cancer patients. Acquired or de novo cisplatin resistance remains the barrier to patient survival, and the mechanisms of cisplatin resistance are still not well understood. In the current study, we found that colony-stimulating-factor-1 receptor (CSF-1R) was upregulated in cisplatin-resistant SK-OV-3 and CaoV-3 cells. Colony-stimulating-factor-1 receptor knockdown suppressed proliferation and enhanced apoptosis in cisplatin-resistant SK-OV-3 and CaoV-3 cells. However, CSF-1R overexpression had inverse effects. While parental SK-OV-3 and CaoV-3 cells were more resistant to cisplatin after CSF-1R overexpression, CSF-1R knockdown in SK-OV-3 and CaoV-3 cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that CSF-1R significantly promoted active AKT and ERK1/2 signalling pathways in cisplatin-resistant cells. Furthermore, a combination of cisplatin and CSF-1R inhibitor effectively inhibited tumour growth in xenografts. Taken together, our results provide the first evidence that CSF-1R inhibition can sensitize cisplatin-refractory ovarian cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli.

    PubMed

    Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza

    2008-12-01

    The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.

  20. Prospective randomized comparison of morning versus night daily single subcutaneous administration of granulocyte-macrophage-colony stimulating factor in patients with soft tissue or bone sarcoma.

    PubMed

    Dinçol, D; Samur, M; Pamir, A; Sencan, O; Akbulut, H; Yalçin, B; Onur, H; Demirkazik, A; Senler, F C; Içli, F

    2000-05-01

    Hematopoietic growth factors (HGFs) have been used to reduce the neutropenic complications of cytotoxic chemotherapy so that higher doses may be given. The authors have previously shown that endogenous serum granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF) levels at night (p.m.) were significantly higher than those in the morning (a.m.). Twenty-four patients with soft tissue or bone sarcoma who were treated with high dose ifosfamide-based chemotherapy were enrolled in this study. Patients were randomized to either a.m. or p.m. treatment. GM-CSF was administered at a dose of 5 microg/kg/day at 10 a.m. or 10 p.m., beginning 36-48 hours after the last chemotherapy dose. GM-CSF therapy was continued until the neutrophil count exceeded 1,000/mm3 for 2 consecutive days. Leukocyte, neutrophil, monocyte, and platelet counts were measured immediately before GM-CSF administration and exactly 12 hours after the first dose of GM-CSF, and every 24 hours until 3 days after the cessation of GM-CSF. The mean duration of Grade 3-4 neutropenia was 5.3 +/- 0.4 days for the a.m. treatment arm and 6.5 +/- 0.3 days for the p.m. treatment arm (P = 0.017). Although the duration of neutropenia in the a.m. arm was significantly shorter than in the p.m. arm, there were no differences related to the number of febrile neutropenic episodes or the duration of antibiotic administration. Also, there were no differences in the side effects observed in the a.m. and p.m. arms. The finding of 1.2 days' difference in the duration of Grade 3-4 neutropenia warrants further study of chronotherapy with HGFs.

  1. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Intensive chemotherapy plus recombinant human granulocyte-colony stimulating factor support for distant metastatic nasopharyngeal carcinoma. A preliminary report.

    PubMed

    Wang, C H; Wang, H M; Chen, J S; Chang, W J; Lai, G M

    1997-01-01

    Nasopharyngeal carcinoma (NPC) has been shown to be highly responsive to chemotherapy. The major limiting toxicity was myelotoxicity. Recently, the role of granulocyte colony-stimulating factor (G-CSF) in reducing chemotherapy-induced neutropenic sepsis has been well established. In this study, we tested whether recombinant human G-CSF (rhG-CSF) could effectively support the bone marrow function in both previously untreated and pretreated metastatic NPC patients receiving intensive chemotherapy. Twelve patients with distant metastatic disease, 5 newly diagnosed (group A) and 7 pretreated patients (group B), were enrolled to receive BEC (bleomycin, epirubicin and cisplatin), followed by rhG-CSF support (50 microg/m2 s.c. daily for 10 days) every 4 weeks for two cycles. Four patients in group A completed the treatment as scheduled while only 2 patients in group B did. After the first treatment cycle, 6 patients (50%) had grade III-IV myelosuppression. Five of the patients were from group B. The mean values of the white cell count nadir were 2,680 (range 1,200-3,700) in group A and 1,343 (range 400-2,900) in group B (p = 0.0386). Neutropenia-associated fever occurred in 7 patients, 6 of whom had received previous treatment. There were 2 deaths due to toxicity, and both patients had liver metastases within 6 months following radiation. After 24 months of follow-up, only 1 patient is still alive. Our preliminary results suggest that in previously treated metastatic NPC patients, bone marrow suppression is still the major limiting toxic side effect of aggressive chemotherapy, especially for those patients with liver recurrences within 6 months after irradiation and despite rhG-CSF support.

  3. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting.

    PubMed

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile; Bamford, Colleen

    2017-01-01

    Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation.

  4. A sequential erythropoietin and GM-CSF schedule offers clinical benefits in the treatment of anaemia in myelodysplastic syndromes.

    PubMed

    Bernell, P; Stenke, L; Wallvik, J; Hippe, E; Hast, R

    1996-08-01

    In order to reduce anaemia in patients with myelodysplastic syndromes (MDS) a stepwise treatment protocol including erythropoietin (EP) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was designed. Thirty-seven MDS patients (stages I-III) with symptomatic anaemia were first given EPO 10,000 U s.c. 3 times weekly for 6 weeks. Those not responding, i.e. increased their haemoglobin levels > 15 g/l, proceeded into the second phase of the study where GM-CSF (200 micrograms/d. s.c. on weeks 1-6) was combined with EPO (10,000 U s.c. 3 times weekly on weeks 5-14). Following the initial EPO treatment phase, 14 of the 37 patients (38%) responded with increased haemoglobin levels. Responders were significantly different from non-responders in that their pre-treatment values of s-EPO, s-LDH and bone marrow blast cell counts were lower, their baseline haemoglobin levels higher and their transfusion dependency less pronounced. Eighteen of the 23 non-responders proceeded into the second phase, 13 of those were evaluable having completed the entire schedule. Three of the 13 initially EPO resistant patients (23%) responded to the GM-CSF/EPO combination with increased haemoglobin levels, suggesting a positive synergy between the two cytokines. Thus, the overall response rate to the present protocol was 46% (17 of 37 cases), but only a limited subset of the patients did clearly benefit from the combined GM-CSF/EPO administration. Therefore, we believe this step-wise approach to multiple growth factor treatment in MDS, starting with EPO alone and reserving the combination for refractory cases, has considerable advantages, taking into account both medical and socio-economical aspects.

  5. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    PubMed Central

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  6. Oral ezatiostat HCl (Telintra®, TLK199) and Idiopathic Chronic Neutropenia (ICN): a case report of complete response of a patient with G-CSF resistant ICN following treatment with ezatiostat, a glutathione S-transferase P1-1 (GSTP1-1) inhibitor

    PubMed Central

    2011-01-01

    Idiopathic chronic neutropenia (ICN) describes a heterogeneous group of hematologic diseases characterized by low circulating neutrophil levels often associated with recurrent fevers, chronic mucosal inflammation, and severe systemic infections. The severity and risk of complications, including serious infections, are inversely proportional to the absolute neutrophil count (ANC), with the greatest problems occurring in patients with an ANC of less than 0.5 × 109/L. This case report describes a 64-year-old female with longstanding rheumatoid arthritis who subsequently developed ICN with frequent episodes of sepsis requiring hospitalization and prolonged courses of antibiotics over a 4-year period. She was treated with granulocyte colony stimulating factors (G-CSF) but had a delayed, highly variable, and volatile response. She was enrolled in a clinical trial evaluating the oral investigational agent ezatiostat. Ezatiostat, a glutathione S-transferase P1-1 inhibitor, activates Jun kinase, promoting the growth and maturation of hematopoietic progenitor stem cells. She responded by the end of the first month of treatment with stabilization of her ANC (despite tapering and then stopping G-CSF), clearing of fever, and healing of areas of infection. This ANC response to ezatiostat treatment has now been sustained for over 8 months and continues. These results suggest potential roles for ezatiostat in the treatment of patients with ICN who are not responsive to G-CSF, as an oral therapy alternative, or as an adjunct to G-CSF, and further studies are warranted. PMID:22047626

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period ofmore » 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).« less

  8. Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells.

    PubMed

    Hermans, Mirjam H A; van de Geijn, Gert-Jan; Antonissen, Claudia; Gits, Judith; van Leeuwen, Daphne; Ward, Alister C; Touw, Ivo P

    2003-04-01

    Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Tyr704, Tyr729, Tyr744, Tyr764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation, and cell survival. However, it is unclear whether these tyrosines are equally important under more physiologic conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated G-CSF-R-deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (m0), single tyrosine "add-back" mutants, or wild-type (WT) receptors. G-CSF-induced responses were determined in primary colony assays, serial replatings, and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Tyr764 strongly enhanced proliferative responses, which was reverted by inhibition of ERK activity. Tyr729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing m0 gradually dropped compared with WT. The presence of Tyr729, but also Tyr704 and Tyr744, both involved in activation of signal transducer and activator of transcription 3 (STAT3), further reduced replating efficiencies. Conversely, Tyr764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a more than 10(4)-fold increase of colony-forming cells over m0 after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

  9. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  10. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  11. [Meningitis and white matter lesions due to Streptococcus mitis in a previously healthy child].

    PubMed

    Yiş, Reyhan; Yüksel, Ciğdem Nükhet; Derundere, Umit; Yiş, Uluç

    2011-10-01

    Streptococcus mitis, an important member of viridans streptococci, is found in the normal flora of the oropharynx, gastrointestinal tract, female genital tract and skin. Although it is of low pathogenicity and virulence, it may cause serious infections in immunocompromised patients. Meningitis caused by S.mitis has been described in patients with previous spinal anesthesia, neurosurgical procedure, malignancy, bacterial endocarditis with neurological complications and alcoholics, but it is rare in patients who are previously healthy. In this report, a rare case of meningoencephalitis caused by S.mitis developed in a previously healthy child has been presented. A previously healthy eight-year-old girl who presented with fever, altered state of consciousness, and headache was hospitalized in intensive care unit with the diagnosis of meningitis. Past history revealed that she was treated with amoxicillin-clavulanate for acute sinusitis ten days before her admission. Whole blood count revealed the followings: hemoglobin 13 g/dl, white blood cell count 18.6 x 109/L (90% neutrophils), platelet count 200 x 109/L and 150 leucocytes were detected on cerebrospinal fluid (CSF) examination. Protein and glucose levels of CSF were 80 mg/dl and 40 mg/dl (concomitant blood glucose 100 mg/dl), respectively. Brain magnetic resonance imaging (MRI) revealed widespread white matter lesions, and alpha-hemolytic streptococci were grown in CSF culture. The isolate was identified as S.mitis with conventional methods, and also confirmed by VITEK2 (bioMerieux, France) and API 20 STREP (bioMerieux, France) systems. Isolate was found susceptible to penicillin, erythromycin, clindamycin, tetracycline, cefotaxime, vancomycin and chloramphenicol. Regarding the etiology, echocardiography revealed no vegetation nor valve pathology, and peripheral blood smear showed no abnormality. Immunoglobulin and complement levels were within normal limits. Ongoing inflammation in maxillary sinuses detected in brain MRI suggested that meningitis could be related to previous sinus infection. After 14 days of ceftriaxone treatment, the patient was discharged from the hospital with cure. The aim of this case presentation was to emphasize that S.mitis may cause meningitis and white matter lesions in previously healthy children with concomitant sinusitis.

  12. Key Role of MicroRNA in the Regulation of Granulocyte Macrophage Colony-stimulating Factor Expression in Murine Alveolar Epithelial Cells during Oxidative Stress*

    PubMed Central

    Sturrock, Anne; Mir-Kasimov, Mustafa; Baker, Jessica; Rowley, Jesse; Paine, Robert

    2014-01-01

    GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3′-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3′-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3′-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury. PMID:24371146

  13. [G-CSF administration following autologous peripheral blood stem cell transplantation--the effect of G-CSF level on neutrophil recovery].

    PubMed

    Saigo, K; Sugimoto, T; Matsuo, M; Narita, H; Ryo, R; Kumagai, S

    2000-03-01

    We studied the usefulness of rhG-CSF (filgrastim) administration in patients who received autologous peripheral blood stem cell transplantation (PBSCT) combined with super-high dose chemotherapy. Twenty patients received 0-8.3 micrograms/kg/day filgrastim after PBSCT. There was a significant relationship between G-CSF dose and the neutrophil recovery rate, and the highest levels of serum G-CSF tended to correlate with neutrophil recovery rate. The highest G-CSF level after 75 micrograms injection in normal volunteers is reported to be 1,500 pg/ml. On the other hand, as one patient in our series exhibited extremely high endogenous G-CSF of 11,500 pg/ml, measurements of G-CSF might reduce the over-administration of rhG-CSF.

  14. Community-acquired bacterial meningitis in adults with cancer or a history of cancer.

    PubMed

    Costerus, Joost M; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-03-01

    To study the incidence, clinical presentation, causative bacteria, and outcome of community-acquired bacterial meningitis in adults with cancer. We evaluated incidence and characteristics of patients with cancer included in a nationwide prospective cohort study of adults with community-acquired meningitis performed in the Netherlands from March 1, 2006, to September 31, 2014. All patients underwent a neurologic examination at hospital discharge, and outcome was graded using the Glasgow Outcome Scale. Active cancer was identified in 68 of 1,351 episodes (5%) and a history of cancer in 87 (6%). The annual incidence of community-acquired bacterial meningitis was 2.71-fold (95% confidence interval [CI] 1.68-4.36, p < 0.001) increased for patients with cancer compared to patients without cancer in 2010, and 3.52-fold (95% CI 2.16-5.73, p < 0.001) in 2013. The clinical presentation of bacterial meningitis in patients with cancer compared to patients without cancer was similar. Patients with active cancer presented with lower leukocyte count in blood (12.1 × 10(9) cells/L vs 17.3 × 10(9) cells/L, p < 0.001) and CSF (670 cells/mm(3) vs 2,567 cells/mm(3), p < 0.001) and were more likely to be infected with Listeria monocytogenes (21% vs 5%, p < 0.001) than patients without cancer. Active cancer was identified as an independent risk factor for unfavorable outcome in bacterial meningitis (odds ratio 1.85, 95% CI 1.09-3.13). One of 8 patients with community-bacterial meningitis was identified to have a history of cancer and cancer was considered active in half of these patients. Patients with active cancer present with lower CSF leukocyte counts, are more likely to be infected with L monocytogenes, and are at high risk of unfavorable outcome. © 2016 American Academy of Neurology.

  15. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    PubMed

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  16. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease.

    PubMed

    Ripa, Rasmus Sejersten

    2012-03-01

    Cell based therapy for ischemic heart disease has the potential to reduce post infarct heart failure and chronic ischemia. Treatment with granulocyte-colony stimulating factor (G-CSF) mobilizes cells from the bone marrow to the peripheral blood. Some of these cells are putative stem or progenitor cells. G-CSF is injected subcutaneously. This therapy is intuitively attractive compared to other cell based techniques since repeated catheterizations and ex vivo cell purification and expansion are avoided. Previous preclinical and early clinical trials have indicated that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischemic heart disease. The hypothesis of this thesis is that patient with ischemic heart disease will benefit from G-CSF therapy. We examined this hypothesis in two clinical trials with G-CSF treatment to patients with either acute myocardial infarction or severe chronic ischemic heart disease. In addition, we assed a number of factors that could potentially affect the effect of cell based therapy. Finally, we intended to develop a method for in vivo cell tracking in the heart. Our research showed that subcutaneous G-CSF along with gene therapy do not improve myocardial function in patients with chronic ischemia despite a large increase in circulation bone marrow-derived cells. Also, neither angina pectoris nor exercise capacity was improved compared to placebo treatment. We could not identify differences in angiogenic factors or bone marrow-derived cells in the blood that could explain the neutral effect of G-CSF. Next, we examined G-CSF as adjunctive therapy following ST segment elevation myocardial infarction. We did not find any effect of G-CSF neither on the primary endpoint--regional myocardial function--nor on left ventricular ejection fraction (secondary endpoint) compared to placebo treatment. In subsequent analyses, we found significant differences in the types of cells mobilized from the bone marrow by G-CSF. This could explain why intracoronary injections of unfractionated bone marrow-derived cells have more effect that mobilization with G-CSF. A number of other factors could explain the neutral effect of G-CSF in our trial compared to previous studies. These factors include timing of the treatment, G-CSF dose, and study population. It is however, remarkable that the changes in our G-CSF group are comparable to the results of previous non-blinded studies, whereas the major differences are in the control/placebo groups. We found that ejection fraction, wall motion, edema, perfusion, and infarct size all improve significantly in the first month following ST-segment myocardial infarction with standard guideline treatment (including acute mechanical revascularization), but without cell therapy. This is an important factor to take into account when assessing the results of non-controlled trials. Finally, we found that ex vivo labeling of cells with indium-111 for in vivo cell tracking after intramyocardial injection is problematic. In our hand, a significant amount of indium-111 remained in the myocardium despite cell death. It is difficult to determine viability of the cells after injection in human trials, and it is thus complicated to determine if the activity in the myocardium tracks viable cells. Cell based therapy is still in the explorative phase, but based on the intense research within this field it is our hope that the clinical relevance of the therapy can be determined in the foreseeable future. Ultimately, this will require large randomized, double-blind and placebo-controlled trials with "hard" clinical endpoints like mortality and morbidity.

  17. Measles virus–specific plasma cells are prominent in subacute sclerosing panencephalitis CSF

    PubMed Central

    Owens, G.P.; Ritchie, A.M.; Gilden, D.H.; Burgoon, M.P.; Becker, D.; Bennett, J.L.

    2012-01-01

    Objective To demonstrate the specificity of expanded CD138+ plasma cell clones recovered from the CSF of a patient with subacute sclerosing panencephalitis (SSPE) for measles virus (MV). Methods IgG variable region sequences of single-antibody-secreting CD138+ cells sorted from SSPE CSF were amplified by single-cell PCR and analyzed. Human IgG1 recombinant antibodies (rAbs) were produced from four expanded CD138+ clones and assayed for immunoreactivity against MV proteins. Results Clonal expansion was a prominent feature of the SSPE plasma cell repertoire, and each of the four rAbs assayed was specific for either the MV fusion or the MV nucleocapsid protein. Conclusions Expanded plasma cell clones in the CSF of patients with subacute sclerosing panencephalitis produce disease-relevant antibodies. Recombinant antibodies derived from CSF B cells could provide a tool to identify target antigens in idiopathic inflammatory disorders. PMID:17515543

  18. Granulocyte-macrophage colony-stimulating factor induces the differentiation of murine erythroleukaemia cells into dendritic cells.

    PubMed Central

    Cao, X; Zhao, Y; Yu, Y; Wang, Y; Zhang, M; Zhang, W; Wang, J

    1998-01-01

    Dendritic cells (DC) are professional antigen-presenting cells (APC) within the immune system and antigen-pulsed DC can be used as an effective vaccine for active immunotherapy of cancer. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the generation of DC. We previously showed that GM-CSF can induce murine erythroleukaemia cells (FBL-3) to differentiate into monocyte-like cells. To develop a new vaccinating method to stimulate the host immune response to leukaemia, we further investigate whether FBL-3 cells induced by GM-CSF can differentiate into DC in the present study. After being treated with GM-CSF, FBL-3 cells expressed high levels of 33D1 and NLDC-145, which are the specific markers of DC. The expression of MHC-II, B7-1, B7-2 and vascular cell adhesion molecule-1 (VCAM-1) was up-regulated markedly; the typical morphology of DC were also observed by electron microscopy. Functionally, the GM-CSF-induced FBL-3 cells could apparently stimulate the proliferation of naive allogeneic and autologous T lymphocytes and induce the generation of specific CTL more efficiently than the wild-type FBL-3 cells. Mice immunized with GM-CSF-induced FBL-3 cells could resist the subsequent challenge with the wild-type FBL-3 cells. Collectively, these data indicate that GM-CSF differentiates murine erythroleukaemia cells into DC phenotypically, morphologically and functionally. FBL-3-derived DC can be used as a new type of vaccine. Our results may have important implications for the immunotherapy of leukaemia. Images Figure 3 Figure 4 PMID:9767469

  19. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  20. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages.

    PubMed

    Kheir, Wassim Abou; Gevrey, Jean-Claude; Yamaguchi, Hideki; Isaac, Beth; Cox, Dianne

    2005-11-15

    Colony-stimulating factor 1 (CSF-1) is an important physiological chemoattractant for macrophages. The mechanisms by which CSF-1 elicits the formation of filamentous actin (F-actin)-rich membrane protrusions and induces macrophage migration are not fully understood. In particular, very little is known regarding the contribution of the different members of the Wiskott-Aldrich Syndrome protein (WASP) family of actin regulators in response to CSF-1. Although a role for WASP itself in macrophage chemotaxis has been previously identified, no data was available regarding the function of WASP family verprolin-homologous (WAVE) proteins in this cell type. We found that WAVE2 was the predominant isoform to be expressed in primary macrophages and in cells derived from the murine monocyte/macrophage RAW264.7 cell line (RAW/LR5). CSF-1 treatment of macrophages resulted in WAVE2 accumulation in F-actin-rich protrusions induced by CSF-1. Inhibition of WAVE2 function by expressing a dominant-negative mutant or introducing anti-WAVE2 antibodies in RAW/LR5 cells, as well as reduction of endogenous WAVE2 expression by RNA-mediated interference (RNAi), resulted in a significant reduction of CSF-1-elicited F-actin protrusions. WAVE2 was found in a protein complex together with Abelson kinase interactor 1 (Abi1) in resting or stimulated cells. Both WAVE2 and Abi1 were recruited to and necessary for the formation of F-actin protrusions in response to CSF-1. Reducing the levels of WAVE2, directly or by targeting Abi1, resulted in an impaired cell migration to CSF-1. Altogether these data identify a WAVE2-Abi1 complex crucial for the normal actin cytoskeleton reorganization and migration of macrophages in response to CSF-1.

  1. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  2. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor

    PubMed Central

    ZHAI, YONGZHEN; ZHOU, YAN; LI, XIMEI; FENG, GUOHE

    2015-01-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM-CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan-pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF. PMID:25738258

  3. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    PubMed

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  4. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  5. Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-06-01

    Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.

  6. Scrub Typhus: A Clinico-Laboratory Differentiation of Children with and without Meningitis.

    PubMed

    Bhat, Nowneet Kumar; Pandita, Neerul; Saini, Manju; Dhar, Minakshi; Ahmed, Sohaib; Shirazi, Nadia; Wasim, Sanober; Shirke, Rupali; Chandar, Vipan

    2016-06-01

    Neurological involvement in the form of meningitis or meningoencephalitis, although well documented in scrub typhus, has not been extensively studied in the pediatric population. We report the clinical and laboratory profile of 96 children with scrub typhus and compared those with and without meningitis. Twenty seven (28%) children had clinical and laboratory evidence of meningitis. The most frequent presenting features were fever (100%), meningeal signs (66.6%), nausea and vomiting (56.3%), seizures (55.5%) and altered sensorium (51.8%). The children with meningitis presented early and had significantly lower respiratory and renal impairments when compared with the non-meningitis group. Cerebrospinal fluid (CSF) analysis revealed elevated total leukocyte count (86.73 ± 94.50 cells/mm(3)), mononuclear pleocytosis (lymphocyte percentage of 76.85 ± 15.86), elevated proteins (108.33 ± 52.63 mg%) and normal CSF glucose (64.18 ± 15.92 mg%). We conclude that meningitis is a common and early complication of childhood scrub typhus. The CSF reveals a lymphocytic pleocytosis, raised proteins and a normal glucose level. These children respond promptly to appropriate antibiotics as do children without meningitis. © The Author [2016]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Treatment of chemotherapy-induced neutropenia in a rat model by using multiple daily doses of oral administration of G-CSF-containing nanoparticles.

    PubMed

    Su, Fang-Yi; Chuang, Er-Yuan; Lin, Po-Yen; Chou, Yi-Chun; Chen, Chiung-Tong; Mi, Fwu-Long; Wey, Shiaw-Pyng; Yen, Tzu-Chen; Lin, Kun-Ju; Sung, Hsing-Wen

    2014-04-01

    Chemotherapy-induced neutropenia often increases the likelihood of life-threatening infections. In this study, a nanoparticle (NP) system composed of chitosan and poly(γ-glutamic acid) conjugated with diethylene triamine pentaacetic acid (γPGA-DTPA) was prepared for oral delivery of granulocyte colony-stimulating factor (G-CSF), a hematopoietic growth factor. The therapeutic potential of this NP system for daily administration of G-CSF to treat neutropenia associated with chemotherapy was evaluated in a rat model. In vitro results indicate that the procedures of NP loading and release preserved the structural integrity and bioactivity of the G-CSF molecules adequately. Those results further demonstrated the enzymatic inhibition activity of γPGA-DTPA towards G-CSF against intestinal proteases. Additionally, the in vivo biodistribution study clearly identified accumulations of G-CSF in the heart, liver, bone marrow, and urinary bladder, an indication of systemic absorption of G-CSF; its relative bioavailability was approximately 13.6%. Moreover, significant glucose uptake was observed in bone marrow during G-CSF treatment, suggesting increased bone marrow metabolism and neutrophil production. Consequently, neutrophil count in the blood increased in a sustained manner; this fact may help a patient's immune system recover from the side effects of chemotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Leukocyte integrin activation mediates transient neutropenia after G-CSF administration

    PubMed Central

    Tuschong, Laura; Bauer, Thomas R.; Yau, Yu Ying; Leitman, Susan F.; Hickstein, Dennis D.

    2011-01-01

    After administration of granulocyte colony-stimulating factor (G-CSF), there is a marked, albeit transient, drop in circulating neutrophils. To determine the role of leukocyte integrins in this disappearance, a dog having canine leukocyte adhesion deficiency (CLAD) or CLAD dogs who had undergone gene correction either by matched littermate allogeneic transplant or autologous gene therapy were evaluated. Shortly after G-CSF administration, a dramatic, yet transient, neutropenia was observed in the control littermates. This neutropenia was not as marked in the CLAD dogs. In all instances, it was CD18+ neutrophils that preferentially egressed from the circulation. The association of CD18 with this rapid loss suggested leukocyte integrin activation after G-CSF administration. To determine the activation status of the integrin, a monoclonal antibody recognizing the activated α-subunit cation binding domain (mAb24) was used to evaluate human leukocytes after G-CSF administration. Mirroring the dramatic decrease in circulating neutrophil numbers, there was a dramatic and specific increase in the activation of the α-subunit after G-CSF expression on polymorphonuclear leukocytes. This activation, like the drop in neutrophil count, was transient. These results demonstrate that the leukocyte integrin on circulating neutrophils is transiently activated after G-CSF administration and mediates the transient neutropenia observed after G-CSF administration. PMID:21844566

  9. Repeated hematopoietic stem and progenitor cell mobilization without depletion of the bone marrow stem and progenitor cell pool in mice after repeated administration of recombinant murine G-CSF.

    PubMed

    de Kruijf, Evert-Jan F M; van Pel, Melissa; Hagoort, Henny; Kruysdijk, Donnée; Molineux, Graham; Willemze, Roel; Fibbe, Willem E

    2007-05-01

    Administration of recombinant-human G-CSF (rhG-CSF) is highly efficient in mobilizing hematopoietic stem and progenitor cells (HSC/HPC) from the bone marrow (BM) toward the peripheral blood. This study was designed to investigate whether repeated G-CSF-induced HSC/HPC mobilization in mice could lead to a depletion of the bone marrow HSC/HPC pool with subsequent loss of mobilizing capacity. To test this hypothesis Balb/c mice were treated with a maximum of 12 repeated 5-day cycles of either 10 microg rhG-CSF/day or 0.25 microg rmG-CSF/day. Repeated administration of rhG-CSF lead to strong inhibition of HSC/HPC mobilization toward the peripheral blood and spleen after >4 cycles because of the induction of anti-rhG-CSF antibodies. In contrast, after repeated administration of rmG-CSF, HSC/HPC mobilizing capacity remained intact for up to 12 cycles. The number of CFU-GM per femur did not significantly change for up to 12 cycles. We conclude that repeated administration of G-CSF does not lead to depletion of the bone marrow HSC/HPC pool.

  10. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine

    PubMed Central

    Cheng, Ta-Chun; Chuang, Chih-Hung; Kao, Chien-Han; Hsieh, Yuan-Chin; Cheng, Kuang-Hung; Wang, Jaw-Yuan; Cheng, Chiu-Min; Chen, Chien-Shu; Cheng, Tian-Lu

    2015-01-01

    The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies. PMID:26186692

  11. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    PubMed

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  12. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Immunomodulation Induced by Stem Cell Mobilization and Harvesting in Healthy Donors: Increased Systemic Osteopontin Levels after Treatment with Granulocyte Colony-Stimulating Factor

    PubMed Central

    Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein

    2016-01-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610

  14. Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression.

    PubMed

    Chen, Jing; Adamiak, William; Huang, Ganlei; Atasoy, Ulus; Rostami, Abdolmohamad; Yu, Shiguang

    2017-12-08

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3' untranslated region (3'UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3'UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.

  15. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  16. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    NASA Astrophysics Data System (ADS)

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-10-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.

  17. A sensitive WST-8-based bioassay for PEGylated granulocyte colony stimulating factor using the NFS-60 cell line.

    PubMed

    Tiwari, Krishna; Wavdhane, Madan; Haque, Shafiul; Govender, Thavendran; Kruger, Hendrik G; Mishra, Maheshwari K; Chandra, Ramesh; Tiwari, Dileep

    2015-06-01

    Granulocyte colony stimulating factor (G-CSF) has been commonly used to treat neutropenia caused by chemotherapy, radiotherapy, and organ transplants. Improved in vitro efficacy of G-CSF has already been observed by conjugating it to polyethylene glycol (PEG). The in vivo bioassay using tetrazolium dye with the NFS-60 cell line has been recommended for G-CSF but no such monographs are available for PEGylated G-CSF in pharmacopeias. In the present study, the assay recommended for G-CSF was evaluated for its suitability to PEGylated G-CSF. The generally used MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]-based assay was compared with a bioassay employing a water-soluble tetrazolium dye, WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium], using NFS-60 cells at a concentration of 7 × 10(5) cells/ml against 800 IU/ml of PEGylated G-CSF at 24, 48, 72, and 72 h time points to determine the efficacy of PEGylated G-CSF. Further, the optimized WST-8 dye-based assay was used to test the potency of various commercially available PEGylated G-CSF preparations. The results demonstrated enhanced sensitivity of the WST-8-based assay over the conventional MTS-based assay for determining the potency of PEGylated G-CSF using the NFS-60 cell line. Our study demonstrates the potential application of WST-8-based bioassays for other biotherapeutic proteins of human and veterinary interest.

  18. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review.

    PubMed

    Chang, Ying-Jun; Huang, Xiao-Jun

    2011-01-01

    In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.

  19. A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8{sup +} T cell responses to rabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph

    2012-05-10

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8{sup +} T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8{sup +} T cell response was significantly lower. This was partly likely duemore » to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8{sup +} T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8{sup +} T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.« less

  20. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions.

    PubMed

    Hiemstra, Ida H; van Hamme, John L; Janssen, Machiel H; van den Berg, Timo K; Kuijpers, Taco W

    2017-03-01

    Granulocyte transfusion (GTX) is a potential approach to correcting neutropenia and relieving the increased risk of infection in patients who are refractory to antibiotics. To mobilize enough granulocytes for transfusion, healthy donors are premedicated with granulocyte-colony-stimulating factor (G-CSF) and dexamethasone. Granulocytes have a short circulatory half-life. Consequently, patients need to receive GTX every other day to keep circulating granulocyte counts at an acceptable level. We investigated whether plasma from premedicated donors was capable of prolonging neutrophil survival and, if so, which factor could be held responsible. The effects of plasma from G-CSF/dexamethasone-treated donors on neutrophil survival were assessed by annexin-V, CD16. and CXCR4 staining and nuclear morphology. We isolated an albumin-bound protein using α-chymotrypsin and albumin-depletion and further characterized it using protein analysis. The effects of dexamethasone and G-CSF were assessed using mifepristone and G-CSF-neutralizing antibody. G-CSF plasma concentrations were determined by Western blot and Luminex analyses. G-CSF/dexamethasone plasma contained a survival-promoting factor for at least 2 days. This factor was recognized as an albumin-associated protein and was identified as G-CSF itself, which was surprising considering its reported half-life of only 4.5 hours. Compared with coadministration of dexamethasone, administration of G-CSF alone to the same GTX donors led to a faster decline in circulating G-CSF levels, whereas dexamethasone itself did not induce any G-CSF, demonstrating a role for dexamethasone in increasing G-CSF half-life. Dexamethasone increases granulocyte yield upon coadministration with G-CSF by extending G-CSF half-life. This observation might also be exploited in the coadministration of dexamethasone with other recombinant proteins to modulate their half-life. © 2016 AABB.

  1. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium

    PubMed Central

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF. PMID:26942913

  2. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.

    PubMed

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.

  3. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    PubMed

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  4. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System

    PubMed Central

    Chitu, Violeta; Gokhan, Solen; Nandi, Sayan; Mehler, Mark F.; Stanley, E. Richard

    2016-01-01

    The colony stimulating factor-1 receptor (CSF-1R) kinase regulates tissue macrophage homeostasis, osteoclastogenesis, and Paneth cell development. However, recent studies in mice have revealed that CSF-1R signaling directly controls the development and maintenance of microglia, and cell autonomously regulates neuronal differentiation and survival. While the CSF-1R-cognate ligands, CSF-1 and interleukin-34 (IL-34), compete for binding to the CSF-1R, they are expressed in a largely non-overlapping manner by mature neurons. The recent identification of a dominantly inherited, adult-onset, progressive dementia associated with inactivating mutations in the CSF-1R highlights the importance of CSF-1R signaling in the brain. We review the roles of the CSF-1R and its ligands in microglial and neural development and function, and their relevance to our understanding of neurodegenerative disease. PMID:27083478

  5. Mobilization Characteristics and Strategies to Improve Hematopoietic Progenitor Cell Mobilization and Collection in Patients with Chronic Granulomatous Disease and Severe Combined Immunodeficiency

    PubMed Central

    Panch, Sandhya R.; Yau, Yu Ying; Kang, Elizabeth M.; De Ravin, Suk See; Malech, Harry L.; Leitman, Susan F.

    2014-01-01

    Background G-CSF mobilized autologous hematopoietic progenitor cells (HPC) may be collected by apheresis of patients with chronic granulomatous disease (CGD) and severe combined immunodeficiency (SCID) for use in gene therapy trials. CD34+ cell mobilization has not been well characterized in such patients. Study Design and Methods We retrospectively evaluated CD34+ cell mobilization and collection in 73 consecutive CGD and SCID patients and in 99 age, weight and G-CSF dose-matched healthy allogeneic controls. Results In subjects aged ≤20 years, day 5 pre-apheresis circulating CD34+ counts were significantly lower in CGD and SCID than in controls; mean peak CD34+ cells 58, 64, and 87/uL, respectively, p=0.01. The SCIDs had lower CD34+ collection efficiency than CGDs and controls; mean efficiency 40%, 63% and 57%, respectively, p=0.003. In subjects >20 years, the CGDs had significantly lower CD34+ cell mobilization than controls; mean peak CD34+ cells 41 and 113/uL, respectively, p<0.0001. In a multivariate analysis, lower sedimentation rate (ESR) at mobilization was significantly correlated with better CD34+ cell mobilization, p=0.007. In SCIDs, CD34 collection efficiency was positively correlated with higher red cell indices (MCV: R2=0.77; MCH: R2=0.94; MCHC: R2=0.7, p<0.007) but not hemoglobin. Conclusions CGD and SCID populations are characterized by significantly less robust CD34+ HPC mobilization than healthy controls. The presence of active inflammation/infection as suggested by an elevated ESR may negatively impact mobilization. Among SCIDs, markedly reduced CD34 collection efficiencies were related to iron deficiency, wherein decreased red cell size and density may impair apheresis cell separation mechanics. PMID:25143186

  6. Comparative study of CD4 and CD45RO T cells and CD20 B cells in cerebrospinal fluid of syphilitic meningitis and tuberculous meningitis patients.

    PubMed

    Yu, Nian; Zhang, Qiao-Quan; Zhang, Kang; Xie, Yuan; Zhu, Hai-Qing; Lin, Xing-Jian; Di, Qing

    2016-09-01

    This study was to investigate the differences of lymphocyte in the cerebrospinal fluid (CSF) of patients with syphilis meningitis (SM) and tuberculous meningitis (TBM) for new diagnostic insights. Totally, 79 cases of SM and 45 cases of TBM were enrolled. In the CSF, the CD4, CD45RO or CD20 positive lymphocytes were detected by immunohistochemistry. The proportion of CD4 T cells in the CSF lymphocytes in patients with SM was significantly higher than that in patients with TBM (p < 0.05). After medical therapy, there was a significantly decline trend of the CD4 T-cell proportion in both groups (p < 0.05). The proportion of CD45RO T cells in CSF lymphocytes of patients with SM was less than that of patients with TBM (p < 0.05). After medical therapy, the positive ratio of CD45RO T cells was increased in the CSF of both group patients (p < 0.05). The proportion of CD20B cells in the CSF lymphocytes was not obviously different between the two groups during every stage. In conclusion, there are strong differences of CD4 and CD45RO T-cell ratio, but not the CD20 B cells in the meningitis. CD4 and CD45RO T cells in CSF are a useful complement in differentially diagnosing SM and TBM; it contributes to further understand the pathogenesis and prognosis of SM and TBM. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  7. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    PubMed

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  8. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein.

    PubMed Central

    Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.

    1996-01-01

    The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995

  9. Introduction of Sprotte needles to a single-centre acute neurology service: before and after study

    PubMed Central

    Vakharia, Vejay N; Lote, Hazel

    2012-01-01

    Objectives To introduce atraumatic (Sprotte) lumbar puncture needles and compare complication rates with traumatic (Quincke) needles. Design Complication rates associated with traumatic needle use were retrospectively analysed over a four-week period. Atraumatic needles were then implemented and a prospective analysis of the complication rates was undertaken for a further six weeks. Setting A single-centre acute neurology unit in a London teaching hospital Participants Traumatic needles (n = 24 patients); atraumatic needles (n = 36 patients) Main outcome measures Headache rates, use of over-the-counter medications, further medical assistance, time off work, nausea and vomiting, traumatic taps (as per the count of red blood cells per millilitre in the first sample of cerebrospinal fluid [CSF]) and back pain. Results A comparison of traumatic and atraumatic needles revealed a significant reduction in the incidence of post-lumbar puncture headaches (*P < 0.01), headaches requiring over-the-counter medication (*P < 0.00001), need for further medical assistance (*P < 0.006), time off work (*P < 0.003), nausea and vomiting (*P < 0.01) and traumatic taps as per the count of red blood cells per millilitre in the first sample of CSF (*P < 0.02). There was no significant difference in the incidence of back pain (P > 0.05). Conclusions Most complication outcomes are significantly lower with the use of atraumatic lumbar puncture needles. We present for the first time in the literature that the rate of ‘traumatic taps’ are significantly lower with atraumatic needles. The implementation of atraumatic needles in an acute neurology service is safe and produces reliable, reproducible results in keeping with previously published randomized controlled trials. PMID:23476725

  10. SIV/Macaque Model of HIV Infection in Cocaine Users: Minimal Effects of Cocaine on Behavior, Virus Replication, and CNS Inflammation

    PubMed Central

    Weed, Michael; Adams, Robert J.; Hienz, Robert D.; Meulendyke, Kelly A.; Linde, Michael E.; Clements, Janice E.; Mankowski, Joseph L.; Zink, M. Christine

    2011-01-01

    Studies of the effects of drugs of abuse on HIV immune status, disease progression, and neuroAIDS have produced conflicting data and have not definitively shown whether this combination promotes cognitive impairment or disease progression. Using a consistent SIV–macaque model, we investigated the effects of cocaine on behavior, virologic parameters, and CNS inflammation. Macaques received either vehicle or chronic administration of behaviorally active doses of cocaine (1.7 or 3.2 mg/kg/day). Chronic cocaine administration reduced CD8+ T cell counts during acute and late stage infection but had no effect on CD4+ T cell counts. Low-dose cocaine-treated animals had lower CSF vRNA levels late in infection, but cocaine did not alter plasma viral load or vRNA or protein in brain. There were no differences in CSF CCL-2 or interleukin (IL)-6 levels or severity of encephalitis in cocaine-treated as compared to vehicle-treated macaques. There were no differences in brain inflammation or neurodegeneration markers, as determined by interferon (IFN)-β, MxA, CCL2, IL-6, TNFα, IFNγ, and indolamine 2,3-deoxygenase mRNA levels. APP levels also were not altered. The executive function of inhibitory control was not impaired in cocaine-treated or control animals following SIV infection. However, animals receiving 3.2 mg/kg/day cocaine performed more slowly in a bimanual motor test. Thus, chronic administration of cocaine produced only minor changes in behavior, encephalitis severity, CNS inflammation/neurodegeneration, and virus replication in SIV-infected pigtailed macaques, suggesting that cocaine would have only modest effects on the progression of neuroAIDS in HIV-infected individuals. PMID:21626125

  11. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  12. Translating G-CSF as an adjunct therapy to stem cell transplantation for stroke

    PubMed Central

    dela Peña, Ike; Borlongan, Cesar V.

    2015-01-01

    Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis and produce behavioral and functional improvement through their “bystander effects.” Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., cotransplantation of stem cells or adjunct treatment with pharmacological agents and substrates, which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments, and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of co-treatment with granulocyte-colony stimulating factor (G-CSF) and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here, we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of G-CSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells (EPCs) , as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine safety and efficacy of this intervention in both preclinical and clinical stroke studies. PMID:26482176

  13. Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice.

    PubMed

    Lal, Sangeet; Peng, Kah-Whye; Steele, Michael B; Jenks, Nathan; Ma, Hong; Kohanbash, Gary; Phillips, Joanna J; Raffel, Corey

    2016-12-01

    The modified Edmonston vaccine strain of measles virus (MV) has shown potent oncolytic efficacy against various tumor types and is being investigated in clinical trials. Our laboratory showed that MV effectively kills medulloblastoma tumor cells in both localized disease and when tumor cells are disseminated through cerebrospinal fluid (CSF). Although the safety of repeated intracerebral injection of modified MV in rhesus macaques has been established, the safety of administering MV into CSF has not been adequately investigated. In this study, we assessed the safety of MV-NIS (MV modified to express the human sodium iodide symporter protein) injected into the CSF of measles-immunized and measles virus-susceptible transgenic (CD46, IFNαRko) mice. Treated animals were administered a single intraventricular injection of 1 × 10 5 or 1 × 10 6 TCID 50 (50% tissue culture infective dose) of MV-NIS. Detailed clinical observation was performed over a 90-day period. Clinically, we did not observe any measles-related toxic effects or behavioral abnormality in animals of any treated cohort. The complete blood count and blood chemistry analysis results were found to be within normal range for all the cohorts. Histologic examination of brains and spinal cords revealed inflammatory changes, mostly related to the needle track; these resolved by day 21 postinjection. To assess viral biodistribution, quantitative RT-PCR to detect the measles virus N-protein was performed on blood and brain samples. Viral RNA was not detectable in the blood as soon as 2 days after injection, and virus cleared from the brain by 45 days postadministration in all treatment cohorts. In conclusion, our data suggest that a single injection of modified MV into the CSF is safe and can be used in future therapeutic applications.

  14. Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Hegge, Sara R; Ossetrova, Natalia I

    2018-06-01

    Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD 0/30 ) of 60 Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1β, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD 0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be unaffected by radiation dose rates, can be used instead for assessing the radiation dose. However, in a separate radiation dose and time-course experiment, increases in IL-18 and G-CSF depended on the radiation doses but showed no significant differences between 0.58 and 1.94 Gy/min ( P > 0.05) at 3 and 6 Gy but not 12 Gy. G-CSF continued to increase up to day 7, whereas IL-18 increased on day 4 and remained above baseline level on day 7. Therefore, time after irradiation at different doses should be taken into consideration. To our knowledge, these results are the first to suggest that ionizing radiation, even at a very low-dose-rate (0.04 Gy/min), induces circulating G-CSF increases but not others for selected time points; radiation-induced increases in IL-18 at radiation dose rates between 0.15 and 1.94 Gy/min are also not in a radiation dose-rate-dependent manner. C-CSF, lymphocyte counts and circulating Flt-3 ligand should be explored further as possible biomarkers of radiation exposure at early time points. IL-18 is also worthy of further study as a potential biomarker at later time points.

  15. T Cell Production of GM-CSF Protects the Host during Experimental Tuberculosis.

    PubMed

    Robinson, Richard T

    2017-12-12

    Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is increasingly recognized as being important for tuberculosis (TB) resistance. GM-CSF is expressed by nonhematopoietic and hematopoietic lineages following infection with Mycobacterium tuberculosis and is necessary to restrict M. tuberculosis growth in experimental models. Until the recent study by Rothchild et al. (mBio 8:e01514-17, 2017, https://doi.org/10.1128/mBio.01514-17), it was unknown whether GM-CSF-producing T cells contribute to TB resistance. Rothchild et al. identify which conventional and nonconventional T cell subsets produce GM-CSF during experimental TB, establish their protective nature using a variety of approaches, and provide a mechanistic basis for their ability to restrict M. tuberculosis growth. This commentary discusses the significance of these findings to basic and applied TB research. As translated to human disease, these findings suggest vaccine-mediated expansion of GM-CSF-producing T cells could be an effective prophylactic or therapeutic TB strategy. Copyright © 2017 Robinson.

  16. Simplified Large-Scale Refolding, Purification, and Characterization of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli

    PubMed Central

    Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041

  17. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    PubMed

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic recovery and short hospital stay compared with cytokine-primed PBSC. Using primed BMSC, no difference in malignant relapse or relapse-free survival was observed. These findings suggest that despite widespread use of PBSC for transplantation, BMSC, when collected following hematopoietically stimulating cytokines, may remain a satisfactory source of stem cells for autologous transplantation. G-CSF and GM-CSF are both effective in priming autologous PBSC or BMSC for collection.

  18. Heterogeneity Within Macrophage Populations: A Possible Role for Colony Stimulating Factors

    DTIC Science & Technology

    1988-04-04

    highest concentration ofriFN-yused (5.0 U/ml), a depression of T cell proliferation induced by the antigen-pulsed rGM-CSF-derived macrophages was...stimulation by rGM-CSF and nCSF-1 in bone marrow cells derived from normal mice and mice 3 and 7 days post-treatment with 5FU . Bone marrow cells

  19. Single dose of filgrastim (rhG-CSF) increases the number of hematopoietic progenitors in the peripheral blood of adult volunteers.

    PubMed

    Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W

    1993-06-01

    Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.

  20. Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.

    PubMed

    Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T

    2000-05-01

    Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.

  1. Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts

    PubMed Central

    Liu, Xi Ling; Hu, Xiang; Cai, Wei Xin; Lu, Weijia William; Zheng, Li Wu

    2016-01-01

    Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF) provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p < 0.001, p < 0.01, resp.); the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs. PMID:27006951

  2. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis

    PubMed Central

    Ramakrishna, Chandran

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection. PMID:29352287

  4. [Effect of lipopolysaccharides from Porphyromonas endodontalis on the expression of macrophage colony stimulating factor in mouse osteoblasts].

    PubMed

    Yu, Yaqiong; Qiu, Lihong; Guo, Jiajie; Qu, Liu; Xu, Liya; Zhong, Ming

    2014-09-01

    To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of macrophage colony stimulating factor (M-CSF) mRNA and protein in MC3T3-E1 cells and the role of nucler factor-κB (NF-κB) in the process. MC3T3-E1 cells were treated with different concentrations of Pe-LPS (0-50 mg/L) and 10 mg/L Pe-LPS for different hours (0-24 h). The expression of M-CSF mRNA and protein was detected by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunoadsordent assay (ELISA). The cells untreated by Pe-LPS served as control. The expression of M- CSF mRNA and protein was also detected in 10 mg/L Pe- LPS treated MC3T3-E1 cells after pretreated with BAY 11-7082 for 1 h, a special NF-κB inhibitor. The groups were divided as follows, control group, BAY group (10 µmol/L BAY 11-7082 treated alone MC3T3-E1 cells), Pe-LPS group (10 mg/L Pe-LPS stimulated MC3T3-E1 cells for 6 h), BAY combine with Pe-LPS group (10 µmol/L BAY 11-7082 pretreated cells for 1 h and 10 mg/L of Pe-LPS stimulated MC3T3-E1 cells for 6 h). The level of M- CSF mRNA and protein increased significantly after treatment with different concentrations of Pe-LPS (0-50 mg/L), which indicated that Pe-LPS induced osteoblasts to express M-CSF mRNA and protein in dose dependent manners. The expression of M-CSF protein increased from (35 ± 2) ng/L (control group) to (170 ± 8) ng/L (50 mg/L group). Maximal induction of M-CSF mRNA expression was found in the MC3T3- E1 cells treated with 10 mg/L Pe-LPS for 6 h. After 6 h, the expression of M-CSF mRNA decreased gradually. The expression of M-CSF protein also increased with the treatment of 10 mg/L Pe-LPS for 10 h [(122 ± 4) ng/L]. After 10 h, the expression of M-CSF protein decreased gradually. The mRNA and proteins of M-CSF decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. There was no significant difference between BAY group and the control. Pe-LPS may induce the expression of M-CSF mRNA and protein in MC3T3-E1 cells through the signaling of NF-κB.

  5. Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.

    PubMed

    Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D

    2018-04-05

    Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  7. Effects of recombinant human granulocyte colony-stimulating factor on the hematologic recovery and survival of irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanikawa, S.; Nose, M.; Aoki, Y.

    1990-08-01

    We studied the effects of intraperitoneal injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF) according to various administration schedules on the recovery of spleen colony-forming units (CFU-S) and peripheral blood counts, and on the survival of irradiated mice. The sooner and more frequently the mice were injected with rhG-CSF after irradiation, the more enhanced the recovery of CFU-S in bone marrow was obtained on day 7. Twice-daily injections of rhG-CSF from day 0 to day 2 significantly enhanced the recovery of platelets and hematocrit, but two injections of rhG-CSF on only day 0 did not. Twice-daily injections of rhG-CSF frommore » day 0 to day 6 enhanced the recovery of platelets more effectively than twice-daily injections of rhG-CSF from day 1 to day 7, and increased the survival of irradiated mice more effectively than any other examined administration schedules. Twice-daily injections of rhG-CSF from day 0 to day 6 were significantly effective in enhancing the survival of mice irradiated with 8.5-, 9.0-, and 9.5-Gy x-rays, although not effective after irradiation of 10.5-Gy x-rays.« less

  8. Shift from posttranscriptional to predominant transcriptional control of the expression of the GM-CSF gene during activation of human Jurkat cells.

    PubMed

    Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J

    1992-05-01

    The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.

  9. Bioactivity of Autologous Irradiated Renal Cell Carcinoma Vaccines Generated by ex Vivo Granulocyte-Macrophage Colony-stimulating Factor Gene Transfer1

    PubMed Central

    Simons, Jonathan W.; Jaffee, Elizabeth M.; Weber, Christine E.; Levitsky, Hyam I.; Nelson, William G.; Carducci, Michael A.; Lazenby, Audrey J.; Cohen, Lawrence K.; Finn, Christy C.; Clift, Shirley M.; Hauda, Karen M.; Beck, Lisa A.; Leiferman, Kristen M.; Owens, Albert H.; Piantadosi, Steven; Dranoff, Glenn; Mulligan, Richard C.; Pardoll, Drew M.; Marshall, Fray F.

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients. PMID:9108457

  10. Impact of donor hematopoietic cells mobilized with G-CSF and plerixafor on murine acute graft-versus-host-disease.

    PubMed

    Arbez, Jessy; Saas, Philippe; Lamarthée, Baptiste; Malard, Florent; Couturier, Mélanie; Mohty, Mohamad; Gaugler, Béatrice

    2015-07-01

    This study aimed to characterize the immune effectors contained in the grafts from donor mice mobilized by granulocyte colony-stimulating factor (G-CSF) and plerixafor and to evaluate their impact on the development of acute graft-versus-host-disease (aGVHD). Mobilization was done with G-CSF alone or G-CSF plus plerixafor (G+P). In grafts collected after G+P mobilization, we observed a significantly higher proportion of c-kit(+)Sca-1(+) hematopoietic stem cells compared with G-CSF. A significant increase in the percentage of plasmacytoid dendritic cells was detected in the G+P graft compared with G-CSF graft. We also studied the ability of stem cell grafts mobilized with G+P to induce GVHD in a mouse model. We observed higher mortality (P < 0.001) associated with increased aGVHD clinical score (P < 0.0001) as well as higher pathology score in the intestine of mice receiving G+P as compared with G-CSF grafts (P < 0.001). Moreover, the exacerbated aGVHD severity was associated with upregulation of CCR6 expression on both CD4(+) and CD8(+) T cells from the G+P grafts, as well as on T cells from mice transplanted with G+P grafts. In conclusion, we showed that grafts mobilized with G+P exhibited functional features different from those mobilized with G-CSF alone, which increase the severity of aGVHD in the recipients. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  12. IFN Regulatory Factor 8 Represses GM-CSF Expression in T cells to Affect Myeloid Cell Lineage Differentiation

    PubMed Central

    Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-01-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302

  13. Cryopreservation induces macrophage colony stimulating factor from human periodontal ligament cells in vitro.

    PubMed

    Rhim, E-M; Ahn, S-J; Kim, J-Y; Chang, Y-R; Kim, K-H; Lee, H-W; Jung, S-H; Kim, E-C; Park, S-H

    2013-10-01

    Cryopreservation is used to protect vital periodontal ligaments during the transplantation of teeth. We investigated which gene products implicated in root resorption are upregulated in human periodontal ligament cells by cryopreservation, and whether cryopreservation affects the expression of macrophage-colony stimulating factor (M-CSF) in human periodontal ligament cells. We used customized microarrays to compare gene expression in human periodontal ligament cells cultured from teeth immediately after extraction and from cryopreserved teeth. Based on the result of these assays, we examined M-CSF expression in periodontal ligament cells from the immediately extracted tooth and cryopreserved teeth by real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence. We also investigated whether human bone marrow cells differentiate into tartrate-resistant acid phosphatase (TRAP) positive osteoclasts when stimulated with RANKL (Receptor Activator for Nuclear Factor κ B Ligand) together with any secreted M-CSF present in the supernatants of the periodontal ligament cells cultured from the various groups of teeth. M-CSF was twofold higher in the periodontal ligament cells from the rapid freezing teeth than in those from the immediately extracted group (p < 0.05). Cryopreservation increased M-CSF expression in the periodontal ligament cells when analyzed by real time PCR, ELISA, Western blotting, and immunofluorescence (p < 0.05). TRAP positive osteoclasts were formed in response to RANKL and the secreted M-CSF present in the supernatants of all the experimental groups except negative control. These results demonstrate that cryopreservation promotes the production of M-CSF, which plays an important role in root resorption by periodontal ligament cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects].

    PubMed

    Shi, Gui-Lan; Zhuang, Xiu-Fen; Han, Xiang-Ping; Li, Jie; Zhang, Yu; Zhang, Shu-Ren; Liu, Bin-Lei

    2012-02-01

    The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree. The findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.

  15. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord

    PubMed Central

    Petracca, Yanina L.; Sartoretti, Maria Micaela; Di Bella, Daniela J.; Marin-Burgin, Antonia; Carcagno, Abel L.; Schinder, Alejandro F.; Lanuza, Guillermo M.

    2016-01-01

    Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3+ V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. PMID:26839365

  16. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease.

    PubMed

    Moresco, Monica; Lecciso, Mariangela; Ocadlikova, Darina; Filardi, Marco; Melzi, Silvia; Kornum, Birgitte Rahbek; Antelmi, Elena; Pizza, Fabio; Mignot, Emmanuel; Curti, Antonio; Plazzi, Giuseppe

    2018-04-01

    Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4 + terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4 + terminally differentiated effector memory T cells and an increased frequency of NK CD56 bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4 + terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    PubMed Central

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  18. Analysis of various tracts of mastoid air cells related to CSF leak after the anterior transpetrosal approach.

    PubMed

    Tamura, Ryota; Tomio, Ryosuke; Mohammad, Farrag; Toda, Masahiro; Yoshida, Kazunari

    2018-03-16

    OBJECTIVE The anterior transpetrosal approach (ATPA) was established in 1984 and has been particularly effective for petroclival tumors. Although some complications associated with this approach, such as venous hemorrhage in the temporal lobe and nervous disturbances, have been resolved over the years, the incidence rate of CSF leaks has not greatly improved. In this study, some varieties of air cell tracts that are strongly related to CSF leaks are demonstrated. In addition, other pre- and postoperative risk factors for CSF leakage after ATPA are discussed. METHODS Preoperative and postoperative target imaging of the temporal bone was performed in a total of 117 patients who underwent ATPA, and various surgery-related parameters were analyzed. RESULTS The existence of air cells at the petrous apex, as well as fluid collection in the mastoid antrum detected by a postoperative CT scan, were possible risk factors for CSF leakage. Tracts that directly connected to the antrum from the squamous part of the temporal bone and petrous apex, rather than through numerous air cells, were significantly related to CSF leak and were defined as "direct tract." All patients with a refractory CSF leak possessed "unusual tracts" that connected to the attic, tympanic cavity, or eustachian tube, rather than through the mastoid antrum. CONCLUSIONS Preoperative assessment of petrous pneumatization types is necessary to prevent CSF leaks. Direct and unusual tracts are particularly strong risk factors for CSF leaks.

  19. Compartmentalisation of innate immune responses in the central nervous system during cryptococcal meningitis/HIV co-infection

    PubMed Central

    NARANBHAI, Vivek; CHANG, Christina C.; DURGIAH, Raveshni; OMARJEE, Saleha; LIM, Andrew; MOOSA, Mahomed-Yunus S.; ELLIOT, Julian H.; NDUNG’U, Thumbi; LEWIN, Sharon R.; FRENCH, Martyn A.; CARR, William H.

    2014-01-01

    Objective The role of innate immunity in pathogenesis of cryptococcal meningitis (CM) is unclear. We hypothesised that NK cell and monocyte responses are central nervous system (CNS) compartmentalised, and altered by anti-fungal therapy and combination antiretroviral therapy (cART) during CM/HIV co-infection. Design Sub-study of a prospective cohort study of adults with CM/HIV co-infection in Durban, South Africa. Methods We used multi-parametric flow cytometry to study compartmentalisation of subsets, activation (CD69pos), CXCR3 and CX3CR1 expression and cytokine secretion of NK cells and monocytes in freshly collected blood and cerebrospinal fluid (CSF) at diagnosis (n=23), completion of anti-fungal therapy induction (n=19) and after a further 4 weeks of cART (n=9). Results Relative to blood, CSF was enriched with CD56bright (immunoregulatory) NK cells (p=0.0004). At enrolment, CXCR3 expression was more frequent amongst blood CD56bright than either blood CD56dim (p<0.0001) or CSF CD56bright (p=0.0002) NK cells. Anti-fungal therapy diminished blood (p<0.05) but not CSF CXCR3pos NK cell proportions nor CX3CR1pos NK cell proportions. CD56bright and CD56dim NK cells were more activated in CSF than blood (p<0.0001). Anti-fungal therapy induction reduced CD56dim NK cell activation in CSF (p=0.02). Activation of blood CD56bright and CD56dim NK cells was diminished following cART commencement (p<0.0001, p=0.03). Immunoregulatory NK cells in CSF tended to secrete higher levels of CXCL10 (p=0.06) and lower levels of TNF-α (p=0.06) than blood immunoregulatory NK cells. CSF was enriched with non-classical monocytes (p=0.001), but anti-fungal therapy restored proportions of classical monocytes (p=0.007). Conclusions These results highlight CNS activation, trafficking and function of NK cells and monocytes in CM/HIV and implicate immunoregulatory NK cells and pro-inflammatory monocytes as potential modulators of CM pathogenesis during HIV co-infection. PMID:24451162

  20. A prospective observational study to evaluate G-CSF usage in patients with solid tumors receiving myelosuppressive chemotherapy in Italian clinical oncology practice.

    PubMed

    Barni, S; Lorusso, V; Giordano, M; Sogno, G; Gamucci, T; Santoro, A; Passalacqua, R; Iaffaioli, V; Zilembo, N; Mencoboni, M; Roselli, M; Pappagallo, G; Pronzato, P

    2014-01-01

    Febrile neutropenia (FN) is a severe dose-limiting side effect of myelosuppressive chemotherapy in patients with solid tumors. Clinical practice guidelines recommend primary prophylaxis with G-CSF in patients with an overall ≥ 20 % risk of FN. AIOM Italian guidelines recommend starting G-CSF within 24-72 h after chemotherapy; for daily G-CSF, administration should continue until the absolute neutrophil count (ANC) is 1 × 10(9)/L post-nadir and should not be terminated after ANC increase in the early days of administration. The aim of this study was to assess guideline adherence in oncology practice in Italy. In this multicenter, prospective, observational study, patients were enrolled at the first G-CSF use in any cycle and were followed for two subsequent cycles (or until the end of chemotherapy if less than two additional cycles). Primary objective was to explore G-CSF use in Italian clinical practice; therefore, data were collected on the G-CSF type, timing of administration, and number of doses. 512 eligible patients were enrolled (median age, 62). The most common tumor types were breast (36 %), lung (18 %), and colorectal (13 %). A total of 1,164 G-CSF cycles (daily G-CSF, 718; pegfilgrastim, 446) were observed. Daily G-CSF was administered later than 72 h after chemotherapy in 42 % of cycles, and the median [range] number of doses was four [1, 10]. Pegfilgrastim was administered later than 72 h in 8 % of cycles. G-CSF prophylaxis in Italy is frequently administered in a manner which is not supported by evidence-based guidelines. As this practice may lead to poor outcomes, educational initiatives are recommended.

  1. microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma.

    PubMed

    Chai, Zong-Tao; Zhu, Xiao-Dong; Ao, Jian-Yang; Wang, Wen-Quan; Gao, Dong-Mei; Kong, Jian; Zhang, Ning; Zhang, Yuan-Yuan; Ye, Bo-Gen; Ma, De-Ning; Cai, Hao; Sun, Hui-Chuan

    2015-05-29

    microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages. Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC. Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC. miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.

  2. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    PubMed

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P < 0.05]. Human recombinant M-CSF promoted M2 polarization of macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P <0.05). M-CSF levels were associated with poorer overall survival and disease-free survival in NSCLC patients ( P <0.05). Conclusions: Tumor-derived M-CSF can induce CD14(+) CD163(+) M2 polarization of macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  3. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer.

    PubMed

    Kawano, Mahiru; Mabuchi, Seiji; Matsumoto, Yuri; Sasano, Tomoyuki; Takahashi, Ryoko; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Isobe, Aki; Sawada, Kenjiro; Hamasaki, Toshimitsu; Morii, Eiichi; Kimura, Tadashi

    2015-12-15

    Granulocyte-colony stimulating factor (G-CSF) producing malignant tumor has been reported to occur in various organs, and has been associated with poor clinical outcome. The aim of this study is to investigate the significance of tumor G-CSF expression in the chemosensitivity of uterine cervical cancer. The clinical data of recurrent or advanced cervical cancer patients who were treated with platinum-based chemotherapy were analyzed. Clinical samples, cervical cancer cell lines, and a mouse model of cervical cancer were employed to examine the mechanisms responsible for the development of chemoresistance in G-CSF-producing cervical cancer, focusing on myeloid-derived suppressor cells (MDSC). As a result, the tumor G-CSF expression was significantly associated with increased MDSC frequencies and compromised survival. In vitro and in vivo experiments demonstrated that the increased MDSC induced by tumor-derived G-CSF is involved in the development of chemoresistance. The depletion of MDSC via splenectomy or the administration of anti-Gr-1 antibody sensitized G-CSF-producing cervical cancer to cisplatin. In conclusion, tumor G-CSF expression is an indicator of an extremely poor prognosis in cervical cancer patients that are treated with chemotherapy. Combining MDSC-targeting treatments with current standard chemotherapies might have therapeutic efficacy as a treatment for G-CSF-producing cervical cancer.

  4. Treatment of normal donors with rhG-CSF 16 micrograms/kg for mobilization of peripheral blood stem cells and their apheretic collection for allogeneic transplantation.

    PubMed

    Majolino, I; Buscemi, F; Scimé, R; Indovina, A; Santoro, A; Vasta, S; Pampinella, M; Catania, P; Fiandaca, T; Caronia, F

    1995-01-01

    Utilization of peripheral blood stem cells (PBSC) in allogeneic transplantation requires a method for their mobilization and collection that is not inconvenient for the donor. We administered rhG-CSF (filgrastim) 16 micrograms/kg subcutaneously for 4 days in five normal subjects (age 18-31, M = 3, F = 2), previously selected as HLA-identical donors of siblings with leukemia. All the donors gave written informed consent. On days 4 and 5 (in one donor on day 6 too), 10:l leukapheretic collection was performed with a CS-3000 (Baxter) or an AS-104 (Fresenius) cell separator through the antecubital vein. The WBC count reached a median peak of 57.0 x 10(9)/L on day 5. The peripheral blood CFU-GM peaked to a median level of 8908/mL on day 5 with a median increase over baseline values of 39.1 times. The CD34+ cells peaked to (median) 147.0 x 10(6)/L on day 4 with a median increase of 65.3 times. A lesser enrichment was recorded for BFU-E (median increase 12.7 times) and CFU-GEMM (median increase 15.2 times). Even CD3+ and CD56+CD3- cells increased (median 1.7 and 1.5 times, respectively). A median of 771 x 10(8) MNC (range 672-1378), 116.4 x 10(6) CFU-GM (range 47.7-145.1) and 754 x 10(6) CD34+ cells (range 477-2599) were apheretically collected. Concerning side effects, mild to moderate back pain and general minor discomfort were reported by all donors. The platelet level regularly but transiently decreased after completion of the apheretic procedures with a median nadir of 69 x 10(9)/L (range 43-126) on (median) day 7, but in no case did thrombocytopenia cause bleeding. The thrombocytopenia was more pronounced with the CS-3000 than the AS-104 apparatus. rhG-CSF 16 micrograms/kg x 4 days is an efficient schedule for PBSC mobilization in healthy donors, but lower doses and even a single apheresis procedure might prove similarly adequate.

  5. Quantitative Relationship Between AUEC of Absolute Neutrophil Count and Duration of Severe Neutropenia for G-CSF in Breast Cancer Patients.

    PubMed

    Li, Liang; Ma, Lian; Schrieber, Sarah J; Rahman, Nam Atiqur; Deisseroth, Albert; Farrell, Ann T; Wang, Yaning; Sinha, Vikram; Marathe, Anshu

    2018-02-02

    The aim of the study was to evaluate the quantitative relationship between duration of severe neutropenia (DSN, the efficacy endpoint) and area under effect curve of absolute neutrophil counts (ANC-AUEC, the pharmacodynamic endpoint), based on data from filgrastim products, a human granulocyte colony-stimulating factor (G-CSF). Clinical data from filgrastim product comparator and test arms of two randomized, parallel-group, phase III studies in breast cancer patients treated with myelosuppressive chemotherapy were utilized. A zero-inflated Poisson regression model best described the negative correlation between DSN and ANC-AUEC. The models predicted that with 10 × 10 9 day/L of increase in ANC-AUEC, the mean DSN would decrease from 1.1 days to 0.93 day in Trial 1 and from 1.2 days to 1.0 day in Trial 2. The findings of the analysis provide useful information regarding the relationship between ANC and DSN that can be used for dose selection and optimization of clinical trial design for G-CSF. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  6. [Proliferation and IFN-gamma secretion of autologous T lymphocytes stimulated by myeloid leukemia cells induced with rhGM-CSF and rhIL-4].

    PubMed

    Xie, Yan-Hui; Chen, Qin-Fen; Xie, Yi; Xie, Hong

    2002-12-01

    To observe the proliferation of T lymphocytes stimulated by CML and AML cells which were induced by rhGM-CSF and rhIL-4, and the secretion of IFN-gamma from proliferated T lymphocytes, the expression of CD80, CD86 and HLA-DR on CML and AML cells induced by GM-CSF and IL-4 was assayed by flow cytometry in vitro. Then one-way mixed lymphocyte reaction was carried out, with induced leukemia cells as stimulating cells and auto-T lymphocytes as reactive cells. The secretion of IFN-gamma from T lymphocytes was determined by double antibody sandwich ELISA. The results showed that GM-CSF and IL-4 significantly upregulated the expression of CD80, CD86 and HLA-DR on CML cells and CD80 and CD86 on AML cells, which could stimulate the T lymphocyte proliferation and high secretion of IFN-gamma (in CML group) of autologous T lymphocytes. It is concluded that the CML and AML cells induced by GM-CSF and IL-4 have the ability to present tumor specific antigen to auto-T lymphocyte.

  7. PPAR-γ contributes to immunity by cancer vaccines that secrete GM-CSF.

    PubMed

    Goyal, Girija; Wong, Karrie; Nirschl, Christopher J; Souders, Nicholas; Neuberg, Donna; Anandasabapathy, Niroshana; Dranoff, Glenn

    2018-04-18

    Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of PPARγ in lysozyme M (LysM)-expressing myeloid cells showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered dendritic cell responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells (PBMCs) with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Copyright ©2018, American Association for Cancer Research.

  8. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung

    PubMed Central

    Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.

    2011-01-01

    Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803

  9. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells.

    PubMed

    Ding, Ling-Zhi; Teng, Xiao; Zhang, Zhao-Bo; Zheng, Chang-Jun; Chen, Shi-Hong

    2018-05-01

    Mangiferin is a xanthone glucoside, which possesses antioxidant, antiviral, antitumor and anti-inflammatory functions, and is associated with gene regulation. However, it remains unknown whether mangiferin protects osteoblasts, such as the MC3T3-E1 cell line, against glucocorticoid-induced damage. In the present study, MC3T3-E1 cells were treated with dexamethasone (Dex), which is a well-known synthetic glucocorticoid, in order to establish a glucocorticoid-induced cell injury model. After Dex and/or mangiferin treatment, cell viability, apoptosis and reactive oxygen species (ROS) production was measured by Cell Counting kit-8 (CCK-8) and flow cytometry, respectively, and the concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and macrophage colony-stimulating factor (M-CSF) was measured by ELISA. The expression of bone morphogenetic protein 2 (BMP2), phosphorylated‑SMAD family member 1 (p-Smad-1), t-Smad-1, osterix (OSX), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), B‑cell lymphoma 2 (Bcl-2) and Bcl‑2‑associated X protein (Bax) was measured by real-time PCR and/or western blot analysis. The results indicated that pretreatment of MC3T3-E1 cells with mangiferin for 3 h prior to exposure to Dex for 48 h significantly attenuated Dex-induced injury and inflammation, as demonstrated by increased cell viability, and decreases in apoptosis, ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In addition, pretreatment with mangiferin markedly reduced Dex-induced BMP2 and p‑Smad-1 downregulation, and corrected the expression of differentiation‑ and apoptosis‑associated markers, including alkaline phosphatase, OSX, OCN, OPG, RANK, RANKL, Bcl-2 and Bax, which were altered by Dex treatment. Similar to the protective effects of mangiferin, overexpression of BMP2 suppressed not only Dex-induced cytotoxicity, but also ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In conclusion, the results of the present study are the first, to the best of our knowledge, to demonstrate that mangiferin protects MC3T3-E1 cells against Dex-induced apoptosis and oxidative stress by activating the BMP2/Smad-1 signaling pathway.

  10. Herpes simplex encephalitis presenting as stroke-like symptoms with atypical MRI findings and lacking cerebrospinal fluid pleocytosis.

    PubMed

    Tsuboguchi, Shintaro; Wakasugi, Takahiro; Umeda, Yoshitaka; Umeda, Maiko; Oyake, Mutsuo; Fujita, Nobuya

    2017-07-29

    A 73-year-old woman presented with sudden onset of right hemiparesis and was diagnosed as having cerebral infarction on the basis of diffusion-weighted brain MRI, which demonstrated lesions in the left parietal cortex. On the 3rd day, the patient developed right upper limb myoclonus, aphasia, and disturbance of consciousness with high fever. On the 6th day, she was transferred to our hospital with suspected viral encephalitis, and treatment with acyclovir was started. By the 6th day, the lesions detected by MRI had expanded to the gyrus cinguli, insula and thalamus, but not to the temporal lobe. At that time, the CSF cell count was 8/μl, and this later increased to 17/μl by the 13th day. Although herpes simplex virus DNA was detected in the CSF on the 6th day, there was no evidence of CSF pleocytosis or temporal lobe abnormalities demonstrable by brain MRI throughout the whole follow-up period. This was very atypical case of herpes simplex encephalitis characterized by a stroke-like episode, atypical MRI findings, and absence of cerebrospinal fluid pleocytosis. It is important to be mindful that herpes simplex encephalitis (HSE) can have an atypical presentation, and that sufficient acyclovir treatment should be initiated until HSE can be ruled out.

  11. Following the (Clinical Decision) Rules: Opportunities for Improving Safety and Resource Utilization With the Bacterial Meningitis Score.

    PubMed

    Hagedorn, Philip A; Shah, Samir S; Kirkendall, Eric S

    2016-05-01

    The Bacterial Meningitis Score accurately classifies children with cerebrospinal fluid (CSF) pleocytosis at very low risk (VLR) versus not very low risk (non-VLR) for bacterial meningitis. Most children with CSF pleocytosis detected during emergency department evaluation are hospitalized despite the high accuracy of this prediction rule and the decreasing incidence of bacterial meningitis. The lack of widespread use of this rule may contribute to unnecessary risk exposure and costs. This cross-sectional study included 1049 patients who, between January 2010 and May 2013, had suspicion for meningitis and underwent both a complete blood cell count and CSF studies during their emergency department evaluation. We then examined their hospitalizations to characterize exposure to drugs, radiologic studies, and the costs associated with their care to determine the safety and value repercussions of these VLR admissions. Primary outcomes include duration of antibiotics, exposure to drugs and radiology studies, safety events, and costs incurred during these VLR admissions. Twenty patients classified as VLR were admitted to the hospital. On average they received 35 hours of antibiotic therapy. There was 1 adverse drug event and 1 safety event. The VLR patients admitted to the hospital were exposed to risk and costs despite their low risk stratification. Systematic application of the Bacterial Meningitis Score could prevent these exposures and costs. Copyright © 2016 by the American Academy of Pediatrics

  12. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?

    PubMed

    Cashen, A F; Lazarus, H M; Devine, S M

    2007-05-01

    Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.

  13. Cortisol inhibits CSF2 and CSF3 via DNA methylation and inhibits invasion in first-trimester trophoblast cells

    PubMed Central

    Smith, Arianna; Witte, Elizabeth; McGee, Devin; Knott, Jason; Narang, Kavita; Racicot, Karen

    2018-01-01

    Problem Heightened maternal stress affects trophoblast function and increases risk for adverse pregnancy outcomes. Methods of Study Studies were performed using the first-trimester trophoblast cell line, Sw.71. Cytokines were quantified using qPCR and ELISA. Epigenetic regulation of cytokines was characterized by inhibiting histone deacetylation (1 μmol/L suberoylanilide hydroxamic acid [SAHA]) or methylation (5 μmol/L 5-azacytidine), or with chromatin immunoprecipitation (ChIP) with a pan-acetyl histone-3 antibody. Invasion assays used Matrigel chambers. Results Cortisol inhibited expression of CSF2 (GM-CSF) and CSF3 (G-CSF) in trophoblast cells. Cortisol-associated inhibition was dependent on DNA methylation and was not affected by acetylation. There was also a modest decrease in trophoblast invasion, not dependent on loss of CSFs. Conclusion In first-trimester trophoblast cells, the physiological glucocorticoid, cortisol, inhibited two cytokines with roles in placental development and decreased trophoblast invasion. Cortisol-associated changes in trophoblast function could increase the risk for immune-mediated abortion or other adverse pregnancy outcomes. PMID:28846166

  14. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  15. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  16. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-04-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.

  17. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF.

    PubMed

    Choi, K-J; Zhang, S-N; Choi, I-K; Kim, J-S; Yun, C-O

    2012-07-01

    Interleukin (IL)-12 and granulocyte-monocyte colony-stimulating factor (GM-CSF) have recently been used as immunotherapeutic agents in cancer gene therapy. IL-12 and GM-CSF have differential roles in the antitumor immune response, as IL-12 targets T, NK and natural killer T (NKT) cells and GM-CSF principally targets antigen-presenting cells (APCs). To strengthen the therapeutic efficacy of these two cytokines, we generated an oncolytic adenovirus (Ad), Ad-ΔB7/IL12/GMCSF, coexpressing IL-12 and GM-CSF. Using a murine B16-F10 syngeneic tumor model, we show that Ad-ΔB7/IL12/GMCSF promoted antitumor responses and increased survival compared with an oncolytic Ad expressing IL-12 or GM-CSF alone (Ad-ΔB7/IL12 or Ad-ΔB7/GMCSF, respectively). By measuring cytotoxic T lymphocyte activity and interferon-γ production, we show that the enhanced therapeutic effect was mediated by the induction of immune cell cytotoxicity. In situ delivery of Ad-ΔB7/IL12/GMCSF resulted in massive infiltration of CD4(+) T cells, CD8(+) T cells, NK cells and CD86(+) APCs into the tissue surrounding the necrotic area of the tumor. Moreover, GM-CSF effectively promoted antitumor immune memory, which was significantly augmented by IL-12. Lastly, IL12-expressing oncolytic Ads prevented tumor-induced thymic atrophy and was associated with reduced apoptosis and increased proliferation in the thymus. Taken together, these data demonstrate that an oncolytic Ad coexpressing IL-12 and GM-CSF is a potential therapeutic tool for the treatment of cancer.

  18. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice

    PubMed Central

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8+ T cells from immunized animals, antigen-specific CD8+ T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients. PMID:26166767

  19. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    PubMed

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  20. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    PubMed

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  1. Combining G-CSF with a blockade of adhesion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells.

    PubMed

    Christ, O; Kronenwett, R; Haas, R; Zöller, M

    2001-03-01

    Mobilization of hematopoietic progenitor cells is achieved mainly by application of growth factors and, more recently, by blockade of adhesion. In this report, we describe the advantages of a combined treatment with granulocyte colony-stimulating factor (G-CSF) and anti-VLA4 (CD49d)/anti-CD44 as compared to treatment with the individual components. Mobilization by intravenous injection of anti-CD44, anti-VLA4, or G-CSF was controlled in spleen and bone marrow with regard to frequencies of multipotential colony-forming unit (C-CFU), marrow repopulating ability, long-term reconstitution, recovery of myelopoiesis, and regain of immunocompetence. Mobilization by anti-CD44 had a strong effect on expansion of early progenitor cells in the bone marrow, while the recovery in the spleen was poor. In anti-CD49d-mobilized noncommitted and committed progenitors, progenitor expansion was less pronounced, but settlement in the spleen was quite efficient. Thus, anti-CD44 and anti-CD49d differently influenced mobilization. Accordingly, mobilization and recovery after transfer were improved by combining anti-CD44 with anti-CD49d treatment. Mobilization by G-CSF was most efficient with respect to recovery of progenitor cells in the spleen. However, when transferring G-CSF-mobilized cells, regain of immunocompetence was strongly delayed. This disadvantage could be overridden when progenitor cells were mobilized via blockade of adhesion and when expansion of these mobilized progenitor cells was supported by low-dose G-CSF only during the last 24 hours before transfer. Mobilization of pluripotent progenitor cells via antibody blockade of CD44 or CD49d or via G-CSF relies on distinct mechanisms. Therefore, the reconstitutive capacity of a transplant can be significantly improved by mobilization regimens combining antibody with low-dose G-CSF treatment.

  2. Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis

    PubMed Central

    Kuenz, Bettina; Lutterotti, Andreas; Ehling, Rainer; Gneiss, Claudia; Haemmerle, Monika; Rainer, Carolyn; Deisenhammer, Florian; Schocke, Michael; Berger, Thomas; Reindl, Markus

    2008-01-01

    Background There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS). Methodology/Principal Findings In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138−) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13. Conclusions Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS. PMID:18596942

  3. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.

    PubMed

    Petracca, Yanina L; Sartoretti, Maria Micaela; Di Bella, Daniela J; Marin-Burgin, Antonia; Carcagno, Abel L; Schinder, Alejandro F; Lanuza, Guillermo M

    2016-03-01

    Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. © 2016. Published by The Company of Biologists Ltd.

  4. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  5. Childhood meningitis in the conjugate vaccine era: a prospective cohort study.

    PubMed

    Sadarangani, Manish; Willis, Louise; Kadambari, Seilesh; Gormley, Stuart; Young, Zoe; Beckley, Rebecca; Gantlett, Katherine; Orf, Katharine; Blakey, Sarah; Martin, Natalie G; Kelly, Dominic F; Heath, Paul T; Nadel, Simon; Pollard, Andrew J

    2015-03-01

    Bacterial conjugate vaccines have dramatically changed the epidemiology of childhood meningitis; viral causes are increasingly predominant, but the current UK epidemiology is unknown. This prospective study recruited children under 16 years of age admitted to 3 UK hospitals with suspected meningitis. 70/388 children had meningitis-13 bacterial, 26 viral and 29 with no pathogen identified. Group B Streptococcus was the most common bacterial pathogen. Infants under 3 months of age with bacterial meningitis were more likely to have a reduced Glasgow Coma Score and respiratory distress than those with viral meningitis or other infections. There were no discriminatory clinical features in older children. Cerebrospinal fluid (CSF) white blood cell count and plasma C-reactive protein at all ages, and CSF protein in infants <3 months of age, distinguished between bacterial meningitis and viral meningitis or other infections. Improved diagnosis of non-bacterial meningitis is urgently needed to reduce antibiotic use and hospital stay. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.

  7. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3'-azido- 2'3'-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine

    PubMed Central

    1989-01-01

    We have investigated the influence of granulocyte-macrophage CSF (GM- CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'- dideoxynucleoside congeners of thymidine in these cells in vitro. We found that replication of both HTLV-IIIBa-L (a monocytotropic strain of HIV-1) and HTLV-IIIB (a lymphocytotropic strain) is markedly enhanced in M/M, but not in lymphocytes exposed to GM-CSF in culture. Moreover, GM-CSF reduced the dose of HIV required to obtain productive infection in M/M. Even in the face of this increased infection, GM-CSF also enhanced the net anti-HIV activity of 3'-azido-2'3'-dideoxythymidine (AZT) and several related congeners: 2'3'-dideoxythymidine (ddT), 2'3'- dideoxy-2'3'-didehydrothymidine (D4T), and 3'-azido-2'3'-dideoxyuridine (AZddU). Inhibition of viral replication in GM-CSF-exposed M/M was achieved with concentrations of AZT and related drugs, which were 10- 100 times lower than those inhibitory for HIV-1 in monocytes in the absence of GM-CSF. Other dideoxynucleosides not related to AZT showed unchanged or decreased anti-HIV activity in GM-CSF-exposed M/M. To investigate the possible biochemical basis for these effects, we evaluated the metabolism of several drugs in M/M exposed to GM-CSF. We observed in these cells markedly increased levels of both parent and mono-, di-, and triphosphate anabolites of AZT and D4T compared with M/M not exposed to GM-CSF. By contrast, only limited increases of endogenous competing 2'-deoxynucleoside-5'-triphosphate pools were observed after GM-CSF exposure. Thus, the ratio of AZT-5'- triphosphate/2'-deoxythymidine-5'-triphosphate and 2'3'-dideoxy-2'3'- didehydrothymidine-5'-triphosphate/2'-deoxythymi dine- 5'-triphosphate is several-fold higher in GM-CSF-exposed M/M, and this may account for the enhanced activity of such drugs in these cells. Taken together, these findings suggest that GM-CSF increases HIV-1 replication in M/M, while at the same time enhancing the anti-HIV activity of AZT and related congeners in these cells. These results may have implications in exploring new therapeutic strategies in patients with severe HIV infection. PMID:2538549

  8. Use of granulocyte colony-stimulating factor: a survey among Italian medical oncologists.

    PubMed

    Danova, Marco; Rosti, Giovanni; De Placido, Sabino; Bencardino, Katia; Venturini, Marco

    2005-12-01

    In October 2003, the Italian Association of Medical Oncology (AIOM) published its own guidelines on the use of granulocyte colony-stimulating factor (G-CSF). The present survey was conducted during the same period with the aim of collecting data on the current use of G-CSF to provide a starting point for future evaluations of the implementation of AIOM guidelines. From October 2003 to January 2004, 1591 AIOM members were asked to complete a questionnaire based on specific clinical scenarios, regarding the use of G-CSF for primary and secondary prophylaxis and treatment of neutropenia. The rate of response was 22%. For primary prophylaxis, the majority of physicians avoid using G-CSF, with no difference in cases of adjuvant, curative or palliative chemotherapy (CT). In fact, 67.2% to 74.9% would 'rarely or never' use G-CSF in the proposed clinical scenarios. In chemosensitive tumors, rather than reducing CT doses, 55.7% would use G-CSF as a secondary prophylaxis after afebrile neutropenia (AN), and 68.8% after febrile neutropenia (FN). In elderly patients experiencing FN, 35.7% would reduce the adjuvant CT doses and 23.1% would change the regimen. Most oncologists would use G-CSF to treat neutropenia, and the median duration of G-CSF treatment is less than 1 week and would depend on neutrophil count. Our survey shows that Italian oncologists are particularly oriented towards the use of G-CSF in clinical practice to maintain the CT dose intensity, and are sensitive to the prevention and treatment of not only FN, but also AN. Finally, Italian medical oncologists appear to be very cautious in introducing G-CSF when treating elderly patients.

  9. Obstructive Sleep Apnea is Associated With Early but Possibly Modifiable Alzheimer's Disease Biomarkers Changes.

    PubMed

    Liguori, Claudio; Mercuri, Nicola Biagio; Izzi, Francesca; Romigi, Andrea; Cordella, Alberto; Sancesario, Giuseppe; Placidi, Fabio

    2017-05-01

    Obstructive sleep apnea (OSA) is a common sleep disorder. The, literature lacks studies examining sleep, cognition, and Alzheimer's Disease (AD) cerebrospinal fluid (CSF) biomarkers in OSA patients. Therefore, we first studied cognitive performances, polysomnographic sleep, and CSF β-amyloid42, tau proteins, and lactate levels in patients affected by subjective cognitive impairment (SCI) divided in three groups: OSA patients (showing an Apnea-Hypopnea Index [AHI] ≥15/hr), controls (showing an AHI < 15/hr), and patients with OSA treated by continuous positive airway pressure (CPAP). We compared results among 25 OSA, 10 OSA-CPAP, and 15 controls who underwent a protocol counting neuropsychological testing in the morning, 48-hr polysomnography followed by CSF analysis. OSA patients showed lower CSF Aβ42 concentrations, higher CSF lactate levels, and higher t-tau/Aβ42 ratio compared to controls and OSA-CPAP patients. OSA patients also showed reduced sleep quality and continuity and lower performances at memory, intelligence, and executive tests than controls and OSA-CPAP patients. We found significant relationships among higher CSF tau proteins levels, sleep impairment, and increased CSF lactate levels in the OSA group. Moreover, lower CSF Aβ42 levels correlate with memory impairment and nocturnal oxygen saturation parameters in OSA patients. We hypothesize that OSA reducing sleep quality and producing intermittent hypoxia lowers CSF Aβ42 levels, increases CSF lactate levels, and alters cognitive performances in SCI patients, thus inducing early AD clinical and neuropathological biomarkers changes. Notably, controls as well as OSA-CPAP SCI patients did not show clinical and biochemical AD markers. Therefore, OSA may induce early but possibly CPAP-modifiable AD biomarkers changes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity

    PubMed Central

    Ifergan, Igal; Davidson, Todd S.; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M.; Hunter, Zoe N.; Pittet, Camille L.; Beddow, Sara; Jones, Clare A.; Prat, Alexandre; Sleeman, Matthew A.; Miller, Stephen D.

    2017-01-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. PMID:28641926

  11. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    PubMed

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Receptor for macrophage colony-stimulating factor transduces a signal decreasing erythroid potential in the multipotent hematopoietic EML cell line.

    PubMed

    Pawlak, G; Grasset, M F; Arnaud, S; Blanchet, J P; Mouchiroud, G

    2000-10-01

    To test the hypothesis that hematopoietic growth factors may influence lineage choice in pluripotent progenitor cells, we investigated the effects of macrophage colony-stimulating factor (M-CSF) on erythroid and myeloid potentials of multipotent EML cells ectopically expressing M-CSF receptor (M-CSFR). EML cells are stem cell factor (SCF)-dependent murine cells that give rise spontaneously to pre-B cells, burst-forming unit erythroid (BFU-E), and colony-forming unit granulocyte macrophage (CFU-GM). We determined BFU-E and CFU-GM frequencies among EML cells transduced with murine M-CSFR, human M-CSFR, or chimeric receptors, and cultivated in the presence of SCF, M-CSF, or both growth factors. Effects of specific inhibitors of signaling molecules were investigated. EML cells transduced with murine M-CSFR proliferated in response to M-CSF but also exhibited a sharp and rapid decrease in BFU-E frequency associated with an increase in CFU-GM frequency. In contrast, EML cells expressing human M-CSFR proliferated in response to M-CSF without any changes in erythroid or myeloid potential. Using chimeric receptors between human and murine M-CSFR, we showed that the effects of M-CSF on EML cell differentiation potential are mediated by a large region in the intracellular domain of murine M-CSFR. Furthermore, phospholipase C (PLC) inhibitor U73122 interfered with the negative effects of ligand-activated murine M-CSFR on EML cell erythroid potential. We propose that signaling pathways activated by tyrosine kinase receptors may regulate erythroid potential and commitment decisions in multipotent progenitor cells and that PLC may play a key role in this process.

  13. The Effects of Rm-CSF and Ril-6 Therapy on Immunosuppressed Antiorthostatically Suspended Mice

    NASA Technical Reports Server (NTRS)

    Armstong, Jason W.; Kirby-Dobbels, Kathy; Chapes, Steven K.

    1995-01-01

    Antiorthostatically suspended mice had suppressed macrophage development in both unloaded and loaded bones, indicating a systemic effect. Bone marrow cells from those mice secreted less macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) than did control mice. Because M-CSF and IL-6 are important to bone marrow macrophage maturation, we formulated the hypothesis that suppressed macrophage development occurred as a result of the depressed levels of either M-CSF or IL-6. To test the hypothesis, mice were administered recombinant M-CSF or IL-6 intraperitoneally. We showed that recombinant M-CSF therapy, but not recombinant IL-6 therapy, reversed the suppressive effects of orthostatic suspension on macrophage development. These data suggest that bone marrow cells that produce M-CSF are affected by antiorthostatic suspension and may contribute to the inhibited maturation of bone marrow macrophage progenitors.

  14. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5

    PubMed Central

    Liu, Fulu; Kunter, Ghada; Krem, Maxwell M.; Eades, William C.; Cain, Jennifer A.; Tomasson, Michael H.; Hennighausen, Lothar; Link, Daniel C.

    2008-01-01

    A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF–induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r. PMID:18292815

  15. Improvement in the measurement error of the specific binding ratio in dopamine transporter SPECT imaging due to exclusion of the cerebrospinal fluid fraction using the threshold of voxel RI count.

    PubMed

    Mizumura, Sunao; Nishikawa, Kazuhiro; Murata, Akihiro; Yoshimura, Kosei; Ishii, Nobutomo; Kokubo, Tadashi; Morooka, Miyako; Kajiyama, Akiko; Terahara, Atsuro

    2018-05-01

    In Japan, the Southampton method for dopamine transporter (DAT) SPECT is widely used to quantitatively evaluate striatal radioactivity. The specific binding ratio (SBR) is the ratio of specific to non-specific binding observed after placing pentagonal striatal voxels of interest (VOIs) as references. Although the method can reduce the partial volume effect, the SBR may fluctuate due to the presence of low-count areas of cerebrospinal fluid (CSF), caused by brain atrophy, in the striatal VOIs. We examined the effect of the exclusion of low-count VOIs on SBR measurement. We retrospectively reviewed DAT imaging of 36 patients with parkinsonian syndromes performed after injection of 123 I-FP-CIT. SPECT data were reconstructed using three conditions. We defined the CSF area in each SPECT image after segmenting the brain tissues. A merged image of gray and white matter images was constructed from each patient's magnetic resonance imaging (MRI) to create an idealized brain image that excluded the CSF fraction (MRI-mask method). We calculated the SBR and asymmetric index (AI) in the MRI-mask method for each reconstruction condition. We then calculated the mean and standard deviation (SD) of voxel RI counts in the reference VOI without the striatal VOIs in each image, and determined the SBR by excluding the low-count pixels (threshold method) using five thresholds: mean-0.0SD, mean-0.5SD, mean-1.0SD, mean-1.5SD, and mean-2.0SD. We also calculated the AIs from the SBRs measured using the threshold method. We examined the correlation among the SBRs of the threshold method, between the uncorrected SBRs and the SBRs of the MRI-mask method, and between the uncorrected AIs and the AIs of the MRI-mask method. The intraclass correlation coefficient indicated an extremely high correlation among the SBRs and among the AIs of the MRI-mask and threshold methods at thresholds between mean-2.0D and mean-1.0SD, regardless of the reconstruction correction. The differences among the SBRs and the AIs of the two methods were smallest at thresholds between man-2.0SD and mean-1.0SD. The SBR calculated using the threshold method was highly correlated with the MRI-SBR. These results suggest that the CSF correction of the threshold method is effective for the calculation of idealized SBR and AI values.

  16. The relationship between periodontal status and peripheral levels of neutrophils in two consanguineous siblings with severe congenital neutropenia: case reports.

    PubMed

    Tözüm, Tolga Fikret; Berker, Ezel; Ersoy, Fügen; Tezcan, Iihan; Sanal, Ozden

    2003-03-01

    Congenital neutropenia is characterized by a severe reduction in absolute neutrophil counts, resulting in an almost total absence of neutrophils. It is well known that severe neutropenia affects periodontal status. Oral manifestations include ulcerations, gingival desquamation, gingival inflammation, attachment loss, and alveolar bone loss which may result in tooth loss. Treatment with granulocyte-colony stimulating factor (G-CSF) may improve this periodontal condition. This article reports the relationship between periodontal disease status and peripheral neutrophil levels in two consanguineous siblings with severe congenital neutropenia who did not receive routine G-CSF for 2 years prior to examination. Both siblings were given scaling, root planing, and periodontal prophylaxis in regular follow-up visits. This report demonstrates that periodontal therapy supported by adequate oral hygiene may result in restoration of neutrophil counts in siblings with congenital neutropenia.

  17. Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis.

    PubMed

    Hustinx, W; Benaissa-Trouw, B; Van Kessel, K; Kuenen, J; Tavares, L; Kraaijeveld, K; Verhoef, J; Hoepelman, A

    1997-12-01

    Combined prophylactic treatment with recombinant murine granulocyte colony-stimulating factor (G-CSF) and a suboptimal dose of anti-K1 capsular IgM monoclonal antibody (MAb) significantly enhanced survival in an experimental mouse Escherichia coli O7:K1 peritonitis model compared with untreated animals (67% vs. 11% survival; P < 0.001) and with either treatment alone (67 vs. 29% and 27% survival, respectively; P < 0.01), which suggests synergism between these agents. Enhanced survival by combined treatment was associated with increased neutrophil counts in blood and peritoneal lavage fluid, lower systemic and higher levels of local tumour necrosis factor (TNF) and lower bacterial counts in blood cultures. Mouse neutrophils treated with G-CSF but not infected with E. coli showed enhanced phagocytic and respiratory burst capacity, down-regulation of L-selectin receptors and enhanced expression of Fc RII-III receptors but not of complement receptors.

  18. Granulocyte colony stimulating factor (G-CSF) can allow treatment with clozapine in a patient with severe benign ethnic neutropaenia (BEN): a case report.

    PubMed

    Spencer, Benjamin W J; Williams, Hugh R J; Gee, Siobhan H; Whiskey, Eromona; Rodrigues, Joseph P; Mijovic, Aleksandar; MacCabe, James H

    2012-09-01

    Clozapine is the treatment of choice for treatment-resistant schizophrenia, but it is associated with a risk of neutropaenia and agranulocytosis. Clozapine use is regulated by mandatory blood monitoring in the UK, requiring cessation of treatment should the absolute neutrophil count (ANC) drop below specified values. Benign reductions in the ANC in non-white populations are common, and this can preclude a patient from receiving treatment with clozapine. A diagnosis of benign ethnic neutropaenia can reduce these treatment restrictions (UK specific), but the degree of neutropaenia can be significant enough to still prevent treatment. In this report, we show that response to granulocyte colony stimulating factor (G-CSF) may be quite variable and difficult to predict, but with careful monitoring it can be used to increase the ANC count and allow continued treatment with clozapine.

  19. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  20. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    PubMed

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  1. Potential clinical applications of rhGM-CSF in acute myeloid leukemia based on its biologic activity and receptor interaction.

    PubMed

    Lanza, F; Rigolin, G M; Castagnari, B; Moretti, S; Castoldi, G

    1997-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multilineage hemopoietic growth factor that stimulates proliferation, differentiation, and survival of progenitor cells, enhances the functional activities of mature myeloid effector cells, and plays a key role in host defense and the inflammatory process. Although the clinical use of rhGM-CSF in patients affected by lymphoid malignancies is widely accepted, its utility and safety in the management of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) is still controversial. The three main schedules adopted for clinical application of GM-CSF in AML are as follows: A) post-chemotherapy, in order to shorten the duration of neutropenia and/or monocytopenia; B) prechemotherapy to recruit blast cells into active cell cycle phases, and to increase their sensitivity to cell cycle-dependent cytotoxic drugs; C) as a mobilizing agent to induce the release of progenitor cells from bone marrow into circulation (peripheral blood progenitor cell transplantation-PBPC). The objective of this paper is to analyze the potential clinical applications of rhGM-CSF in AML. The material examined in the present review includes several personal papers in this field and articles and abstracts published in journals covered by the Science Citation Index. Based on current knowledge, it may be argued that rhGM-CSF should be used only in a subset of AML patients at high risk of infection mortality, including elderly subjects, and/or in those AML patients who relapse or are resistant to induction treatment. However, the risk of stimulating the leukemic clone following GM-CSF therapy should be kept in mind when using this growth factor in the clinical setting, even though the great majority of the reported papers on this subject have shown that GM-CSF therapy does not affect relapse rates, frequency of remissions or patient life expectancy. It is likely that new data from controlled clinical trials will clarify the therapeutic role of GM-CSF in myeloid-derived malignancies, allowing the establishment of consensus guidelines for its use.

  2. Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica

    PubMed Central

    2010-01-01

    Background Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known. Methods Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn Monodelphis pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer. Results Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion. Conclusions The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development. PMID:20920364

  3. Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica.

    PubMed

    Liddelow, Shane A; Dziegielewska, Katarzyna M; Vandeberg, John L; Saunders, Norman R

    2010-10-05

    Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known. Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn Monodelphis pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer. Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion. The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development.

  4. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor

    PubMed Central

    Chitu, Violeta; Stanley, E. Richard

    2017-01-01

    Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. PMID:28236968

  5. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor.

    PubMed

    Chitu, Violeta; Stanley, E Richard

    2017-01-01

    Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. © 2017 Elsevier Inc. All rights reserved.

  6. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications.

    PubMed

    Kaneko, Kimihiko; Sato, Douglas Kazutoshi; Nakashima, Ichiro; Ogawa, Ryo; Akaishi, Tetsuya; Takai, Yoshiki; Nishiyama, Shuhei; Takahashi, Toshiyuki; Misu, Tatsuro; Kuroda, Hiroshi; Tanaka, Satoru; Nomura, Kyoichi; Hashimoto, Yuji; Callegaro, Dagoberto; Steinman, Lawrence; Fujihara, Kazuo; Aoki, Masashi

    2018-06-06

    To evaluate cerebrospinal fluid (CSF) cytokine profiles in myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) disease in adult and paediatric patients. In this cross-sectional study, we measured 27 cytokines in the CSF of MOG-IgG+ disease in acute phase before treatment (n=29). The data were directly compared with those in aquaporin-4 antibody-positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) (n=20), multiple sclerosis (MS) (n=20) and non-inflammatory controls (n=14). In MOG-IgG+ disease, there was no female preponderance and the ages were younger (mean 18 years, range 3-68; 15 were below 18 years) relative to AQP4-IgG+ NMOSD (41, 15-77) and MS (34, 17-48). CSF cell counts were higher and oligoclonal IgG bands were mostly negative in MOG-IgG+ disease and AQP4-IgG+ NMOSD compared with MS. MOG-IgG+ disease had significantly elevated levels of interleukin (IL)-6, IL-8, granulocyte-colony stimulating factor and granulocyte macrophage-colony stimulating factor, interferon-γ, IL-10, IL-1 receptor antagonist, monocyte chemotactic protein-1 and macrophage inflammatory protein-1α as compared with MS. No cytokine in MOG-IgG+ disease was significantly different from AQP4-IgG+ NMOSD. Moreover many elevated cytokines were correlated with each other in MOG-IgG+ disease and AQP4-IgG+ NMOSD but not in MS. No difference in the data was seen between adult and paediatric MOG-IgG+ cases. The CSF cytokine profile in the acute phase of MOG-IgG+ disease is characterised by coordinated upregulation of T helper 17 (Th17) and other cytokines including some Th1-related and regulatory T cells-related ones in adults and children, which is similar to AQP4-IgG+ NMOSD but clearly different from MS. The results suggest that as with AQP4-IgG+ NMOSD, some disease-modifying drugs for MS may be ineffective in MOG-IgG+ disease while they may provide potential therapeutic targets. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Phenotypic Characterization and Antibiogram of CSF Isolates in Acute Bacterial Meningitis.

    PubMed

    Modi, Syamal; Anand, Amit Kumar

    2013-12-01

    Acute bacterial meningitis (ABM) is a medical emergency, which warrants an early diagnosis and an aggressive therapy. Despite the availability of potent newer antibiotics, the mortality rate caused by acute bacterial meningitis remains significantly high in India and in other developing countries, which ranges from 16 - 32%. There is a need of a periodic review of bacterial meningitis worldwide, since the pathogens which are responsible for the infection may vary with time, geography and the age of the patient. Our aim was to study the bacterial profiles and antimicrobial susceptibility patterns of the CSF isolates which were obtained from patients of acute bacterial meningitis in our area. Two hundred and fifty two clinically diagnosed cases of acute bacterial meningitis, who were admitted to the wards of a tertiary medical centre in Patna, during the period from August 2011 to December 2012, were included in this study. Two hundred and fifty two CSF samples from as many patients of ABM were processed for cell counts, biochemical analysis, gram staining, culture, antigen detection by latex agglutination test (LAT) and antibiotic susceptibility tests, as per the standard techniques. In this study, 62.3% patients were males and 37.7% were females The most common age group of presentation was 12-60 years (80.2%). Gram stained smears were positive in 162 (64.3%) samples, while culture yielded positive growth in 200 (79.4%) patients. Streptococcus pneumoniae was the most common pathogen which was isolated in 120 (60%) culture positive cases. Cell counts showed the predominance of neutrophils in all cases with ABM. High protein and low sugar levels correlated well with the features of ABM. All gram positive isolates were sensitive to vancomycin. All the gram negative isolates were sensitive to imipenem. Twenty two (8.7%) patients expired during the course of study. Deaths were caused by N.meningitidis in 9 (40.9%) cases, by S.pneumoniae in 3 (13.6%) cases and by H.influenzea in 1 (4.5%) case. In the remaining 9 (40.9%) mortality cases, the organism could not be identified. Simple, rapid, inexpensive tests like gram staining remain significant means for diagnosis of ABM in developing countries. LAT for pneumococcal antigen should be performed first, since Streptococcus pneumoniae remains the major aetiological agent of ABM, both in adults and children. The final diagnosis of ABM depends upon a comprehensive analysis of CSF smears, cultures, LAT, cytological, biochemical and clinical findings of the cases, and a single test or parameter cannot be used to decide the course of management in the patients. However, empirical therapy is advocated, considering the potentially high rate of mortality in these patients.

  8. Effect of recombinant human granulocyte colony-stimulating factor on combination therapy with aztreonam and clindamycin for infections in neutropenic patients with hematologic diseases.

    PubMed

    Toyama, K; Yaguchi, M; Mizoguchi, H; Masuda, M; Urabe, A; Ikeda, Y; Aoki, I; Shinbo, T; Togawa, A; Hirashima, K; Miura, Y; Hirose, S; Tsuruoka, N; Omine, M; Kamakura, M; Saito, T; Arimori, S; Aoki, N; Kuraishi, Y; Hirai, H; Asano, S; Mori, M; Shirai, T; Muto, Y; Takaku, F

    1996-12-01

    The present multicenter study was performed to evaluate the effect of recombinant human granulocyte-colony stimulating factor (rhG-CSF) on combination therapy using aztreonam (AZT) and clindamycin (CLDM) to treat severe infection in neutropenic patients with hematologic diseases. Forty-three neutropenic patients with infections (rhG-CSF group) were treated with AZT (2 g) and CLDM (600 mg) 2-3 times daily as well as rhG-CSF (Lenograstim or Filgrastim: 2-5 mu/kg/day). The clinical efficacy of this regimen was compared to that obtained in 44 febrile neutropenic patients, with hematologic diseases, who received only AZT and CLDM in a previous study (historical control group). The overall efficacy rate was 69.8% (30/43) in the rhG-CSF group and 65.9% (29/44) in the historical control group. Although the neutrophil count was significantly increased and C-reactive protein tended to be lower in the rhG-CSF group, the daily maximum body temperature profiles of the 2 groups were nearly the same. These results suggest that rhG-CSF is of little benefit in the treatment of single infectious episodes in neutropenic patients, and that appropriate antibiotic therapy is more important.

  9. Use of granulocyte colony-stimulating factor (G-CSF) and outcome in patients with non-chemotherapy agranulocytosis.

    PubMed

    Ibáñez, L; Sabaté, M; Ballarín, E; Puig, R; Vidal, X; Laporte, J-R

    2008-03-01

    The use of granulocyte colony-stimulating factor (G-CSF) in the treatment of non-chemotherapy drug- induced agranulocytosis is controversial. We aimed at assessing the effect of G-CSF on the duration of agranulocytosis. To assess the effect of G-CSF on the duration of agranulocytosis, a Cox proportional hazard model with an estimated propensity score covariate adjusting for several prognostic factors was used. One hundred and forty-five episodes of agranulocytosis were prospectively collected from January 1994 to December 2000 in Barcelona (Spain). No differences were found in the case-fatality rate between treated (9 of 101, 8.9%) and not treated (5 of 44, 11.4%) patients. The median time to reach a neutrophil count > or =1.0 x 10(9)/L was 5 days (95%CI 5-6) in patients treated with G-CSF compared to 7 days (95%CI 6-8) in those not treated, with a hazard ratio of 1.58 (95% CI 1.1-2.3). G-CSF shortens time to recovery in patients with agranulocytosis. However, as an effect on case-fatality has not been recorded, and data on cost-effectiveness are lacking, it would be wise to restrict its use to high-risk patients. Copyright 2008 John Wiley & Sons, Ltd.

  10. Relationship between serum visfatin levels and coronary slow-flow phenomenon.

    PubMed

    Cakmak, Huseyin Altug; Aslan, Serkan; Yalcin, Ahmet Arif; Akturk, Ibrahim Faruk; Yalcin, Burce; Uzun, Fatih; Ozturk, Derya; Erturk, Mehmet; Gul, Mehmet

    2015-09-01

    Increased levels of visfatin, a novel adipocytokine, are reported in atherosclerosis, obesity, and type 2 diabetes. The aim of the present study was to investigate the relationship between coronary slow flow (CSF) and visfatin in patients undergoing elective coronary angiography for suspected coronary artery disease. A total of 140 recruited participants (90 patients with CSF and 50 controls) were divided into two groups according to their coronary flow rates. Coronary flow was quantified by thrombolysis in myocardial infarction (TIMI) frame count (TFC). Serum visfatin levels were higher in the CSF group than in the control group (3.29 ± 1.11 vs. 2.70 ± 1.08 ng/ml, p = 0.003). A significant correlation was found between TFC and visfatin (r = 0.535, p < 0.001). The area under the receiver operating characteristic curve was 0.720 (95 % confidence interval, 0.622-0.817, p < 0.001) for visfatin in the diagnosis of CSF. If a cut-off value of 2.59 ng/ml was used, higher levels of visfatin could predict the presence of CSF with 78.9 % sensitivity and 64.0 % specificity. Visfatin levels might be a useful biomarker for predicting CSF in patients undergoing diagnostic coronary angiography.

  11. Inhibition of CSF1 Receptor Improves the Anti-tumor Efficacy of Adoptive Cell Transfer Immunotherapy

    PubMed Central

    Tsui, Christopher; Xu, Jingying; Robert, Lídia; Wu, Lily; Graeber, Thomas; West, Brian L.; Bollag, Gideon; Ribas, Antoni

    2013-01-01

    Colony stimulating factor-1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIMs) that suppress tumor immunity, including M2 macrophages and myeloid derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive T-cell therapy (ACT). In this model, we found that combined treatment produced superior anti-tumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCIIlow to MHCIIhi macrophages was observed. Further, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TILs) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immune suppressive macrophages. PMID:24247719

  12. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke.

    PubMed

    Peña, Ike dela; Borlongan, Cesar V

    2015-12-01

    Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.

  13. GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation and growth factor production for enhanced tumor cell proliferation

    PubMed Central

    Curran, Colleen S.; Evans, Michael D.; Bertics, Paul J.

    2011-01-01

    Medicinal interventions of limited efficacy are currently available for the treatment of glioblastoma multiforme (GBM), the most common and lethal primary brain tumor in adults. The eosinophil is a pivotal immune cell in the pathobiology of atopic disease that is also found to accumulate in certain tumor tissues. Inverse associations between atopy and GBM risk suggest that the eosinophil may play a functional role in certain tumor immune responses. To assess the potential interactions between eosinophils and GBM, human primary blood eosinophils were cultured with two separate human GBM-derived cell lines (A172, U87-MG) or conditioned media generated in the presence or absence of TNF-α. Results revealed differential eosinophil adhesion and increased survival in response to co-culture with GBM cell lines. Eosinophil responses to GBM cell line-conditioned media included increased survival, activation, CD11b expression and S100A9 release. Addition of GM-CSF neutralizing antibodies to GBM cell cultures or conditioned media reduced eosinophil adhesion, survival and activation, linking tumor cell-derived GM-CSF to the functions of eosinophils in the tumor microenvironment. Dexamethasone, which has been reported to inhibit eosinophil recruitment and shrink GBM lesions on contrast enhanced scans, reduced the production of tumor cell-derived GM-CSF. Furthermore, culture of GBM cells in eosinophil-conditioned media increased tumor cell viability, and generation of eosinophil-conditioned media in the presence of GM-CSF enhanced the effect. These data support the idea of a paracrine loop between GM-CSF producing tumors and eosinophil-derived growth factors in tumor promotion/progression. PMID:21705618

  14. Peritoneal fluid from endometriosis patients switches differentiation of monocytes from dendritic cells to macrophages.

    PubMed

    Na, Yong-Jin; Jin, Jun-O; Lee, Mi-Sook; Song, Min-Gyu; Lee, Kyu-Sup; Kwak, Jong-Young

    2008-01-01

    Immunological abnormalities of cell-mediated and humoral immunity might be associated with the pathogenesis of endometriosis. This study has examined the effects of peritoneal fluid obtained from patients with endometriosis (ePF) on the phenotypic characteristics of macrophages and dendritic cells (DCs) derived from monocytes. Monocytes were obtained from healthy young volunteers and cultured with ePF (n=12) or a control PF (cPF) (n=5) in the presence or absence of macrophage-colony stimulating factor (M-CSF) or IL-4 plus granulocyte macrophage-colony stimulating factor (GM-CSF). The ePF was demonstrated to increase expression levels of CD14 and CD64 on isolated monocytes in the presence or absence of M-CSF. Compared with cPF, addition of 10% ePF to GM-CSF plus IL-4-treated monocytes significantly down-regulated CD1a expression and up-regulated CD64 expression, but did not enhance expression levels of class II MHC. ePF had no effect, however, on tumor necrosis factor-alpha-induced maturation of DC. Levels of IL-6, IL-10 and M-CSF production were higher in ePF-treated than cPF-treated monocytes for both cell culture conditions with GM-CSF plus IL-4 and M-CSF. A neutralizing IL-6 antibody, but not an IL-10 antibody, abrogated the ePF-induced down-regulation of CD1a, up-regulation of CD64 and secretion of M-CSF. These results suggest that ePF favorably induces monocyte differentiation toward macrophages rather than DCs, and that this effect is mediated by IL-6. A reciprocal mode of cell differentiation between macrophages and DCs in response to ePF may be related to the pathogenesis of endometriosis.

  15. Biomarkers in Cerebrospinal Fluid: Analysis of Cell-Free Circulating Mitochondrial DNA by Digital PCR.

    PubMed

    Podlesniy, Petar; Trullas, Ramon

    2018-01-01

    Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.

  16. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    PubMed

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  17. Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System.

    PubMed

    Louis, Cynthia; Cook, Andrew D; Lacey, Derek; Fleetwood, Andrew J; Vlahos, Ross; Anderson, Gary P; Hamilton, John A

    2015-07-01

    M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C(-) monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    PubMed

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Cerebrospinal fluid γδ T cell frequency is age-related: a case-control study of 435 children with inflammatory and non-inflammatory neurological disorders.

    PubMed

    Pranzatelli, M R; Allison, T J; McGee, N R; Tate, E D

    2018-02-27

    Studies of cerebrospinal fluid (CSF) γδ T cells in children are limited, due especially to the lack of control data. In adults, gamma/delta T cells (TCR-γδ) residing in the intrathecal space are sometimes involved in neuroinflammation. To evaluate the possible role of γδ T cells in paediatric neuroinflammation, we immunophenotyped cerebrospinal fluid (CSF) and blood lymphocytes using flow cytometry in a case-control study of 100 children with non-inflammatory neurological disorders (NIND), 312 with opsoclonus-myoclonus (OMS) and 23 with other inflammatory neurological disorders (OIND). In NIND, the negative correlation between CSF γδ T cell frequency and patient age was striking: median frequency of 27% in infants and 3·3% in teens. Interindividual variations were largest in the youngest. There was no gender effect. In all OMS, after correcting for age, only a small effect of OMS severity remained. Measurement of markers for γδ T cell activation [human leucocyte antigen D-related (HLA-DR)], maturation (CD45RA, CD45RO) or intracellular cytokine staining [interleukin (IL)-4, interferon (IFN)-γ] failed to discriminate OMS and NIND groups. Of seven OMS immunotherapies/combinations, none altered the frequency of total CSF γδ T cells or subsets significantly. In OIND, the CSF γδ T cell frequency was < 10% for single samples of other paraneoplastic disorders [anti-neuronal nuclear antibody (ANNA)-1, PCA-1, teratoma-associated syndrome], cerebellar ataxia (post-infectious, ataxia-telangiectasia), acute disseminated encephalomyelitis, neuroborreliosis and encephalitis. This study provides new insights into CSF γδ T cells in the paediatric population. Although their role in CSF remains elusive, the negative age correlation, resistance to immunotherapy and our age cut-off references for NIND are important findings for the design of future paediatric studies. © 2018 British Society for Immunology.

  20. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Lai, Yen-Shuae; Chi, Kwan-Hwa

    2003-01-01

    We evaluated the effect of in vivo electrogene therapy (EGT), a newly-developed gene transfer method using electroporation on the induction of anti-cancer immunity. The in vivo EGT was carried out by direct injection of plasmid DNAs encoding mouse interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in a subcutaneous murine hepatoma model of 1MEA.7R.1 cells. Six electric pulses were generated in situ from a square-wave electroporator fitted with a circular, six-needle electrode array. 1MEA.7R1 cells in vitro were modified to secret IL-2 (1MEA.7R.1/IL-2 cells). The 1MEA.7R.1/IL-2 cells had a similar cell doubling-time as their parent cells but showed a much slower growth rate on Balb/C mice. One, or 3 rounds of single gene EGT with IL-2 gene showed a dose-responsive effect of growth retardation. Co-administration of 3 rounds of IL-2/GM-CSF double genes EGT had a stronger growth inhibition effect than 3 rounds of IL-2 single gene EGT. Three rounds of IL-2/GM-CSF EGT rendered the tumor to a growth rate of stably transfected 1MEA.7R.1/IL-2 cells. Seven rounds of IL-2/GM-CSF EGT markedly inhibited the tumor growth. Reverse transciptase-polymerase chain reaction confirmed the expression of IL-2, GM-CSF and interferon-gamma within treated tumors. Systemic inhibitory effects can be demonstrated from tumor-re-challenged experiments on mice which received 3 rounds of double-gene EGT. The T cell proliferation assay revealed an increased T cell proliferation in double-gene EGT-treated mice. This experiment showed that partial systemic immunity can be provoked by IL-2/GM-CSF double-gene EGT. These findings suggest that our immuno-gene therapy protocol has the potential for future clinical applications.

  1. Peripheral blood stem cell mobilization and engraftment after autologous stem cell transplantation with biosimilar rhG-CSF.

    PubMed

    Reményi, Péter; Gopcsa, László; Marton, Imelda; Réti, Marienn; Mikala, Gábor; Pető, Mónika; Barta, Anikó; Bátai, Arpád; Farkas, Zita; Borbényi, Zita; Csukly, Zoltán; Bodó, Imre; Fábián, János; Király, Agnes; Lengyel, Lilla; Piukovics, Klára; Torbágyi, Eva; Masszi, Tamás

    2014-04-01

    Biosimilar versions of filgrastim [recombinant human granulocyte colony-stimulating factor (rhG-CSF)] are now widely available. To date, biosimilar rhG-CSF has demonstrated a comparable quality, safety and efficacy profile to the originator product (filgrastim [Neupogen(®)], Amgen Inc., CA, USA) in the prevention and management of neutropenia. Biosimilar rhG-CSFs have also been used to induce peripheral blood stem cell (PBSC) mobilization in patients undergoing autologous stem cell transplantation (AHSCT). The authors have examined the effectiveness of a biosimilar rhG-CSF (Zarzio(®), Sandoz Biopharmaceuticals, Holzkirchen, Germany) in two retrospective studies across two medical centers in Hungary. In Study 1, 70 patients with hematological malignancies scheduled to undergo AHSCT received chemotherapy followed by biosimilar rhG-CSF (2 × 5 μg) for facilitating neutrophil, leukocyte, and platelet engraftment. In study 2, 40 additional patients with lymphoid malignancies and planned AHSCT received chemotherapy followed by biosimilar rhG-CSF for PBSC mobilization. The effectiveness of treatment was assessed by the average yield of cluster of differentiation (CD) 34+ cells and the number of leukaphereses required. In Study 1 (patients undergoing AHSCT), the median age was 56 years and most patients were male (60%). The conditioning regimens were mainly high-dose melphalan (n = 41) and carmustine (BiCNU(®), Bristol-Myers Squibb, NJ, USA), etoposide, cytarabine and melphalan BEAM (n = 21). Median times to absolute neutrophil and leukocyte engraftment were 9 (range 8-11 days) and 10 (8-12) days, respectively. Median time to platelet engraftment was 10.5 days (7-19 days). In Study 2, the patients' median age was 54 years and the majority (57.5%) were female. The median time interval between day 1 of mobilizing chemotherapy and first leukapheresis was 12 (9-27) days. In the autologous PBSC grafts, the median number of CD34+ cells harvested was 5.2 × 10(6)/kg (2.22-57.07 × 10(6)/kg). The median yield of CD34+ cells per leukapheresis product was 2.47 × 10(6)/kg. In total, 58 leukaphereses were performed in 40 successfully harvested patients. In line with previous studies with originator rhG-CSF, the findings of this study indicate that biosimilar rhG-CSF following AHSCT is effective and generally well tolerated in the engraftment setting. In addition, biosimilar rhG-CSF is comparable to the originator rhG-CSF in terms of kinetics of PBSC mobilization and yield of CD34+ cells. In conclusion, the authors have demonstrated that the use of biosimilar rhG-CSF is effective and safe in autologous PBSC mobilization and engraftment after AHSCT.

  2. In vitro long-term culture of human primitive hematopoietic cells supported by murine stromal cell line MS-5.

    PubMed

    Nishi, N; Ishikawa, R; Inoue, H; Nishikawa, M; Yoneya, T; Kakeda, M; Tsumura, H; Ohashi, H; Mori, K J

    1997-04-01

    When Lin-CD34+CD38- cells from normal human cord blood were cocultured with MS-5, colony forming cells were maintained for over 8 weeks. Prevention of contact between MS-5 and Lin-CD34+CD38- cells by using a membrane filter was negligible for this activity, indicating that the activity of MS-5 on human primitive hematopoietic cells may be due to soluble factor(s) secreted from MS-5. We tried to purify this activity by a [3H]TdR incorporation assay. The activity was found in 150 kD fraction and was neutralized with anti-mSCF (stem cell factor) antibody. Another 20-30 kD fraction synergized with mSCF to stimulate the growth of Lin-CD34+CD38- cells but failed alone. This fraction supported the growth of the G-CSF (granulocyte-colony stimulating factor)-dependent cell line FD/GR3, FDC-P2 transfected with mG-CSF receptor cDNA. This synergy was canceled in the presence of soluble mG-CSF receptor. Addition of anti-mSCF antibody and soluble mG-CSF receptor to the culture completely abrogated the activity of MS-5-culture supernatant. These results indicate the activity of MS-5 on Lin-CD34+CD38- cells is due to synergistic effect of mSCF and mG-CSF.

  3. Activated but not resting T cells or thymocytes express colony-stimulating factor 1 mRNA without co-expressing c-fms mRNA.

    PubMed

    Cerdan, C; Courcoul, M; Razanajaona, D; Pierrès, A; Maroc, N; Lopez, M; Mannoni, P; Mawas, C; Olive, D; Birg, F

    1990-02-01

    Following the observation that, besides acute myeloid leukemia cells, acute lymphoid leukemia cells of either B or T phenotype could express the transcript for the colony-stimulating factor 1 (CSF-1), a growth factor known to be restricted to the monocytic-macrophage lineage, various sources of resting and/or activated T cells and thymocytes were screened for expression of this hemopoietic growth factor. We report here that the CSF-1 transcript was rapidly (7 h) induced in T cells by a variety of stimuli, but was not detectable in either resting T cells or thymocytes. In addition, secretion of CSF-1 was detectable in the supernatants of activated T cells by 72 h, with a peak around 92-120 h. In contrast to activated monocytes, the transcript of the c-fms proto-oncogene, the product of which is the receptor for CSF-1, was not detectable in either resting or activated T cells. This observation could be relevant to the intimate relationships between T cells and antigen-presenting cells during immune responses.

  4. Diagnosis of Streptococcus pneumoniae and Haemophilus influenzae type b meningitis by identifying DNA from cerebrospinal fluid-impregnated filter paper strips.

    PubMed

    Peltola, Heikki; Roine, Irmeli; Leinonen, Maija; Kuisma, Leena; Mata, Antonio González; Arbo, Antonio; Goyo, José; Saukkoriipi, Annika

    2010-02-01

    Bacterial meningitis remains often etiologically unconfirmed, especially in resource-poor settings. We tested the potential of real-time polymerase chain reaction to identify Streptococcus pneumoniae (Pnc) and Haemophilus influenzae type b (Hib) from cerebrospinal fluid impregnated on filter paper strips. Pnc and Hib genome equivalents were blindly quantified by polymerase chain reaction from 129 liquid cerebrospinal fluid (CSF) samples-the standard-and strips stored at room temperature for months. Genome counts were compared by simple regression. The strips showed a sensitivity and specificity of 92% and 99% for Pnc, and of 70% and 100% for Hib, respectively. The positive and negative predictive values were 94% and 97% for Pnc, and 100% and 89% for Hib, respectively. For Pnc, the positive and negative likelihood ratio was 92 and 0.08, and the overall accuracy 98%, whereas for Hib they were 70 and 0.30, and 91%, respectively. Genome counting showed good correlation between the filter paper and liquid CSF samples, r(2) being 0.87 for Pnc and 0.68 for Hib (P < 0.0001 for both). Although not replacing bacterial culture, filter paper strips offer an easy way to collect and store CSF samples for later bacteriology. They can also be transported in standard envelops by regular mail.

  5. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated,

  6. Intra-articular administration of an antibody against CSF-1 receptor reduces pain-related behaviors and inflammation in CFA-induced knee arthritis.

    PubMed

    Alvarado-Vazquez, P A; Morado-Urbina, C E; Castañeda-Corral, G; Acosta-Gonzalez, R I; Kitaura, H; Kimura, K; Takano-Yamamoto, T; Jiménez-Andrade, J M

    2015-01-01

    Several studies have shown that blockade of colony stimulating factor-1 (CSF-1) or its receptor (CSF-1R) inhibits disease progression in rodent models of rheumatoid arthritis (RA); however, the role of the CSF-1/CSF-1R pathway in RA-induced pain and functional deficits has not been studied. Thus, we examined the effect of chronic intra-articular administration of a monoclonal anti-CSF-1R antibody (AFS98) on spontaneous pain, knee edema and functional disabilities in mice with arthritis. Unilateral arthritis was produced by multiple injections of complete Freund's adjuvant (CFA) into the right knee joint of adult male ICR mice. CFA-injected mice were then treated twice weekly from day 10 until day 25 with anti-CSF-1R antibody (3 and 10 μg/5 μL per joint), isotype control (rat IgG 10 μg/5 μL per joint) or PBS (5 μl/joint). Knee edema, spontaneous flinching, vertical rearing and horizontal exploratory activity were assessed at different days. Additionally, counts of peripheral leukocytes and body weight were measured to evaluate general health status. Intra-articular treatment with anti-CSF-1R antibody significantly increased horizontal exploratory activity and vertical rearing as well as reduced spontaneous flinching behavior and knee edema as compared to CFA-induced arthritis mice treated with PBS. Treatment with this antibody neither significantly affect mouse body weight nor the number of peripheral leukocytes. These results suggest that blockade of CSF-1R at the initial injury site (joint) could represent a therapeutic alternative for improving the functional disabilities and attenuating pain and inflammation in patients with RA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF.

    PubMed

    Ryu, Seul Hye; Na, Hye Young; Sohn, Moah; Han, Sun Murray; Choi, Wanho; In, Hyunju; Hong, Sookyung; Jeon, Hyejin; Seo, Jun-Young; Ahn, Jongcheol; Park, Chae Gyu

    2016-05-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  8. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1.

    PubMed

    Xu, X X; Tessner, T G; Rock, C O; Jackowski, S

    1993-03-01

    Stimulation of diglyceride production via phospholipase C (PLC) hydrolysis of phosphatidylcholine was an early event in the mitogenic action of colony-stimulating factor 1 (CSF-1) in the murine macrophage cell line BAC1.2F5 and was followed by a second phase of diglyceride production that persisted throughout the G1 phase of the cell cycle. Addition of phosphatidylcholine-specific PLC (PC-PLC) from Bacillus cereus to the medium of quiescent cells raised the intracellular diglyceride concentration and stimulated [3H]thymidine incorporation, although PC-PLC did not support continuous proliferation. PC-PLC treatment did not induce tyrosine phosphorylation or turnover of the CSF-1 receptor. The major protein kinase C (PKC) isotype in BAC1.2F5 cells was PKC-delta. Diglyceride production from PC-PLC did not target PKC-delta, since unlike phorbol esters, PC-PLC treatment neither decreased the electrophoretic mobility of PKC-delta nor increased the amount of GTP bound to Ras, and PC-PLC was mitogenically active in BAC1.2F5 cells in which PKC-delta was downregulated by prolonged treatment with phorbol ester. PC-PLC mimicked CSF-1 action by elevating c-fos and junB mRNAs to 40% of the level induced by CSF-1; however, PC-PLC induced c-myc mRNA to only 5% of the level in CSF-1-stimulated cells. PC-PLC addition to CSF-1-dependent BAC1.2F5 clones that constitutively express c-myc increased [3H]thymidine incorporation to 86% of the level evoked by CSF-1 and supported slow growth in the absence of CSF-1. Therefore, PC-PLC is a component of a signal transduction pathway leading to transcription of c-fos and junB that collaborates with c-myc and is independent of PKC-delta and Ras activation.

  9. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes.

    PubMed

    Webb, Matthew W; Sun, Jianping; Sheard, Michael A; Liu, Wei-Yao; Wu, Hong-Wei; Jackson, Jeremy R; Malvar, Jemily; Sposto, Richard; Daniel, Dylan; Seeger, Robert C

    2018-04-17

    Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14 + and CD163 + cells and mouse F4/80 + cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses. © 2018 UICC.

  10. Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing.

    PubMed

    Huber, Bruno C; Fischer, Rebekka; Brunner, Stefan; Groebner, Michael; Rischpler, Christoph; Segeth, Alexander; Zaruba, Marc M; Wollenweber, Tim; Hacker, Marcus; Franz, Wolfgang-Michael

    2010-05-01

    Mobilization of stem cells by granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI); however, clinical trials failed to be effective. In search for alternative cytokines, parathyroid hormone (PTH) was recently shown to promote cardiac repair by enhanced neovascularization and cell survival. To compare the impact of the two cytokines G-CSF and PTH on myocardial perfusion, mice were noninvasively and repetitively investigated by pinhole single-photon emission computed tomography (SPECT) after MI. Mobilization and homing of bone marrow-derived stem cells (BMCs) was analyzed by fluorescence-activated cell sorter (FACS) analysis. Mice (C57BL/6J) were infarcted by left anterior descending artery ligation. PTH (80 mug/kg) and G-CSF (100 mug/kg) were injected for 5 days. Perfusion defects were determined by (99m)Tc-sestamibi SPECT at days 6 and 30 after MI. The number of BMCs characterized by Lin(-)/Sca-1(+)/c-kit(+) cells in peripheral blood and heart was analyzed by FACS. Both G-CSF and PTH treatment resulted in an augmented mobilization of BMCs in the peripheral blood. Contrary to G-CSF and controls, PTH and the combination showed significant migration of BMCs in ischemic myocardium associated with a significant reduction of perfusion defects from day 6 to day 30. A combination of both cytokines had no additional effects on migration and perfusion. In our preclinical model, SPECT analyses revealed the functional potential of PTH reducing size of infarction together with an enhanced homing of BMCs to the myocardium in contrast to G-CSF. A combination of both cytokines did not improve the functional outcome, suggesting clinical applications of PTH in ischemic heart diseases.

  11. T Cell Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and EAE Pathogenesis

    PubMed Central

    Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong

    2014-01-01

    The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500

  12. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease

    PubMed Central

    McKenzie, Brent S.

    2016-01-01

    Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596

  13. Use of biosimilar filgrastim compared with lenograstim in autologous haematopoietic stem-cell transplant and in sibling allogeneic transplant

    PubMed Central

    Uddin, Shab; Russell, Pippa; Farrell, Maresa; Davy, Barbara; Taylor, Joe

    2015-01-01

    Objectives: Biosimilar filgrastim was compared with lenograstim for autologous haematopoietic stem-cell transplant (HSCT) in patients with haematological malignancies. Data from a separate group of sibling donors who underwent allogeneic HSCT are also reported. Methods: Patients with lymphoma or multiple myeloma (MM) who underwent autologous HSCT with biosimilar filgrastim were compared with a historical control group of patients who received lenograstim. Peripheral blood (PB) cells counts were monitored after 7–8 consecutive days of granulocyte-colony stimulating factor (G-CSF) injection and apheresis was performed on day 8 if PB CD34+ cell count was ⩾10 cells/µl. The target PB CD34+ cell doses were ⩾2.0 × 106/kg (lymphoma), ⩾4.0 × 106/kg (MM ⩾60 years old) or ⩾8.0 × 106/kg (MM <60 years old). Results: A total of 259 patients were included in the autologous HSCT comparison (biosimilar filgrastim, n = 104; lenograstim, n = 155). In patients with lymphoma and older MM patients (⩾60 years old), no significant differences were observed between groups with regard to stem-cell mobilization parameters. However, in MM patients <60 years old, all parameters were significantly superior in the biosimilar filgrastim group, including the need for 1 rather than 2 apheresis procedures. No significant differences were observed between groups in median number of days to absolute neutrophil count (ANC) or platelet recovery. In the allogeneic setting, 47 sibling donors received biosimilar filgrastim. Mean CD34+ count at the first apheresis was 6.1 × 106/kg. A total of 13 donors needed a second apheresis and 4 required a third. Among recipients, median days to ANC recovery was 16 (10–28) and to platelet recovery was 13 (9–54). Conclusions: Biosimilar filgrastim is as effective as lenograstim for autologous HSCT in patients with lymphoma or MM patients ⩾60 years old. However, mobilization with biosimilar filgrastim appeared to be superior to that with lenograstim in younger MM patients. PMID:25830013

  14. Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59.

    PubMed

    Zelek, Wioleta M; Watkins, Lewis M; Howell, Owain W; Evans, Rhian; Loveless, Sam; Robertson, Neil P; Beenes, Marijke; Willems, Loek; Brandwijk, Ricardo; Morgan, B Paul

    2018-02-01

    CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.

  15. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release.

    PubMed

    Pampena, María B; Barrio, María M; Juliá, Estefanía P; Blanco, Paula A; von Euw, Erika M; Mordoh, José; Levy, Estrella Mariel

    2017-01-01

    In a previous work, we showed that CSF-470 vaccine plus bacillus Calmette-Guerin (BCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) as adjuvants resulted in a significant benefit in the distant metastasis-free survival when comparing vaccinated vs . IFN-α2b-treated high-risk cutaneous melanoma patients in a Phase II study. Immune monitoring demonstrated an increase in anti-tumor innate and adaptive immunities of vaccinated patients, with a striking increase in IFN-γ secreting lymphocytes specific for melanoma antigens (Ags). In an effort to dissect the first steps of the immune response elicited by CSF-470 vaccine plus adjuvants, we evaluated, in an in vitro model, leukocyte migration, cytokine production, and monocyte phagocytosis of vaccine cells. Our results demonstrate that leukocytes recruitment, mostly from the innate immune system, is an early event after CSF-470 vaccine plus BCG plus GM-CSF interaction with immune cells, possibly explained by the high expression of CCL2/MCP-1 and other chemokines by vaccine cells. Early release of TNF-α and IL-1β pro-inflammatory cytokines and efficient tumor Ags phagocytosis by monocytes take place and would probably create a favorable context for Ag processing and presentation. Although the presence of the vaccine cells hampered cytokines production stimulated by BCG in a mechanism partially mediated by TGF-β and IL-10, still significant levels of TNF-α and IL-1β could be detected. Thus, BCG was required to induce local inflammation in the presence of CSF-470 vaccine cells.

  16. Long-term engraftment, graft-vs.-host disease, and immunologic reconstitution after experimental transplantation of allogeneic peripheral blood cells from G-CSF-treated donors.

    PubMed

    Pan, L; Bressler, S; Cooke, K R; Krenger, W; Karandikar, M; Ferrara, J L

    1996-10-01

    Peripheral blood cells (PBPC) are an alternative source of bone marrow for allogeneic transplantation. Reports from recent clinical trials granulocyte colony-stimulating factor (G-CSF)-mobilized PBPC for allogeneic transplantation show incidence and severity of graft-vs.-host disease (GVHD) similar to those observed in conventional bone marrow transplantation (BMT), despite the presence of 10- to 20-fold more T cell in the PBPC inoculum. In the present study, we examined the effects of pretreatment of donors with G-CSF on GVHD, long-term engraftment, and lymphocyte reconstitution in a murine parent-->F1 model (B6.Ly-5a-->B6d2F1) using splenocytes as a source of peripheral progenitor cells. Recipients of splenocytes from G-CSF-treated donors experienced less mortality from acute GVHD and showed sustained weight gain by day 100 after transplantation. At that time, there was no histological evidence od GVHD in either liver or gut. Recipients of splenocytes from G-CSF-treated donors showed complete donor engraftment within 1 month, which was sustained until the end of the observation period. In contrast, recipients of T cell-depleted splenocytes showed slower donor engraftment and persistent donor/host chimerism. In addition, lymphocyte phenotype and function in mice receiving splenocytes from G-CSF-treated donors was significantly restored by day 100 after transplantation. Thus, the use of G-CSF-mobilized PBPC may provide significant advantages to conventional BMT by reducing GVHD without impairing long-term engraftment and immunologic reconstruction.

  17. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    PubMed

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  18. Use of G-CSF to hasten neutrophil recovery after auto-SCT for AML is not associated with increased relapse incidence: a report from the Acute Leukemia Working Party of the EBMT.

    PubMed

    Czerw, T; Labopin, M; Gorin, N-C; Giebel, S; Blaise, D; Dumas, P-Y; Foa, R; Attal, M; Schaap, N; Michallet, M; Bonmati, C; Veelken, H; Mohty, M

    2014-07-01

    Application of G-CSF in AML is controversial as leukemic blasts may express receptors interacting with the cytokine, which may stimulate leukemia growth. We retrospectively analyzed the impact of G-CSF use to accelerate neutrophil recovery after auto-SCT on outcome. Adults with AML in first CR autografted between 1994 and 2010 were included. Nine hundred and seventy two patients were treated with G-CSF after auto-SCT whereas 1121 were not. BM and PB were used as a source of stem cells in 454 (22%) and 1639 (78%) cases, respectively. The incidence of relapse at 5 years in the BM-auto-SCT group was 38% for patients receiving post-transplant G-CSF and 43% for those not treated with G-CSF, P=0.46. In the PB-auto-SCT cohort, respective probabilities were 48% and 49%, P=0.49. No impact of the use of G-CSF could be demonstrated with respect to the probability of leukemia-free survival: in the BM-auto-SCT group, 51% for G-CSF(+) and 48% for G-CSF(-), P=0.73; in PB-auto-SCT group, 42% for G-CSF(+) and 43% for G-CSF(-), P=0.83. Although G-CSF administration significantly shortened the neutropenic phase, no beneficial effect was observed with regard to non-relapse mortality. In patients with AML, the use of G-CSF after auto-SCT is not associated with increased risk of relapse irrespective of the source of stem cells used.

  19. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy.

    PubMed

    Li, Y S; Jiang, B Y; Yang, J J; Zhang, X C; Zhang, Z; Ye, J Y; Zhong, W Z; Tu, H Y; Chen, H J; Wang, Z; Xu, C R; Wang, B C; Du, H J; Chuai, S; Han-Zhang, H; Su, J; Zhou, Q; Yang, X N; Guo, W B; Yan, H H; Liu, Y H; Yan, L X; Huang, B; Zheng, M M; Wu, Y L

    2018-04-01

    Leptomeningeal metastases (LM) are more frequent in non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Due to limited access to leptomeningeal lesions, the purpose of this study was to explore the potential role of cerebrospinal fluid (CSF) as a source of liquid biopsy in patients with LM. Primary tumor, CSF, and plasma in NSCLC with LM were tested by next-generation sequencing. In total, 45 patients with suspected LM underwent lumbar puncture, and those with EGFR mutations diagnosed with LM were enrolled. A total of 28 patients were enrolled in this cohort; CSF and plasma were available in 26 patients, respectively. Driver genes were detected in 100% (26/26), 84.6% (22/26), and 73.1% (19/26) of samples comprising CSF cell-free DNA (cfDNA), CSF precipitates, and plasma, respectively; 92.3% (24/26) of patients had much higher allele fractions in CSF cfDNA than the other two media. Unique genetic profiles were captured in CSF cfDNA compared with those in plasma and primary tissue. Multiple copy number variations (CNVs) were mainly identified in CSF cfDNA, and MET copy number gain identified in 47.8% (11/23) of patients was the most frequent one, while other CNVs included ERBB2, KRAS, ALK, and MYC. Moreover, loss of heterozygosity (LOH) of TP53 was identified in 73.1% (19/26) CSF cfDNA, which was much higher than that in plasma (2/26, 7.7%; P < 0.001). There was a trend towards a higher frequency of concomitant resistance mutations in patients with TP53 LOH than those without (70.6% versus 33.3%; P = 0.162). EGFR T790M was identified in CSF cfDNA of 30.4% (7/23) of patients who experienced TKI progression. CSF cfDNA could reveal the unique genetic profiles of LM and should be considered as the most representative liquid biopsy medium for LM in EGFR-mutant NSCLC.

  20. Cerebrospinal fluid markers of neuronal and glial cell damage to monitor disease activity and predict long-term outcome in patients with autoimmune encephalitis.

    PubMed

    Constantinescu, R; Krýsl, D; Bergquist, F; Andrén, K; Malmeström, C; Asztély, F; Axelsson, M; Menachem, E B; Blennow, K; Rosengren, L; Zetterberg, H

    2016-04-01

    Clinical symptoms and long-term outcome of autoimmune encephalitis are variable. Diagnosis requires multiple investigations, and treatment strategies must be individually tailored. Better biomarkers are needed for diagnosis, to monitor disease activity and to predict long-term outcome. The value of cerebrospinal fluid (CSF) markers of neuronal [neurofilament light chain protein (NFL), and total tau protein (T-tau)] and glial cell [glial fibrillary acidic protein (GFAP)] damage in patients with autoimmune encephalitis was investigated. Demographic, clinical, magnetic resonance imaging, CSF and antibody-related data of 25 patients hospitalized for autoimmune encephalitis and followed for 1 year were retrospectively collected. Correlations between these data and consecutive CSF levels of NFL, T-tau and GFAP were investigated. Disability, assessed by the modified Rankin scale, was used for evaluation of disease activity and long-term outcome. The acute stage of autoimmune encephalitis was accompanied by high CSF levels of NFL and T-tau, whereas normal or significantly lower levels were observed after clinical improvement 1 year later. NFL and T-tau reacted in a similar way but at different speeds, with T-tau reacting faster. CSF levels of GFAP were initially moderately increased but did not change significantly later on. Final outcome (disability at 1 year) directly correlated with CSF-NFL and CSF-GFAP levels at all time-points and with CSF-T-tau at 3 ± 1 months. This correlation remained significant after age adjustment for CSF-NFL and T-tau but not for GFAP. In autoimmune encephalitis, CSF levels of neuronal and glial cell damage markers appear to reflect disease activity and long-term disability. © 2016 EAN.

  1. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    PubMed

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    BACKGROUND Hematopoietic growth factors (HGFs) are mostly used as supportive measures to reduce infectious complications associated with neutropenia. Over the past decade, the use of HGFs became a common method for mobilizing human CD34+ stem cells, either for autologous or allogeneic transplantation. However, since their introduction the long-term safety of the procedure has become a major focus of discussion and research. Most information refers to healthy normal donors and data concerning pregnant and lactating women are scarce. The clinical question, which is the core of this review, is whether stem cell donation, preceded by administration of granulocyte-colony stimulating factor (G-CSF) for mobilization, is a safe procedure for pregnant donors. METHODS Literature searches were performed in Pubmed for English language articles published before the end of May 2012, focusing on G-CSF administration during pregnancy, lactation and hematopoietic stem cell donation. Searches included animal and human studies. RESULTS Data from animals (n = 15 studies) and women (n = 46 studies) indicate that G-CSF crosses the placenta, stimulates fetal granulopoiesis, improves neonatal survival mostly for very immature infants, promotes trophoblast growth and placental metabolism and has an anti-abortive role. Granulocyte macrophage-CSF is a key cytokine in the maternal immune tolerance towards the implanted embryo and exerts protective long-term programming effects to preimplantation embryos. The available data suggest that probably CSFs should not be administered during the time of most active organogenesis (first trimester), except perhaps for the first week during which implantation takes place. Provided CSF is administered during the second and third trimesters, it appears to be safe, and pregnant women receiving the CSF treatment can become hematopoietic stem cell donors. There are also risks related to the anesthesia, which is required for the bone marrow aspiration. During lactation, there should be a period of at least 3 days to allow for clearance of CSF from milk before resuming breast feeding. With regard to teratogenicity or leukaemogenity, in non-pregnant or non-lactating women reports show that CSF administration is associated with a risk for leukemia; however, this risk is not higher compared with the control population. CONCLUSIONS The information available to date indicates that administration of CSF in general, and G-CSF in particular, is safe and healthy pregnant women can serve as donors of either bone marrow or peripheral blood stem cells. However, the clinical experience is rather limited and therefore until more data become available, G-CSF should not be used during pregnancy and lactation when other therapeutic options, instead of stem cell transplantation, are available.

  2. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    PubMed

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  3. Radical esophagectomy for a 92-year-old woman with granulocyte colony-stimulating factor-producing esophageal squamous cell carcinoma: a case report.

    PubMed

    Kitani, Mari; Yamagata, Yukinori; Tanabe, Asami; Yagi, Kouichi; Aikou, Susumu; Kiyokawa, Takashi; Nishida, Masato; Yamashita, Hiroharu; Mori, Kazuhiko; Nomura, Sachiyo; Seto, Yasuyuki

    2016-10-13

    Granulocyte colony-stimulating factor (G-CSF)-producing esophageal squamous cell carcinoma (ESCC) has been considered to have a poor prognosis. We successfully treated a case of G-CSF-producing ESCC in a 92-year-old woman. A 92-year-old woman was admitted to our hospital with the complaints of choking while swallowing and dysphagia. Esophagogastroduodenoscopy and contrast-enhanced computed tomography revealed a type 2 esophageal cancer located 26-35 cm from the dental arch, with no distant metastasis. The patient was diagnosed with G-CSF-producing ESCC based on remarkable leukocytosis and high G-CSF levels. The patient underwent radical subtotal esophagectomy. Subsequently, the level of neutrophils (from 23,500/μL to 5000/μL) and the level of G-CSF (from 131 to <19.5 pg/mL) decreased significantly. Immunohistochemistry analysis of the resected tissue specimen showed positive staining for G-CSF in the cytoplasm of the tumor cells. Although the patient developed aspiration pneumonitis, after antibiotic treatment, she promptly recovered and was discharged. Herein, we describe a case of successfully treated G-CSF-producing ESCC in a 92-year-old woman. Precise detection and safely performed immediate radical operation are considered essential to achieve a good clinical course.

  4. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  5. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L; Shah, Veena R; Dave, Shruti D; Dixit, Satyajit B; Tiwari, Bharat B; Shah, Harda H

    2016-01-01

    Spinal cord injury (SCI) is not likely to recover by current therapeutic modalities. Stem cell (SC) therapy (SCT) has promising results in regenerative medicine. We present our experience of co-infusion of autologous adipose tissue derived mesenchymal SC differentiated neuronal cells (N-Ad-MSC) and hematopoietic SCs (HSCs) in a set of patients with posttraumatic paraplegia. Ten patients with posttraumatic paraplegia of mean age 3.42 years were volunteered for SCT. Their mean age was 28 years, and they had variable associated complications. They were subjected to adipose tissue resection for in vitro generation of N-Ad-MSC and bone marrow aspiration for generation of HSC. Generated SCs were infused into the cerebrospinal fluid (CSF) below injury site in all patients. Total mean quantum of SC infused was 4.04 ml with a mean nucleated cell count of 4.5 × 10(4)/μL and mean CD34+ of 0.35%, CD45-/90+ and CD45-/73+ of 41.4%, and 10.04%, respectively. All of them expressed transcription factors beta-3 tubulin and glial fibrillary acid protein. No untoward effect of SCT was noted. Variable and sustained improvement in Hauser's index and American Spinal Injury Association score was noted in all patients over a mean follow-up of 2.95 years. Mean injury duration was 3.42 years against the period of approximately 1-year required for natural recovery, suggesting a positive role of SCs. Co-infusion of N-Ad-MSC and HSC in CSF is safe and viable therapeutic approach for SCIs.

  6. Influence of recombinant human granulocyte colony-stimulating factor (filgrastim) on hematopoietic recovery and outcome following allogeneic bone marrow transplantation (BMT) from volunteer unrelated donors.

    PubMed

    Berger, C; Bertz, H; Schmoor, C; Behringer, D; Potthoff, K; Mertelsmann, R; Finke, J

    1999-05-01

    Effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF, filgrastim) on hematopoietic recovery and clinical outcome in patients undergoing allogeneic bone marrow transplantation (BMT) from volunteer unrelated donors (VUD) were analyzed retrospectively. Additionally, the influence of baseline patient and transplant characteristics on hematopoietic recovery was evaluated. From January 1994 to March 1996, 47 consecutive adult patients received VUD-BMT. GVHD prophylaxis was cyclosporin A/short course methotrexate/prednisolone, and in four patients additional ATG. Post-transplantation, cohorts of patients received rhG-CSF (5 microg/kg/day) (n = 22) or no rhG-CSF (n = 25) in a non-randomized manner. The patient groups with and without rhG-CSF were rather comparable with respect to baseline patient and transplant characteristics. Median time to neutrophil counts (ANC) >500/microl was 14 days with rhG-CSF vs 16 days without rhG-CSF (P = 0.048), to ANC >1000/microl was 15 vs 18 days (P = 0.084). Neutrophil recovery was accelerated in patients receiving more than the median MNC dose of 2.54 x 10(8)/kg with a median time to ANC >1000/microl of 13 days vs 19 days (P = 0.017). RhG-CSF did not influence platelet recovery and incidence of infectious complications. Incidence of acute GVHD II-IV was 50% with rhG-CSF and 28% without rhG-CSF (P = 0.144), but death before acute GVHD II-IV occurred in 9% of patients with and 20% of patients without rhG-CSF. The median follow-up time was 38 and 36 months in patients with and without rhG-CSF, respectively. Survival at 2 years post-transplant was 39% (95% confidence interval (18%, 60%)) in patients with rhG-CSF and 24% (95% confidence interval (7%, 41%)) in patients without rhG-CSF. Administration of rhG-CSF after VUD-BMT may lead to more rapid neutrophil recovery, but did not influence the incidence of infectious complications. Patients receiving rhG-CSF showed a slightly higher incidence of acute GVHD II-IV. Higher numbers of MNC in the marrow graft accelerated hematopoietic engraftment.

  7. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells

    PubMed Central

    Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo

    2018-01-01

    Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292

  8. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    PubMed

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  9. Assessing the role of peripheral CD8 T cells in neurocognitive impairment in HIV-infected men who have sex with men: data from the MSM Neurocog Study.

    PubMed

    Rawson, T M; Dubb, S; Pozniak, A; Kelleher, W P; Mandalia, S; Gazzard, B; Barber, T J

    2015-02-01

    Studies have suggested CD8 lymphocytes may be a possible marker for inflammation, which is believed to be a contributing factor to neurocognitive impairment. Individuals enrolled in the MSM Neurocog Study were analysed. Those with depression, anxiety or mood disorders were excluded. Individuals with neurocognitive impairment were identified using the Brief NeuroCognitive Screen and compared to those with normal scores. CD4 and CD8 T cell values and CD4:CD8 ratios were compared between groups. In all, 144 men, aged 18-50 years, were included in the analysis. Twenty were diagnosed with neurocognitive impairment. We were unable to identify any significant difference between current, nadir or peak CD4 and CD8 counts. CD4:CD8 ratios and CD4:CD8 ratio inversion (<1) were also found to be similar between both groups. However, neurocognitive impairment subjects were 8% more likely to have inversion of CD4:CD8 ratio and higher median peak CD8 cell counts reported compared to non-impaired subjects. Analysis of data from the MSM Neurocog Study, demonstrated trends in peripheral CD8 counts and CD4:CD8 ratios. However, we are unable to demonstrate any significant benefit. Plasma biomarkers of neurocognitive impairment in HIV-infected subjects would be of great benefit over current methods of invasive CSF analysis and technical neuroimaging used in the diagnosis of neurocognitive impairment. Future, prospective, longitudinal work with large numbers of neurocognitive impairment subjects is required to further investigate the role of peripheral CD8 T cells as markers of neurocognitive impairment. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from x-irradiated human peripheral blood hematopoietic progenitor cells.

    PubMed

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-11-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34+ hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34+ cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34(+) cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34+ cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34+ cells.

  11. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts

    PubMed Central

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  12. G-CSF in acute myocardial infarction - experimental and clinical findings.

    PubMed

    Ince, Hüseyin; Petzsch, Michael; Rehders, Tim C; Dunkelmann, Simone; Nienaber, Christoph A

    2006-09-01

    Early data from clinical studies suggest that intracoronary injection of autologous progenitor cells may beneficially affect postinfarction remodeling and perfusion. Beyond intracoronary infusion of autologous bone marrow mononuclear CD34+ cells (MNCCD34+), mobilization of stem cells by G-CSF has recently attracted attention because of various advantages such as the noninvasive nature of MNCCD34+ mobilization by subcutaneous injections. It is the aim of the present work to give an overview about the current experimental and clinical findings of G-CSF treatment in acute myocardial infarction.

  13. Predictive value of decoy receptor 3 in postoperative nosocomial bacterial meningitis.

    PubMed

    Liu, Yong-Juan; Shao, Li-Hua; Wang, Qian; Zhang, Jian; Ma, Rui-Ping; Liu, Hai-Hong; Dong, Xiao-Meng; Ma, Li-Xian

    2014-11-03

    Nosocomial bacterial meningitis requires timely treatment, but what is difficult is the prompt and accurate diagnosis of this disease. The aim of this study was to assess the potential role of decoy receptor 3 (DcR3) levels in the differentiation of bacterial meningitis from non-bacterial meningitis. A total of 123 patients were recruited in this study, among them 80 patients being with bacterial meningitis and 43 patients with non-bacterial meningitis. Bacterial meningitis was confirmed by bacterial culture of cerebrospinal fluid (CSF) culture and enzyme-linked immunosorbent assay (ELISA) was used to detect the level of DcR3 in CSF. CSF levels of DcR3 were statistically significant between patients with bacterial meningitis and those with non-bacterial meningitis (p<0.001). A total of 48.75% of patients with bacterial meningitis received antibiotic>24 h before CSF sampling, which was much higher than that of non-bacterial meningitis. CSF leucocyte count yielded the highest diagnostic value, with an area under the receiver operating characteristic curve (ROC) of 0.928, followed by DcR3. At a critical value of 0.201 ng/mL for DcR3, the sensitivity and specificity were 78.75% and 81.40% respectively. DcR3 in CSF may be a valuable predictor for differentiating patients with bacterial meningitis from those with non-bacterial meningitis. Further studies are needed for the validation of this study.

  14. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential.

    PubMed

    Boulakirba, Sonia; Pfeifer, Anja; Mhaidly, Rana; Obba, Sandrine; Goulard, Michael; Schmitt, Thomas; Chaintreuil, Paul; Calleja, Anne; Furstoss, Nathan; Orange, François; Lacas-Gervais, Sandra; Boyer, Laurent; Marchetti, Sandrine; Verhoeyen, Els; Luciano, Frederic; Robert, Guillaume; Auberger, Patrick; Jacquel, Arnaud

    2018-01-10

    CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.

  15. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.

    PubMed

    Tanha, Shima; Rafiee-Tehrani, Morteza; Abdollahi, Mohamad; Vakilian, Saeid; Esmaili, Zahra; Naraghi, Zahra Safaei; Seyedjafari, Ehsan; Javar, Hamid Akbari

    2017-10-01

    Sustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated. G-CSF structural stability was evaluated through SDS_PAGE, reversed phase (RP) HPLC and size-exclusion chromatography, as well as circular dichroism. Nanofiber/nanoparticle composite scaffold was demonstrated to have appropriate mechanical properties as a wound dresser and a sustained release of functional G-CSF. The PCL/NP(G-CSF) scaffold showed a suitable proliferation and well-adherent morphology of stem cells. In vivo study and histopathological evaluation outcome revealed that skin regeneration was dramatically accelerated under PCL/NP(G-CSF) as compared with control groups. Superior fibroblast maturation, enhanced collagen deposition and minimum inflammatory cells were also the beneficial properties of PCL/NP(G-CSF) over the commercial dressing. The synergistic effect of extracellular matrix-mimicking nanofibrous membrane and G-CSF could develop a suitable supportive substrate in order to extensive utilization for the healing of skin wounds. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2830-2842, 2017. © 2017 Wiley Periodicals, Inc.

  16. Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes.

    PubMed

    Arca, M J; Krauss, J C; Strome, S E; Cameron, M J; Chang, A E

    1996-05-01

    We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon gamma (IFN gamma) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFN gamma and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFN gamma secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to upregulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor.

  17. Effects and safety of granulocyte colony-stimulating factor in healthy volunteers

    PubMed Central

    Anderlini, Paolo

    2015-01-01

    Purpose of Review Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is now widely used in normal donors for collection of peripheral blood progenitor cells (PBPCs) for allogeneic transplantation and granulocytes for transfusion. Currently available data on biologic and molecular effects, and safety of rhG-CSF in normal healthy volunteers are reviewed. Recent Findings In addition to its known activating role on neutrophil kinetics and functional status, rhG-CSF administration can affect monocytes, lymphocytes and the hemostatic system. G-CSF receptors were identified in a variety of non-myeloid tissues, although their role and functional activity have not always been well defined. Moreover, rhG-CSF is capable of modulating complex cytokine networks and can impact the inflammatory response. In addition to its known mobilizing role for PBPCs, rhG-CSF can mobilize dendritic and endothelial progenitor cells as well. On a clinical level, serious rhG-CSF-related adverse events are well described (e.g. splenic rupture) but remain rare. Summary rhG-CSF effects in healthy volunteers, while normally transient and self-limiting, are now believed to be more complex and heterogeneous that previously thought. While rhG-CSF administration to healthy volunteers continues to have a favorable risk-benefit profile, these new findings have implications for safeguarding the safety of normal individuals. PMID:19057203

  18. Granulocyte-colony stimulating factor and stem cell factor are the crucial factors in long-term culture of human primitive hematopoietic cells supported by a murine stromal cell line.

    PubMed

    Nishi, N; Ishikawa, R; Inoue, H; Nishikawa, M; Kakeda, M; Yoneya, T; Tsumura, H; Ohashi, H; Yamaguchi, Y; Motoki, K; Sudo, T; Mori, K J

    1996-09-01

    The findings that murine marrow stromal cell line MS-5 supported the proliferation of human lineage-negative (Lin-) CD34+CD38- bone marrow cells in long-term culture have been reported. In this study, we analyzed this proliferating activity of MS-5-conditioned medium (CM) on human primitive hematopoietic cells. When Lin-CD34+CD38- cells of normal human cord blood cells were co-cultured with MS-5, colony forming cells (CFCs) were maintained over 7 weeks in vitro. Prevention of contact between MS-5 and Lin-CD34+CD38- cells by using membrane filter (0.45 micron) was negligible for this activity. This indicated that the activity of MS-5 on human primitive hematopoietic cells is a soluble factor(s) secreted from MS-5, which is not induced by the contact between MS-5 and Lin-CD34+CD38- cells. We tried to purify this soluble activity. An active material with a molecular weight of about 150 kDa, determined by gel filtration chromatography, solely supported the growth of Lin-CD34+CD38- cells and Mo7e, a human megakaryocytic cell line. This activity not only reacted with anti-mouse stem cell factor (mSCF) antibody on Western blots, but it was also neutralized in the presence of anti-mSCF antibody. Another active material with a molecular weight of about 20-30 kDa synergized with mSCF to stimulate the growth of Lin-CD34+CD38- cells but failed to do so alone, although this synergy was inhibited in the presence of soluble mouse granulocyte-colony stimulating factor (mG-CSF) receptor, which is a chimeric protein consisting of the extracellular domain of mG-CSF receptor and the Fe region of human IgG1. In addition, the latter molecule supported the growth of the G-CSF dependent cell line FD/GR3, which is a murine myeloid leukemia cell line, FDC-P2, transfected with mG-CSF receptor cDNA. Adding of anti-mSCF antibody and soluble mG-CSF receptor to the culture completely abrogated the activity of MS-5-CM. Recombinant (r) mSCF and rmG-CSF had synergistic activity on the growth of Lin-CD34+CD38- cells. These results indicated that the activity on Lin-CD34+CD38- cells included in MS-5-CM is based upon the synergistic effects of mSCF and mG-CSF.

  19. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer.

    PubMed

    Williams, S F; Lee, W J; Bender, J G; Zimmerman, T; Swinney, P; Blake, M; Carreon, J; Schilling, M; Smith, S; Williams, D E; Oldham, F; Van Epps, D

    1996-03-01

    Cytopenia after high-dose chemotherapy and autologous stem cell reinfusion is a major cause of morbidity. Ex vivo cultured expansion and differentiation of CD34+ peripheral blood progenitor cells (PBPC) to neutrophil precursors may shorten the neutropenic period further. We explored the use of these ex vivo cultured PBPCs in nine patients with metastatic breast cancer. All underwent PBPC mobilization with cyclophosphamide, VP-16, and G-CSF. Subsequently, they underwent four to five apheresis procedures. One apheresis product from each patient was prepared using the Isolex 300 Magnetic Cell Separation System (Baxter Immunotherapy, Irvine, CA) to obtain CD34+ cells. These cells were then cultured in gas permeable bags containing serum-free X-VIVO 10 (BioWhittaker, Walkersville, MD) medium supplemented with 1% human serum albumin and 100 ng/mL PIXY321. At day 12 of culture the mean fold expansion was 26x with a range of 6 to 64x. One patient's cells did not expand because of a technical difficulty. The final cell product contained an average of 29.3% CD15+ neutrophil precursors with a range of 18.5% to 48.1%. The patients underwent high-dose chemotherapy with cyclophosphamide, carboplatin, and thiotepa. On day 0, the cryopreserved PBPCs were reinfused and on day +1 the 12-day cultured cells were washed, resuspended, and reinfused into eight of nine patients. One patient was not infused with cultured cells. The mean number of cultured cells reinfused was 44.6 x 10(6) cells/kg with a range of 0.8 to 156.6 x 10(6) cells/kg. No toxicity was observed after reinfusion. The eight patients have recovered absolute neutrophil counts > 500/microL on a median of 8 days (range 8 to 10 days); the median platelet transfusion independence occurred on day 10 (range 8 to 12 days) and platelet counts > 50,000/microL were achieved by day 12 (range 9 to 14) for the seven patients whose platelet counts could be determined. Expanded CD34+ selected PBPC can be obtained and safely reinfused into patients.

  20. The use of dried cerebrospinal fluid filter paper spots as a substrate for PCR diagnosis of the aetiology of bacterial meningitis in the Lao PDR

    PubMed Central

    Elliott, I; Dittrich, S; Paris, D; Sengduanphachanh, A; Phoumin, P; Newton, P N

    2013-01-01

    We investigated whether dried cerebrospinal fluid (CSF) conserved on filter paper can be used as a substrate for accurate PCR diagnosis of important causes of bacterial meningitis in the Lao PDR. Using mock CSF, we investigated and optimized filter paper varieties, paper punch sizes, elution volumes and quantities of DNA template to achieve sensitive and reliable detection of bacterial DNA from filter paper specimens. FTA Elute Micro Card™ (Whatman, Maidstone, UK) was the most sensitive, consistent and practical variety of filter paper. Following optimization, the lower limit of detection for Streptococcus pneumoniae from dried mock CSF spots was 14 genomic equivalents (GE)/μL (interquartile range 5.5 GE/μL) or 230 (IQR 65) colony forming units/mL. A prospective clinical evaluation for S. pneumoniae, S. suis and Neisseria meningitidis was performed. Culture and PCR performed on fresh liquid CSF from patients admitted with a clinical diagnosis of meningitis (n = 73) were compared with results derived from dried CSF spots. Four of five fresh PCR-positive CSF samples also tested PCR positive from dried CSF spots, with one patient under the limit of detection. In a retrospective study of S. pneumoniae samples (n = 20), the median (IQR; range) CSF S. pneumoniae bacterial load was 1.1 × 104 GE/μL (1.2 × 105; 1 to 6.1 × 106 DNA GE/μL). Utilizing the optimized methodology, we estimate an extrapolated sensitivity of 90%, based on the range of CSF genome counts found in Laos. Dried CSF filter paper spots could potentially help us to better understand the epidemiology of bacterial meningitis in resource-poor settings and guide empirical treatments and vaccination policies. PMID:23738720

  1. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor.

    PubMed

    Cario, Gunnar; Skokowa, Julia; Wang, Zheng; Bucan, Vesna; Zeidler, Cornelia; Stanulla, Martin; Schrappe, Martin; Welte, Karl

    2005-04-01

    Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed.

  2. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  3. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    PubMed

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  4. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  5. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  6. Cellular Specificity of the Blood–CSF Barrier for Albumin Transfer across the Choroid Plexus Epithelium

    PubMed Central

    Liddelow, Shane A.; Dzięgielewska, Katarzyna M.; Møllgård, Kjeld; Whish, Sophie C.; Noor, Natassya M.; Wheaton, Benjamin J.; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R.

    2014-01-01

    To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells. PMID:25211495

  7. Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica).

    PubMed Central

    Knott, G W; Dziegielewska, K M; Habgood, M D; Li, Z S; Saunders, N R

    1997-01-01

    1. Blood-cerebrospinal fluid (CSF) transfer of various exogenous albumins has been investigated in developing Monodelphis domestica (South American grey short-tailed opossum) and compared with the steady-state CSF: plasma ratios for endogenous (Monodelphis) albumin. Ratios for Monodelphis albumin and human albumin were similar and were the highest at postnatal day 5 (P5) (48.2 +/- 4.4 and 40.6 +/- 4.5%, respectively). The ratio for bovine albumin was similar to the steady-state ratio for Monodelphis albumin at P7-8 but became consistently lower than the Monodelphis albumin ratio at all other ages until P32-36 when all albumins tested attained a similar low ratio. The CSF:plasma ratio of chemically modified (succinylated) bovine albumin was always significantly lower than that of other albumins, except at the oldest age examined (P32-36). 2. Immunocytochemistry showed that within the brain, albumin was confined to the lumen and endothelial cells of blood vessels. In the choroid plexus only a small proportion (0.2-1.7% of the total cell number) of epithelial cells was positive for albumin, both endogenous and exogenous, at all ages studied (except the 3rd ventricle where cells were only positive from P8). The CSF was strongly positive for all albumins. The peak proportion of positive cells and of albumin concentrations in CSF occurred at P8. These findings suggest that the primary route for penetration of albumin into CSF is directly across the choroid plexus rather than via the brain. 3. Double-labelling immunocytochemistry revealed that the same epithelial cells contained both endogenous (Monodelphis) and exogenous (human) albumin. In contrast, for succinylated albumin, at P7 only about 35% (lateral ventricle) and 50% (4th ventricle) of Monodelphis albumin-positive cells were also positive for succinylated albumin, but by P30 this proportion increased to 90% at both sites. 4. Thus the developing choroid plexus distinguishes between different albumins. Chemical modification of albumin (succinylation) disrupts this mechanism. It is proposed that in older animals (P32-36) all of the albumin in the CSF is derived from plasma by diffusion (as in adult animals). At earlier stages of development, a proportion of the albumin in CSF also appears to be transferred from the plasma by diffusion with an additional component transferred by a mechanism that can distinguish between different species of albumin. The main route of entry of albumin to CSF seems likely to be via the choroid plexus epithelial cells. Images Figure 4 Figure 5 Figure 6 PMID:9061648

  8. Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields

    PubMed Central

    Lucas, Daniel; Bruns, Ingmar; Battista, Michela; Mendez-Ferrer, Simon; Magnon, Claire; Kunisaki, Yuya

    2012-01-01

    The mechanisms mediating hematopoietic stem and progenitor cell (HSPC) mobilization by G-CSF are complex. We have found previously that G-CSF–enforced mobilization is controlled by peripheral sympathetic nerves via norepinephrine (NE) signaling. In the present study, we show that G-CSF likely alters sympathetic tone directly and that methods to increase adrenergic activity in the BM microenvironment enhance progenitor mobilization. Peripheral sympathetic nerve neurons express the G-CSF receptor and ex vivo stimulation of peripheral sympathetic nerve neurons with G-CSF reduced NE reuptake significantly, suggesting that G-CSF potentiates the sympathetic tone by increasing NE availability. Based on these data, we investigated the NE reuptake inhibitor desipramine in HSPC mobilization. Whereas desipramine did not by itself elicit circulating HSPCs, it increased G-CSF–triggered mobilization efficiency significantly and rescued mobilization in a model mimicking “poor mobilizers.” Therefore, these data suggest that blockade of NE reuptake may be a novel therapeutic target to increase stem cell yield in patients. PMID:22422821

  9. Predictors for successful PBSC collection on the fourth day of G-CSF-induced mobilization in allogeneic stem cell donors.

    PubMed

    van Oostrum, Anja; Zwaginga, Jaap Jan; Croockewit, Sandra; Overdevest, Jacqueline; Fechter, Mirjam; Ruiterkamp, Bart; Brand, Anneke; Netelenbos, Tanja

    2017-12-01

    Peripheral blood stem cells (PBSCs) used for allogeneic transplantation are collected by apheresis after pre-treatment of donors with G-CSF. Using modern apheresis devices stem cells can be collected more efficiently. It was studied whether collection on the 4th instead of the 5th day after initiation of G-CSF treatment might be feasible. Stem cell yields that could have been collected on day 4 were calculated in two cohorts treated with 10 µg/kg G-CSF once daily (n = 106, cohort I) or 5 µg/kg twice daily schedule (n = 85, cohort II). Harvests were predicted using the median collection efficiency (CE) of the apheresis machine and regarded successful when > 5.0 x10 6 CD34 +/ kg recipient body weight. Successful harvests at day 4 could have been obtained in only 22.6% and 41.2% of donors in cohort I and II respectively, while the expected successful collections on day 5 were 55.7% and 76.5%. Individual donor factors that correlated with a successful harvest on day 4 were weight, BMI, age, ratio donor/recipient weight and total G-CSF dose in cohort I, whereas ratio donor/recipient weight was the only significant predictor in cohort II. Donor weight, BMI and total G-CSF dose correlated positively with CD34 + values in the blood on day 4 in all donors. However, donor characteristics were not able to be used as strong predictors in daily practice. In conclusion, PBSC collection on day 4 will not result in a successful harvest in most stem cell donors, however using a twice daily G-CSF scheme increases the yield. © 2017 Wiley Periodicals, Inc.

  10. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.

    PubMed Central

    Qin, Y; Duquette, P; Zhang, Y; Talbot, P; Poole, R; Antel, J

    1998-01-01

    The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes. PMID:9727074

  11. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    PubMed

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  12. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.

  13. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community. PMID:18394164

  14. Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (rhG-CSF)--what is the difference?

    PubMed

    Höglund, M

    1998-12-01

    Two forms of recombinant human G-CSF (rhG-CSF) are available for clinical use: filgrastim is expressed in E coli and non-glycosylated, whereas lenograstim is derived from Chinese hamster ovary (CHO) cells and glycosylated. The function of the sugar chain, accounting for approximately 4% of the molecular weight of lenograstim (and native G-CSF), is not known. Glycosylation of the G-CSF molecule does not prolong its circulation half life. Lenograstim is more active than filgrastim (and research-use deglycosylated G-CSF) on a weight-by-weight basis in in vitro colony-forming and cell line assays. An international potency standard assigns a specific activity of 100,000 IU/microgram to filgrastim and 127,760 IU/microgram to lenograstim. Correspondingly, two randomised crossover studies in normal subjects, comparing mass equivalent doses of the two rhG-CSFs, have demonstrated a 25-30% higher concentration of blood stem cells (CD34+, CFU-GM) during lenograstim administration. No difference in side effects was observed. Results from a prospective, randomised, non-crossover trial in breast cancer patients suggest that bioequivalent doses of filgrastim and lenograstim have a similar effect on mobilisation of CD34+ cells and immature CD34+ cell subsets, respectively. Although comparisons outside the setting of stem cell mobilisation are lacking, the clinical relevance of the greater specific activity of lenograstim may thus be limited. The difference in potency between microgram identical doses of the two rhG-CSFs makes dosing in biological units (IU) rather than mass units (microgram) more appropriate.

  15. Biosimilar G-CSF versus filgrastim and lenograstim in healthy unrelated volunteer hematopoietic stem cell donors.

    PubMed

    Farhan, Roiya; Urbanowska, Elżbieta; Zborowska, Hanna; Król, Małgorzata; Król, Maria; Torosian, Tigran; Piotrowska, Iwona; Bogusz, Krzysztof; Skwierawska, Kamila; Wiktor-Jędrzejczak, Wiesław; Snarski, Emilian

    2017-10-01

    The World Marrow Donor Organization recommends original granulocyte-colony stimulating factor (G-CSF) for the mobilization of stem cells in healthy unrelated hematopoietic stem cell donors. We report the comparison of a biosimilar G-CSF (Zarzio) with two original G-CSFs (filgrastim and lenograstim) in mobilization in unrelated donors. We included data of 313 consecutive donors who were mobilized during the period from October 2014 to March 2016 at the Medical University of Warsaw. The primary endpoints of this study were the efficiency of CD34+ cell mobilization to the circulation and results of the first apheresis. The mean daily dose of G-CSF was 9.1 μg/kg for lenograstim, 9.8 μg/kg for biosimilar filgrastim, and 9.3 μg/kg for filgrastim (p < 0.001). The mean CD34+ cell number per microliter in the blood before the first apheresis was 111 for lenograstim, 119 for biosimilar filgrastim, and 124 for filgrastim (p = 0.354); the mean difference was even less significant when comparing CD34+ number per dose of G-CSF per kilogram (p = 0.787). Target doses of CD34+ cells were reached with one apheresis in 87% donors mobilized with lenograstim and in 93% donors mobilized with original and biosimilar filgrastim (p = 0.005). The mobilized apheresis outcomes (mean number of CD34+ cells/kg of donor collected during the first apheresis) was similar with lenograstim, biosimilar filgrastim, and filgrastim: 6.2 × 10 6 , 7.6 × 10 6 , and 7.3 × 10 6 , respectively, p = 0.06. There was no mobilization failure in any of the donors. Biosimilar G-CSF is as effective in the mobilization of hematopoietic stem cells in unrelated donors as original G-CSFs. Small and clinically irrelevant differences seen in the study can be attributed to differences in G-CSF dose and collection-related factors. Active safety surveillance concurrent to clinical use and reporting to donor outcome registry (e.g., EBMT donor outcome registry or WMDA SEAR/SPEAR) might help to evaluate the possible short- and long-term complications of biosimilar G-CSF.

  16. G-CSF Induces Membrane Expression of a Myeloperoxidase Glycovariant that Operates as an E-selectin Ligand on Human Myeloid Cells

    PubMed Central

    Silvescu, Cristina I.; Sackstein, Robert

    2014-01-01

    The host defense response critically depends on the production of leukocytes by the marrow and the controlled delivery of these cells to relevant sites of inflammation/infection. The cytokine granulocyte-colony stimulating factor (G-CSF) is commonly used therapeutically to augment neutrophil recovery following chemo/radiation therapy for malignancy, thereby decreasing infection risk. Although best known as a potent inducer of myelopoiesis, we previously reported that G-CSF also promotes the delivery of leukocytes to sites of inflammation by stimulating expression of potent E-selectin ligands, including an uncharacterized ∼65-kDa glycoprotein. To identify this ligand, we performed integrated biochemical analysis and mass spectrometry studies of G-CSF–treated primary human myeloid cells. Our studies show that this novel E-selectin ligand is a glycoform of the heavy chain component of the enzyme myeloperoxidase (MPO), a well-known lysosomal peroxidase. This specialized MPO glycovariant, referred to as “MPO–E-selectin ligand” (MPO–EL), is expressed on circulating G-CSF–mobilized leukocytes and is naturally expressed on blood myeloid cells in patients with febrile leukocytosis. In vitro biochemical studies show that G-CSF programs MPO–EL expression on human blood leukocytes and marrow myeloid cells via induction of N-linked sialofucosylations on MPO, with concomitant cell surface display of the molecule. MPO–EL is catalytically active and mediates angiotoxicity on human endothelial cells that express E-selectin. These findings thus define a G-CSF effect on MPO chemical biology that endows unsuspected functional versatility upon this enzyme, unveiling new perspectives on the biology of G-CSF and MPO, and on the role of E-selectin receptor/ligand interactions in leukocyte migration and vascular pathology. PMID:25002508

  17. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.

  18. Ex-vivo expansion of CFU-GM and BFU-E in unselected PBMC cultures with Flt3L is enhanced by autologous plasma.

    PubMed

    Guo, M; Miller, W M; Papoutsakis, E T; Patel, S; James, C; Goolsby, C; Winter, J N

    1999-01-01

    Previous ex-vivo expansion studies in our laboratory, comparing unselected and CD34(+)-selected PBMC, have shown no advantage for CD34(+) cell selection, in terms of the expansion achieved. Our goal was to develop procedures for consistent generation of large numbers of hematopoietic progenitor and post-progenitor cells from unselected PBMC. Unselected PBMC, collected from cancer patients undergoing apheresis prior to high-dose chemotherapy and autologous stem cell rescue, were expanded ex vivo in static cultures, without a stromal layer, in the presence of Flt3 ligand (Flt3L), a recombinant GM-CSF/IL-3 fusion protein (PIXY321), G-CSF and GM-CSF for 10 days. The addition of 2% autologous plasma to this cytokine combination enhanced expansion of total cell numbers (3.2 fold versus 1.9 fold; p < 0.01), colony-forming units granulocyte-macrophage (CFU-GM) (22.0 fold versus 8.1 fold, p < 0.01) and burst-forming units erythroid (BFU-E) (17.6 fold versus 7.0 fold, 0.01 < p < 0.02). The optimal seeding density for a given specimen was inversely related to the frequency of CD34(+) cells in the sample. CFU-GM expansion with the Flt3L-containing cytokine cocktail was equivalent to that obtained with IL-3, IL-6, G-CSF and SCF, whether or not the cultures were supplemented with autologous plasma. In plasma-free cultures, BFU-E expansion was significantly higher with IL-3, IL-6, G-CSF and SCF than with Flt3L, PIXY321, G-CSF and GM-CSF. In the presence of autologous plasma, however BFU-E expansion was higher in the Flt3L-containing media. In comparison studies, autologous plasma suppressed BFU-E expansion in SCF-containing cultures. Consistent with our colony assay results, dual-parameter flow cytometric analysis of the expanded cell population revealed that supplementation with autologous plasma yielded a significant increase in the numbers of myeloid progenitors in Flt3L-containing cultures. Unselected PBMC from cancer patients can be effectively expanded ex vivo in Flt3L, PIXY321, G-CSF and GM-CSF, supplemented with autologous plasma, yielding high numbers of myeloid and erythroid progenitors.

  19. Critical role of mast cells and peroxisome proliferator-activated receptor gamma (PPARγ) in the induction of myeloid-derived suppressor cells by marijuana cannabidiol in vivo

    PubMed Central

    Hegde, Venkatesh L.; Singh, Udai P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2015-01-01

    Cannabidiol (CBD) is a natural non-psychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naïve immune system is not precisely understood. In this study, we observed that administering CBD into naïve mice triggers robust induction of CD11b+Gr-1+ MDSC in the peritoneum, which expressed functional Arg1, and potently suppressed T cell proliferation ex vivo. Further, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b+Ly6-G+Ly6-C+ granulocytic and CD11b+Ly6-G−Ly6-C+ monocytic subtypes, with monocytic MDSC exhibiting higher T cell suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (KitW/W-v) mast cell-deficient mice. MDSC response was reconstituted upon transfer of WT bone marrow-derived mast cells in KitW/W-v mice suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1 and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of PPARγ in luciferase reporter assay, and PPARγ selective antagonist completely inhibited MDSC induction in vivo suggesting its critical role. Together, the results suggest that CBD may induce activation of PPARγ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC. PMID:25917103

  20. Safety and Efficacy of Pegfilgrastim When Given Less Than 14 Days Before the Next Chemotherapy Cycle: Review of Every 14-Day Chemotherapy Regimen Containing 5-FU Continuous Infusion.

    PubMed

    Donkor, Kofi N; Selim, Julie H; Waworuntu, Ariani; Lewis, Kelsey

    2017-10-01

    Pegfilgrastim should not be given <14 days from the next chemotherapy because of concerns for cytopenias. Some clinicians are prescribing pegfilgrastim to be given <14 days in patients receiving 5-fluorouracil continuous infusion (5-FUCI) regimens. To determine the effectiveness and safety of pegfilgrastim administered <14 days from the next chemotherapy in patients receiving 5-FUCI administered >46 hours. Single-institution retrospective cohort study of patients who received 5-FUCI administered >46 hours from June 2013 to December 2015. The unit of measurement was chemotherapy cycles. End points included the safety and efficacy of giving pegfilgrastim <14 days from the next chemotherapy (Pegfilgrastim-Less-Than-14-Days-Group) and comparing that to pegfilgrastim given ≥14 days (Pegfilgrastim-More-Than-14-Days-Group), filgrastim only (Filgrastim-Group), and no colony stimulating factors (No-CSF-Group). Generalized estimating equations (GEEs) were used to compare mean absolute neutrophil count (ANC) and white blood cell count (WBC). Poisson regression models with GEE were used to estimate relative risk (RR) for neutropenia. There were no incidences of neutropenia, febrile neutropenia (FN), or hospitalizations for FN with the Pegfilgrastim-Less-Than-14-Days-Group. There was also a high mean ANC of 9.9 (5.7) × 10 9 /L. Mean ANC and WBC were statistically significantly less with the Filgrastim-Group, No-CSF-Group, and Pegfilgrastim-More-Than-14-Days-Group compared with the Pegfilgrastim-Less-Than-14-Days-Group. The Filgrastim-Group and the No-CSF-Group had a 32% (1.10-1.56, P = 0.002) and 8% (1.04-1.12, P < 0.001) increased risk of incidence of neutropenia, respectively, compared with the Pegfilgrastim-Less-Than-14-Days-Group. The risk of incidence of neutropenia was the same with the Pegfilgrastim-More-Than-14-Days-Group and Pegfilgrastim-Less-Than-14-Days-Group (0.95-1.04, P = 0.821). This study shows a promising possibility that administering pegfilgrastim <14 days from the next chemotherapy cycle could be a safe and effective practice. However, better controlled clinical trials are needed.

  1. Role of the testis interstitial compartment in spermatogonial stem cell function

    PubMed Central

    Potter, Sarah J.; DeFalco, Tony

    2017-01-01

    Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580

  2. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells

    PubMed Central

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph

    2017-01-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  3. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  4. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  5. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    PubMed Central

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  6. Assessment of the effector function of CMV-specific CTLs isolated using MHC-multimers from granulocyte-colony stimulating factor mobilized peripheral blood.

    PubMed

    Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo

    2015-05-20

    Adoptive transfer of CMV-specific T cells has shown promising results in preventing pathological effects caused by opportunistic CMV infection in immunocompromised patients following allogeneic hematopoietic stem cell transplantation. The majority of studies have used steady-state leukapheresis for CMV-reactive product manufacture, a collection obtained prior to or months after G-CSF mobilization, but the procurement of this additional sample is often not available in the unrelated donor setting. If the cellular product for adoptive immunotherapy could be generated from the same G-CSF mobilized collection, the problems associated with the additional harvest could be overcome. Despite the tolerogenic effects associated with G-CSF mobilization, recent studies described that CMV-primed T cells generated from mobilized donors remain functional. MHC-multimers are potent tools that allow the rapid production of antigen-specific CTLs. Therefore, in the present study we have assessed the feasibility and efficacy of CMV-specific CTL manufacture from G-CSF mobilized apheresis using MHC-multimers. CMV-specific CTLs can be efficiently isolated from G-CSF mobilized samples with Streptamers and are able to express activation markers and produce cytokines in response to antigenic stimulation. However, this anti-viral functionality is moderately reduced when compared to non-mobilized products. The translation of Streptamer technology for the isolation of anti-viral CTLs from G-CSF mobilized PBMCs into clinical practice would widen the number of patients that could benefit from this therapeutic strategy, although our results need to be taken into consideration before the infusion of antigen-specific T cells obtained from G-CSF mobilized samples.

  7. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages

    PubMed Central

    Lou, Jieqiong; Low-Nam, Shalini T.; Kerkvliet, Jason G.; Hoppe, Adam D.

    2014-01-01

    ABSTRACT Activation of the macrophage colony stimulating factor-1 receptor (CSF-1R) by CSF-1 stimulates pronounced macropinocytosis and drives proliferation of macrophages. Although the role of macropinocytosis in CSF-1R signaling remains unknown, we show here that, despite internalizing large quantities of plasma membrane, macropinosomes contribute little to the internalization of the CSF-1–CSF-1R complex. Rather, internalization of the CSF-1R in small endocytic vesicles that are sensitive to clathrin disruption, outcompetes macropinosomes for CSF-1R endocytosis. Following internalization, small vesicles carrying the CSF-1R underwent homotypic fusion and then trafficked to newly formed macropinosomes bearing Rab5. As these macropinosomes matured, acquiring Rab7, the CSF-1R was transported into their lumen and degraded. Inhibition of macropinocytosis delayed receptor degradation despite no disruption to CSF-1R endocytosis. These data indicate that CSF-1-stimulated macropinosomes are sites of multivesicular body formation and accelerate CSF-1R degradation. Furthermore, we demonstrate that macropinocytosis and cell growth have a matching dose dependence on CSF-1, suggesting that macropinosomes might be a central mechanism coupling CSF-1R signaling and macrophage growth. PMID:25335894

  8. [Clinical study on a concomitant therapy with fluconazole and human recombinant granulocyte colony stimulating factor in the treatment of systemic fungal infections with hematological disorders].

    PubMed

    Kitamura, K; Miyagawa, K; Urabe, A; Sato, H; Obayashi, Y; Aoki, I; Takaku, F; Togawa, A; Shindou, E; Wakabayashi, Y; Ohshima, T; Horikoshi, A; Nomura, T; Ohki, I; Suzuki, K; Kamakura, M; Oguchi, A; Toyama, K; Yaguchi, M; Aoki, N; Kato, A; Mizoguchi, H; Masuda, M; Irie, S; Fujioka, S

    1996-12-01

    The clinical efficacy and the safety of concomitant therapy with fluconazole and recombinant human granulocyte colony stimulating factor (rhG-CSF) was compared with fluconazole monotherapy in neutropenic patients with hematological disorders. The clinical efficacy rate was 73.5% (25/34) in the combination therapy and 48.1% (37/77) in monotherapy. The difference between the two is statistically significant. Side effects were not observed in the combination group, but laboratory abnormalities were found in 6 patients with an incident rate of 11%. The combination therapy with fluconazole and rhG-CSF may be selected as empiric therapy for systemic fungal infection associated with hematological disorders, since this combination therapy showed high efficacy and low incident of side effects. Some patients, however, did not show increased neutrophil counts in spite of rhG-CSF administration.

  9. Granulocyte Colony-Stimulating Factor and Azole Antifungal Therapy in Murine Aspergillosis: Role of Immune Suppression

    PubMed Central

    Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.

    1998-01-01

    Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743

  10. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    PubMed

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Embryonic blood-cerebrospinal fluid barrier formation and function

    PubMed Central

    Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi

    2014-01-01

    During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383

  12. CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T Cell Checkpoint Immunotherapy in Pancreatic Cancer Models

    PubMed Central

    Zhu, Yu; Knolhoff, Brett L.; Meyer, Melissa A.; Nywening, Timothy M.; West, Brian L.; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C.; DeNardo, David G.

    2014-01-01

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC), which not only mediate immune suppression but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive anti-tumor T cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. PMID:25082815

  13. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.

    PubMed

    Zhu, Yu; Knolhoff, Brett L; Meyer, Melissa A; Nywening, Timothy M; West, Brian L; Luo, Jingqin; Wang-Gillam, Andrea; Goedegebuure, S Peter; Linehan, David C; DeNardo, David G

    2014-09-15

    Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. ©2014 American Association for Cancer Research.

  14. Heterozygous M1V variant of ELA-2 gene mutation associated with G-CSF refractory severe congenital neutropenia.

    PubMed

    Setty, Bhuvana A; Yeager, Nicholas D; Bajwa, Rajinder P

    2011-09-01

    Severe congenital neutropenia is an autosomal recessive disorder characterized by maturation arrest at the promyelocyte/myelocyte phase in the bone marrow, absolute neutrophil count <0.5 × 10(9) /L and recurrent bacterial infections. Homozygous mutations of either HAX-1 or ELA-2 have been described. We report the case of a premature male infant with congenital neutropenia, associated with multiple infections, refractory to treatment with granulocyte colony stimulating factor who subsequently underwent matched sibling donor stem-cell transplant. He was found to be heterozygous for the M1V variant of the ELA-2 gene that we postulate to be causative for his severe neutropenia Copyright © 2011 Wiley-Liss, Inc.

  15. Special Education.

    PubMed

    Kozutsumi

    1996-01-01

    HEMOPOIETIC FACTORS AND BLOOD CELL PROLIFERATION AND DIFFERENTIATION: Blood cells are generally classified into three cell lineages: erythrocytes, granulocytes and megakaryocytes. In the bone marrow, pluripotent stem cells differentiate into either the lymphoid stem cell line, where they are further induced to differentiate into B- or T-derived lymphocytes, or the myeloid stem cell (CFU-GEMM) line, where they are further induced to become erythrocytes, granulocytes (neutrophils, eosinophils or basophils), macrophages or megakaryocytes (platelets). Proliferation and differentiation of blood cells in the bone marrow are regulated by hemopoietic factors. Hemopoietic factors include those that are continuously produced, such as EPO, G-CSF and thrombopoietin (TPO), and those that are produced on demand in response to inflammation and infection, such as IL-3, IL-11 and GM-CSF. In recent years the genes for hemopoietic factors which regulate erythrocytes and granulocytes have been cloned using the techniques of genetic engineering. In 1994 the gene for TPO was cloned. TPO acts specifically on megakaryocytes. PROLIFERATION AND DIFFERENTIATION OF ERYTHROCYTIC CELLS: The earliest cells destined to become erythrocytes which differentiate from the myeloid stem cells (CFU-GEMM) are early phase erythroblast progenitor cells called BFU-E cells. After the BFU-E cells have undergone several divisions, they differentiate into late phase erythroblast progenitor cells called CFU-E cells. After passing through the proerythroblast stage, the CFU-E cells become erythroblasts. Erythroblasts can be confirmed by light microscope as belonging to the erythroid cell line. Erythroblasts mature and become enucleated reticulocytes, which are then released from the bone marrow into the blood, thus becoming mature erythrocytes. Proliferation and differentiation of the erythroid progenitor cells are regulated by erythropoietin (EPO), which is primarily produced by the kidneys. In 1985 genomic DNA and cDNA for human EPO were cloned, and it was learned that the mature protein is a glycoprotein consisting of 165 amino acids and having a molecular weight of about 30,000. There is powerful evidence to suggest that EPO is produced by peritubular cells of the renal cortex. When the hematocrit drops for some reason and hypoxia occurs, the number of EPO-producing cells increases and EPO production rises in the kidneys. CFU-E cells are the main target cells for EPO. EPO receptors are expressed along the lineage from BFU-E cells to proerythroblasts, with peak expression found in CFU-E cells. The EPO receptor, which was cloned in 1989, belongs to the cytokine receptor family, transduces the EPO signal to the interior of the cell, and brings about the proliferation and differentiation of CFU-E cells. PROLIFERATION AND DIFFERENTIATION OF GRANULOCYTIC CELLS: The earliest cells destined to become neutrophils and macrophages which differentiate from the pluripotent stem cells are called granulocyte-macrophage progenitor (CFU-GM) cells. The CFU-GM cells are affected by colony-stimulating factors and become either CFU-G or CFU-M cells. Ultimately, they differentiate into mature neutrophils or macrophages. The main factor stimulating the proliferation and differentiation of neutrophils is the granulocyte colony-stimulating factor (G-CSF). CFU-GM cells are stimulated by G-CSF in the bone marrow, pass through the CFU-G stage, and become myeloblasts, which are the most primitive neutrophils that can be morphologically distinguished. Myeloblasts continue to divide and differentiate, and they mature into neutrophils, which then lose their ability to divide. Mature neutrophils are not immediately released into the blood, but rather are stored within the bone marrow. Neutrophils that have been released into the blood reside in the marginal granulocyte pool or the circulating granulocyte pool, and they later egress into tissues. G-CSF is produced by cells such as monocytes, macrophages and bone marrow stromal cells, and its action is almost entirely selective for the proliferation of neutrophils. The cDNA for G-CSF was cloned in 1986, and it was learned that the mature protein is a glycoprotein consisting of 174 amino acids and having a molecular weight of about 20,000. When G-CSF is administered to a patient it causes the release of mature neutrophils from the marrow into the peripheral blood. G-CSF also enhances neutrophil function in the presence of bacterial products, and it acts on mature neutrophils to enhance cellular motility, the production of bioactive oxygen, and microbicidal activity. The cDNA for the G-CSF receptor was cloned in 1990, and its receptor belongs to the cytokine receptor family. The human G-CSF receptor consists of 813 amino acids and has an approximate molecular weight of 100,000 to 130,000. The G-CSF receptor signal is mediated by the JAK-1 and JAK-2 tyrosine kinases.

  16. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    PubMed Central

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819

  17. GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection.

    PubMed

    Kurtz, Sherry L; Bosio, Catharine M; De Pascalis, Roberto; Elkins, Karen L

    2016-12-01

    Our laboratory has employed in vitro and in vivo mouse models based on Francisella tularensis Live Vaccine Strain (LVS)-induced protection to elucidate immune correlates for intracellular bacteria. Among the effectors found was GM-CSF, a pleiotropic cytokine that is integral to the development and proliferation of myeloid cells, including alveolar macrophages. GM-CSF has roles in resistance to primary murine infection with several intracellular pathogens, but its role during Francisella infection is unknown. Francisella is an intracellular pathogen that infects lungs after inhalation, primarily invading alveolar macrophages. Here we show that GM-CSF has route-dependent roles during primary infection of mice with LVS. GM-CSF deficient (GM-CSF KO) mice were slightly more susceptible than wild type to intradermal infection, but had increased resistance to intranasal infection. Similarly, these mice had increased resistance to pulmonary infection with virulent F. tularensis (SchuS4). LVS-vaccinated GM-CSF KO mice had normal adaptive immune responses, as measured by T cell activities after LVS intradermal or intranasal vaccination, and survived lethal secondary LVS challenge. GM-CSF KO mice also had robust humoral responses, producing elevated levels of serum antibodies following LVS vaccination compared to wild type mice. Taken together, our data demonstrates that the absence of GM-CSF improves resistance to pulmonary, but not intradermal, infection with Francisella. Published by Elsevier Masson SAS.

  18. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization

    PubMed Central

    Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2014-01-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720

  19. Genistein protects hematopoietic stem cells against G-CSF-induced DNA damage.

    PubMed

    Souza, Liliana R; Silva, Erica; Calloway, Elissa; Kucuk, Omer; Rossi, Michael; McLemore, Morgan L

    2014-05-01

    Granulocyte colony-stimulating factor (G-CSF) has been used to treat neutropenia in various clinical settings. Although clearly beneficial, there are concerns that the chronic use of G-CSF in certain conditions increases the risk of myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). The most striking example is in severe congenital neutropenia (SCN). Patients with SCN develop MDS/AML at a high rate that is directly correlated to the cumulative lifetime dosage of G-CSF. Myelodysplastic syndrome and AML that arise in these settings are commonly associated with chromosomal deletions. We have demonstrated in this study that chronic G-CSF treatment in mice results in expansion of the hematopoietic stem cell (HSC) population. In addition, primitive hematopoietic progenitors from G-CSF-treated mice show evidence of DNA damage as demonstrated by an increase in double-strand breaks and recurrent chromosomal deletions. Concurrent treatment with genistein, a natural soy isoflavone, limits DNA damage in this population. The protective effect of genistein seems to be related to its preferential inhibition of G-CSF-induced proliferation of HSCs. Importantly, genistein does not impair G-CSF-induced proliferation of committed hematopoietic progenitors, nor diminishes neutrophil production. The protective effect of genistein was accomplished with plasma levels that are attainable through dietary supplementation.

  20. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    PubMed

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

Top