Sample records for csf proteomic analysis

  1. Characterization of individual mouse cerebrospinal fluid proteomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less

  2. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    PubMed

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  3. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  4. Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo*

    PubMed Central

    Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A.; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F.

    2015-01-01

    Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1−/− and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1−/− and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1−/− mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors. PMID:26139848

  5. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Thomas E.; Jacobs, Jon M.; Spudich, Serena S.

    2012-03-20

    Central nervous system (CNS) infection is a constant feature of systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment. After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91more » CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral and correlated abundances of identified proteins (a) within and between subjects, (b) with all other proteins across the entire sample set, and (c) with 'external' CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) {le}0.3 and {ge}0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node. Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.« less

  6. The cerebrospinal fluid proteome in HIV infection: change associated with disease severity

    PubMed Central

    2012-01-01

    Background Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment. Results After establishing an accurate mass and time (AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node. Conclusions Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases. PMID:22433316

  7. A Robust Two-Dimensional Separation of Intact Proteins for Bottom-Up Tandem Mass Spectrometry of the Human CSF Proteome

    PubMed Central

    Bora, Adriana; Anderson, Carol; Bachani, Muznabanu; Nath, Avindra; Cotter, Robert J.

    2012-01-01

    The cerebrospinal fluid (CSF) is produced in the brain by cells in the choroid plexus at a rate of 500mL/day. It is the only body fluid in direct contact with the brain. Thus, any changes in the CSF composition will reflect pathological processes and make CSF a potential source of biomarkers for different disease states. Proteomics offers a comprehensive view of the proteins found in CSF. In this study, we use a recently developed non-gel based method of sample preparation of CSF followed by liquid chromatography high accuracy mass spectrometry (LC-MS) for MS and MS/MS analyses, allowing unambiguous identification of peptides/proteins. Gel-eluted liquid fraction entrapment electrophoresis (Gelfree) is used to separate a CSF complex protein mixture in 12 user-selectable liquid-phase molecular weight fractions. Using this high throughput workflow we have been able to separate CSF intact proteins over a broad mass range 3.5 kDa-100 kDa with high resolution between 15 kDa and 100 kDa in 2 hours and 40 min. We have completely eliminated albumin and were able to interrogate the low abundance CSF proteins in a highly reproducible manner from different CSF samples in the same time. Using LC-MS as a downstream analysis, we identified 368 proteins using MidiTrap G-10 desalting columns and 166 proteins (including 57 unique proteins) using Zeba spin columns with 5% false discovery rate (FDR). Prostaglandin D2 synthase, Chromogranin A, Apolipoprotein E, Chromogranin B, Secretogranin III, Cystatin C, VGF nerve growth factor, Cadherin 2 are a few of the proteins that were characterized. The Gelfree-LC-MS is a robust method for the analysis of the human proteome that we will use to develop biomarkers for several neurodegenerative diseases and to quantitate these markers using multiple reaction monitoring. PMID:22537003

  8. Comparative proteomic analysis of virulent and rifampicin attenuated Flavobacterium psychrophilum

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease and rainbow trout fry syndrome. In this study we compared a wild-type strain (CSF 259.93) with a rifampicin resistant and virulence attenuated strain of F. psychrophilum (CSF 259.93B.17). The attenuated strain harbour...

  9. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    PubMed

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  10. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis.

    PubMed

    Quintela, T; Marcelino, H; Deery, M J; Feret, R; Howard, J; Lilley, K S; Albuquerque, T; Gonçalves, I; Duarte, A C; Santos, C R A

    2016-01-01

    The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood and the cerebrospinal fluid (CSF), which is mostly produced by the CP itself. Because the CP transcriptome is regulated by the sex hormone background, the present study compared gene/protein expression profiles in the CP and CSF from male and female rats aiming to better understand sex-related differences in CP functions and brain physiology. We used data previously obtained by cDNA microarrays to compare the CP transcriptome between male and female rats, and complemented these data with the proteomic analysis of the CSF of castrated and sham-operated males and females. Microarray analysis showed that 17 128 and 17 002 genes are expressed in the male and female CP, which allowed the functional annotation of 141 and 134 pathways, respectively. Among the most expressed genes, canonical pathways associated with mitochondrial dysfunctions and oxidative phosphorylation were the most prominent, whereas the most relevant molecular and cellular functions annotated were protein synthesis, cellular growth and proliferation, cell death and survival, molecular transport, and protein trafficking. No significant differences were found between males and females regarding these pathways. Seminal functions of the CP differentially regulated between sexes were circadian rhythm signalling, as well as several canonical pathways related to stem cell differentiation, metabolism and the barrier function of the CP. The proteomic analysis identified five down-regulated proteins in the CSF samples from male rats compared to females and seven proteins exhibiting marked variation in the CSF of gonadectomised males compared to sham animals, whereas no differences were found between sham and ovariectomised females. These data clearly show sex-related differences in CP gene expression and CSF protein composition that may impact upon neurological diseases. © 2015 British Society for Neuroendocrinology.

  11. Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology.

    PubMed

    Simats, Alba; García-Berrocoso, Teresa; Ramiro, Laura; Giralt, Dolors; Gill, Natalia; Penalba, Anna; Bustamante, Alejandro; Rosell, Anna; Montaner, Joan

    2018-05-21

    The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.

  12. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Jun; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing; Chongqing Key Laboratory of Neurobiology, Chongqing

    Purpose: Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). Methods: CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology andmore » proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Results: Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. Conclusions: CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. - Highlights: • The first proteomic study on the cerebrospinal fluid of tuberculous meningitis patients using iTRAQ. • Identify 4 differential proteins invloved in the lipid metabolism. • Elevated expression of ApoB gives insights into the pathogenesis of TBM.« less

  13. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients.

    PubMed

    Mu, Jun; Yang, Yongtao; Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng; Xie, Peng

    2015-10-30

    Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Proteomic Analysis of Cerebrospinal Fluid in a Fulminant Case of Multiple Sclerosis

    PubMed Central

    Füvesi, Judit; Hanrieder, Jörg; Bencsik, Krisztina; Rajda, Cecilia; Kovács, S. Krisztián; Kaizer, László; Beniczky, Sándor; Vécsei, László; Bergquist, Jonas

    2012-01-01

    Multiple Sclerosis (MS) is a chronic disease, but in rare fulminant cases rapid progression may lead to death shortly after diagnosis. Currently there is no diagnostic test to predict disease course. The aim of this study was to identify potential biomarkers/proteins related to rapid progression. We present the case history of a 15-year-old male MS patient. Cerebrospinal fluid (CSF) was taken at diagnosis and at the time of rapid progression leading to the patient’s death. Using isobaric tag labeling and nanoflow liquid chromatography in conjunction with matrix assisted laser desorption/ionization time of flight tandem mass spectrometry we quantitatively analyzed the protein content of two CSF samples from the patient with fulminant MS as well as one relapsing-remitting (RR) MS patient and one control headache patient, whose CSF analysis was normal. Seventy-eight proteins were identified and seven proteins were found to be more abundant in both fulminant MS samples but not in the RR MS sample compared to the control. These proteins are involved in the immune response, blood coagulation, cell proliferation and cell adhesion. In conclusion, in this pilot study we were able to show differences in the CSF proteome of a rapidly progressing MS patient compared to a more typical clinical form of MS and a control subject. PMID:22837721

  15. Comparative analysis of cerebrospinal fluid from the meningo-encephalitic stage of T. b. gambiense and rhodesiense sleeping sickness patients using TMT quantitative proteomics.

    PubMed

    Tiberti, Natalia; Sanchez, Jean-Charles

    2015-09-01

    The quantitative proteomics data here reported are part of a research article entitled "Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense", published by Tiberti et al., 2015. Transl. Proteomics 6, 1-9. Sleeping sickness (human African trypanosomiasis - HAT) is a deadly neglected tropical disease affecting mainly rural communities in sub-Saharan Africa. This parasitic disease is caused by the Trypanosoma brucei (T. b.) parasite, which is transmitted to the human host through the bite of the tse-tse fly. Two parasite sub-species, T. b. rhodesiense and T. b. gambiense, are responsible for two clinically different and geographically separated forms of sleeping sickness. The objective of the present study was to characterise and compare the cerebrospinal fluid (CSF) proteome of stage 2 (meningo-encephalitic stage) HAT patients suffering from T. b. gambiense or T. b. rhodesiense disease using high-throughput quantitative proteomics and the Tandem Mass Tag (TMT(®)) isobaric labelling. In order to evaluate the CSF proteome in the context of HAT pathophysiology, the protein dataset was then submitted to gene ontology and pathway analysis. Two significantly differentially expressed proteins (C-reactive protein and orosomucoid 1) were further verified on a larger population of patients (n=185) by ELISA, confirming the mass spectrometry results. By showing a predominant involvement of the acute immune response in rhodesiense HAT, the proteomics results obtained in this work will contribute to further understand the mechanisms of pathology occurring in HAT and to propose new biomarkers of potential clinical utility. The mass spectrometry raw data are available in the Pride Archive via ProteomeXchange through the identifier PXD001082.

  16. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    PubMed

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A rapid method for preparation of the cerebrospinal fluid proteome.

    PubMed

    Larssen, Eivind; Brede, Cato; Hjelle, Anne Bjørnstad; Øysaed, Kjell Birger; Tjensvoll, Anne Bolette; Omdal, Roald; Ruoff, Peter

    2015-01-01

    The cerebrospinal fluid (CSF) proteome is of great interest for investigation of diseases and conditions involving the CNS. However, the presence of high-abundance proteins (HAPs) can interfere with the detection of low-abundance proteins, potentially hindering the discovery of new biomarkers. Therefore, an assessment of the CSF subproteome composition requires depletion strategies. Existing methods are time consuming, often involving multistep protocols. Here, we present a rapid, accurate, and reproducible method for preparing the CSF proteome, which allows the identification of a high number of proteins. This method involves acetonitrile (ACN) precipitation for depleting HAPs, followed by immediate trypsination. As an example, we demonstrate that this method allows discrimination between multiple sclerosis patients and healthy subjects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proteomic Changes in Cerebrospinal Fluid of Presymptomatic and Affected Persons Carrying Familial Alzheimer Disease Mutations

    PubMed Central

    Ringman, John M.; Schulman, Howard; Becker, Chris; Jones, Ted; Bai, Yuchen; Immermann, Fred; Cole, Gregory; Sokolow, Sophie; Gylys, Karen; Geschwind, Daniel H.; Cummings, Jeffrey L.; Wan, Hong I.

    2013-01-01

    Objective To identify cerebrospinal fluid (CSF) protein changes in persons who will develop familial Alzheimer disease (FAD) due to PSEN1 and APP mutations, using unbiased proteomics. Design We compared proteomic profiles of CSF from individuals with FAD who were mutation carriers (MCs) and related noncarriers (NCs). Abundant proteins were depleted and samples were analyzed using liquid chromatography– electrospray ionization–mass spectrometry on a high-resolution time-of-flight instrument. Tryptic peptides were identified by tandem mass spectrometry. Proteins differing in concentration between the MCs and NCs were identified. Setting A tertiary dementia referral center and a proteomic biomarker discovery laboratory. Participants Fourteen FAD MCs (mean age, 34.2 years; 10 are asymptomatic, 12 have presenilin-1 [PSEN1] gene mutations, and 2 have amyloid precursor protein [APP] gene mutations) and 5 related NCs (mean age, 37.6 years). Results Fifty-six proteins were identified, represented by multiple tryptic peptides showing significant differences between MCs and NCs (46 upregulated and 10 downregulated); 40 of these proteins differed when the analysis was restricted to asymptomatic individuals. Fourteen proteins have been reported in prior proteomic studies in late-onset AD, including amyloid precursor protein, transferrin, α1β-glycoprotein, complement components, afamin precursor, spondin 1, plasminogen, hemopexin, and neuronal pentraxin receptor. Many other proteins were unique to our study, including calsyntenin 3, AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 4 glutamate receptor, CD99 antigen, di-N-acetyl-chitobiase, and secreted phosphoprotein 1. Conclusions We found much overlap in CSF protein changes between individuals with presymptomatic and symptomatic FAD and those with late-onset AD. Our results are consistent with inflammation and synaptic loss early in FAD and suggest new presymptomatic biomarkers of potential usefulness in drug development. PMID:22232349

  19. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics.

    PubMed

    Magdalinou, N K; Noyce, A J; Pinto, R; Lindstrom, E; Holmén-Larsson, J; Holtta, M; Blennow, K; Morris, H R; Skillbäck, T; Warner, T T; Lees, A J; Pike, I; Ward, M; Zetterberg, H; Gobom, J

    2017-04-01

    Neurodegenerative parkinsonian syndromes have significant clinical and pathological overlap, making early diagnosis difficult. Cerebrospinal fluid (CSF) biomarkers may aid the differentiation of these disorders, but other than α-synuclein and neurofilament light chain protein, which have limited diagnostic power, specific protein biomarkers remain elusive. To study disease mechanisms and identify possible CSF diagnostic biomarkers through discovery proteomics, which discriminate parkinsonian syndromes from healthy controls. CSF was collected consecutively from 134 participants; Parkinson's disease (n = 26), atypical parkinsonian syndromes (n = 78, including progressive supranuclear palsy (n = 36), multiple system atrophy (n = 28), corticobasal syndrome (n = 14)), and elderly healthy controls (n = 30). Participants were divided into a discovery and a validation set for analysis. The samples were subjected to tryptic digestion, followed by liquid chromatography-mass spectrometry analysis for identification and relative quantification by isobaric labelling. Candidate protein biomarkers were identified based on the relative abundances of the identified tryptic peptides. Their predictive performance was evaluated by analysis of the validation set. 79 tryptic peptides, derived from 26 proteins were found to differ significantly between atypical parkinsonism patients and controls. They included acute phase/inflammatory markers and neuronal/synaptic markers, which were respectively increased or decreased in atypical parkinsonism, while their levels in PD subjects were intermediate between controls and atypical parkinsonism. Using an unbiased proteomic approach, proteins were identified that were able to differentiate atypical parkinsonian syndrome patients from healthy controls. Our study indicates that markers that may reflect neuronal function and/or plasticity, such as the amyloid precursor protein, and inflammatory markers may hold future promise as candidate biomarkers in parkinsonism. Copyright © 2017. Published by Elsevier Ltd.

  20. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread.

    PubMed

    Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura

    2017-07-11

    Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.

  1. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study.

    PubMed

    Soman, Kizhake V; Stafford, Susan J; Pazdrak, Konrad; Wu, Zheng; Luo, Xuemei; White, Wendy I; Wiktorowicz, John E; Calhoun, William J; Kurosky, Alexander

    2017-08-04

    Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.

  2. Identification of the soluble form of tyrosine kinase receptor Axl as a potential biomarker for intracranial aneurysm rupture.

    PubMed

    Xu, Jing; Ma, Feiqiang; Yan, Wei; Qiao, Sen; Xu, Shengquan; Li, Yi; Luo, Jianhong; Zhang, Jianmin; Jin, Jinghua

    2015-03-05

    Subarachnoid hemorrhage caused by a ruptured intracranial aneurysm (RIA) is a devastating condition with significant morbidity and mortality. Despite the fact that RIAs can be prevented by microsurgical clipping or endovascular coiling, there are no reliable means of effectively predicting IA patients at risk for rupture. The purpose of our study was to discover differentially-expressed glycoproteins in IAs with or without rupture as potential biomarkers to predict rupture. Forty age/gender-matched patients with RIA, unruptured IA (UIA), healthy controls (HCs) and disease controls (DCs) (discovery cohort, n = 10 per group) were recruited and a multiplex quantitative proteomic method, iTRAQ (isobaric Tagging for Relative and Absolute protein Quantification), was used to quantify relative changes in the lectin-purified glycoproteins in CSF from RIAs and UIAs compared to HCs and DCs. Then we verified the proteomic results in an independent set of samples (validation cohort, n = 20 per group) by enzyme-linked immunosorbent assay. Finally, we evaluated the specificity and sensitivity of the candidate marker with receiver operating characteristic (ROC) curve methods. The proteomic findings identified 294 proteins, 40 of which displayed quantitative changes unique to RIA, 13 to UIA, and 20 to IA. One of these proteins, receptor tyrosine kinase Axl, was significantly increased in RIA, as confirmed in CSF from the discovery cohort as well as in CSF and plasma from the validation cohort (p <0.05). Spearman's correlation analysis revealed that the CSF and plasma Axl levels were strongly correlated (r = 0.93, p <0.0001). The ROC curve indicated an optimal CSF Axl threshold of 0.12 nM for discriminating RIA from UIA with corresponding sensitivity/specificity of 73.33%/90% and an area under the curve (AUC) of 0.89 (95% CI: 0.80-0.97, p < 0.0001). The optimal threshold for plasma Axl was 1.7 nM with corresponding sensitivity/specificity of 50%/80% and an AUC of 0.71 (95% CI: 0.54-0.87, p = 0.027). Both CSF and plasma Axl levels are significantly elevated in RIA patients. Axl might serve as a promising biomarker to predict the rupture of IA.

  3. Beta-trace protein in ascites and pleural effusions: limits of CSF leakage detection.

    PubMed

    Dietzel, Joanna; Krebs, Alexander; Böttcher, Dominique; Sieb, Manuela; Glocker, Michael O; Lüdemann, Jan; Roser, Markus; Dressel, Alexander

    2012-06-10

    Rhino- and/or otoliquorrhea can be diagnosed by detecting beta-trace protein (β-TP) in nasal or ear secretions, as β-TP is found in high concentrations in cerebrospinal fluid (CSF) but not in serum. CSF fistulae following trauma or surgery can also occur at other anatomical sites, resulting in CSF leakage into the thoracic and abdominal cavities. By analogy, determination of ß-TP has also been used to diagnose CSF admixture in pleural effusions and ascites. However, no systematic study has yet evaluated the concentrations of β-TP in such fluids in the absence of CSF. To determine the validity of β-TP determination as a marker for the presence of CSF, we investigated β-TP concentrations in pleural effusions and ascites without CSF admixture. Patients from whom samples of ascites or pleural effusion and a paired plasma sample were available were investigated. One hundred sixty-four patients were prospectively recruited. ß-TP concentrations were determined by nephelometry. Mass spectrometric proteome analysis confirmed the presence of ß-TP in the samples. Median β-TP concentrations detected in ascites and pleural effusions (range, 0.014-26.5 mg/L, median 2.29 mg/L) exceeded the corresponding plasma concentrations 2.6-fold. According to cutoffs published to diagnose rhino- and otoliquorrhea, between 6.1% and 95.7% of the specimens would have been erroneously rated CSF-positive. Protein analysis confirmed the presence of β-TP in pleural effusion and ascites. Ascites and pleural effusion contain high concentrations of β-TP that exceed the levels in corresponding plasma. Therefore, β-TP is not a specific marker for the presence of CSF in these fluids.

  4. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer's disease.

    PubMed

    Hölttä, Mikko; Minthon, Lennart; Hansson, Oskar; Holmén-Larsson, Jessica; Pike, Ian; Ward, Malcolm; Kuhn, Karsten; Rüetschi, Ulla; Zetterberg, Henrik; Blennow, Kaj; Gobom, Johan

    2015-02-06

    Many disease processes in the brain are reflected in the protein composition of the cerebrospinal fluid (CSF). In addition to proteins, CSF also contains a large number of endogenous peptides whose potential as disease biomarkers largely remains to be explored. We have developed a novel workflow in which multiplex isobaric labeling is used for simultaneous quantification of endogenous CSF peptides and proteins by liquid chromatography coupled with mass spectrometry. After the labeling of CSF samples, endogenous peptides are separated from proteins by ultrafiltration. The proteins retained on the filters are trypsinized, and the tryptic peptides are collected separately. We evaluated this technique in a comparative pilot study of CSF peptide and protein profiles in eight patients with Alzheimer's disease (AD) and eight nondemented controls. We identified several differences between the AD and control group among endogenous peptides derived from proteins known to be associated with AD, including neurosecretory protein VGF (ratios AD/controls 0.45-0.81), integral membrane protein 2B (ratios AD/controls 0.72-0.84), and metallothionein-3 (ratios AD/controls 0.51-0.61). Analysis of tryptic peptides identified several proteins that were altered in the AD group, some of which have previously been reported as changed in AD, for example, VGF (ratio AD/controls 0.70).

  5. Cerebrospinal Fluid Biomarkers for Huntington's Disease.

    PubMed

    Byrne, Lauren M; Wild, Edward J

    2016-01-01

    Cerebrospinal fluid (CSF) is enriched in brain-derived components and represents an accessible and appealing means of interrogating the CNS milieu to study neurodegenerative diseases and identify biomarkers to facilitate the development of novel therapeutics. Many such CSF biomarkers have been proposed for Huntington's disease (HD) but none has been validated for clinical trial use. Across many studies proposing dozens of biomarker candidates, there is a notable lack of statistical power, consistency, rigor and validation. Here we review proposed CSF biomarkers including neurotransmitters, transglutaminase activity, kynurenine pathway metabolites, oxidative stress markers, inflammatory markers, neuroendocrine markers, protein markers of neuronal death, proteomic approaches and mutant huntingtin protein itself. We reflect on the need for large-scale, standardized CSF collections with detailed phenotypic data to validate and qualify much-needed CSF biomarkers for clinical trial use in HD.

  6. CSF protein changes associated with hippocampal sclerosis risk gene variants highlight impact of GRN/PGRN.

    PubMed

    Fardo, David W; Katsumata, Yuriko; Kauwe, John S K; Deming, Yuetiva; Harari, Oscar; Cruchaga, Carlos; Nelson, Peter T

    2017-04-01

    Hippocampal sclerosis of aging (HS-Aging) is a common cause of dementia in older adults. We tested the variability in cerebrospinal fluid (CSF) proteins associated with previously identified HS-Aging risk single nucleotide polymorphisms (SNPs). Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n=237) data, combining both multiplexed proteomics CSF and genotype data, were used to assess the association between CSF analytes and risk SNPs in four genes (SNPs): GRN (rs5848), TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). For controls, non-HS-Aging SNPs in APOE (rs429358/rs7412) and MAPT (rs8070723) were also analyzed against Aβ1-42 and total tau CSF analytes. The GRN risk SNP (rs5848) status correlated with variation in CSF proteins, with the risk allele (T) associated with increased levels of AXL Receptor Tyrosine Kinase (AXL), TNF-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3), Vascular Cell Adhesion Molecule-1 (VCAM-1) and clusterin (CLU) (all p<0.05 after Bonferroni correction). The TRAIL-R3 correlation was significant in meta-analysis with an additional dataset (p=5.05×10 -5 ). Further, the rs5848 SNP status was associated with increased CSF tau protein - a marker of neurodegeneration (p=0.015). These data are remarkable since this GRN SNP has been found to be a risk factor for multiple types of dementia-related brain pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for elevated ICP can be identified. This may eventually lead to a blood test to diagnose intracranial hypertension.

  8. Cerebrospinal Fluid Proteome of Patients with Acute Lyme Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Thomas E.; Jacobs, Jon M.; Smith, Robert P.

    2012-10-05

    Acute Lyme disease results from transmission of and infection by the bacterium Borrelia burgdorferi following a tick bite. During acute infection, bacteria can disseminate to the central nervous system (CNS) leading to the development of Lyme meningitis. Here we have analyzed pooled cerebrospinal fluid (CSF) allowing for a deep view into the proteome for a cohort of patients with early-disseminated Lyme disease and CSF inflammation leading to the identification of proteins that reflect host responses, which are distinct for subjects with acute Lyme disease. Additionally, we analyzed individual patient samples and quantified changes in protein abundance employing label-free quantitative massmore » spectrometry based methods. The measured changes in protein abundances reflect the impact of acute Lyme disease on the CNS as presented in CSF. We have identified 89 proteins that differ significantly in abundance in patients with acute Lyme disease. A number of the differentially abundant proteins have been found to be localized to brain synapse and thus constitute important leads for better understanding of the neurological consequence of disseminated Lyme disease.« less

  9. A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid.

    PubMed

    Holewinski, Ronald J; Jin, Zhicheng; Powell, Matthew J; Maust, Matthew D; Van Eyk, Jennifer E

    2013-03-01

    Analysis of serum and plasma proteomes is a common approach for biomarker discovery, and the removal of high-abundant proteins, such as albumin and immunoglobins, is usually the first step in the analysis. However, albumin binds peptides and proteins, which raises concerns as to how the removal of albumin could impact the outcome of the biomarker study while ignoring the possibility that this could be a biomarker subproteome itself. The first goal of this study was to test a new commercially available affinity capture reagent from Protea Biosciences and to compare the efficiency and reproducibility to four other commercially available albumin depletion methods. The second goal of this study was to determine if there is a highly efficient albumin depletion/isolation system that minimizes sample handling and would be suitable for large numbers of samples. Two of the methods tested (Sigma and ProteaPrep) showed an albumin depletion efficiency of 97% or greater for both serum and cerebrospinal fluid (CSF). Isolated serum and CSF albuminomes from ProteaPrep spin columns were analyzed directly by LC-MS/MS, identifying 128 serum (45 not previously reported) and 94 CSF albuminome proteins (17 unique to the CSF albuminome). Serum albuminome was also isolated using Vivapure anti-HSA columns for comparison, identifying 105 proteins, 81 of which overlapped with the ProteaPrep method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determination of burn patient outcome by large-scale quantitative discovery proteomics

    PubMed Central

    Finnerty, Celeste C.; Jeschke, Marc G.; Qian, Wei-Jun; Kaushal, Amit; Xiao, Wenzhong; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G.; Moldawer, Lyle L.; Elson, Constance; Schoenfeld, David; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Arnoldo, Brett; Remick, Daniel; Smith, Richard D.; Davis, Ronald; Tompkins, Ronald G.; Herndon, David N.

    2013-01-01

    Objective Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and multiplex cytokine analysis to profile the plasma proteome of survivors and non-survivors of massive burn injury to determine the proteomic survival signature following a major burn injury. Design Proteomic discovery study. Setting Five burn hospitals across the U.S. Patients Thirty-two burn patients (16 non-survivors and 16 survivors), 19–89 years of age, were admitted within 96 h of injury to the participating hospitals with burns covering >20% of the total body surface area and required at least one surgical intervention. Interventions None. Measurements and Main Results We found differences in circulating levels of 43 proteins involved in the acute phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. IL-4, IL-8, GM-CSF, MCP-1, and β2-microglobulin correlated well with survival and may serve as clinical biomarkers. Conclusions These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale LC-MS-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma or critical illness. PMID:23507713

  11. Cerebrospinal Fluid Peptides as Potential Parkinson Disease Biomarkers: A Staged Pipeline for Discovery and Validation*

    PubMed Central

    Shi, Min; Movius, James; Dator, Romel; Aro, Patrick; Zhao, Yanchun; Pan, Catherine; Lin, Xiangmin; Bammler, Theo K.; Stewart, Tessandra; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Zhang, Jing

    2015-01-01

    Finding robust biomarkers for Parkinson disease (PD) is currently hampered by inherent technical limitations associated with imaging or antibody-based protein assays. To circumvent the challenges, we adapted a staged pipeline, starting from our previous proteomic profiling followed by high-throughput targeted mass spectrometry (MS), to identify peptides in human cerebrospinal fluid (CSF) for PD diagnosis and disease severity correlation. In this multicenter study consisting of training and validation sets, a total of 178 subjects were randomly selected from a retrospective cohort, matching age and sex between PD patients, healthy controls, and neurological controls with Alzheimer disease (AD). From ∼14,000 unique peptides displaying differences between PD and healthy control in proteomic investigations, 126 peptides were selected based on relevance and observability in CSF using bioinformatic analysis and MS screening, and then quantified by highly accurate and sensitive selected reaction monitoring (SRM) in the CSF of 30 PD patients versus 30 healthy controls (training set), followed by diagnostic (receiver operating characteristics) and disease severity correlation analyses. The most promising candidates were further tested in an independent cohort of 40 PD patients, 38 AD patients, and 40 healthy controls (validation set). A panel of five peptides (derived from SPP1, LRP1, CSF1R, EPHA4, and TIMP1) was identified to provide an area under curve (AUC) of 0.873 (sensitivity = 76.7%, specificity = 80.0%) for PD versus healthy controls in the training set. The performance was essentially confirmed in the validation set (AUC = 0.853, sensitivity = 82.5%, specificity = 82.5%). Additionally, this panel could also differentiate the PD and AD groups (AUC = 0.990, sensitivity = 95.0%, specificity = 97.4%). Furthermore, a combination of two peptides belonging to proteins TIMP1 and APLP1 significantly correlated with disease severity as determined by the Unified Parkinson's Disease Rating Scale motor scores in both the training (r = 0.381, p = 0.038)j and the validation (r = 0.339, p = 0.032) sets. The novel panel of CSF peptides, if validated in independent cohorts, could be used to assist in clinical diagnosis of PD and has the potential to help monitoring or predicting disease progression. PMID:25556233

  12. Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Richard W.; Peterson, Julia; Fuchs, Dietmar

    2013-12-13

    Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across themore » spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.« less

  13. Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection.

    PubMed

    Price, Richard W; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena; Smith, Richard D; Jacobs, Jon M; Brown, Joseph N; Gisslen, Magnus

    2013-12-01

    Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.

  14. N-Terminal Tau Fragments as Biomarkers for Alzheimer’s Disease and Neurotrauma

    DTIC Science & Technology

    2017-12-01

    ratios had significantly higher than average E2- ELISA scores relative to other AD stages, a feature that was most significant among those proteins...Figure 3 Significant correlations exist between Braak stage, E2- ELISA score, upregulation in AD and interactions between tau and Abeta These emerge...from a bioinformatic comparison of CSF proteomes Panel A: E2-/E2+ ELISA ratios (shown as percentE2- scores) of CSF exosome fractions taken from

  15. Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury.

    PubMed

    Light, Matthew; Minor, Kenneth H; DeWitt, Peter; Jasper, Kyle H; Davies, Stephen J A

    2012-06-11

    A variety of methods have been used to study inflammatory changes in the acutely injured spinal cord. Recently novel multiplex assays have been used in an attempt to overcome limitations in numbers of available targets studied in a single experiment. Other technical challenges in developing pre-clinical rodent models to investigate biomarkers in cerebrospinal fluid (CSF) include relatively small volumes of sample and low concentrations of target proteins. The primary objective of this study was to characterize the inflammatory profile present in CSF at a subacute time point in a clinically relevant rodent model of traumatic spinal cord injury (SCI). Our other aim was to test a microarray proteomics platform specifically for this application. A 34 cytokine sandwich ELISA microarray was used to study inflammatory changes in CSF samples taken 12 days post-cervical SCI in adult rats. The difference between the median foreground signal and the median background signal was measured. Bonferroni and Benjamini-Hochburg multiple testing corrections were applied to limit the False Discovery Rate (FDR), and a linear mixed model was used to account for repeated measures in the array. We report a novel subacute SCI biomarker, elevated levels of matrix metalloproteinase-8 protein in CSF, and discuss application of statistical models designed for multiplex testing. Major advantages of this assay over conventional methods include high-throughput format, good sensitivity, and reduced sample consumption. This method can be useful for creating comprehensive inflammatory profiles, and biomarkers can be used in the clinic to assess injury severity and to objectively grade response to therapy.

  16. CSF proteomic fingerprints for HIV-associated cognitive impairment.

    PubMed

    Laspiur, Juliana Pérez; Anderson, Eric R; Ciborowski, Pawel; Wojna, Valerie; Rozek, Wojciech; Duan, Fenghai; Mayo, Raul; Rodríguez, Elaine; Plaud-Valentín, Marinés; Rodríguez-Orengo, José; Gendelman, Howard E; Meléndez, Loyda M

    2007-12-01

    Cognitive impairment remains a major complication of advanced human immunodeficiency virus (HIV) infection despite the widespread use of anti-retroviral therapy. Diagnosis is made by exclusion making biomarkers of great potential use. Thus, we used an integrated proteomics platform to assess cerebrospinal fluid protein profiles from 50 HIV-1 seropositive Hispanic women. Nine of 38 proteins identified were unique in those patients with cognitive impairment (CI). These proteins were linked to cell signaling, structural function, and antioxidant activities. This work highlights, in a preliminary manner, the utility of proteomic profiling for biomarker discovery for HIV-1 associated cognitive dysfunction.

  17. CSF proteomic fingerprints for HIV- associated cognitive impairment

    PubMed Central

    Laspiur, Juliana Pérez; Anderson, Eric R.; Ciborowski, Pawel; Wojna, Valerie; Rozek, Wojciech; Duan, Fenghai; Mayo, Raul; Rodríguez, Elaine; Plaud-Valentín, Marinés; Rodríguez-Orengo, José; Gendelman, Howard E.; Meléndez, Loyda M.

    2008-01-01

    Cognitive impairment remains a major complication of advanced human immunodeficiency virus (HIV) infection despite the wide spread use of anti-retroviral therapy. Diagnosis is made by exclusion making biomarkers of great potential use. Thus, we used an integrated proteomics platform to assess cerebrospinal fluid protein profiles from 50 HIV-1 seropositive Hispanic women. Nine of 38 proteins identified were unique in those patients with cognitive impairment. These proteins were linked to cell signaling, structural function, and antioxidant activities. This work highlights, in a preliminary manner, the utility of proteomic profiling for biomarker discovery for HIV-1 associated cognitive dysfunction. PMID:17950469

  18. Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis

    PubMed Central

    Craig-Schapiro, Rebecca; Kuhn, Max; Xiong, Chengjie; Pickering, Eve H.; Liu, Jingxia; Misko, Thomas P.; Perrin, Richard J.; Bales, Kelly R.; Soares, Holly; Fagan, Anne M.; Holtzman, David M.

    2011-01-01

    Background Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential. PMID:21526197

  19. Expanding the cerebrospinal fluid endopeptidome.

    PubMed

    Hansson, Karl T; Skillbäck, Tobias; Pernevik, Elin; Kern, Silke; Portelius, Erik; Höglund, Kina; Brinkmalm, Gunnar; Holmén-Larsson, Jessica; Blennow, Kaj; Zetterberg, Henrik; Gobom, Johan

    2017-03-01

    Biomarkers of neurodegenerative disorders are needed to assist in diagnosis, to monitor disease progression and therapeutic interventions, and to provide insight into disease mechanisms. One route to identify such biomarkers is by proteomic and peptidomic analysis of cerebrospinal fluid (CSF). In the current study, we performed an in-depth analysis of the human CSF endopeptidome to establish an inventory that may serve as a basis for future targeted biomarker studies. High-pH RP HPLC was employed for off-line sample prefractionation followed by low-pH nano-LC-MS analysis. Different software programs and scoring algorithms for peptide identification were employed and compared. A total of 18 031 endogenous peptides were identified at a FDR of 1%, increasing the number of known endogenous CSF peptides 10-fold compared to previous studies. The peptides were derived from 2 053 proteins of which more than 60 have been linked to neurodegeneration. Notably, among the findings were six peptides derived from microtubule-associated protein tau, three of which span the diagnostically interesting threonine-181 (Tau-F isoform). Also, 213 peptides from amyloid precursor protein were identified, 58 of which were partially or completely within the sequence of amyloid β 1-40/42, as well as 109 peptides from apolipoprotein E, spanning sequences that discriminate between the E2/E3/E4 isoforms of the protein. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics.

    PubMed

    Metzger, Fabian; Mischek, Daniel; Stoffers, Frédéric

    2017-01-01

    Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.

  1. MULTI-SOURCE FEATURE LEARNING FOR JOINT ANALYSIS OF INCOMPLETE MULTIPLE HETEROGENEOUS NEUROIMAGING DATA

    PubMed Central

    Yuan, Lei; Wang, Yalin; Thompson, Paul M.; Narayan, Vaibhav A.; Ye, Jieping

    2012-01-01

    Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. In this paper, we address this problem by proposing an incomplete Multi-Source Feature (iMSF) learning method where all the samples (with at least one available data source) can be used. To illustrate the proposed approach, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 NC), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithm. Depending on the problem being solved, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. To build a practical and robust system, we construct a classifier ensemble by combining our method with four other methods for missing value estimation. Comprehensive experiments with various parameters show that our proposed iMSF method and the ensemble model yield stable and promising results. PMID:22498655

  2. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer's disease and other neurodegenerative diseases.

    PubMed

    Baldacci, Filippo; Lista, Simone; Cavedo, Enrica; Bonuccelli, Ubaldo; Hampel, Harald

    2017-04-01

    Neuroinflammation is a crucial mechanism in the pathophysiology of neurodegenerative diseases pathophysiology. Cerebrospinal fluid (CSF) YKL-40 - an indicator of microglial activation - has recently been identified by proteomic studies as a candidate biomarker for Alzheimer's disease (AD). Areas covered: We review the impact of CSF YKL-40 as a pathophysiological biomarker for AD and other neurodegenerative diseases. CSF YKL-40 concentrations have been shown to predict progression from prodromal mild cognitive impairment to AD dementia. Moreover, a positive association between CSF YKL-40 and other biomarkers of neurodegeneration - particularly total tau protein - has been reported during the asymptomatic preclinical stage of AD and other neurodegenerative diseases. Albeit preliminary, current data do not support an association between APOE-ε4 status and CSF YKL-40 concentrations. When interpreting the diagnostic/prognostic significance of CSF YKL-40 concentrations in neurodegenerative diseases, potential confounders - including age, metabolic and cardiovascular risk factors, diagnostic criteria for selecting cases/controls - need to be considered. Expert opinion/commentary: CSF YKL-40 represents a pathophysiological biomarker reflecting immune/inflammatory mechanisms in neurodegenerative diseases, associated with tau protein pathology. Besides being associated with tau pathology, CSF YKL-40 adds to the growing array of biomarkers reflecting distinct molecular brain mechanisms potentially useful for stratifying individuals for biomarker-guided, targeted anti-inflammatory therapies emerging from precision medicine.

  3. Truncated cystatin C in cerebrospiral fluid: Technical [corrected] artefact or biological process?

    PubMed

    Carrette, Odile; Burkhard, Pierre R; Hughes, Severine; Hochstrasser, Denis F; Sanchez, Jean-Charles

    2005-08-01

    Cystatin C, a low molecular weight cysteine proteinase inhibitor present in human body fluids at physiological concentrations, is more expressed in cerebrospinal fluid (CSF) than in plasma. Mass spectrometric characterization showed that after 3 months of storage of human CSF at -20 degrees C, cystatin C was cleaved in the peptide bond between R8 and L9 and lost its eight N-termini amino acids, whereas this cleavage did not occur when stored at -80 degrees C. This truncation occurred in all CSF samples studied irrespective of the underlying neurological status, indicating a storage-related artefact rather than a physiological or pathological processing of the protein. These results stress the importance of optimal preanalytical storage conditions of any sample prior to proteomics studies.

  4. Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer's disease

    PubMed Central

    Lee, Joung Wook; Namkoong, Hong; Kim, Hyun Kee; Kim, Sanghee; Hwang, Dong Whi; Na, Hae Ri; Ha, Seon-Ah; Kim, Jae-Ryong; Kim, Jin Woo

    2007-01-01

    Background Cerebrospinal fluid (CSF) may be valuable for exploring protein markers for the diagnosis of Alzheimer's disease (AD). The prospect of early detection and treatment, to slow progression, holds hope for aging populations with increased average lifespan. The aim of the present study was to investigate candidate CSF biological markers in patients with mild cognitive impairment (MCI) and AD and compare them with age-matched normal control subjects. Methods We applied proteomics approaches to analyze CSF samples derived from 27 patients with AD, 3 subjects with MCI and 30 controls. The AD group was subdivided into three groups by clinical severity according to clinical dementia rating (CDR), a well known clinical scale for dementia. Results We demonstrated an elevated level of fibrinogen gamma-A chain precursor protein in CSF from patients with mild cognitive impairment and AD compared to the age-matched normal subjects. Moreover, its expression was more prominent in the AD group than in the MCI and correlated with disease severity and progression. In contrast, fibrinogen gamma-A chain precursor protein was detected very low in the age-matched normal group. Conclusion These findings suggest that the CSF level of fibrinogen gamma-A chain precursor may be a candidate biomarker for AD. PMID:17565664

  5. Bi-level Multi-Source Learning for Heterogeneous Block-wise Missing Data

    PubMed Central

    Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M.; Ye, Jieping

    2013-01-01

    Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified “bi-level” learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. PMID:23988272

  6. Bi-level multi-source learning for heterogeneous block-wise missing data.

    PubMed

    Xiang, Shuo; Yuan, Lei; Fan, Wei; Wang, Yalin; Thompson, Paul M; Ye, Jieping

    2014-11-15

    Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches. © 2013 Elsevier Inc. All rights reserved.

  7. Protein signature in cerebrospinal fluid and serum of Alzheimer's disease patients: The case of apolipoprotein A-1 proteoforms.

    PubMed

    Fania, Chiara; Arosio, Beatrice; Capitanio, Daniele; Torretta, Enrica; Gussago, Cristina; Ferri, Evelyn; Mari, Daniela; Gelfi, Cecilia

    2017-01-01

    In the diagnosis of Alzheimer's disease (AD) total tau (T-tau), tau phosphorylated at threonine 181 (P-tau181), and the 42 amino acid isoform of alpha β-amyloid (Aβ) are well established surrogate CSF markers. However, there is a constant need for new diagnostic markers to identify the disease at a very early stage. The identification of new molecules for AD diagnosis and monitoring in CSF is hampered by several "confounding" factors including intra- and inter-individual, pre-analytical and analytical variabilities. In an attempt to partially overcome patient's variability and to determine new molecules significantly dysregulated in CSF, we assessed the proteome profile of low molecular weight protein species in CSF and serum of the same patients. CSFs and sera from 36 ADs, 32 iNPHs (idiopathic normal pressure hydrocephalus) and 12 controls were compared by MALDI profiling (non-parametric statistics, CV<20%, AUC>0.750). After protein identification by mass spectrometry, the proteoform composition was assessed by 2-D DIGE/MS. Results indicated that CSF of iNPH can be used as control. Serum and CSF of AD patients shows a specific protein profile compared to iNPH samples. A variation (p<0.01) of Apo A-1 levels in AD, together with a specific dysregulation of Apo A-1 proteoforms was observed. The profiling of CSF and serum of the same patients, suggests that the decrement of total Apo A-1 occurs specifically in CSF. Serum and CSF of AD shows a characteristic Apo A-1 proteoform pattern suggesting it as potential marker which can support the clinical workflow adopted for AD diagnosis and progression.

  8. Multi-Source Learning for Joint Analysis of Incomplete Multi-Modality Neuroimaging Data

    PubMed Central

    Yuan, Lei; Wang, Yalin; Thompson, Paul M.; Narayan, Vaibhav A.; Ye, Jieping

    2013-01-01

    Incomplete data present serious problems when integrating largescale brain imaging data sets from different imaging modalities. In the Alzheimer’s Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. We address this problem by proposing two novel learning methods where all the samples (with at least one available data source) can be used. In the first method, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. Our second method learns a base classifier for each data source independently, based on which we represent each source using a single column of prediction scores; we then estimate the missing prediction scores, which, combined with the existing prediction scores, are used to build a multi-source fusion model. To illustrate the proposed approaches, we classify patients from the ADNI study into groups with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI’s 780 participants (172 AD, 397 MCI, 211 Normal), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithms. Comprehensive experiments show that our proposed methods yield stable and promising results. PMID:24014189

  9. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach

    DTIC Science & Technology

    2011-12-01

    levels to track the effects of Dextromethorphan therapy and correlation to histopathology and neurological outcome. 6 First we tested whether...diseases. Neurochem Int. 51:105-111. Shear DA, Williams AJ, Sharrow K, Lu XC and Tortella FC. (2009). Neuroprotective profile of dextromethorphan in...Figure 14. Dextromethorphan decreased GFAP in CSF after PBBI but did not lower other biomarkers. A-H

  10. Proteomic analysis of cerebrospinal fluid in canine cervical spondylomyelopathy.

    PubMed

    Martin-Vaquero, Paula; da Costa, Ronaldo C; Allen, Matthew J; Moore, Sarah A; Keirsey, Jeremy K; Green, Kari B

    2015-05-01

    Prospective study. To identify proteins with differential expression in the cerebrospinal fluid (CSF) from 15 clinically normal (control) dogs and 15 dogs with cervical spondylomyelopathy (CSM). Canine CSM is a spontaneous, chronic, compressive cervical myelopathy similar to human cervical spondylotic myelopathy. There is a limited knowledge of the molecular mechanisms underlying these conditions. Differentially expressed CSF proteins may contribute with novel information about the disease pathogenesis in both dogs and humans. Protein separation was performed with 2-dimensional electrophoresis. A Student t test was used to detect significant differences between groups (P < 0.05). Three comparisons were made: (1) control versus CSM-affected dogs, (2) control versus non-corticosteroid-treated CSM-affected dogs, and (3) non-corticosteroid-treated CSM-affected versus corticosteroid-treated CSM-affected dogs. Protein spots exhibiting at least a statistically significant 1.25-fold change between groups were selected for subsequent identification with capillary-liquid chromatography tandem mass spectrometry. A total of 96 spots had a significant average change of at least 1.25-fold in 1 of the 3 comparisons. Compared with the CSF of control dogs, CSM-affected dogs demonstrated increased CSF expression of 8 proteins including vitamin D-binding protein, gelsolin, creatine kinase B-type, angiotensinogen, α-2-HS-glycoprotein, SPARC (secreted protein, acidic, rich in cysteine), calsyntenin-1, and complement C3, and decreased expression of pigment epithelium-derived factor, prostaglandin-H2 D-isomerase, apolipoprotein E, and clusterin. In the CSF of CSM-affected dogs, corticosteroid treatment increased the expression of haptoglobin, transthyretin isoform 2, cystatin C-like, apolipoprotein E, and clusterin, and decreased the expression of angiotensinogen, α-2-HS-glycoprotein, and gelsolin. Many of the differentially expressed proteins are associated with damaged neural tissue, bone turnover, and/or compromised blood-spinal cord barrier. The knowledge of the protein changes that occur in CSM and upon corticosteroid treatment of CSM-affected patients will aid in further understanding the pathomechanisms underlying this disease. N/A.

  11. Profiling the Aspergillus fumigatus Proteome in Response to Caspofungin ▿ †

    PubMed Central

    Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.

    2011-01-01

    The proteomic response of Aspergillus fumigatus to caspofungin was evaluated by gel-free isobaric tagging for relative and absolute quantitation (iTRAQ) as a means to determine potential biomarkers of drug action. A cell fractionation approach yielding 4 subcellular compartment fractions was used to enhance the resolution of proteins for proteomic analysis. Using iTRAQ, a total of 471 unique proteins were identified in soluble and cell wall/plasma membrane fractions at 24 and 48 h of growth in rich media in a wild-type drug-susceptible strain. A total of 122 proteins showed at least a 2-fold change in relative abundance following exposure to caspofungin (CSF) at just below the minimum effective concentration (0.12 μg/ml). The largest changes were seen in the mitochondrial hypoxia response domain protein (AFUA_1G12250), the level of which decreased >16-fold in the secreted fraction, and ChiA1, the level of which decreased 12.1-fold in the cell wall/plasma membrane fraction. The level of the major allergen and cytotoxin AspF1 was also shown to decrease by 12.1-fold upon the addition of drug. A subsequent iTRAQ analysis of an echinocandin-resistant strain (fks1-S678P) was used to validate proteins specific to drug action. A total of 103 proteins in the 2 fractions tested by iTRAQ were differentially expressed in the wild-type susceptible strain but not significantly changed in the resistant strain. Of these potential biomarkers, 11 had levels that changed at least 12-fold. Microarray analysis of the susceptible strain was performed to evaluate the correlation between proteomics and genomics, with a total of 117 genes found to be changing at least 2-fold. Of these, a total of 22 proteins with significant changes identified by iTRAQ also showed significant gene expression level changes by microarray. Overall, these data have the potential to identify biomarkers that assess the relative efficacy of echinocandin drug therapy. PMID:20974863

  12. Changes of cerebrospinal fluid protein concentrations and gait patterns in geriatric normal pressure hydrocephalus patients after ventriculoperitoneal shunting surgery.

    PubMed

    Chen, Carl P C; Huang, Yin-Cheng; Chang, Chen-Nen; Chen, Jean-Lon; Hsu, Chih-Chin; Lin, Wan-Ying

    2018-06-01

    Normal pressure hydrocephalus (NPH) was the first type of dementia ever described that can be treated using ventriculoperitoneal shunting surgery. Three typical clinical symptoms of NPH include gait disturbance, progressive cognitive dysfunction, and urinary incontinence. Although there are articles that have discovered several cerebrospinal fluid (CSF) protein biomarkers associated with NPH; however, studies examining individual and total protein concentrations from the ventricular CSF before and after shunting surgery are lacking. This study used proteomics to calculate the CSF individual and total protein concentrations before, and one week, one month and three months after the shunting surgery. Parameters of cadence, step length, walking speed, and percentages of single- and double-limb support in a gait cycle were measured. Protein concentrations associated with anti-oxidation, aging, and in the prevention of neurotoxic agent production increased by at least 2-folds after the surgery, indicating that the brain may become less susceptible to neurodegeneration. These proteins were alpha-1B-glycoprotein, apolipoproteins A-1 & A-IV, prostaglandin-H2 D-isomerase, alpha-1-antitrypsin, and serotransferrin. In gait analysis, lower cadence, decreased double-limb support, longer step length, and increased single-limb support were observed after the surgery, indicating a more stable walking balance. These changes lasted for a period of at least 3 months. As a result, shunting surgery may be recommended for geriatric patients with confirmed diagnosis of normal pressure hydrocephalus. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  14. Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis

    PubMed Central

    Zhao, Zhong; Lange, Dale J.; Ho, Lap; Bonini, Sara; Shao, Belinda; Salton, Stephen R.; Thomas, Sunil; Pasinetti, Giulio Maria

    2008-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Previous proteomic evidence revealed that the content of certain peptide fragments including Vgf-derived peptide aa 398-411 (Vgf398-411) of the precursor Vgf protein in the cerebral spinal fluid (CSF) correctly identified patients with ALS from normal and disease controls. Using quantitative ELISA immunoassay we found that the CSF levels of Vgf decreases with muscle weakness in patients with ALS. In SOD1 G93A transgenic mice, loss of full-length Vgf content in CSF, serum and in SMI-32 immunopositive spinal cord motor neurons is noted in asymptomatic animals (approximately 75 days old) and continues to show a progressive decline as animals weaken. In vitro studies show that viral-mediated exogenous Vgf expression in primary mixed spinal cord neuron cultures attenuates excitotoxic injury. Thus, while Vgf may be a reliable biomarker of progression of muscle weakness in patients with ALS, restoration of Vgf expression in spinal cord motor neurons may therapeutically rescue spinal cord motorneurons against excitotoxic injury. PMID:18432310

  15. Vgf is a novel biomarker associated with muscle weakness in amyotrophic lateral sclerosis (ALS), with a potential role in disease pathogenesis.

    PubMed

    Zhao, Zhong; Lange, Dale J; Ho, Lap; Bonini, Sara; Shao, Belinda; Salton, Stephen R; Thomas, Sunil; Pasinetti, Giulio Maria

    2008-04-15

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. Previous proteomic evidence revealed that the content of certain peptide fragments including Vgf-derived peptide aa 398-411 (Vgf(398-411)) of the precursor Vgf protein in the cerebral spinal fluid (CSF) correctly identified patients with ALS from normal and disease controls. Using quantitative ELISA immunoassay we found that the CSF levels of Vgf decreases with muscle weakness in patients with ALS. In SOD1 G93A transgenic mice, loss of full-length Vgf content in CSF, serum and in SMI-32 immunopositive spinal cord motor neurons is noted in asymptomatic animals (approximately 75 days old) and continues to show a progressive decline as animals weaken. In vitro studies show that viral-mediated exogenous Vgf expression in primary mixed spinal cord neuron cultures attenuates excitotoxic injury. Thus, while Vgf may be a reliable biomarker of progression of muscle weakness in patients with ALS, restoration of Vgf expression in spinal cord motor neurons may therapeutically rescue spinal cord motorneurons against excitotoxic injury.

  16. Role of Clinical Presentations and Routine CSF Analysis in the Rapid Diagnosis of Acute Bacterial Meningitis in Cases of Negative Gram Stained Smears

    PubMed Central

    Fouad, Rabab; El-Kholy, Badawy; Yosry, Ayman

    2014-01-01

    Background and Aim. Bacterial meningitis is a lethal, disabling endemic disease needing prompt antibiotic management. Gram stained smears is rapid accurate method for diagnosis of bacterial meningitis. In cases of negative gram stained smears diagnosis is delayed till culture results. We aim to assess the role of clinical presentations and routine CSF analysis in the cost-effective rapid diagnosis of negative gram stained smears bacterial meningitis. Methods. Cross sectional study including 623 acute meningitis patients divided into two groups: bacterial meningitis and nonbacterial meningitis groups. The clinical presentations, systemic inflammatory parameters, and CSF analysis were evaluated and compared in both groups. Results. Altered conscious level, localizing neurological signs, Kernig's and Brudzinski's signs together with peripheral leucocytosis (>10.000/mm3), high CRP (>6) together with high CSF protein (>50 gl/dL), CSF neutrophilic count (≥50% of total CSF leucocytic count), and low CSF glucose level (<45 gm/dL) and CSF/serum glucose ≤0.6 were significantly diagnostic in bacterial meningitis patients. From the significant CSF analysis variables CSF protein carried the higher accuracy of diagnosis 78% with sensitivity 88% and specificity 72%. Conclusions. High CSF protein (>50 mg/dL) together with plasma inflammatory markers and CSF cytochemical parameters can diagnose bacterial meningitis in gram stain negative smear till culture results. PMID:24803939

  17. A single dose of the γ-secretase inhibitor semagacestat alters the cerebrospinal fluid peptidome in humans.

    PubMed

    Hölttä, Mikko; Dean, Robert A; Siemers, Eric; Mawuenyega, Kwasi G; Sigurdson, Wendy; May, Patrick C; Holtzman, David M; Portelius, Erik; Zetterberg, Henrik; Bateman, Randall J; Blennow, Kaj; Gobom, Johan

    2016-03-07

    In Alzheimer's disease, beta-amyloid peptides in the brain aggregate into toxic oligomers and plaques, a process which is associated with neuronal degeneration, memory loss, and cognitive decline. One therapeutic strategy is to decrease the production of potentially toxic beta-amyloid species by the use of inhibitors or modulators of the enzymes that produce beta-amyloid from amyloid precursor protein (APP). The failures of several such drug candidates by lack of effect or undesired side-effects underscore the importance to monitor the drug effects in the brain on a molecular level. Here we evaluate if peptidomic analysis in cerebrospinal fluid (CSF) can be used for this purpose. Fifteen human healthy volunteers, divided into three groups, received a single dose of placebo or either 140 mg or 280 mg of the γ-secretase inhibitor semagacestat (LY450139). Endogenous peptides in CSF, sampled prior to administration of the drug and at six subsequent time points, were analyzed by liquid chromatography coupled to mass spectrometry, using isobaric labeling based on the tandem mass tag approach for relative quantification. Out of 302 reproducibly detected peptides, 11 were affected by the treatment. Among these, one was derived from APP and one from amyloid precursor-like protein 1. Nine peptides were derived from proteins that may not be γ-secretase substrates per se, but that are regulated in a γ-secretase-dependent manner. These results indicate that a CSF peptidomic approach may be a valuable tool both to verify target engagement and to identify other pharmacodynamic effects of the drug. Data are available via ProteomeXchange with identifier PXD003075. NCT00765115 , registered 30/09/2008.

  18. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis.

    PubMed

    Vella, Antonietta; De Carolis, Elena; Vaccaro, Luisa; Posteraro, Patrizia; Perlin, David S; Kostrzewa, Markus; Posteraro, Brunella; Sanguinetti, Maurizio

    2013-09-01

    The widespread use of antifungal agents, which is likely to expand with their enhanced availability, has promoted the emergence of drug-resistant strains. Antifungal susceptibility testing (AFST) is now an essential procedure for guiding appropriate antifungal therapy. Recently, we developed a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method that enables the detection of fungal isolates with reduced echinocandin susceptibility, relying on the proteome changes that are detectable after a 15-h exposure of fungal cells to serial drug concentrations. Here, we describe a simplified version of this approach that facilitates discrimination of the susceptible and resistant isolates of Candida albicans after a 3-h incubation in the presence of "breakpoint" level drug concentrations of the echinocandin caspofungin (CSF). Spectra at concentrations of 0 (null), 0.03 (intermediate), and 32 (maximal) μg/ml of CSF were used to create individual composite correlation index (CCI) matrices for 65 C. albicans isolates, including 13 fks1 mutants. Isolates are then classified as susceptible or resistant to CSF if the CCI values of spectra at 0.03 and 32 μg/ml are higher or lower, respectively, than the CCI values of spectra at 0.03 and 0 μg/ml. In this way, the drug resistance of C. albicans isolates to echinocandin antifungals can be quickly assessed. Furthermore, the isolate categorizations determined using MALDI-TOF MS-based AFST (ms-AFST) were consistent with the wild-type and mutant FKS1 genotypes and the AFST reference methodology. The ms-AFST approach may provide a rapid and reliable means of detecting emerging antifungal resistance and accelerating the initiation of appropriate antifungal treatment.

  19. Ptau-Aβ42 ratio as a continuous trait for biomarker discovery for early stage Alzheimer’s disease in multiplex immunoassay panels of Cerebrospinal fluid

    PubMed Central

    Harari, Oscar; Cruchaga, Carlos; Kauwe, John S.K.; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.

    2014-01-01

    Background Identification of the physiological changes that occur during the early stages of Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome. Methods We applied a novel approach to screen a panel of ~190 CSF analytes quantified by multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case control status in these analyses. Results We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12 other correlated analytes increase as the disease progresses. These results were validated using the traditional case control status model. Stratification of our dataset demonstrated that increases in these analytes occur very early in the disease course and were apparent even in non-demented individuals with AD pathology (low ptau181, low Aβ42) compared to pathology-negative elderly control subjects (low ptau181, high Aβ42). FABP-Aβ42 ratio demonstrates a similar hazard ratio for disease conversion to ptau181-Aβ42 even though the overlap in classification is incomplete suggesting that FABP contributes independent information as a predictor Conclusions Our results clearly indicate that the approach presented here can be employed to correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very early stages of the disease. PMID:24548642

  20. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1–regulated pathways in mice

    PubMed Central

    Meenhuis, Annemarie; van Veelen, Peter A.; de Looper, Hans; van Boxtel, Nicole; van den Berge, Iris J.; Sun, Su M.; Taskesen, Erdogan; Stern, Patrick; de Ru, Arnoud H.; van Adrichem, Arjan J.; Demmers, Jeroen; Jongen-Lavrencic, Mojca; Löwenberg, Bob; Touw, Ivo P.; Sharp, Phillip A.

    2011-01-01

    MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways. PMID:21628417

  1. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates.

    PubMed

    Braun, Clemens; Sakamoto, Atsushi; Fuchs, Holger; Ishiguro, Naoki; Suzuki, Shinobu; Cui, Yunhai; Klinder, Klaus; Watanabe, Michitoshi; Terasaki, Tetsuya; Sauer, Achim

    2017-10-02

    Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. K p,uu,brain and K p,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, K p,uu,brain for the BCRP substrates was low. In contrast, K p,uu,CSF for both BCRP substrates was close to unity, resulting in K p,uu,CSF /K p,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.

  2. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis.

    PubMed

    Gastaldi, Matteo; Zardini, Elisabetta; Franciotta, Diego

    2017-01-01

    Intrathecal B-lymphocyte activation is a hallmark of multiple sclerosis (MS), a multi-factorial inflammatory-demyelinating disease of the central nervous system. Such activation has a counterpart in the cerebrospinal fluid (CSF) oligoclonal IgG bands (OCB), whose diagnostic role in MS has been downgraded within the current McDonald's criteria. With a theoretico-practical approach, the authors review the physiopathological basis of the CSF dynamics, and the state-of-the-art of routine CSF analysis and CSF biomarkers in MS. Areas covered: The authors discuss pros and cons of CSF analysis, including critical evaluations of both well-established, and promising diagnostic and prognostic laboratory tools. New acquisitions on the CSF and cerebral interstitial fluid dynamics are also presented. The authors searched the PubMed database for English-language articles reported between January 2010 and June 2016, using the key words 'multiple sclerosis', 'cerebrospinal fluid', 'oligoclonal bands'. Reference lists of relevant articles were scanned for additional studies. Expert commentary: The availability of performing high-quality, routine CSF tests in specialized laboratories, the emerging potential of novel CSF biomarkers, and the trend for early treatments should induce a reappraisal of CSF analysis for diagnostic and prognostic purposes in MS. Further procedural and methodological improvements seem to be necessary in both research and translational diagnostic CSF settings.

  3. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  4. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  5. Analysis of serum and cerebrospinal fluid in clinically normal adult miniature donkeys.

    PubMed

    Mozaffari, A A; Samadieh, H

    2013-09-01

    To establish reference intervals for serum and cerebrospinal fluid (CSF) parameters in clinically healthy adult miniature donkeys. Experiments were conducted on 10 female and 10 male clinically normal adult miniature donkeys, randomly selected from five herds. Lumbosacral CSF collection was performed with the sedated donkey in the standing position. Cell analysis was performed immediately after the samples were collected. Blood samples were obtained from the jugular vein immediately after CSF sample collection. Sodium, potassium, glucose, urea nitrogen, total protein, calcium, chloride, phosphorous and magnesium concentrations were measured in CSF and serum samples. A paired t-test was used to compare mean values between female and male donkeys. The CSF was uniformly clear, colourless and free from flocculent material, with a specific gravity of 1.002. The range of total nucleated cell counts was 2-4 cells/μL. The differential white cell count comprised only small lymphocytes. No erythrocytes or polymorphonuclear cells were observed on cytological examination. Reference values were obtained for biochemical analysis of serum and CSF. Gender had no effect on any variables measured in serum or CSF (p>0.05). CSF analysis can provide important information in addition to that gained by clinical examination. CSF analysis has not previously been performed in miniature donkeys; this is the first report on the subject. In the present study, reference intervals for total nucleated cell count, total protein, glucose, urea nitrogen, sodium, potassium, chloride, calcium, phosphorous and magnesium concentrations of serum and CSF were determined for male and female miniature donkeys.

  6. Optimized Standard Operating Procedures for the Analysis of Cerebrospinal Fluid Aβ42 and the Ratios of Aβ Isoforms Using Low Protein Binding Tubes.

    PubMed

    Vanderstichele, Hugo Marcel Johan; Janelidze, Shorena; Demeyer, Leentje; Coart, Els; Stoops, Erik; Herbst, Victor; Mauroo, Kimberley; Brix, Britta; Hansson, Oskar

    2016-05-31

    Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer's disease (AD). To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis. Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models. Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. 'Low binding' tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay. The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, 'low binding' recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and 'low-binding tubes' into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.

  7. RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS

    PubMed Central

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2014-01-01

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. PMID:23623823

  8. Recent advances in quantitative neuroproteomics.

    PubMed

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2013-06-15

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. Copyright © 2013. Published by Elsevier Inc.

  9. Analytical variables affecting analysis of F2-isoprostanes and F4-neuroprostanes in human cerebrospinal fluid by gas chromatography/mass spectrometry.

    PubMed

    Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei

    2013-01-01

    F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results.

  10. Analytical Variables Affecting Analysis of F2-Isoprostanes and F4-Neuroprostanes in Human Cerebrospinal Fluid by Gas Chromatography/Mass Spectrometry

    PubMed Central

    Yen, Hsiu-Chuan; Wei, Hsing-Ju; Chen, Ting-Wei

    2013-01-01

    F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidation in vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results. PMID:23957004

  11. A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease

    PubMed Central

    2010-01-01

    Introduction LY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials. Methods In a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry. Results The CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment. Conclusions CSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials. Trial registration Clinical Trials.gov NCT00244322 PMID:20350302

  12. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    PubMed

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Current Approaches and Clinician Attitudes to the Use of Cerebrospinal Fluid Biomarkers in Diagnostic Evaluation of Dementia in Europe.

    PubMed

    Miller, Anne-Marie; Balasa, Mircea; Blennow, Kaj; Gardiner, Mary; Rutkowska, Aleksandra; Scheltens, Philip; Teunissen, Charlotte E; Visser, Pieter Jelle; Winblad, Bengt; Waldemar, Gunhild; Lawlor, Brian

    2017-01-01

    BIOMARKAPD seeks to diminish the barriers associated with the clinical use of cerebrospinal fluid (CSF) biomarker analysis by reducing variation in CSF laboratory methodologies and generating consensus recommendations on their clinical interpretation and application for dementia diagnosis. To examine the disparity in practitioner attitudes and clinical practice relating to the use of CSF biomarkers for dementia diagnosis across Europe. Clinical dementia experts were surveyed on the prevalence of national consensus guidelines and analytical reimbursement across Europe, their biomarker platform preferences, lumbar puncture methodologies and application of reference values and cut-offs for CSF analysis. 74% of respondents (total n = 51) use CSF biomarkers in clinical practice and 69% perform lumbar punctures on an outpatient basis. Most use CSF biomarkers to diagnose atypical (84%) and early-onset cases of cognitive impairment (71%) and for the differential diagnosis of other dementias (69%). 82% state they are sufficiently informed about CSF biomarkers yet 61% report a lack of national consensus guidelines on their use for dementia diagnosis. 48% of countries represented do not reimburse clinical CSF analysis costs. 43% report using normal reference ranges derived from publications. Variations in attitude and practice relating to CSF biomarkers, widely recognised as barriers to their clinical acceptance, remain evident within and between countries across Europe, even in expert centres. These shortcomings must be addressed by developing consensus guidelines on CSF-related methodologies and their clinical application, to further their use for the diagnostic evaluation of dementia.

  14. Efficacy of Perioperative Lumbar Drainage following Endonasal Endoscopic Cerebrospinal Fluid Leak Repair.

    PubMed

    Ahmed, Omar H; Marcus, Sonya; Tauber, Jenna R; Wang, Binhuan; Fang, Yixin; Lebowitz, Richard A

    2017-01-01

    Objective Perioperative lumbar drain (LD) use in the setting of endoscopic cerebrospinal fluid (CSF) leak repair is a well-established practice. However, recent data suggest that LDs may not provide significant benefit and may thus confer unnecessary risk. To examine this, we conducted a meta-analysis to investigate the effect of LDs on postoperative CSF leak recurrence following endoscopic repair of CSF rhinorrhea. Data Sources A comprehensive search was performed with the following databases: Ovid MEDLINE (1947 to November 2015), EMBASE (1974 to November 2015), Cochrane Review, and PubMed (1990 to November 2015). Review Method A meta-analysis was performed according to PRISMA guidelines. Results A total of 1314 nonduplicate studies were identified in our search. Twelve articles comprising 508 cases met inclusion criteria. Overall, use of LDs was not associated with significantly lower postoperative CSF leak recurrence rates following endoscopic repair of CSF rhinorrhea (odds ratio: 0.89, 95% confidence interval: 0.40-1.95) as compared with cases performed without LDs. Subgroup analysis of only CSF leaks associated with anterior skull base resections (6 studies, 153 cases) also demonstrated that lumbar drainage did not significantly affect rates of successful repair (odds ratio: 2.67, 95% confidence interval: 0.64-11.10). Conclusions There is insufficient evidence to support that adjunctive lumbar drainage significantly reduces postoperative CSF leak recurrence in patients undergoing endoscopic CSF leak repair. Subgroup analysis examining only those patients whose CSF leaks were associated with anterior skull base resections demonstrated similar results. More level 1 and 2 studies are needed to further investigate the efficacy of LDs, particularly in the setting of patients at high risk for CSF leak recurrence.

  15. Proteomics-Derived Cerebrospinal Fluid Markers of Autopsy-Confirmed Alzheimer’s Disease

    PubMed Central

    Roher, Alex E.; Maarouf, Chera L.; Sue, Lucia I.; Hu, Yiran; Wilson, Jeffrey; Beach, Thomas G.

    2010-01-01

    The diagnostic performance of several candidate cerebrospinal fluid (CSF) protein biomarkers of neuropathologically-confirmed Alzheimer’s disease (AD), non-demented (ND) elderly controls and non-AD dementias (NADD) was assessed. Candidate markers were selected on the basis of initial 2-dimensional gel electrophoresis studies or by literature review. Markers selected by the former method included apolipoprotein A-1 (ApoA1), hemopexin (HPX), transthyretin (TTR) and pigment epithelium-derived factor (PEDF) while markers identified from the literature included Aβ1–40, Aβ1–42, total tau, phosphorylated tau, α-1 acid glycoprotein (A1GP), haptoglobin, zinc α-2 glycoprotein (Z2GP) and apolipoprotein E (ApoE). Ventricular CSF concentrations of the markers were measured by ELISA. The concentrations of Aβ1–42, ApoA1, A1GP, ApoE, HPX and Z2GP differed significantly among AD, ND and NADD subjects. Logistic regression analysis for the diagnostic discrimination of AD from ND found that Aβ1–42, ApoA1 and HPX each had significant and independent associations with diagnosis. The CSF concentrations of these three markers distinguished AD from ND subjects with 84% sensitivity and 72% specificity, with 78% of subjects correctly classified. By comparison, using Aβ1–42 alone gave 79% sensitivity and 61% specificity, with 68% of subjects correctly classified. For the diagnostic discrimination of AD from NADD, only the concentration of Aβ1–42 was significantly related to diagnosis, with a sensitivity of 58%, specificity of 86% and 86% correctly classified. The results indicate that for the discrimination of AD from ND control subjects, measurement of a set of markers including Aβ1–42, ApoA1 and HPX improved diagnostic performance over that obtained by measurement of Aβ1–42 alone. For the discrimination of AD from NADD subjects, measurement of Aβ1–42 alone was superior. PMID:19863188

  16. Antiretroviral Treatment Effect on Immune Activation Reduces Cerebrospinal Fluid HIV-1 Infection

    PubMed Central

    Sinclair, Elizabeth; Ronquillo, Rollie; Lollo, Nicole; Deeks, Steven G.; Hunt, Peter; Yiannoutsos, Constantin T.; Spudich, Serena; Price, Richard W.

    2012-01-01

    Objective To define the effect of antiretroviral therapy (ART) on activation of T cells in cerebrospinal fluid (CSF) and blood, and interactions of this activation with CSF HIV-1 RNA concentrations. Design Cross-sectional analysis of 14 HIV-negative subjects and 123 neuroasymptomatic HIV-1–infected subjects divided into 3 groups: not on ART (termed “offs”), on ART with plasma HIV-1 RNA >500 copies/mL (“failures”), and on ART with plasma HIV-1 RNA ≤500 copies/mL (“successes”). T-cell activation was measured by coexpression of CD38 and human leukocyte antigen DR (HLA-DR). Other measurements included CSF neopterin and white blood cell (WBC) counts. Results CD8 T-cell activation in CSF and blood was highly correlated across all subjects and was highest in the offs, lower in the failures, and lower still in the successes. While CD8 activation was reduced in failures compared to offs across the range of plasma HIV-1, it maintained a coincident relation to CSF HIV-1 in both viremic groups. In addition to correlation with CSF HIV-1 concentrations, CD8 activation in blood and CSF correlated with CSF WBCs and CSF neopterin. Multivariate analysis confirmed the association of blood CD8 T-cell activation, along with plasma HIV-1 RNA and CSF neopterin, with CSF HIV-1 RNA levels. Conclusions The similarity of CD8 T-cell activation in blood and CSF suggests these cells move from blood to CSF with only minor changes in CD38/HLA-DR expression. Differences in the relation of CD8 activation to HIV-1 concentrations in the blood and CSF in the 2 viremic groups suggest that changes in immune activation not only modulate CSF HIV-1 replication but also contribute to CSF treatment effects. The magnitude of systemic HIV-1 infection and intrathecal macrophage activation are also important determinants of CSF HIV-1 RNA levels. PMID:18362693

  17. A novel framework for the local extraction of extra-axial cerebrospinal fluid from MR brain images

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Shen, Mark D.; Kim, SunHyung; Swanson, Meghan; Collins, D. Louis; Fonov, Vladimir; Gerig, Guido; Piven, Joseph; Styner, Martin A.

    2018-03-01

    The quantification of cerebrospinal fluid (CSF) in the human brain has shown to play an important role in early postnatal brain developmental. Extr a-axial fluid (EA-CSF), which is characterized by the CSF in the subarachnoid space, is promising in the early detection of children at risk for neurodevelopmental disorders. Currently, though, there is no tool to extract local EA-CSF measurements in a way that is suitable for localized analysis. In this paper, we propose a novel framework for the localized, cortical surface based analysis of EA-CSF. In our proposed processing, we combine probabilistic brain tissue segmentation, cortical surface reconstruction as well as streamline based local EA-CSF quantification. For streamline computation, we employ the vector field generated by solving a Laplacian partial differential equation (PDE) between the cortical surface and the outer CSF hull. To achieve sub-voxel accuracy while minimizing numerical errors, fourth-order Runge-Kutta (RK4) integration was used to generate the streamlines. Finally, the local EA-CSF is computed by integrating the CSF probability along the generated streamlines. The proposed local EA-CSF extraction tool was used to study the early postnatal brain development in typically developing infants. The results show that the proposed localized EA-CSF extraction pipeline can produce statistically significant regions that are not observed in previous global approach.

  18. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner.

    PubMed

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF + CD4 + T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF + subsets of human CD4 + T cells. These results are important for understanding of autoimmune disease and therapeutic considerations.

  19. Occurrence of occult CSF leaks during standard FESS procedures.

    PubMed

    Bucher, S; Kugler, A; Probst, E; Epprecht, L; Stadler, R S; Holzmann, D; Soyka, M B

    2018-03-18

    To determine the incidence of occult cerebrospinal fluid leaks (CSF) after functional endoscopic sinus surgery (FESS) and to evaluate the diagnostic performance of beta2-transferrin in blood-contaminated conditions. Prospective cohort study. An analysis of 57 intraoperative samples using hydrogel 6 beta2-transferrin assay after FESS was undertaken. In case of CSF positive samples and continuing rhinorrhea, reanalysis after more than 1 year was conducted. In-vivo analysis of a primary spontaneous CSF leak sample took place to verify difficulties in detecting beta2-transferrin in blood-contaminated settings. Own titrations were performed to evaluate detection limits of CSF by beta2-transferrin and beta-trace protein assays in these settings. An incidence of 13% for occult CSF leaks after FESS was found. In blood-contaminated conditions, routine beta2-transferrin assays showed low sensitivity. In over 1 year follow-up, all samples were negative for CSF and none of them developed clinical relevant CSF leaks or meningitis. Occult and clinically irrelevant CSF leaks do occur in a significant proportion of patients during and shortly after FESS. Intra- and postoperatively, routine beta2-transferrin assays show low sensitivity. They should not be used in these settings. The clinical course of patients with occult CSF leaks indicated possibility of an uneventful follow-up.

  20. Economic Analysis of Classical Swine Fever Surveillance in the Netherlands.

    PubMed

    Guo, X; Claassen, G D H; Oude Lansink, A G J M; Loeffen, W; Saatkamp, H W

    2016-06-01

    Classical swine fever (CSF) is a highly contagious pig disease that causes economic losses and impaired animal welfare. Improving the surveillance system for CSF can help to ensure early detection of the virus, thereby providing a better initial situation for controlling the disease. Economic analysis is required to compare the benefits of improved surveillance with the costs of implementing a more intensive system. This study presents a comprehensive economic analysis of CSF surveillance in the Netherlands, taking into account the specialized structure of Dutch pig production, differences in virulence of CSF strains and a complete list of possible surveillance activities. The starting point of the analysis is the current Dutch surveillance system (i.e. the default surveillance-setup scenario), including the surveillance activities 'daily clinical observation by the farmer', 'veterinarian inspection after a call', 'routine veterinarian inspection', 'pathology in AHS', 'PCR on tonsil in AHS', 'PCR on grouped animals in CVI' and 'confirmatory PCR by NVWA'. Alternative surveillance-setup scenarios were proposed by adding 'routine serology in slaughterhouses', 'routine serology on sow farms' and 'PCR on rendered animals'. The costs and benefits for applying the alternative surveillance-setup scenarios were evaluated by comparing the annual mitigated economic losses because of intensified CSF surveillance with the annual additional surveillance costs. The results of the cost-effectiveness analysis show that the alternative surveillance-setup scenarios with 'PCR on rendered animals' are effective for the moderately virulent CSF strain, whereas the scenarios with 'routine serology in slaughterhouses' or 'routine serology on sow farms' are effective for the low virulent strain. Moreover, the current CSF surveillance system in the Netherlands is cost-effective for both moderately virulent and low virulent CSF strains. The results of the cost-benefit analysis for the moderately virulent CSF strain indicate that the current surveillance system in the Netherlands is adequate. From an economic perspective, there is little to be gained from intensifying surveillance. © 2014 Blackwell Verlag GmbH.

  1. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis.

    PubMed

    Feng, Xiaoqin; Lan, He; Ruan, Yongsheng; Li, Chunfu

    2018-03-08

    This meta-analysis evaluated the impact of granulocyte colony-stimulating factor (G-CSF) added to chemotherapy on treatment outcomes including survival and disease recurrence in patients with acute myeloid leukemia (AML). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 19 September 2016 using search terms. Studies that investigated patients with AML who underwent stem-cell transplantation were included. The overall analysis revealed a significant improvement in overall survival (OS) (P = .019) and disease-free survival (DFS) (P = .002) for patients receiving G-CSF with chemotherapy. Among patients without prior AML treatment, there was a significant improvement in DFS (P = .014) and reduction in incidence of relapse (P = .015) for those who received G-CSF. However, subgroup analyses found no significant difference between G-CSF (+) and G-CSF (-) treatments in rates of OS (P = .104) and complete remission (CR) (P = .572) for patients without prior AML treatment. Among patients with relapsed/refractory AML, there was no significant difference found between G-CSF (+) and G-CSF (-) groups for OS (P = .225), DFS (P = .209), and CR (P = .208). Treatment with chemotherapy plus G-CSF appears to provide better survival and treatment responses compared with chemotherapy alone, particularly for patients with previously untreated AML. AML, acute myeloid leukemia; CI, confidence interval; CR, complete remission; DFS, disease-free survival; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HR, hazard ratio; MDS, myelodysplastic syndrome; OR, odds ratio; OS, overall survival; RCTs, randomized control trials; RR, relative risk.

  2. Completed | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Prior to the current Clinical Proteomic Tumor Analysis Consortium (CPTAC), previously funded initiatives associated with clinical proteomics research included: Clinical Proteomic Tumor Analysis Consortium (CPTAC 2.0) Clinical Proteomic Technologies for Cancer Initiative (CPTC) Mouse Proteomic Technologies Initiative

  3. A single center study: Aβ42/p-Tau181 CSF ratio to discriminate AD from FTD in clinical setting.

    PubMed

    Vergallo, Andrea; Carlesi, Cecilia; Pagni, Cristina; Giorgi, Filippo Sean; Baldacci, Filippo; Petrozzi, Lucia; Ceravolo, Roberto; Tognoni, Gloria; Siciliano, Gabriele; Bonuccelli, Ubaldo

    2017-10-01

    Abnormal levels of beta amyloid (Aβ42) and tau protein concentrations in the cerebral spinal fluid (CSF) have been largely described in Alzheimer's disease (AD). Thus, CSF analysis of these biomarkers has been incorporated in recent AD diagnostic criteria, and it is increasingly performed for neurodegenerative dementia diagnostic workout in clinical setting. Nevertheless, the precise biomarkers CSF features in neurodegenerative dementia, either AD or Frontotemporal dementia (FTD), are still not fully clear today. This is mainly due to lack of CSF clear cutoff values due to a well-known intersite (but even intrasite) variability of CSF procedures, ranging from collection to analysis. Applying CSF biomarker ratios, rather than their single values could represent a useful tool, especially for the differential diagnosis of different forms of dementia. We explored clinical values of six CSF ratios (by combining Aβ42 and tau) in order to better discriminate between AD and FTD; we identified Aβ42/p-Tau 181 ratio as a potential good candidate for helping differentiating AD from FTD in the clinical practice.

  4. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family

    PubMed Central

    Lutz, Manfred B.; Strobl, Herbert; Schuler, Gerold; Romani, Nikolaus

    2017-01-01

    Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. PMID:29109731

  5. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    PubMed

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  6. CSF lactate level: a useful diagnostic tool to differentiate acute bacterial and viral meningitis.

    PubMed

    Abro, Ali Hassan; Abdou, Ahmed Saheh; Ustadi, Abdulla M; Saleh, Ahmed Alhaj; Younis, Nadeem Javeed; Doleh, Wafa F

    2009-08-01

    To evaluate the potential role of CSF lactate level in the diagnosis of acute bacterial meningitis and in the differentiation between viral and bacterial meningitis. This was a hospital based observational study, conducted at Infectious Diseases Unit, Rashid Hospital Dubai, United Arab Emirates, from July 2004 to June 2007. The patients with clinical diagnosis of acute bacterial meningitis and who had CSF Gram stain/culture positive, CSF analysis suggestive of bacterial meningitis with negative Gram stain and culture but blood culture positive for bacteria and patients with clinical diagnosis suggestive of viral meningitis supported by CSF chemical analysis with negative Gram stain and culture as well as negative blood culture for bacteria were included in the study. CT scan brain was done for all patients before lumber puncture and CSF and blood samples were collected immediately after admission. CSF chemical analysis including lactate level was done on first spinal tap. The CSF lactate level was tested by Enzymatic Colorimetric method. A total 95 adult patients of acute meningitis (53 bacterial and 42 viral) fulfilled the inclusion criteria. Among 53 bacterial meningitis patients, Neisseria meningitides were isolated in 29 (54.7%), Strept. Pneumoniae in 18 (33.96%), Staph. Aureus in 2 (3.77%), Klebsiell Pneumoniae in 2 (3.77%), Strept. Agalactiae in 1 (1.8%) and E. Coli in 1 (1.8%). All the patients with bacterial meningitis had CSF lactate > 3.8 mmol/l except one, whereas none of the patients with viral meningitis had lactate level > 3.8 mmol/l. The mean CSF lactate level in bacterial meningitis cases amounted to 16.51 +/- 6.14 mmol/l, whereas it was significantly lower in viral group 2.36 +/- 0.6 mmol/l, p < .0001. CSF lactate level was significantly high in bacterial than viral meningitis and it can provide pertinent, rapid and reliable diagnostic information. Furthermore, CSF lactate level can also differentiate bacterial meningitis from viral one in a quick and better way.

  7. Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV.

    PubMed

    Anesten, Birgitta; Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J; Fuchs, Dietmar; Price, Richard W; Gisslén, Magnus

    2016-12-01

    Although blood-brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals.

  8. CSF-1 Receptor-Dependent Colon Development, Homeostasis and Inflammatory Stress Response

    PubMed Central

    Huynh, Duy; Akçora, Dilara; Malaterre, Jordane; Chan, Chee Kai; Dai, Xu-Ming; Bertoncello, Ivan; Stanley, E. Richard; Ramsay, Robert G.

    2013-01-01

    The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1op/op mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r−/− and Csf1op/op mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r−/− colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r +/− male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r +/− female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice. PMID:23451116

  9. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner

    PubMed Central

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF+ CD4+ T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF+ subsets of human CD4+ T cells. These results are important for understanding of autoimmune disease and therapeutic considerations. PMID:28066414

  10. Upfront plerixafor plus G-CSF versus cyclophosphamide plus G-CSF for stem cell mobilization in multiple myeloma: efficacy and cost analysis study.

    PubMed

    Afifi, S; Adel, N G; Devlin, S; Duck, E; Vanak, J; Landau, H; Chung, D J; Lendvai, N; Lesokhin, A; Korde, N; Reich, L; Landgren, O; Giralt, S; Hassoun, H

    2016-04-01

    Cyclophosphamide plus G-CSF (C+G-CSF) is one of the most widely used stem cell (SC) mobilization regimens for patients with multiple myeloma (MM). Plerixafor plus G-CSF (P+G-CSF) has demonstrated superior SC mobilization efficacy when compared with G-CSF alone and has been shown to rescue patients who fail mobilization with G-CSF or C+G-CSF. Despite the proven efficacy of P+G-CSF in upfront SC mobilization, its use has been limited, mostly due to concerns of high price of the drug. However, a comprehensive comparison of the efficacy and cost effectiveness of SC mobilization using C+G-CSF versus P+G-CSF is not available. In this study, we compared 111 patients receiving C+G-CSF to 112 patients receiving P+G-CSF. The use of P+G-CSF was associated with a higher success rate of SC collection defined as ⩾5 × 10(6) CD34+ cells/kg (94 versus 83%, P=0.013) and less toxicities. Thirteen patients in the C+G-CSF arm were hospitalized owing to complications while none in the P+G-CSF group. C+G-CSF was associated with higher financial burden as assessed using institutional-specific costs and charges (P<0.001) as well as using Medicare reimbursement rates (P=0.27). Higher rate of hospitalization, increased need for salvage mobilization, and increased G-CSF use account for these differences.

  11. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  12. Crystals seen on CSF microscopy in a case of suspected subarachnoid haemorrhage

    PubMed Central

    Weiand, Daniel; Hanning, Ian; Mouhamadou, Moussa; Wearmouth, Debbie

    2015-01-01

    Although crystals are rarely identified on cerebrospinal fluid (CSF) microscopy, their presence can be of significant diagnostic value. We report a case of oxalate crystals seen on CSF microscopy of a 43-year-old woman. The patient presented with headaches, nausea and vomiting. CT of the head showed a small focus of hyper-density, suspicious of haemorrhage, in the right side of the pontine cistern. CSF cell count was within the normal range. Although no organisms were seen on microscopy, copious oxalate crystals were seen. The same crystals were seen on microscopy of CSF collected in a fluoride oxalate container used for glucose analysis. A follow-up contrast-enhanced CT angiogram did not demonstrate any abnormalities. It transpired that excess CSF had been collected into a fluoride oxalate container. This had subsequently been decanted into a plain container for microbiological analysis. Correct specimen collection should be emphasised when teaching lumbar puncture technique. PMID:26139652

  13. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: A systematic review and meta-analysis.

    PubMed

    Agah, Elmira; Zardoui, Arshia; Saghazadeh, Amene; Ahmadi, Mona; Tafakhori, Abbas; Rezaei, Nima

    2018-01-01

    Identifying a reliable biomarker may accelerate diagnosis of multiple sclerosis (MS) and lead to early management of the disease. Accumulating evidence suggest that cerebrospinal fluid (CSF) and peripheral blood concentration of osteopontin (OPN) may have diagnostic and prognostic value in MS. We conducted a systematic review and meta-analysis of studies that measured peripheral blood and CSF levels of OPN in MS patients and controls to evaluate the diagnostic potential of this biomarker better. We searched PubMed, Web of Science and Scopus databases to find articles that measured OPN concentration in peripheral blood and CSF samples from MS patients up to October 19, 2016. Q statistic tests and the I2 index were applied for heterogeneity assessment. If the I2 index was less than 40%, the fixed-effects model was used for meta-analysis. Random-effects meta-analysis was chosen if the I2 value was greater than 40%. After removal of duplicates, 918 articles were identified, and 27 of them fulfilled the inclusion criteria. We included 22 eligible studies in the final meta-analysis. MS patients, in general, had considerably higher levels of OPN in their CSF and blood when compared to all types of controls (p<0.05). When the comparisons were made between different subtypes of MS patients and controls, the results pointed to significantly higher levels of OPN in CSF of MS subgroups (p<0.05). All subtypes of MS patients, except CIS patients, had increased blood levels of OPN compared to controls (p<0.05). In the second set of meta-analyses, we compared the peripheral blood and CSF concentrations of OPN between MS patient subtypes. CIS patients had significantly lower levels of OPN both in their peripheral blood and CSF compared to patients with progressive subtypes of MS (p<0.05). CSF concentration of OPN was significantly higher among RRMS patients compared to the CIS patients and SPMS patients (P<0.05). Finally, patients with active MS had significantly higher OPN levels in their CSF compared to patients with stable disease (P = 0.007). The result of this study confirms that increased levels of OPN exist in CSF and peripheral blood of MS patients and strengthens the evidence regarding the clinical utility of OPN as a promising and validated biomarker for MS.

  14. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis.

    PubMed

    Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R

    2001-07-01

    Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.

  15. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    PubMed Central

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period ofmore » 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).« less

  17. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells.

    PubMed

    Arnold, Kelly B; Burgener, Adam; Birse, Kenzie; Romas, Laura; Dunphy, Laura J; Shahabi, Kamnoosh; Abou, Max; Westmacott, Garrett R; McCorrister, Stuart; Kwatampora, Jessie; Nyanga, Billy; Kimani, Joshua; Masson, Lindi; Liebenberg, Lenine J; Abdool Karim, Salim S; Passmore, Jo-Ann S; Lauffenburger, Douglas A; Kaul, Rupert; McKinnon, Lyle R

    2016-01-01

    Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.

  18. High interpatient variability of raltegravir CSF concentrations in HIV-positive patients: a pharmacogenetic analysis.

    PubMed

    Calcagno, Andrea; Cusato, Jessica; Simiele, Marco; Motta, Ilaria; Audagnotto, Sabrina; Bracchi, Margherita; D'Avolio, Antonio; Di Perri, Giovanni; Bonora, Stefano

    2014-01-01

    To analyse the determinants of raltegravir CSF penetration, including the pharmacogenetics of drug transporters located at the blood-brain barrier or blood-CSF barrier. Plasma and CSF raltegravir concentrations were determined by a validated HPLC coupled with mass spectrometry method in adults on raltegravir-based combination antiretroviral therapy undergoing a lumbar puncture. Single nucleotide polymorphisms in the genes encoding drugs transporters (ABCB1 3435, SLCO1A2, ABCC2 and SLC22A6) and the gene encoding hepatocyte nuclear factor 4 α (HNF4α) were determined by real-time PCR. In 41 patients (73.2% male, 95.1% Caucasians), the median raltegravir plasma and CSF concentrations were 165 ng/mL (83-552) and 31 ng/mL (21-56), respectively. CSF-to-plasma ratios (CPRs) ranged from 0.005 to 1.33 (median 0.20, IQR 0.04-0.36). Raltegravir trough CSF concentrations (n = 35) correlated with raltegravir plasma levels (ρ = 0.395, P = 0.019); CPRs were higher in patients with blood-brain barrier damage (0.47 versus 0.18, P = 0.02). HNF4α 613 CG genotype carriers had lower trough CSF concentrations (20 versus 37 ng/mL, P = 0.03) and CPRs (0.12 versus 0.27, P = 0.02). Following multivariate linear regression analysis, the CSF-to-serum albumin ratio was the only independent predictor of raltegravir penetration into the CSF. Raltegravir penetration into the CSF shows a large interpatient variability, although CSF concentrations were above the wild-type IC50 in all patients (and above IC95 in 28.6%). In this cohort, blood-brain barrier permeability is the only independent predictor of raltegravir CPR. The impact of single nucleotide polymorphisms in selected genes on raltegravir penetration warrants further studies.

  19. Thinking outside the shunt-sterile CSF malabsorption in pilocytic astrocytomas: case series and review of the literature.

    PubMed

    Johnson, J A; O'Halloran, P J; Crimmins, D; Caird, J

    2016-11-01

    Ventriculoperitoneal (VP) shunt insertion is the most common cerebrospinal fluid (CSF) diversionary procedure used for the treatment of chronic hydrocephalus. Sterile CSF ascites is a rare complication of VP shunt insertion. This can arise from either an overproduction of CSF or inadequate filtration of CSF at the level of the peritoneum. By either mechanism, the development of CSF ascites requires an intact VP shunt. The authors discuss two paediatric cases diagnosed with suprasellar pilocytic astrocytomas treated with platinum-based chemotherapy, who subsequently developed sterile CSF ascites. We review the literature with regard to CSF malabsorption and discuss it as a contributing factor to shunt malfunction. CSF malabsorption with resultant ascites is a rare complication of VP shunting with many etiologies. Two common predisposing factors included the use of platinum-based chemotherapeutic agents, as well as the specific neuropathology. Further analysis of these two entities is needed in order to elucidate their role in contributing to the development of CSF ascites in this patient cohort.

  20. Pleocytosis is not fully responsible for low CSF glucose in meningitis.

    PubMed

    Baud, Maxime O; Vitt, Jeffrey R; Robbins, Nathaniel M; Wabl, Rafael; Wilson, Michael R; Chow, Felicia C; Gelfand, Jeffrey M; Josephson, S Andrew; Miller, Steve

    2018-01-01

    The mechanism of hypoglycorrhachia-low CSF glucose-in meningitis remains unknown. We sought to evaluate the relative contribution of CSF inflammation vs microorganisms (bacteria and fungi) in lowering CSF glucose levels. We retrospectively categorized CSF profiles into microbial and aseptic meningitis and analyzed CSF leukocyte count, glucose, and protein concentrations. We assessed the relationship between these markers using multivariate and stratified linear regression analysis for initial and repeated CSF sampling. We also calculated the receiver operating characteristics of CSF glucose and CSF-to-serum glucose ratios to presumptively diagnose microbial meningitis. We found that increasing levels of CSF inflammation were associated with decreased CSF glucose levels in the microbial but not aseptic category. Moreover, elevated CSF protein levels correlated more strongly than the leukocyte count with low CSF glucose levels on initial ( R 2 = 36%, p < 0.001) and repeated CSF sampling ( R 2 = 46%, p < 0.001). Hypoglycorrhachia (<40 mg/dL) was observed in 50.1% of microbial cases, but only 9.6% of aseptic cases, most of which were neurosarcoidosis. Absolute CSF glucose and CSF-to-serum glucose ratios had similar low sensitivity and moderate-to-high specificity in diagnosing microbial meningitis at thresholds commonly used. The main driver of hypoglycorrhachia appears to be a combination of microbial meningitis with moderate to high degrees of CSF inflammation and proteins, suggesting that the presence of microorganisms capable of catabolizing glucose is a determinant of hypoglycorrhachia in meningitis. A major notable exception is neurosarcoidosis. Low CSF glucose and CSF-to-serum glucose ratios are useful markers for the diagnosis of microbial meningitis.

  1. Blood–brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

    PubMed Central

    Yilmaz, Aylin; Hagberg, Lars; Zetterberg, Henrik; Nilsson, Staffan; Brew, Bruce J.; Fuchs, Dietmar; Price, Richard W.; Gisslén, Magnus

    2016-01-01

    Objective: Although blood–brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). Results: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. Conclusions: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals. PMID:27868081

  2. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.

    PubMed

    Wang, Rong; Feng, Wenli; Yang, Feifei; Yang, Xiao; Wang, Lina; Chen, Chong; Hu, Yuting; Ren, Qian; Zheng, Guoguang

    2018-02-01

    Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy. © 2017 Australasian Society for Immunology Inc.

  3. EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients☆

    PubMed Central

    Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or “CSF tapping” is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F8) correlated with changes in WMS-R Mental Control scores in iNPH patients. An additional analysis combining the changes in values of alpha NPV over the left-dorsal FC (∆alpha-F3-NPV) and the medial FC (∆alpha-Fz-NPV) induced by CSF tapping (cut-off value of ∆alpha-F3-NPV + ∆alpha-Fz-NPV = 0), could correctly identified “shunt responders” and “shunt nonresponders” with a positive predictive value of 100% (10/10) and a negative predictive value of 66% (2/3). In contrast, EEG power spectral analysis showed no function related changes in cortical activity at the frontal cortex before and after CSF tapping. These results indicate that the clinical changes in gait and response suppression induced by CSF tapping in iNPH patients manifest as NPV changes, particularly in the alpha band, rather than as EEG power changes. Our findings suggest that NAT analysis can detect CSF tapping-induced functional changes in cortical activity, in a way that no other neuroimaging methods have been able to do so far, and can predict clinical response to shunt operation in patients with iNPH. PMID:24273735

  4. EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients.

    PubMed

    Aoki, Yasunori; Kazui, Hiroaki; Tanaka, Toshihisa; Ishii, Ryouhei; Wada, Tamiki; Ikeda, Shunichiro; Hata, Masahiro; Canuet, Leonides; Musha, Toshimitsu; Matsuzaki, Haruyasu; Imajo, Kaoru; Yoshiyama, Kenji; Yoshida, Tetsuhiko; Shimizu, Yoshiro; Nomura, Keiko; Iwase, Masao; Takeda, Masatoshi

    2013-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a neuropsychiatric syndrome characterized by gait disturbance, cognitive impairment and urinary incontinence that affect elderly individuals. These symptoms can potentially be reversed by cerebrospinal fluid (CSF) drainage or shunt operation. Prior to shunt operation, drainage of a small amount of CSF or "CSF tapping" is usually performed to ascertain the effect of the operation. Unfortunately, conventional neuroimaging methods such as single photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI), as well as electroencephalogram (EEG) power analysis seem to have failed to detect the effect of CSF tapping on brain function. In this work, we propose the use of Neuronal Activity Topography (NAT) analysis, which calculates normalized power variance (NPV) of EEG waves, to detect cortical functional changes induced by CSF tapping in iNPH. Based on clinical improvement by CSF tapping and shunt operation, we classified 24 iNPH patients into responders (N = 11) and nonresponders (N = 13), and performed both EEG power analysis and NAT analysis. We also assessed correlations between changes in NPV and changes in functional scores on gait and cognition scales before and after CSF tapping. NAT analysis showed that after CSF tapping there was a significant decrease in alpha NPV at the medial frontal cortex (FC) (Fz) in responders, while nonresponders exhibited an increase in alpha NPV at the right dorsolateral prefrontal cortex (DLPFC) (F8). Furthermore, we found correlations between cortical functional changes and clinical symptoms. In particular, delta and alpha NPV changes in the left-dorsal FC (F3) correlated with changes in gait status, while alpha and beta NPV changes in the right anterior prefrontal cortex (PFC) (Fp2) and left DLPFC (F7) as well as alpha NPV changes in the medial FC (Fz) correlated with changes in gait velocity. In addition, alpha NPV changes in the right DLPFC (F8) correlated with changes in WMS-R Mental Control scores in iNPH patients. An additional analysis combining the changes in values of alpha NPV over the left-dorsal FC (∆alpha-F3-NPV) and the medial FC (∆alpha-Fz-NPV) induced by CSF tapping (cut-off value of ∆alpha-F3-NPV + ∆alpha-Fz-NPV = 0), could correctly identified "shunt responders" and "shunt nonresponders" with a positive predictive value of 100% (10/10) and a negative predictive value of 66% (2/3). In contrast, EEG power spectral analysis showed no function related changes in cortical activity at the frontal cortex before and after CSF tapping. These results indicate that the clinical changes in gait and response suppression induced by CSF tapping in iNPH patients manifest as NPV changes, particularly in the alpha band, rather than as EEG power changes. Our findings suggest that NAT analysis can detect CSF tapping-induced functional changes in cortical activity, in a way that no other neuroimaging methods have been able to do so far, and can predict clinical response to shunt operation in patients with iNPH.

  5. Modifications of haematology analyzers to improve cell counting and leukocyte differentiating in cerebrospinal fluid controls of the Joint German Society for Clinical Chemistry and Laboratory Medicine.

    PubMed

    Kleine, Tilmann O; Nebe, C Thomas; Löwer, Christa; Lehmitz, Reinhard; Kruse, Rolf; Geilenkeuser, Wolf-Jochen; Dorn-Beineke, Alexandra

    2009-08-01

    Flow cytometry (FCM) is used with haematology analyzers (HAs) to count cells and differentiate leukocytes in cerebrospinal fluid (CSF). To evaluate the FCM techniques of HAs, 10 external DGKL trials with CSF controls were carried out in 2004 to 2008. Eight single platform HAs with and without CSF equipment were evaluated with living blood leukocytes and erythrocytes in CSF like DGKL controls: Coulter (LH750,755), Abbott CD3200, CD3500, CD3700, CD4000, Sapphire, ADVIA 120(R) CSF assay, and Sysmex XE-2100(R). Results were compared with visual counting of native cells in Fuchs-Rosenthal chamber, unstained, and absolute values of leukocyte differentiation, assayed by dual platform analysis with immune-FCM (FACSCalibur, CD45, CD14) and the chamber counts. Reference values X were compared with HA values Y by statistical evaluation with Passing/Bablock (P/B) linear regression analysis to reveal conformity of both methods. The HAs, studied, produced no valid results with DGKL CSF controls, because P/B regression revealed no conformity with the reference values due to:-blank problems with impedance analysis,-leukocyte loss with preanalytical erythrocyte lysis procedures, especially of monocytes,-inaccurate results with ADVIA cell sphering and cell differentiation with algorithms and enzyme activities (e.g., peroxidase). HA techniques have to be improved, e.g., using no erythrocyte lysis and CSF adequate techniques, to examine CSF samples precise and accurate. Copyright 2009 International Society for Advancement of Cytometry.

  6. The use of droplet digital PCR in liquid biopsies: A highly sensitive technique for MYD88 p.(L265P) detection in cerebrospinal fluid.

    PubMed

    Hiemcke-Jiwa, Laura S; Minnema, Monique C; Radersma-van Loon, Joyce H; Jiwa, N Mehdi; de Boer, Mirthe; Leguit, Roos J; de Weger, Roel A; Huibers, Manon M H

    2018-04-01

    The gold standard for diagnosis of central nervous system lymphomas still regards a stereotactic brain biopsy, with the risk of major complications for the patient. As tumor cells can be detected in cerebrospinal fluid (CSF), CSF analysis can be used as an alternative. In this respect, mutation analysis in CSF can be of added value to other diagnostic parameters such a cytomorphology and clonality analysis. A well-known example of targeted mutation analysis entails MYD88 p.(L265P) detection, which is present in the majority of Bing Neel syndrome and primary central nervous system lymphoma (PCNSL) patients. Unfortunately, tumor yield in CSF can be very low. Therefore, use of the highly sensitive droplet digital PCR (ddPCR) might be a suitable analysis strategy for targeted mutation detection. We analyzed 26 formalin fixed paraffin embedded (FFPE) samples (8 positive and 18 negative for MYD88 p.(L265P) mutation) by ddPCR, of which the results were compared with next generation sequencing (NGS). Subsequently, 32 CSF samples were analyzed by ddPCR. ddPCR and NGS results on FFPE material showed 100% concordance. Among the 32 CSF samples, 9 belonged to patients with lymphoplasmacytic lymphoma (LPL) and clinical suspicion of Bing Neel syndrome, and 3 belonged to patients with PCNSL. Nine of these samples tested positive for MYD88 p.(L265P) (8 LPL and 1 PCNSL). This study shows that sensitive MYD88 mutation analysis by ddPCR in CSF is highly reliable and can be applied even when DNA input is low. Therefore, ddPCR is of added value to current diagnostic parameters, especially when the available amount of DNA is limited. Copyright © 2017 John Wiley & Sons, Ltd.

  7. The Choroid Plexus of the Lateral Ventricle As the Origin of CSF Pulsation Is Questionable.

    PubMed

    Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Sano, Fumiya; Yatsushiro, Satoshi; Kuroda, Kagayaki

    2018-01-15

    The advent of magnetic resonance imaging (MRI) enables noninvasive measurement of cerebrospinal fluid (CSF) motion, and new information about CSF motion has now been acquired. The driving force of the CSF has long been thought to be choroid plexus (CP) pulsation, but to investigate whether this phenomenon actually occurs, CSF motion was observed in the ventricular system and subarachnoid space using MRI. Eleven healthy volunteers, ranging in age from 23 to 58 years, participated in this study. The MRI sequences used were four-dimensional phase-contrast (4D-PC) and time-spatial labeling inversion pulse (t-SLIP). The 4D-PC images included sagittal images in the cranial midline, coronal images focusing on the foramen of Monro (FOM), and oblique coronal images of the trigone to quantify CSF velocity and acceleration. These values were compared and analyzed as non-parametric data using the Kolmogorov-Smirnov test and the Mann-Whitney U test. 4D-PC showed that the median CSF velocity was significantly lower in the posterior part of the lateral ventricle than in other regions. The quantitative analysis of velocity and acceleration showed that they were decreased around the CP in the trigone. Image analysis of both velocity mapping and t-SLIP showed suppressed CSF motion around the CP in the trigone. These findings cast doubt on CP pulsation being the driving force for CSF motion.

  8. CSF-1R regulates non-small cell lung cancer cells dissemination through Wnt3a signaling.

    PubMed

    Yu, Yan Xia; Wu, Hai Jian; Tan, Bing Xu; Qiu, Chen; Liu, Hui Zhong

    2017-01-01

    Therapeutic antibodies targeting colony stimulating factor 1 receptor (CSF-1R) to block colony stimulating factor-1/colony stimulating factor 1 receptor (CSF-1/CSF-R) signaling axis have exhibit remarkable efficacy in the treatment of malignant tumor. Yet, little is known about the effects of intrinsic CSF-1R in human non-small-cell carcinoma (NSCLC). Here we demonstrated that NSCLC cell-intrinsic CSF-1R promoted cells growth and metastasis both in vitro and in vivo. CSF-1R knocked-down by transfecting with shRNA target CSF-1R suppressed NSCLC cells proliferation and tumor growth in nude mice. Conversely, ectopic expression of CSF-1R promoted cells proliferation and accelerated tumor growth. Mechanistically, the NSCLC CSF-1R modulated downstream effectors of phosphatidylinositol 3-kinase (PI3K) signaling. In addition, CSF-1R overexpression significantly enhanced NSCLC cells mobility, invasion and epithelial-mesenchymal transition (EMT) process, whereas silencing CSF-1R inhibits these phenotypes. Microarray analysis suggested that Wnt family member 3a (Wnt3a) function as a downstream factor of CSF-1R. On account of this, we future identified CSF-1R/Wnt3a a signaling pathway sustained NSCLC cells metastasis. Finally, in patients, CSF-1R and Wnt3a expression positively correlated with the of NSCLC patients. Our results identify NSCLC cell intrinsic functions of CSF-1R/Wnt3a axis in dissemination of NSCLC.

  9. CSF-1R regulates non-small cell lung cancer cells dissemination through Wnt3a signaling

    PubMed Central

    Yu, Yan Xia; Wu, Hai Jian; Tan, Bing Xu; Qiu, Chen; Liu, Hui Zhong

    2017-01-01

    Therapeutic antibodies targeting colony stimulating factor 1 receptor (CSF-1R) to block colony stimulating factor-1/colony stimulating factor 1 receptor (CSF-1/CSF-R) signaling axis have exhibit remarkable efficacy in the treatment of malignant tumor. Yet, little is known about the effects of intrinsic CSF-1R in human non-small-cell carcinoma (NSCLC). Here we demonstrated that NSCLC cell-intrinsic CSF-1R promoted cells growth and metastasis both in vitro and in vivo. CSF-1R knocked-down by transfecting with shRNA target CSF-1R suppressed NSCLC cells proliferation and tumor growth in nude mice. Conversely, ectopic expression of CSF-1R promoted cells proliferation and accelerated tumor growth. Mechanistically, the NSCLC CSF-1R modulated downstream effectors of phosphatidylinositol 3-kinase (PI3K) signaling. In addition, CSF-1R overexpression significantly enhanced NSCLC cells mobility, invasion and epithelial-mesenchymal transition (EMT) process, whereas silencing CSF-1R inhibits these phenotypes. Microarray analysis suggested that Wnt family member 3a (Wnt3a) function as a downstream factor of CSF-1R. On account of this, we future identified CSF-1R/Wnt3a a signaling pathway sustained NSCLC cells metastasis. Finally, in patients, CSF-1R and Wnt3a expression positively correlated with the of NSCLC patients. Our results identify NSCLC cell intrinsic functions of CSF-1R/Wnt3a axis in dissemination of NSCLC. PMID:29218239

  10. Diagnosis of central nervous system relapse of pediatric acute lymphoblastic leukemia: Impact of routine cytological CSF analysis at the time of intrathecal chemotherapy.

    PubMed

    Gassas, Adam; Krueger, Joerg; Alvi, Saima; Sung, Lillian; Hitzler, Johanne; Lieberman, Lani

    2014-12-01

    Despite the success of central nervous system (CNS) directed therapy in pediatric acute lymphoblastic leukemia (ALL), relapse involving the CNS continues to be observed in 5-10% of children when utilizing standard intrathecal prophylactic chemotherapy. While most pediatric ALL treatment protocols mandate regular lumbar punctures (LP) for the intrathecal injection of chemotherapy, the value of routine cytological analysis of cerebrospinal fluid (CSF) during therapy is unknown. Our objective was to assess the diagnostic value of routine CSF analysis during ALL therapy. To allow for at least 10 years of follow up from ALL diagnosis, children (0-18 years) with ALL diagnosed and treated at SickKids, Toronto, Canada between 1994-2004 were studied. Medical records of patients with CNS relapse were examined to determine whether CNS relapse was diagnosed based on cytology of a routinely obtained CSF sample, a CSF sample obtained because of signs and symptoms or a CSF sample obtained after the diagnosis of a bone marrow relapse. Of 494 children treated for ALL, 31 (6.6%) developed a relapse of ALL involving the CNS. Twenty-two had an isolated CNS relapse and nine had a combined bone marrow and CNS relapse. Among patients with isolated CNS relapse, 73% (16/22) were diagnosed based on routine CSF samples obtained from asymptomatic children. Conversely, 89% (8/9) of children with combined bone marrow and CNS relapse presented with symptoms and signs that prompted CSF examination. Routine CSF examination at the time of LP for intrathecal chemotherapy is useful in detecting CNS relapse. © 2014 Wiley Periodicals, Inc.

  11. Blood-CSF-barrier dysfunction is a marker for encephalitic involvement in patients with aseptic meningitis/meningoencephalitis.

    PubMed

    Hoyer, C; Eisele, P; Ebert, A D; Schneider, S; Gass, A; Fatar, M; Szabo, K; Alonso, A

    2016-11-01

    The term "aseptic meningitis" encompasses cases of meningitis with negative bacterial CSF culture, which predominantly are of viral etiology. While the clinical course is usually benign, complications such as encephalitic involvement resulting in a more severe clinical course may occur. Dysfunction of the blood-brain-barrier (BBB), which is a prerequisite for viral entry into the brain parenchyma, can be approximated using the CSF/serum albumin ratio, readily obtainable in routine CSF analysis. Analysis of CSF patterns in patients with aseptic meningitis/meningoencephalitis with a focus on BBB dysfunction as a marker for encephalitic involvement. Retrospective chart review of patients admitted to our hospital between 2004 and 2016 with a diagnosis of aseptic meningitis/meningoencephalitis. Patients with aseptic meningitis displaying clinical, MR-tomographic or electroencephalographic signs of encephalitic involvement were significantly older than patients without these features (47.4 vs. 35.5 yrs., p=0.002). In patients with meningoencephalitis, CSF analysis revealed a more severe disruption of BBB, approximated by the CSF/serum albumin ratio (p=0.002). Compromised BBB function correlated positively with length of hospitalization (p=0.007), indicative of a more severe clinical course. The number of CSF lymphocytes was found to predict the severity of the BBB disruption, which additionally was more frequently observed when herpesviridae were identified as infectious agents. We suggest that the CSF/serum albumin ratio as an estimate for BBB function should be attended to in the evaluation of patients with aseptic meningitis. Severe BBB dysfunction, older age and infection with herpesviridae appear to raise the risk for encephalitic involvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Effect of G-CSF in vitro Stimulation on Distribution of Peripheral Lymphocyte Subsets in the Healthy Persons].

    PubMed

    Zhao, Sha-Sha; Fang, Shu; Zhu, Cheng-Ying; Wang, Li-Li; Gao, Chun-Ji

    2018-02-01

    To investigate the effect of granulocyte-colony stimulating factor (G-CSF) in vitro stimulation on the distribution of lymphocyte subset in healthy human. Peripheral blood mononuclear cells (PBMNCs) were collected from 8 healthy volunteers by density gradient centrifugation on Ficoll-Paque TM . In vitro 200 ng/ml G-CSF or 200 ng/ml G-CSF plus 10 µg/ml ConA directly act on PBMNCs, then the colleted cells were cultivated for 3 days. Lymphocyte subsets were stained with the corresponding fluoresce labeled antibodies and detected by flow cytometry. The levels of T cells in G-CSF group and G-CSF+ConA group were both higher than that in the control group (P<0.001, P<0.05). However, there were not significantly different in B cells and NK cells levels among the 3 groups. Furthermore, analysis of the effect of G-CSF on T cell subsets indicated that the levels of CD4 + T cells and CD8 + T cells in G-CSF group were both significantly higher than those in control group (P<0.01, P<0.05), Treg cells was not different between G-CSF and control group. Compared with the control group, the level of CD4 + T cells, CD8 + T cells and Treg cells in G-CSF+ConA group significantly increased (P<0.05, P<0.01, P<0.01). Analysis of G-CSF receptor (G-CSFR) expression showed that G-CSFR expression on T cells in G-CSF+ConA group dramatically increased, as compared with control group (P<0.01). The levels of CD4 + T cells and CD8 + T cells in healthy human peripheral blood can be increased by G-CSF stimulation. ConA can enhance the level of T cells and induce G-CSFR expression on T cells.

  13. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population

    PubMed Central

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-01-01

    Abstract We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment. PMID:27043692

  14. Clinical Value of Assessing Cytokine Levels for the Differential Diagnosis of Bacterial Meningitis in a Pediatric Population.

    PubMed

    Ye, Qing; Shao, Wen-Xia; Shang, Shi-Qiang; Shen, Hong-Qiang; Chen, Xue-Jun; Tang, Yong-Min; Yu, Yong-Lin; Mao, Jian-Hua

    2016-03-01

    We performed a prospective observational study to evaluate the utility of measuring inflammatory cytokine levels to discriminate bacterial meningitis from similar common pediatric diseases. Inflammatory cytokine levels and other cerebrospinal fluid (CSF) physicochemical indicators were evaluated in 140 patients who were diagnosed with bacterial meningitis via microbiological culture or PCR assay. The CSF concentrations of interleukin (IL)-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein were significantly elevated in bacterial meningitis patients compared with healthy children or patients with viral encephalitis, epilepsy, or febrile convulsions (P < 0.001). The area under the curve values for CSF concentrations of IL-6 and IL-10, CSF/blood IL-6 and IL-10 ratios, CSF white blood cell count, and CSF micro total protein to identify bacterial meningitis episodes by receiver-operating characteristic analysis were 0.988, 0.949, 0.995, 0.924, 0.945, and 0.928, respectively. The area under the curve for the combination of CSF IL-6 and CSF/blood IL-6 ratio was larger than that for either parameter alone, and the combination exhibited enhanced specificity and positive predictive value. After effective meningitis treatment, CSF IL-6 levels dropped significantly. These results suggest that CSF IL-6 and CSF/blood IL-6 ratio are good biomarkers in discriminating bacterial meningitis. Evaluating CSF IL-6 and CSF/blood IL-6 ratio in combination can improve diagnostic efficiency. Additionally, CSF IL-6 levels can be used to monitor the effects of bacterial meningitis treatment.

  15. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    PubMed

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  16. Diagnostic value of creatine kinase activity in canine cerebrospinal fluid.

    PubMed

    Ferreira, Alexandra

    2016-10-01

    This study aimed to determine whether creatine kinase (CK) activity in cerebrospinal fluid (CSF) has diagnostic value for various groups of neurological conditions or for different anatomical areas of the nervous system (NS). The age, breed, results of CSF analysis, and diagnosis of 578 canine patients presenting with various neurological conditions between January 2009 and February 2015 were retrospectively collected. The cases were divided according to anatomical areas of the nervous system, i.e., brain, spinal cord, and peripheral nervous system, and into groups according to the nature of the condition diagnosed: vascular, immune/inflammatory/infectious, traumatic, toxic, anomalous, metabolic, idiopathic, neoplastic, and degenerative. Statistical analysis showed that CSF-CK alone cannot be used as a diagnostic tool and that total proteins in the CSF and red blood cells (RBCs) do not have a significant relationship with the CSF-CK activity. CSF-CK did not have a diagnostic value for different disease groups or anatomical areas of the nervous system.

  17. Metronidazole and hydroxymetronidazole central nervous system distribution: 2. cerebrospinal fluid concentration measurements in patients with external ventricular drain.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2014-01-01

    This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0-τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0-τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF.

  18. Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.

    PubMed

    Zhang, Wan-Ming; Natowicz, Marvin R

    2013-05-01

    Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Detection of central nervous system leukemia in children with acute lymphoblastic leukemia by real-time polymerase chain reaction.

    PubMed

    Pine, Sharon R; Yin, Changhong; Matloub, Yousif H; Sabaawy, Hatem E; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M Fevzi; Jayabose, Somasundaram

    2005-02-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification.

  20. Detection of Central Nervous System Leukemia in Children with Acute Lymphoblastic Leukemia by Real-Time Polymerase Chain Reaction

    PubMed Central

    Pine, Sharon R.; Yin, Changhong; Matloub, Yousif H.; Sabaawy, Hatem E.; Sandoval, Claudio; Levendoglu-Tugal, Oya; Ozkaynak, M. Fevzi; Jayabose, Somasundaram

    2005-01-01

    Accurate detection of central nervous system (CNS) involvement in children with newly diagnosed acute lymphoblastic leukemia (ALL) could have profound prognostic and therapeutic implications. We examined various cerebrospinal fluid (CSF) preservation methods to yield adequate DNA stability for polymerase chain reaction (PCR) analysis and developed a quantitative real-time PCR assay to detect occult CNS leukemia. Sixty CSF specimens were maintained in several storage conditions for varying amounts of time, and we found that preserving CSF in 1:1 serum-free RPMI tissue culture medium offers the best stability of DNA for PCR analysis. Sixty CSF samples (30 at diagnosis and 30 at the end of induction therapy) from 30 children with ALL were tested for CNS leukemic involvement by real-time PCR using patient-specific antigen receptor gene rearrangement primers. Six of thirty patient diagnosis samples were PCR-positive at levels ranging from 0.5 to 66% leukemic blasts in the CSF. Four of these patients had no clinical or cytomorphological evidence of CNS leukemia involvement at that time. All 30 CSF samples drawn at the end of induction therapy were PCR-negative. The data indicate that real-time PCR analysis of CSF is an excellent tool to assess occult CNS leukemia involvement in patients with ALL and can possibly be used to refine CNS status classification. PMID:15681484

  1. Cerebrospinal Fluid Glucose and Lactate: Age-Specific Reference Values and Implications for Clinical Practice

    PubMed Central

    Leen, Wilhelmina G.; Willemsen, Michèl A.; Wevers, Ron A.; Verbeek, Marcel M.

    2012-01-01

    Cerebrospinal fluid (CSF) analysis is an important tool in the diagnostic work-up of many neurological disorders, but reference ranges for CSF glucose, CSF/plasma glucose ratio and CSF lactate based on studies with large numbers of CSF samples are not available. Our aim was to define age-specific reference values. In 1993 The Nijmegen Observational CSF Study was started. Results of all CSF samples that were analyzed between 1993 and 2008 at our laboratory were systematically collected and stored in our computerized database. After exclusion of CSF samples with an unknown or elevated erythrocyte count, an elevated leucocyte count, elevated concentrations of bilirubin, free hemoglobin, or total protein 9,036 CSF samples were further studied for CSF glucose (n = 8,871), CSF/plasma glucose ratio (n = 4,516) and CSF lactate values (n = 7,614). CSF glucose, CSF/plasma glucose ratio and CSF lactate were age-, but not sex dependent. Age-specific reference ranges were defined as 5–95th percentile ranges. CSF glucose 5th percentile values ranged from 1.8 to 2.9 mmol/L and 95th percentile values from 3.8 to 5.6 mmol/L. CSF/plasma glucose ratio 5th percentile values ranged from 0.41 to 0.53 and 95th percentile values from 0.82 to 1.19. CSF lactate 5th percentile values ranged from 0.88 to 1.41 mmol/L and 95th percentile values from 2.00 to 2.71 mmol/L. Reference ranges for all three parameters were widest in neonates and narrowest in toddlers, with lower and upper limits increasing with age. These reference values allow a reliable interpretation of CSF results in everyday clinical practice. Furthermore, hypoglycemia was associated with an increased CSF/plasma glucose ratio, whereas hyperglycemia did not affect the CSF/plasma glucose ratio. PMID:22880096

  2. Infections in the differential diagnosis of Bell's palsy: a plea for performing CSF analysis.

    PubMed

    Henkel, Katrin; Lange, Peter; Eiffert, Helmut; Nau, Roland; Spreer, Annette

    2017-04-01

    Peripheral facial nerve palsy (FP) is the most common single nerve affection. Most cases are idiopathic, but a relevant fraction is caused by potentially treatable aetiologies including infections. Not all current diagnosis and treatment guidelines recommend routine cerebrospinal fluid (CSF) analysis in the diagnostic workup of this symptom. In this study, we evaluated frequency of aetiologies and relevance of CSF analysis in an interdisciplinary cohort. We retrospectively analysed all cases of newly diagnosed FP treated at a German university medical centre in a 3-year period. Diagnostic certainty was classified for infectious aetiologies according to clinical and CSF parameters. 380 patients with FP were identified, 63 children and 317 adults. Idiopathic Bell´s palsy was predominant in 61 %. 25 % of FP was attributed to infections, and other causes were identified in 14 %. Clinical presentation alone was not conclusive for infectious aetiology, in almost half of patients with infection-attributed FP the reported symptoms or clinical signs did not differ from common symptoms of idiopathic Bell`s palsy. Determination of C-reactive protein or white blood cell count was not helpful in the identification of infectious causes, and radiological imaging was performed in a high proportion of adult patients without conclusive results. Nuchal rigidity was found only in 7 % of patients with CSF pleocytosis. The predominant infectious agents were Borrelia burgdorferi, VZV and HSV, and in most of these cases diagnosis relied on the findings of CSF analysis. This study outlines the importance of careful differential diagnosis to identify infectious causes of facial nerve palsy. The high incidence and frequent unspecific clinical presentation of infectious FP underlines the importance of including CSF analysis in the diagnostic routine workup of FP.

  3. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development

    PubMed Central

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827

  4. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development.

    PubMed

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.

  5. Biomarkers in Cerebrospinal Fluid: Analysis of Cell-Free Circulating Mitochondrial DNA by Digital PCR.

    PubMed

    Podlesniy, Petar; Trullas, Ramon

    2018-01-01

    Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.

  6. Analysis of clinical outcomes in pediatric bacterial meningitis focusing on patients without cerebrospinal fluid pleocytosis.

    PubMed

    Lin, Wen-Li; Chi, Hsin; Huang, Fu-Yuan; Huang, Daniel Tsung-Ning; Chiu, Nan-Chang

    2016-10-01

    Cerebrospinal fluid (CSF) cell count and biochemical examinations and cultures form the basis for the diagnosis of bacterial meningitis. However, some patients do not have typical findings and are at a higher risk of being missed or having delayed treatment. To better understand the correlation between CSF results and outcomes, we evaluated CSF data focusing on the patients with atypical findings. This study enrolled CSF culture-proven bacterial meningitis patients aged from 1 month to 18 years in a medical center. The patients were divided into "normal" and "abnormal" groups for each laboratory result and in combination. The correlations between the laboratory results and the outcomes were analyzed. A total of 175 children with confirmed bacterial meningitis were enrolled. In CSF examinations, 16.2% of patients had normal white blood cell counts, 29.5% had normal glucose levels, 24.5% had normal protein levels, 10.2% had normal results in two items, and 8.6% had normal results in all three items. In logistic regression analysis, a normal CSF leukocyte count and increased CSF protein level were related to poor outcomes. Patients with meningitis caused by Streptococcus pneumoniae and hyponatremia were at a higher risk of mortality and the development of sequelae. In children with bacterial meningitis, nontypical CSF findings and, in particular, normal CSF leukocyte count and increased protein level may indicate a worse prognosis. Copyright © 2014. Published by Elsevier B.V.

  7. Cost-benefit analysis of prophylactic granulocyte colony-stimulating factor during CHOP antineoplastic therapy for non-Hodgkin's lymphoma.

    PubMed

    Dranitsaris, G; Altmayer, C; Quirt, I

    1997-06-01

    Several randomised comparative trials have shown that granulocyte colony-stimulating factor (G-CSF) reduces the duration of neutropenia, hospitalisation and intravenous antibacterial use in patients with cancer who are receiving high-dosage antineoplastic therapy. However, one area that has received less attention is the role of G-CSF in standard-dosage antineoplastic regimens. One such treatment that is considered to have a low potential for inducing fever and neutropenia is the CHOP regimen (cyclophosphamide, doxorubicin, vincristine and prednisone) for non-Hodgkin's lymphoma. We conducted a cost-benefit analysis from a societal perspective in order to estimate the net cost or benefit of prophylactic G-CSF in this patient population. This included direct costs for hospitalisation with antibacterial support, as well as indirect societal costs, such as time off work and antineoplastic therapy delays secondary to neutropenia. The findings were then tested by a comprehensive sensitivity analysis. The administration of G-CSF at a dosage of 5 micrograms/kg/day for 11 doses following CHOP resulted in an overall net cost of $Can1257. In the sensitivity analysis, lowering the G-CSF dosage to 2 micrograms/kg/day generated a net benefit of $Can6564, indicating a situation that was cost saving to society. The results of the current study suggest that the use of G-CSF in patients receiving CHOP antineoplastic therapy produces a situation that is close to achieving cost neutrality. However, low-dosage (2 micrograms/kg/day) G-CSF is an economically attractive treatment strategy because it may result in overall savings to society.

  8. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  9. Metronidazole and Hydroxymetronidazole Central Nervous System Distribution: 2. Cerebrospinal Fluid Concentration Measurements in Patients with External Ventricular Drain

    PubMed Central

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William

    2014-01-01

    This study explored metronidazole and hydroxymetronidazole distribution in the cerebrospinal fluid (CSF) of brain-injured patients. Four brain-injured patients with external ventricular drain received 500 mg of metronidazole over 0.5 h every 8 h. CSF and blood samples were collected at steady state over 8 h, and the metronidazole and hydroxymetronidazole concentrations were assayed by high-pressure liquid chromatograph. A noncompartmental analysis was performed. Metronidazole is distributed extensively within CSF, with a mean CSF to unbound plasma AUC0–τ ratio of 86% ± 16%. However, the concentration profiles in CSF were mostly flat compared to the plasma profiles. Hydroxymetronidazole concentrations were much lower than those of metronidazole both in plasma and in CSF, with a corresponding CSF/unbound plasma AUC0–τ ratio of 79% ± 16%. We describe here for the first time in detail the pharmacokinetics of metronidazole and hydroxymetronidazole in CSF. PMID:24277050

  10. Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases

    PubMed Central

    Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo

    2017-01-01

    Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216

  11. Pyridoxal 5'-phosphate, pyridoxal, and 4-pyridoxic acid in the paired serum and cerebrospinal fluid of children.

    PubMed

    Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Tsuchiya, Hiroki; Yamaguchi, Tokito; Kobayashi, Katsuhiro

    2017-09-01

    We quantified pyridoxal 5'-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) in paired serum and cerebrospinal fluid (CSF) samples from children and investigated the effect of age on the concentrations and CSF-to-serum ratios of these vitamers. Serum and CSF samples prospectively collected from 49 pediatric patients were analyzed. PLP, PL, and PA were measured using high-performance liquid chromatography with fluorescence detection, using pre-column derivatization by semicarbazide. Effects of age on these vitamers, the PLP-to-PL ratio, CSF-to-serum PLP ratio, and CSF-to-serum PL ratio were evaluated using correlation analysis. The PLP, PL, and PA concentrations in the serum and CSF were higher at younger ages, except for CSF PA concentrations that were mostly below the limit of detection (<1.2nmol/l). The PLP-to-PL ratios in the serum and CSF correlated positively with age. The CSF-to-serum PLP ratio and CSF-to-serum PL ratio were independent of age. Age-related changes in PLP, PL, and PA in serum and in CSF from pediatric patients and CSF-to-serum ratios of PLP and PL demonstrated in this study will provide valuable information for evaluating PLP supply to the central nervous system from the peripheral blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

    PubMed

    Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C

    2018-01-05

    Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

  13. CSF analysis

    MedlinePlus

    ... A, Sancesario GM, Esposito Z, et al. Plasmin system of Alzheimer's disease: CSF analysis. J Neural Transm (Vienna) . ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is ...

  14. Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System.

    PubMed

    Louis, Cynthia; Cook, Andrew D; Lacey, Derek; Fleetwood, Andrew J; Vlahos, Ross; Anderson, Gary P; Hamilton, John A

    2015-07-01

    M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C(-) monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed. Copyright © 2015 by The American Association of Immunologists, Inc.

  15. Cerebrospinal fluid ferritin and albumin index: potential candidates for scoring system to differentiate between bacterial and viral meningitis in children.

    PubMed

    Jebamalar, Angelin A; Prabhat; Balakrishnapillai, Agiesh K; Parmeswaran, Narayanan; Dhiman, Pooja; Rajendiran, Soundravally

    2016-07-01

    To evaluate the diagnostic role of cerebrospinal fluid (CSF) ferritin and albumin index (AI = CSF albumin/serum albumin × 1000) in differentiating acute bacterial meningitis (ABM) from acute viral meningitis (AVM) in children. The study included 42 cases each of ABM and AVM in pediatric age group. Receiver operating characteristic (ROC) analysis was carried out for CSF ferritin and AI. Binary logistic regression was also done. CSF ferritin and AI were found significantly higher in ABM compared to AVM. Model obtained using AI and CSF ferritin along with conventional criteria is better than existing models.

  16. A molecular characterization of the choroid plexus and stress-induced gene regulation

    PubMed Central

    Sathyanesan, M; Girgenti, M J; Banasr, M; Stone, K; Bruce, C; Guilchicek, E; Wilczak-Havill, K; Nairn, A; Williams, K; Sass, S; Duman, J G; Newton, S S

    2012-01-01

    The role of the choroid plexus (CP) in brain homeostasis is being increasingly recognized and recent studies suggest that the CP has a more important role in physiological and pathological brain functions than currently appreciated. To obtain additional insight on the CP function, we performed a proteomics and transcriptomics characterization employing a combination of high resolution tandem mass spectrometry and gene expression analyses in normal rodent brain. Using multiple protein fractionation approaches, we identified 1400 CP proteins in adult CP. Microarray-based comparison of CP gene expression with the kidney, cortex and hippocampus showed significant overlap between the CP and the kidney. CP gene profiles were validated by in situ hybridization analysis of several target genes including klotho, CLIC 6, OATP 14 and Ezrin. Immunohistochemical analyses were performed for CP and enpendyma detection of several target proteins including cytokeratin, Rab7, klotho, tissue inhibitor of metalloprotease 1 (TIMP1), MMP9 and glial fibrillary acidic protein (GFAP). The molecular functions associated with various proteins of the CP proteome indicate that it is a blood–cerebrospinal fluid (CSF) barrier that exhibits high levels of metabolic activity. We also analyzed the gene expression changes induced by stress, an exacerbating factor for many illnesses, particularly mood disorders. Chronic stress altered the expression of several genes, downregulating 5HT2C, glucocorticoid receptor and the cilia genes IFT88 and smoothened while upregulating 5HT2A, BDNF, TNFα and IL-1b. The data presented here attach additional significance to the emerging importance of CP function in brain health and CNS disease states. PMID:22781172

  17. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    PubMed

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  18. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data*

    PubMed Central

    Rigbolt, Kristoffer T. G.; Vanselow, Jens T.; Blagoev, Blagoy

    2011-01-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net. PMID:21602510

  19. The effect of G-CSF on infertile women undergoing IVF treatment: A meta-analysis.

    PubMed

    Li, Jie; Mo, Sien; Chen, Yang

    2017-08-01

    Evidence for the effect of granulocyte colony stimulating factor (G-CSF) on infertile women undergoing in vitro fertilization (IVF) remains inconsistent. This study aimed to evaluate the effectiveness of G-CSF on infertile women undergoing IVF. PubMed and EMBASE databases were searched before August 2016. Comparing the transvaginal perfusion of G-CSF and placebo or no treatment, the available studies were considered. The pooled risk ratio (RR) with 95% confidence intervals (CIs) was used in the analysis and six studies were included. Transvaginal perfusion of G-CSF was significantly associated with a higher clinical pregnancy rate versus the placebo (RR=1.563, 95%CI: 1.122, 2.176), especially for the Asian population. Among patients with a thin endometrium or repeated IVF failure, the implantation and biochemical pregnancy rates were also significantly increased in patients with the use of G-CSF (implantation rate: RR = 1.887, 95% CI: 1.256, 2.833; biochemical pregnancy rate: RR = 2.385, 95% CI: 1.414, 4.023). However, no statistical significance in increasing endometrial thickness was detected. Transvaginal perfusion of G-CSF for infertile women may play a critical role in assisting human reproduction, especially for patients with a thin endometrium or repeated IVF failure in the Asian population.

  20. Management and cost analysis of cancer patients treated with G-CSF: a cohort study based on the French national healthcare insurance database.

    PubMed

    Tilleul, Patrick; Jacot, William; Emery, Corinne; Lafuma, Antoine; Gourmelen, Julie

    2017-12-01

    To describe the management and costs associated with G-CSF therapy in cancer patients in France. This study analyzed a representative random population sample from the French national healthcare insurance database, focusing on 1,612 patients with hematological or solid malignancies who were reimbursed in 2013 or 2014 for at least one G-CSF treatment dispensed in a retail pharmacy. Patient characteristics and treatment costs were analyzed according to the type of cancer. Then the costs and characteristics of patients associated with the use of different G-CSF products were analyzed in the sub-set of breast cancer patients. The most frequent malignancies in the database population were breast cancer (23.3%), hematological malignancies (22.2%), and lung cancer (12.4%). The reimbursed G-CSF was pegfilgrastim in 34.1% of cases, lenograstim in 26.7%, and filgrastim in 17.9%. More than one G-CSF product was reimbursed to 21.3% of patients. The total annual reimbursed health expenses per patient, according to the type of G-CSF, were €27,001, €24,511, and €20,802 for patients treated with filgrastim, lenograstim, and pegfilgrastim, respectively. Ambulatory care accounted for, respectively, 35%, 38%, and 41% of those costs. In patients with breast cancer, ambulatory care cost was €7,915 with filgrastim, €7,750 with lenograstim, and €6,989 with pegfilgrastim, and the respective cost of G-CSF was €1,733, €1,559, and €3,668. All available G-CSF products have been shown to be effective in cancer patients, and both daily G-CSFs and pegylated G-CSF are recommended in international guidelines. Nevertheless, this analysis of G-CSF reimbursement indicates that the choice of product can markedly affect the total cost of ambulatory care.

  1. Discovery and Verification of Osteopontin and Beta-2-microglobulin as Promising Markers for Staging Human African Trypanosomiasis*

    PubMed Central

    Tiberti, Natalia; Hainard, Alexandre; Lejon, Veerle; Robin, Xavier; Ngoyi, Dieudonné Mumba; Turck, Natacha; Matovu, Enock; Enyaru, John; Ndung'u, Joseph Mathu; Scherl, Alexander; Dayon, Loïc; Sanchez, Jean-Charles

    2010-01-01

    Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients. PMID:20724469

  2. Relative Efficacy of Granulocyte-Macrophage Colony-Stimulating Factor, Dacarbazine, and Glycoprotein 100 in Metastatic Melanoma: An Indirect Treatment Comparison.

    PubMed

    Quinn, Casey; Ma, Qiufei; Kudlac, Amber; Palmer, Stephen; Barber, Beth; Zhao, Zhongyun

    2017-02-01

    Advances in the treatment of metastatic melanoma have been achieved in recent years: immunotherapies and targeted therapies have demonstrated survival benefits over older agents such as granulocyte-macrophage colony-stimulating factor (GM-CSF), dacarbazine, and glycoprotein peptide vaccine (gp100) in pivotal phase 3 trials. It is important to compare therapies to guide the treatment decision-making process, and establishing the relationship between older agents can strengthen the networks of evidence for newer therapies. We report the outcome of an indirect comparison of GM-CSF, dacarbazine, and gp100 in metastatic melanoma through meta-analysis of absolute treatment effect. A systematic literature review identified trials for inclusion in the meta-analysis. A valid network meta-analysis was not feasible: treatment-specific meta-analysis was conducted. A published algorithm was used to adjust overall survival estimates from trials of GM-CSF, dacarbazine, and gp100 for heterogeneity in baseline prognostic factors. Survival estimates were compared in three patient groups: stage IIIB-IV M1c, stage IIIB-IV M1a, and stage IV M1b/c. One trial of GM-CSF, four of dacarbazine, and one of gp100 were included in the analysis. After adjusting for differences in baseline prognostic factors, median overall survival (OS) in all patient groups was longer for those receiving GM-CSF than for those receiving dacarbazine or gp100. The observed survival over time for GM-CSF was similar to the adjusted survival for dacarbazine and greater than for gp100 in all patient groups. The relative treatment effect of GM-CSF, dacarbazine, and gp100 has been reliably estimated by adjusting for differences in baseline prognostic factors. Results suggest that OS with GM-CSF is at least as good as with dacarbazine and greater than with gp100. Given the role of these agents as controls in phase 3 trials of new immunotherapies and targeted agents, these results can be used to contextualize the efficacy of newer therapies. Amgen Inc.

  3. Notice of Pre-Application Webinar (RFA-CA-15-021, RFA-CA-15-022, RFA-CA-15-023) | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute will hold a public pre-application webinar on Friday, December 11 at 12:00 p.m. (EST) for the Funding Opportunity Announcements (FOAs) RFA-CA-15-021 entitled “Proteome Characterization Centers for Clinical Proteomic Tumor Analysis Consortium (U24), RFA-CA-15-022 entitled “Proteogenomic Translational Research Centers for Clinical Proteomic Tumor Analysis Consortium (U01)”, and RFA-CA-15-023 entitled “Proteogenomic Data Analysis Centers for Clinical Proteomic Tumor Analysis Consortium (U24)”.

  4. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis.

    PubMed

    England, Timothy J; Sprigg, Nikola; Alasheev, Andrey M; Belkin, Andrey A; Kumar, Amit; Prasad, Kameshwar; Bath, Philip M

    2016-11-15

    Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and type, end-of-trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5-15), randomised 11 days (interquartile range IQR 4-238) post ictus; data from three commercial trials were not shared. G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 to 1.96, p = 0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% versus 7.5%, p = 0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, p = 0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis.

  5. Integrating Transcriptomics with Metabolic Modeling Predicts Biomarkers and Drug Targets for Alzheimer's Disease

    PubMed Central

    Stempler, Shiri; Yizhak, Keren; Ruppin, Eytan

    2014-01-01

    Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art metabolic modelling methods to predict metabolic biomarkers and drug targets in AD. The metabolic descriptions derived are first tested and validated on a large scale versus existing AD proteomics and metabolomics data. Our analysis shows a significant decrease in the activity of several key metabolic pathways, including the carnitine shuttle, folate metabolism and mitochondrial transport. We predict several metabolic biomarkers of AD progression in the blood and the CSF, including succinate and prostaglandin D2. Vitamin D and steroid metabolism pathways are enriched with predicted drug targets that could mitigate the metabolic alterations observed. Taken together, this study provides the first network wide view of the metabolic alterations associated with AD progression. Most importantly, it offers a cohort of new metabolic leads for the diagnosis of AD and its treatment. PMID:25127241

  6. CSF lactate alone is not a reliable indicator of bacterial ventriculitis in patients with ventriculostomies.

    PubMed

    Hill, Emily; Bleck, Thomas P; Singh, Kamaljit; Ouyang, Bichun; Busl, Katharina M

    2017-06-01

    In a febrile patient with a ventriculostomy, diagnosing or excluding bacterial or microbial ventriculitis is difficult, as conventional markers in analysis of cerebrospinal fluid (CSF) are not applicable due to presence of blood and inflammation. CSF lactate has been shown to be a useful indicator of bacterial meningitis in CSF obtained via lumbar puncture, but little and heterogenous data exist on patients with ventriculostomies. We reviewed all CSF analyses obtained via ventriculostomy in patients admitted to our tertiary medical center between 2008 and 2013, and constructed receiver operating characteristic (ROC) curves to evaluate the accuracy of CSF lactate concentration in discriminating a positive CSF culture from a negative one in setting of ventriculostomy and prophylactic antibiosis. Among 467 CSF lactate values, there were 22 corresponding CSF cultures with bacterial growth. Sensitivities and specificities for CSF lactate at threshold values 3, 4, 5 and 6mmol/L showed sensitivity and specificity greater than 70% for CSF lactate threshold 4mmol/L. The lowest threshold value of 3mmol/L resulted in higher sensitivity of 81.8%, and the highest chosen threshold value resulted in high specificity of 94.2%, but these values had poor corresponding specificity and sensitivity, respectively. The area under the curve was 0.82 (95% CI 0.72, 0.91). Our data from a large sample of CSF studies in patients with ventriculostomy indicate that no single value of CSF lactate provided both sensitivity and specificity high enough to be regarded as reliable test. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes

    PubMed Central

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A.; Myung, Jay I.; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test–retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test–retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  8. CSF/plasma ratios of amino acids: reference data and transports in children.

    PubMed

    Akiyama, Tomoyuki; Kobayashi, Katsuhiro; Higashikage, Akihito; Sato, Junko; Yoshinaga, Harumi

    2014-01-01

    We intended to investigate the effects of age, gender, and medications on amino acid cerebrospinal fluid (CSF)/plasma ratios in children, and to determine whether amino acid transports across the blood-CSF barrier in children differ from those in adults. Amino acid concentrations measured by ion-exchange high-performance liquid chromatography were used (CSF from 99 children, simultaneously collected plasma from 76 children). Influence of age, gender, and medications on the amino acid CSF concentrations and CSF/plasma ratios were analyzed by linear multiple regression. Interactions of amino acid transports were analyzed by correlation analysis of CSF/plasma ratios. CSF/plasma ratios of serine, valine, histidine, and arginine were higher in younger children. The glutamate CSF/plasma ratio was higher in older children. Serine, alanine, threonine, valine, and histidine CSF/plasma ratios were lower in females. Glutamine, methionine, tyrosine, and phenylalanine CSF/plasma ratios were elevated with valproate therapy. Serine, threonine, valine, leucine, and tyrosine CSF/plasma ratios were lower with clobazam therapy. The asparagine CSF/plasma ratio was elevated with pyridoxal phosphate therapy. Transports of most essential neutral amino acids interacted with each other, as did neutral amino acids with low molecular weights. Cationic amino acids interacted with each other and some essential neutral amino acids. Acidic amino acids had no interactions with other amino acids. Age, gender, and anti-epileptic drugs affect amino acid CSF/plasma ratios in children. Transport interactions between amino acids in children showed no remarkable difference from those of adults and generally followed the substrate specificities of multiple amino acid transport systems. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. PeptideDepot: flexible relational database for visual analysis of quantitative proteomic data and integration of existing protein information.

    PubMed

    Yu, Kebing; Salomon, Arthur R

    2009-12-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.

  10. Volumetric analysis of cerebrospinal fluid and brain parenchyma in a patient with hydranencephaly and macrocephaly--case report.

    PubMed

    Radoš, Milan; Klarica, Marijan; Mučić-Pucić, Branka; Nikić, Ines; Raguž, Marina; Galkowski, Valentina; Mandić, Dora; Orešković, Darko

    2014-08-28

    The aim of this study was to perform for the first time the intracranial volumetric analysis of cerebrospinal fluid (CSF) and brain parenchyma in the supratentorial and infratentorial space in a 30-year-old female patient with hydranencephaly and macrocephaly. A head scan performed using a 3T magnetic resonance was followed by manual segmentation of the brain parenchyma and CSF on T2 coronal brain sections. The volume of CSF and brain parenchyma was measured separately for the supratentorial and infratentorial space. The total volume of the intracranial space was 3645.5 cm3. In the supratentorial space, the volume of CSF was 3375.2 cm3 and the volume of brain parenchyma was 80.3 cm3. In the infratentorial space, the volume of CSF was 101.3 cm3 and the volume of the brain parenchyma was 88.7 cm3. In the supratentorial space, there was severe malacia of almost all brain parenchyma with no visible remnants of the choroid plexuses. Infratentorial structures of the brainstem and cerebellum were hypoplastic but completely developed. Since our patient had no choroid plexuses in the supratentorial space and no obstruction between dural sinuses and CSF, development of hydrocephalus and macrocephaly cannot be explained by the classic hypothesis of CSF physiology with secretion, unidirectional circulation, and absorption as its basic postulates. However, the origin and turnover of the enormous amount of intracranial CSF volume, at least 10-fold larger than normal, and the mechanisms of macroencephaly development could be elucidated by the new hypothesis of CSF physiology recently published by our research team.

  11. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF–induced neutrophil recruitment

    PubMed Central

    Phan, Vernon T.; Wu, Xiumin; Cheng, Jason H.; Sheng, Rebecca X.; Chung, Alicia S.; Zhuang, Guanglei; Tran, Christopher; Song, Qinghua; Kowanetz, Marcin; Sambrone, Amy; Tan, Martha; Meng, Y. Gloria; Jackson, Erica L.; Peale, Franklin V.; Junttila, Melissa R.; Ferrara, Napoleone

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) promotes mobilization of CD11b+Gr1+ myeloid cells and has been implicated in resistance to anti-VEGF therapy in mouse models. High G-CSF production has been associated with a poor prognosis in cancer patients. Here we show that activation of the RAS/MEK/ERK pathway regulates G-CSF expression through the Ets transcription factor. Several growth factors induced G-CSF expression by a MEK-dependent mechanism. Inhibition of G-CSF release with a MEK inhibitor markedly reduced G-CSF production in vitro and synergized with anti-VEGF antibodies to reduce CD11b+Ly6G+ neutrophil mobilization and tumor growth and led to increased survival in animal models of cancer, including a genetically engineered mouse model of pancreatic adenocarcinoma. Analysis of biopsies from pancreatic cancer patients revealed increased phospho-MEK, G-CSF, and Ets expression and enhanced neutrophil recruitment compared with normal pancreata. These results provide insights into G-CSF regulation and on the mechanism of action of MEK inhibitors and point to unique anticancer strategies. PMID:23530240

  12. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.

    PubMed

    Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T

    1986-10-01

    After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.

  13. Rapid spontaneous cerebrospinal fluid leak detected in the gastrointestinal tract.

    PubMed

    Ma, Hong Yun; Sen, Papia; Stein, Evan G; Freeman, Leonard M

    2014-02-01

    There are many causes of cerebrospinal (CSF) leaks. Most cases are secondary to blunt trauma and iatrogenic trauma caused by postoperative sequelae. Occasionally, CSF leakage may occur from nontraumatic or "spontaneous" causes, such as benign intracranial hypertension and "empty sella syndrome." Mass effect due to an encephalocele or meningocele may also be seen. Radionuclide cisternography is a sensitive method of determining CSF leak when combined with intranasal cotton pledget placement and analysis. We present a spontaneous CSF fluid leak that was detected when scintigraphic activity appeared first in the gastrointestinal tract.

  14. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and  phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  15. CPTAC Releases Largest-Ever Ovarian Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).  This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.

  16. Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality.

    PubMed

    Presneill, J J; Waring, P M; Layton, J E; Maher, D W; Cebon, J; Harley, N S; Wilson, J W; Cade, J F

    2000-07-01

    To define the circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) during critical illness and to determine their relationship to the severity of illness as measured by the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the development of multiple organ dysfunction, or mortality. Prospective cohort study. University hospital intensive care unit. A total of 82 critically ill adult patients in four clinically defined groups, namely septic shock (n = 29), sepsis without shock (n = 17), shock without sepsis (n = 22), and nonseptic, nonshock controls (n = 14). None. During day 1 of septic shock, peak plasma levels of G-CSF, interleukin (IL)-6, and leukemia inhibitory factor (LIF), but not GM-CSF, were greater than in sepsis or shock alone (p < .001), and were correlated among themselves (rs = 0.44-0.77; p < .02) and with the APACHE II score (rs = 0.25-0.40; p = .03 to .18). G-CSF, IL-6, and UF, and sepsis, shock, septic shock, and APACHE II scores were strongly associated with organ dysfunction or 5-day mortality by univariate analysis. However, multiple logistic regression analysis showed that only septic shock remained significantly associated with organ dysfunction and only APACHE II scores and shock with 5-day mortality. Similarly, peak G-CSF, IL-6, and LIF were poorly predictive of 30-day mortality. Plasma levels of G-CSF, IL-6, and LIF are greatly elevated in critical illness, including septic shock, and are correlated with one another and with the severity of illness. However, they are not independently predictive of mortality, or the development of multiple organ dysfunction. GM-CSF was rarely elevated, suggesting different roles for G-CSF and GM-CSF in human septic shock.

  17. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions.

    PubMed

    Hiemstra, Ida H; van Hamme, John L; Janssen, Machiel H; van den Berg, Timo K; Kuijpers, Taco W

    2017-03-01

    Granulocyte transfusion (GTX) is a potential approach to correcting neutropenia and relieving the increased risk of infection in patients who are refractory to antibiotics. To mobilize enough granulocytes for transfusion, healthy donors are premedicated with granulocyte-colony-stimulating factor (G-CSF) and dexamethasone. Granulocytes have a short circulatory half-life. Consequently, patients need to receive GTX every other day to keep circulating granulocyte counts at an acceptable level. We investigated whether plasma from premedicated donors was capable of prolonging neutrophil survival and, if so, which factor could be held responsible. The effects of plasma from G-CSF/dexamethasone-treated donors on neutrophil survival were assessed by annexin-V, CD16. and CXCR4 staining and nuclear morphology. We isolated an albumin-bound protein using α-chymotrypsin and albumin-depletion and further characterized it using protein analysis. The effects of dexamethasone and G-CSF were assessed using mifepristone and G-CSF-neutralizing antibody. G-CSF plasma concentrations were determined by Western blot and Luminex analyses. G-CSF/dexamethasone plasma contained a survival-promoting factor for at least 2 days. This factor was recognized as an albumin-associated protein and was identified as G-CSF itself, which was surprising considering its reported half-life of only 4.5 hours. Compared with coadministration of dexamethasone, administration of G-CSF alone to the same GTX donors led to a faster decline in circulating G-CSF levels, whereas dexamethasone itself did not induce any G-CSF, demonstrating a role for dexamethasone in increasing G-CSF half-life. Dexamethasone increases granulocyte yield upon coadministration with G-CSF by extending G-CSF half-life. This observation might also be exploited in the coadministration of dexamethasone with other recombinant proteins to modulate their half-life. © 2016 AABB.

  18. Cerebrospinal fluid white cell count: discriminatory or otherwise for enteroviral meningitis in infants and young children?

    PubMed

    Tan, Natalie Woon Hui; Lee, Elis Yuexian; Khoo, Gloria Mei Chin; Tee, Nancy Wen Sim; Krishnamoorthy, Subramania; Choong, Chew Thye

    2016-04-01

    Non-polio enteroviruses (EV) are the most common viruses causing aseptic meningitis in children. We aim to evaluate the cerebrospinal fluid (CSF) characteristics of neonates and children with EV meningitis with a view to determine whether it could be discriminatory or otherwise in making a positive diagnosis. We performed a 3-year (July 2008-July 2011) retrospective study of children ≤16 years, treated at a tertiary children's hospital, with positive CSF EV polymerase chain reaction (PCR) and negative blood and CSF bacterial cultures. A total of 206 children were studied. The median CSF white cell count was 79 cells/mm(3) (range 0-4608 cells/mm(3)). CSF pleocytosis was observed in 99/150 (66%) aged ≤90 days, 3/4 (75%) aged 90 days-1 year, and 49/52 (94%) children ≥3 years. There was a huge variability in CSF pleocytosis in infants ≤90 days, where 34% of them had no pleocytosis, while in 66%, a wide range of pleocytosis that might even suggest bacterial meningitis was noted. CSF red cells were low, and protein or sugar values were not discriminatory. CSF pleocytosis in relation to increasing age was found to be statistically significant (p < 0.001). Early lumbar puncture within 48 h of symptoms and absence of CSF pleocytosis was also statistically significant (p = 0.039). CSF pleocytosis in EV meningitis is commoner in older children. As there was a huge variability in CSF pleocytosis in infants ≤90 days particularly, CSF analysis including EV PCR could avoid unnecessary antibiotic therapy.

  19. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  20. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  1. PeptideDepot: Flexible Relational Database for Visual Analysis of Quantitative Proteomic Data and Integration of Existing Protein Information

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2010-01-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through tandem mass spectrometry (MS/MS). Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to a variety of experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our High Throughput Autonomous Proteomic Pipeline (HTAPP) used in the automated acquisition and post-acquisition analysis of proteomic data. PMID:19834895

  2. CSF profile in primary progressive multiple sclerosis: Re-exploring the basics.

    PubMed

    Abdelhak, Ahmed; Hottenrott, Tilman; Mayer, Christoph; Hintereder, Gudrun; Zettl, Uwe K; Stich, Oliver; Tumani, Hayrettin

    2017-01-01

    The aim of this study was to report the basic cerebrospinal fluid (CSF) profile in patients with primary progressive multiple sclerosis (PPMS). The results of CSF analysis from 254 patients with PPMS were collected at four university hospitals in Germany. Routine CSF parameters and different indices of intrathecal immunoglobulin synthesis were evaluated. We assessed possible correlations between the various CSF parameters and the expanded disability status scale (EDSS) both at the time of lumbar puncture and during the course of the disease. The median cell count and albumin concentration in the CSF did not deviate from normal values. The CSF-serum albumin-quotient (QALB) was elevated in 29.6% of the patients, while intrathecal immunoglobulin G (IgG) oligoclonal bands (OCBs) were detected in 91.1% of the patients. CSF-lactate levels as well as local IgM- and IgA-synthesis were correlated with the yearly disease progression rate, as assessed by EDSS. We present the results of the hitherto largest and most detailed CSF biomarker profile in a cohort of 254 patients with PPMS. As reported previously, OCBs are the most sensitive marker for intrathecal IgG synthesis. CSF-lactate concentrations are positively correlated with the progression rate, which might suggest that mitochondrial dysfunction plays a relevant role in PPMS. The negative correlation between intrathecally produced IgM and IgA and disease progression may indicate their hitherto unexplored protective role.

  3. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    PubMed

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2018-02-01

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  4. New Funding Opportunity Announcements (FOAs): Reissuance of Clinical Proteomic Tumor Analysis Consortium (CPTAC) | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute is soliciting applications for the reissuance of its Clinical Proteomic Tumor Analysis Consortium (CPTAC) program.   CPTAC will support broad efforts focused on several cancer types to explore further the complexities of cancer proteomes and their connections to abnormalities in cancer genomes.

  5. Knowledge-base for interpretation of cerebrospinal fluid data patterns. Essentials in neurology and psychiatry.

    PubMed

    Reiber, Hansotto

    2016-06-01

    The physiological and biophysical knowledge base for interpretations of cerebrospinal fluid (CSF) data and reference ranges are essential for the clinical pathologist and neurochemist. With the popular description of the CSF flow dependent barrier function, the dynamics and concentration gradients of blood-derived, brain-derived and leptomeningeal proteins in CSF or the specificity-independent functions of B-lymphocytes in brain also the neurologist, psychiatrist, neurosurgeon as well as the neuropharmacologist may find essentials for diagnosis, research or development of therapies. This review may help to replace the outdated ideas like "leakage" models of the barriers, linear immunoglobulin Index Interpretations or CSF electrophoresis. Calculations, Interpretations and analytical pitfalls are described for albumin quotients, quantitation of immunoglobulin synthesis in Reibergrams, oligoclonal IgG, IgM analysis, the polyspecific ( MRZ- ) antibody reaction, the statistical treatment of CSF data and general quality assessment in the CSF laboratory. The diagnostic relevance is documented in an accompaning review.

  6. Qualitative metabolome analysis of human cerebrospinal fluid by 13C-/12C-isotope dansylation labeling combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by (13)C-dansyl and (12)C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner. © American Society for Mass Spectrometry, 2011

  7. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  8. High-performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge--a review.

    PubMed

    Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin

    2013-04-24

    Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children

    PubMed Central

    2014-01-01

    Background Cerebrospinal fluid (CSF) lactate is a potential biomarker for bacterial meningitis in children. To this end, we performed a single-center retrospective cohort study of children from Sao Paulo, Brazil, with CSF pleocytosis to evaluate the ability of CSF lactate to distinguish between children with bacterial and aseptic meningitis. We determined the optimum cutoff point for CSF lactate using receiver-operator curve (ROC) analysis. Findings We identified 451 children of whom 40 (9%) had bacterial meningitis. Children with bacterial meningitis had a higher median CSF lactate level [9.6 mmol/l, interquartile range (IQR) 3.2-38.5 mmol/l bacterial meningitis vs. 2.0 mmol/l, IQR 1.2-2.8 mmol/l aseptic meningitis]. A CSF lactate cutoff point of 3.0 mmol/l had a sensitivity of 95% [95% confidence interval (CI) 83-99%), specificity of 94% (95% CI 90-96%) and negative predictive value of 99.3% (95% CI 97.7-99.9%) for bacterial meningitis. Conclusions In combination with a validated meningitis clinical prediction rule, the CSF lactate level can be used to distinguish between bacterial and aseptic meningitis in children with CSF pleocytosis. PMID:24576334

  10. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children.

    PubMed

    Mekitarian Filho, Eduardo; Horita, Sérgio Massaru; Gilio, Alfredo Elias; Nigrovic, Lise E

    2014-02-27

    Cerebrospinal fluid (CSF) lactate is a potential biomarker for bacterial meningitis in children. To this end, we performed a single-center retrospective cohort study of children from Sao Paulo, Brazil, with CSF pleocytosis to evaluate the ability of CSF lactate to distinguish between children with bacterial and aseptic meningitis. We determined the optimum cutoff point for CSF lactate using receiver-operator curve (ROC) analysis. We identified 451 children of whom 40 (9%) had bacterial meningitis. Children with bacterial meningitis had a higher median CSF lactate level [9.6 mmol/l, interquartile range (IQR) 3.2-38.5 mmol/l bacterial meningitis vs. 2.0 mmol/l, IQR 1.2-2.8 mmol/l aseptic meningitis]. A CSF lactate cutoff point of 3.0 mmol/l had a sensitivity of 95% [95% confidence interval (CI) 83-99%), specificity of 94% (95% CI 90-96%) and negative predictive value of 99.3% (95% CI 97.7-99.9%) for bacterial meningitis. In combination with a validated meningitis clinical prediction rule, the CSF lactate level can be used to distinguish between bacterial and aseptic meningitis in children with CSF pleocytosis.

  11. CPTAC | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis, or proteogenomics.

  12. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.

  13. A UPLC-MS/MS method for analysis of vancomycin in human cerebrospinal fluid and comparison with the chemiluminescence immunoassay.

    PubMed

    Mei, Shenghui; Wang, Jiaqing; Zhu, Leting; Chen, Ruiling; Li, Xingang; Chen, Kai; Chen, Guangqiang; Zhou, Jianxin; Wang, Qiang; Zhao, Zhigang

    2017-08-01

    Vancomycin (VCM) is clinically used in treating patients with postoperative intracranial infections. The cerebrospinal fluid (CSF) concentration of VCM varies greatly among patients. To guide the dosage regimens, monitoring of VCM in CSF is needed. However a method for analysis of VCM in human CSF is lacking. An ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed and validated for analysis of VCM in human CSF, and the agreement of UPLC-MS/MS and chemiluminescence immunoassay (CLIA) in the analysis of CSF VCM was evaluated. The ion transitions were m/z 725.5 > 144.1 for VCM and m/z 455.2 > 308.2 for methotrexate (internal standard). The agreement between UPLC-MS/MS and CLIA was evaluated by Bland-Altman plot in 179 samples. The calibration range of the UPLC-MS/MS method was 1-400 mg/L. The inaccuracy and imprecision were -0.69-10.80% and <4.95%. The internal standard normalized recovery and matrix factor were 86.14-99.31 and 85.84-92.07%, respectively. The measurements of CLIA and UPLC-MS/MS were strongly correlated (r > 0.98). The 95% limit of agreement of the ratio of CLIA to UPLC-MS/MS was 61.66-107.40%. Further studies are warranted to confirm the results. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System.

    PubMed

    Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2017-03-01

    CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension. SIGNIFICANCE STATEMENT Effective disposal of brain cellular waste products via CSF has been demonstrated repeatedly in animal models. However, CSF dynamics in humans are still poorly understood. A novel quantitative real-time MRI technique yielded in vivo CSF flow directions, velocities, and volumes in the human brain and upper spinal canal. CSF moved upward toward the head in response to forced inspiration. Concomitant analysis of brain venous blood flow indicated that CSF and venous flux act as closely communicating systems. The finding of a human CSF-venous network with upward CSF net movement opens new clinical concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and ideopathic intracranial hypertension. Copyright © 2017 the authors 0270-6474/17/372395-08$15.00/0.

  15. CSF neurofilament concentration reflects disease severity in frontotemporal degeneration

    PubMed Central

    Scherling, Carole S.; Hall, Tracey; Berisha, Flora; Klepac, Kristen; Karydas, Anna; Coppola, Giovanni; Kramer, Joel H.; Rabinovici, Gil; Ahlijanian, Michael; Miller, Bruce L.; Seeley, William; Grinberg, Lea T.; Rosen, Howard; Meredith, Jere; Boxer, Adam L.

    2014-01-01

    Objective Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD. Methods CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL. Results Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy. Interpretation CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted. PMID:24242746

  16. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  17. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  18. CSF beta-amyloid 1–42 – what are we measuring in Alzheimer's disease?

    PubMed Central

    Hu, William T; Watts, Kelly D; Shaw, Leslie M; Howell, Jennifer C; Trojanowski, John Q; Basra, Sundeep; Glass, Jonathan D; Lah, James J; Levey, Allan I

    2015-01-01

    Objective To characterize biological and technical factors which influence cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarker levels, including the presence of apolipoprotein E (APOE) ε4 allele, AD diagnosis, Aβ-binding proteins, sample processing, and preanalytical handling. Methods CSF was collected from 140 subjects with normal cognition, mild cognitive impairment, AD, and non-AD dementia. CSF levels of beta-amyloid 1–42 (Aβ42), total Tau (t-Tau), and Tau phosphorylated at threonine 181 (p-Tau181) were analyzed following the standard and modified protocols. CSF levels of apoJ, apoE, albumin, and α-synuclein were measured in a subgroup (n = 69), and their effects on measured AD biomarker levels were also determined in vitro using human CSF samples. Results CSF Aβ42 levels measured using the AD Neuro-imaging Initiative (ADNI) protocol (which we call suspended Aβ42 or susAβ) were lower than total measurable CSF Aβ42 in all groups, and on average represents 57% of the latter. Logistic regression analysis showed this proportion (% susAβ) to be directly correlated with CSF Aβ42 and apoJ levels, but inversely correlated with CSF t-Tau levels. Finally, we showed in vitro that increasing apoE and apoJ levels directly increased % susAβ. Conclusion CSF susAβ levels are influenced by biological and technical factors, and may represent a marker of Aβ susceptible to lipoprotein-mediated clearance. Clinical trials should include total measurable Aβ42 and susAβ to better inform outcomes. PMID:25750918

  19. Human body fluid proteome analysis

    PubMed Central

    Hu, Shen; Loo, Joseph A.; Wong, David T.

    2010-01-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142

  20. Human body fluid proteome analysis.

    PubMed

    Hu, Shen; Loo, Joseph A; Wong, David T

    2006-12-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.

  1. Feline meningoencephalomyelitis of unknown origin: A retrospective analysis of 16 cases

    PubMed Central

    Negrin, Arianna; Spencer, Sarah; Cherubini, Giunio Bruto

    2017-01-01

    This study aimed to describe the signalment, clinical signs, magnetic resonance imaging (MRI) findings, cerebrospinal fluid (CSF) analysis, treatment, and outcome of feline meningoencephalomyelitis of unknown origin (FMUO). Medical records from 16 cats meeting the inclusion criteria of CSF pleocytosis, negative CSF polymerase chain reaction (PCR)-infectious disease results, and characteristic MRI findings were retrospectively reviewed. Median age was 9.4 years. Clinical signs included ataxia, proprioceptive deficits, seizures, and spinal hyperesthesia. The CSF nucleated cell count was increased (median 70.7 cells/μL), with predominantly mixed pleocytosis and CSF protein concentration was increased in 15/16 cats. Magnetic resonance imaging showed intraparenchymal infiltrative ill-defined lesions in 13 cases. All cats received a corticosteroid-based treatment protocol; additional therapies included lomustine, cytarabine, and anticonvulsant medications. Mild neurological signs were recorded in 5/12 cats but 7/12 cats were neurologically normal at re-examination. This represents the first study of feline MUO, highlighting FMUO as an important differential diagnosis in cats with variable neurological presentation. Prognosis appears to be good with immunomodulatory therapy. PMID:28966357

  2. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reproducibility of Alzheimer’s Disease Cerebrospinal Fluid-Biomarker Measurements under Clinical Routine Conditions

    PubMed Central

    Vogelgsang, Jonathan; Wedekind, Dirk; Bouter, Caroline; Klafki, Hans-W.; Wiltfang, Jens

    2018-01-01

    Analysis of cerebrospinal fluid (CSF) is one of the key tools for the state-of-the-art differential diagnosis of dementias. Dementia due to Alzheimer’s disease (AD) is characterized by elevated CSF levels of total Tau (tTau) and phospho-181-Tau (pTau) and low CSF amyloid-β42 (Aβ42). Discrepancies in the laboratory analysis of human materials are well known and much effort has been put into harmonization procedures. In this study, we measured CSF biomarkers of more than 100 patients obtained under clinical routine conditions in two different clinical laboratories. The CSF biomarker levels obtained from the two different sites were significantly correlated: R2 = 0.7129 (tTau, p < 0.001), 0.7914 (pTau, p < 0.001), 0.5078 (Aβ42, p < 0.001), 0.5739 (Aβ40, p < 0.001), and 0.4308 (Aβ42/40, p < 0.001). However, the diagnostic classifications of the Aβ42, tTau, and pTau levels of identical subjects into normal versus pathological range made by the two different sites showed substantial discrepancies (31.5%, 29.6%, and 25.0% discordant cases, respectively). Applying Aβ42/40, instead of CSF Aβ42 alone, lead to a reduction of the discordant cases to 16.8%. Our findings suggest that CSF Aβ42/40 can outperform Aβ42 as a biomarker for AD neuropathology, not only under well-controlled study conditions but also in real life clinical routine. Thus, we recommend the inclusion of Aβ42/40 as a CSF biomarker in the diagnostic procedure. PMID:29439341

  4. Granulocyte colony-stimulating factor (G-CSF) positive effects on muscle fiber degeneration and gait recovery after nerve lesion in MDX mice

    PubMed Central

    Simões, Gustavo F; Benitez, Suzana U; Oliveira, Alexandre L R

    2014-01-01

    Background G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. Aims The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Methods Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75NTR and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Results Both groups treated with G-CSF showed increased p75NTR and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. Conclusions The reduction in p75NTR and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF. PMID:25328849

  5. Validation of α-Synuclein as a CSF Biomarker for Sporadic Creutzfeldt-Jakob Disease.

    PubMed

    Llorens, Franc; Kruse, Niels; Karch, André; Schmitz, Matthias; Zafar, Saima; Gotzmann, Nadine; Sun, Ting; Köchy, Silja; Knipper, Tobias; Cramm, Maria; Golanska, Ewa; Sikorska, Beata; Liberski, Pawel P; Sánchez-Valle, Raquel; Fischer, Andre; Mollenhauer, Brit; Zerr, Inga

    2018-03-01

    The analysis of cerebrospinal fluid (CSF) biomarkers gains importance in the differential diagnosis of prion diseases. However, no single diagnostic tool or combination of them can unequivocally confirm prion disease diagnosis. Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve high diagnostic accuracy in a variety of sample types due to their high sensitivity and dynamic range. Quantification of CSF α-synuclein (a-syn) by an in-house ECL-based ELISA assay has been recently reported as an excellent approach for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD), the most prevalent form of human prion disease. In the present study, we validated a commercially available ECL-based a-syn ELISA platform as a diagnostic test for correct classification of sCJD cases. CSF a-syn was analysed in 203 sCJD cases with definite diagnosis and in 445 non-CJD cases. We investigated reproducibility and stability of CSF a-syn and made recommendations for its analysis in the sCJD diagnostic workup. A sensitivity of 98% and a specificity of 97% were achieved when using an optimal cut-off of 820 pg/mL a-syn. Moreover, we were able to show a negative correlation between a-syn levels and disease duration suggesting that CSF a-syn may be a good prognostic marker for sCJD patients. The present study validates the use of a-syn as a CSF biomarker of sCJD and establishes the clinical and pre-analytical parameters for its use in differential diagnosis in clinical routine. Additionally, the current test presents some advantages compared to other diagnostic approaches: it is fast, economic, requires minimal amount of CSF and a-syn levels are stable along disease progression.

  6. Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey.

    PubMed

    Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A

    2017-08-01

    A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.

  7. HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment

    PubMed Central

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W.; Gisslén, Magnus

    2010-01-01

    Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Methods. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Results. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54–213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Conclusions. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice. PMID:21050119

  8. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.

    PubMed

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus

    2010-12-15

    Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.

  9. Bacterial meningoencephalomyelitis in dogs: a retrospective study of 23 cases (1990-1999).

    PubMed

    Radaelli, Simona T; Platt, Simon R

    2002-01-01

    The clinical records of 23 dogs (1990-1999) with histopathologically confirmed bacterial meningoencephalomyelitis were evaluated retrospectively. No breed, age, sex, or weight predisposition was found. All the dogs presented with clinical signs of a brain lesion, whereas 5 of 23 had neck pain. Pyrexia was detected in 11 of 23 dogs on admission. CBCs revealed neutrophilic leucocytosis in 7 of 21 dogs and thrombocytopenia in 3 of 21 dogs. The serum chemistry profiles were abnormal in 15 of 21 dogs. The results of cerebrospinal fluid (CSF) analysis were abnormal in 13 of 14 dogs and aerobic CSF culture was positive for bacteria in 1of 8 samples. At postmortem examination, the lesions were localized to the central nervous system. Escherichia coli, Streptococcus, and Klebsiella spp were the most frequently isolated bacteria from cultures collected at postmortem examination. Twelve papers reporting 51 total clinical cases of canine bacterial meningoencephalomyelitis were reviewed. The clinical signs and results of the CBC, serum chemistry, blood culture, and CSF analysis were collated and compared with those of this study. The results of the CSF analysis in this study were similar to those in the literature. CSF cultures documented in the literature were positive for Staphylococcus, Pasteurella. Actinomyces, Nocardia spp, and various anaerobic species including Peptostreptococcus, Eubacterium, and Bacteroides spp.

  10. MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data

    PubMed Central

    Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko

    2007-01-01

    Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892

  11. Decreased levels of guanosine 3', 5'-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease.

    PubMed

    Ugarte, Ana; Gil-Bea, Francisco; García-Barroso, Carolina; Cedazo-Minguez, Ángel; Ramírez, M Javier; Franco, Rafael; García-Osta, Ana; Oyarzabal, Julen; Cuadrado-Tejedor, Mar

    2015-06-01

    Levels of the cyclic nucleotides guanosine 3', 5'-monophosphate (cGMP) or adenosine 3', 5'-monophosphate (cAMP) that play important roles in memory processes are not characterized in Alzheimer's disease (AD). The aim of this study was to analyse the levels of these nucleotides in cerebrospinal fluid (CSF) samples from patients diagnosed with clinical and prodromal stages of AD and study the expression level of the enzymes that hydrolyzed them [phosphodiesterases (PDEs)] in the brain of AD patients vs. For cGMP and cAMP CSF analysis, the cohort (n = 79) included cognitively normal participants (subjective cognitive impairment), individuals with stable mild cognitive impairment or AD converters (sMCI and cMCI), and mild AD patients. A high throughput liquid chromatography-tandem mass spectrometry method was used. Interactions between CSF cGMP or cAMP with mini-mental state examination (MMSE) score, CSF Aβ(1-42) and CSF p-tau were analysed. For PDE4, 5, 9 and 10 expression analysis, brains of AD patients vs. controls (n = 7 and n = 8) were used. cGMP, and not cAMP levels, were significantly lower in the CSF of patients diagnosed with mild AD when compared with nondemented controls. CSF levels of cGMP showed a significant association with MMSE-diagnosed clinical dementia and with CSF biomarker Aβ42 in AD patients. Significant increase in PDE5 expression was detected in temporal cortex of AD patients compared with that of age-matched healthy control subjects. No changes in the expression of others PDEs were detected. These results support the potential involvement of cGMP in the pathological and clinical development of AD. The cGMP reduction in early stages of AD might participate in the aggravation of amyloid pathology and cognitive decline. © 2014 British Neuropathological Society.

  12. Colony-stimulating factor use and impact on febrile neutropenia among patients with newly diagnosed breast, colorectal, or non-small cell lung cancer who were receiving chemotherapy.

    PubMed

    McCune, Jeannine S; Sullivan, Sean D; Blough, David K; Clarke, Lauren; McDermott, Cara; Malin, Jennifer; Ramsey, Scott

    2012-01-01

    To determine the impact of primary prophylactic colony-stimulating factor (CSF) use on febrile neutropenia in a large patient population receiving contemporary chemotherapy regimens to treat breast cancer, colorectal cancer, or non-small cell lung cancer (NSCLC). Retrospective claims analysis. The Surveillance, Epidemiology, and End Results (SEER)-Puget Sound cancer registry and insurance claims records. A total of 2728 patients aged 25 years or older who received a diagnosis of breast cancer (998 patients), colorectal cancer (688 patients), or NSCLC (1042 patients) between January 1, 2002, and December 31, 2005, and received chemotherapy. Initial chemotherapy regimen, CSF use (filgrastim or pegfilgrastim), and febrile neutropenia events were evaluated after the first chemotherapy administration. Subsequently, febrile neutropenia rates in patients receiving primary prophylactic CSF were compared with febrile neutropenia rates in patients receiving CSF in settings other than primary prophylaxis or not at all. The impact of primary prophylactic CSF could not be assessed for patients with colorectal cancer or NSCLC because only 1 and 18 febrile neutropenia events, respectively, occurred in those receiving primary prophylactic CSF. Of the 998 patients with breast cancer, 72 (7.2%) experienced febrile neutropenia, 28 of whom received primary prophylactic CSF. In the patients with breast cancer, we observed that primary prophylactic CSF use was associated with reduced febrile neutropenia rates; however, the analysis may have been confounded by unmeasured factors associated with febrile neutropenia. The impact of primary prophylactic CSFs on febrile neutropenia rates could not be demonstrated. Given the substantive cost of CSFs to pharmacy budgets, there are numerous opportunities for pharmacists to optimize CSF use. Research studies are needed to evaluate if guideline-directed prescribing of primary prophylactic CSFs can improve clinical outcomes. © 2012 Pharmacotherapy Publications, Inc.

  13. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  14. Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function.

    PubMed

    Bakherad, Hamid; Gargari, Seyed Latif Mousavi; Sepehrizadeh, Zargham; Aghamollaei, Hossein; Taheri, Ramezan Ali; Torshabi, Maryam; Yazdi, Mojtaba Tabatabaei; Ebrahimizadeh, Walead; Setayesh, Neda

    2017-09-01

    It has been shown that Granulocyte colony-stimulating factor (G-CSF) has a higher expression in malignant tumors, and anti-G-CSF therapy considerably decreases tumor growth, tumor vascularization and metastasis. Thus, blocking the signaling pathway of G-CSF could be beneficial in cancer therapy. This study is aimed at designing and producing a monoclonal nanobody that could act as an antagonist of G-CSF receptor. Nanobodies are the antigen binding fragments of camelid single-chain antibodies, also known as VHH. These fragments have exceptional properties which makes them ideal for tumor imaging and therapeutic applications. We have used our previously built nanobody phage libraries to isolate specific nanobodies to the G-CSF receptor. After a series of cross-reactivity and affinity experiments, two unique nanobodies were selected for functional analysis. Proliferation assay, real-time PCR and immunofluorescence assays were used to characterize these nanobodies. Finally, VHH26 nanobody that was able to specifically bind G-CSF receptor (G-CSF-R) on the surface of NFS60 cells and efficiently block G-CSF-R downstream signaling pathway in a dose-dependent manner was selected. This nanobody could be further developed into a valuable tool in tumor therapy and it forms a basis for additional studies in preclinical animal models. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Advantages with prophylactic PEG-rhG-CSF versus rhG-CSF in breast cancer patients receiving multiple cycles of myelosuppressive chemotherapy: an open-label, randomized, multicenter phase III study.

    PubMed

    Xie, Jie; Cao, Jun; Wang, Jing-Fen; Zhang, Bai-Hong; Zeng, Xiao-Hua; Zheng, Hong; Zhang, Yang; Cai, Li; Wu, Yu-Dong; Yao, Qiang; Zhao, Xiao-Chun; Mao, Wei-Dong; Jiang, Ai-Mei; Chen, Shao-Shui; Yang, Shun-E; Wang, Shu-Sen; Wang, Jian-Hong; Pan, Yue-Yin; Ren, Bi-Yong; Chen, Yan-Ju; Ouyang, Li-Zhi; Lei, Kai-Jian; Gao, Jing-Hua; Huang, Wen-He; Huang, Zhan; Shou, Tao; He, Yan-Ling; Cheng, Jing; Sun, Yang; Li, Wei-Ming; Cui, Shu-de; Wang, Xin; Rao, Zhi-Guo; Ma, Hu; Liu, Wei; Wu, Xue-Yong; Shen, Wei-Xi; Cao, Fei-Lin; Xiao, Ze-Min; Wu, Biao; Tian, Shu-Yan; Meng, Dong; Shen, Peng; Wang, Bi-Yun; Wang, Zhonghua; Zhang, Jian; Wang, Leiping; Hu, Xi-Chun

    2018-04-01

    PEG-rhG-CSF reduces neutropenia and improves chemotherapy safety. In China's registration trial (CFDA: 2006L01305), we assessed its efficacy and safety against rhG-CSF, and prospectively explored its value over multiple cycles of chemotherapy. In this open-label, randomized, multicenter phase 3 study, breast cancer patients (n = 569) were randomized to receive PEG-rhG-CSF 100 µg/kg, PEG-rhG-CSF 6 mg, or rhG-CSF 5 µg/kg/d after chemotherapy. The primary endpoints were the incidence and duration of grade 3/4 neutropenia during cycle 1. Secondary endpoints included the incidence and duration of grade 3/4 neutropenia during cycles 2-4, the incidence of febrile neutropenia, and the safety. A once-per-cycle PEG-rhG-CSF at either 100 µg/kg or 6 mg was not different from daily injections of rhG-CSF for either incidence or duration of grade 3/4 neutropenia. Interestingly, a substantial difference was noted during cycle 2, and the difference became bigger over cycles 3-4, reaching a statistical significance at cycle 4 in either incidence (P = 0.0309) or duration (P = 0.0289) favoring PEG-rhG-CSF. A significant trend toward a lower incidence of all-grade adverse events was noted at 129 (68.98%), 142 (75.53%), and 160 (82.47%) in the PEG-rhG-CSF 100 µg/kg and 6 mg and rhG-CSF groups, respectively (P = 0.0085). The corresponding incidence of grade 3/4 drug-related adverse events was 2/187 (1.07%), 1/188 (0.53%), and 8/194 (4.12%), respectively (P = 0.0477). Additionally, PFS in metastatic patients preferred PEG-rhG-CSF to rhG-CSF despite no significance observed by Kaplan-Meier analysis (n = 49, P = 0.153). PEG-rhG-CSF is a more convenient and safe formulation and a more effective prophylactic measure in breast cancer patients receiving multiple cycles of chemotherapy.

  16. Mobilizing peripheral blood stem cells with high-dose G-CSF alone is as effective as with Dexa-BEAM plus G-CSF in lymphoma patients.

    PubMed

    Kröger, N; Zeller, W; Fehse, N; Hassan, H T; Krüger, W; Gutensohn, K; Lölliger, C; Zander, A R

    1998-09-01

    We compared retrospectively the efficacy of granulocyte colony stimulating factor (G-CSF) alone with chemotherapy plus G-CSF in mobilizing CD34-positive cells in patients with malignant lymphoma. 35 patients underwent peripheral blood stem cell (PBSC) collection following mobilization either with 24 microg/kg G-CSF for 4 consecutive days (n = 18) or Dexa-BEAM chemotherapy plus 5 microg/kg G-CSF (n = 17). High-dose G-CSF was well tolerated with only slight bone pain and/or myalgia. The Dexa-BEAM therapy required hospitalization with a median duration of 21 d. The median number of apheresis procedures in both groups was two (range two to four), resulting in a median of 5.3 and 5.1 x 10(6) CD34+ cells/kg. No patients in the G-CSF group, but one in the Dexa-BEAM group, failed to reach the target of collecting >2.0 x 10(6) CD34+ cells/kg. The number of CFU-GM (10.4 v 6.0 x 10(5)/kg) and of BFU-E (10.6 v 4.5 x 10(5)/kg; P = 0.04) was higher in the G-CSF group than in the Dexa-BEAM group. A subset analysis of CD34+ cells was performed in 16 patients showing a higher mean of Thy-1 (CD90w) coexpression in the G-CSF than in the Dexa-BEAM group (4.8 v 1.8%, P = 0.12). Additionally the percentage of CD34+/CD38- cells was higher in the G-CSF group (10.66% v 8.8%). However, these differences were not statistically significant. The median time to leucocyte and platelet engraftment after high-dose chemotherapy was slightly shorter in the G-CSF than in the Dexa-BEAM group (9 v 10 and 12 v 13.5 d, respectively). These results demonstrate that high-dose G-CSF is as effective as Dexa-BEAM plus G-CSF in mobilizing peripheral blood stem cells and produces prompt engraftment. The major advantages of G-CSF mobilization were the safe outpatient self-application and the fixed-day apheresis.

  17. Microdialysis Monitoring of CSF Parameters in Severe Traumatic Brain Injury Patients: A Novel Approach

    PubMed Central

    Thelin, Eric P.; Nelson, David W.; Ghatan, Per Hamid; Bellander, Bo-Michael

    2014-01-01

    Background: Neuro-intensive care following traumatic brain injury (TBI) is focused on preventing secondary insults that may lead to irreversible brain damage. Microdialysis (MD) is used to detect deranged cerebral metabolism. The clinical usefulness of the MD is dependent on the regional localization of the MD catheter. The aim of this study was to analyze a new method of continuous cerebrospinal fluid (CSF) monitoring using the MD technique. The method was validated using conventional laboratory analysis of CSF samples. MD-CSF and regional MD-Brain samples were correlated to patient outcome. Materials and Methods: A total of 14 patients suffering from severe TBI were analyzed. They were monitored using (1) a MD catheter (CMA64-iView, n = 7448 MD samples) located in a CSF-pump connected to the ventricular drain and (2) an intraparenchymal MD catheter (CMA70, n = 8358 MD samples). CSF-lactate and CSF-glucose levels were monitored and were compared to MD-CSF samples. MD-CSF and MD-Brain parameters were correlated to favorable (Glasgow Outcome Score extended, GOSe 6–8) and unfavorable (GOSe 1–5) outcome. Results: Levels of glucose and lactate acquired with the CSF-MD technique could be correlated to conventional levels. The median MD recovery using the CMA64 catheter in CSF was 0.98 and 0.97 for glucose and lactate, respectively. Median MD-CSF (CMA 64) lactate (p = 0.0057) and pyruvate (p = 0.0011) levels were significantly lower in the favorable outcome group compared to the unfavorable group. No significant difference in outcome was found using the lactate:pyruvate ratio (LPR), or any of the regional MD-Brain monitoring in our analyzed cohort. Conclusion: This new technique of global MD-CSF monitoring correlates with conventional CSF levels of glucose and lactate, and the MD recovery is higher than previously described. Increase in lactate and pyruvate, without any effect on the LPR, correlates to unfavorable outcome, perhaps related to the presence of erythrocytes in the CSF. PMID:25228896

  18. Safety of Lumbar Puncture Procedures in Patients with Alzheimer's Disease

    PubMed Central

    Peskind, E.; Nordberg, A.; Darreh-Shori, T.; Soininen, H.

    2014-01-01

    Changes in cerebrospinal fluid (CSF) biomarkers are representative of biochemical changes in the brain. Collection of CSF by lumbar puncture (LP) is essential for biomarker analysis, which is important for research in neurodegenerative disorders. However, LP for research purposes has been controversial due to a reported high incidence of severe LP headache when using standard 18g or 20g Quincke needles with a beveled cutting tip. A procedural safety analysis was performed using the database of a multicenter, 13-week study of CSF cholinesterase activity. A 24g Sprotte atraumatic needle was used to collect CSF at baseline and at Week 13 from 63 older patients with mild to moderate Alzheimer's disease. There was a < 2% LP headache incidence, and a favorable safety profile was reported. In conclusion, LP performed with a 24g Sprotte atraumatic needle (blunt, “bullet” tip) was a well-tolerated procedure, with good acceptability. PMID:19519311

  19. An 8-month history of meningitis in an extremely low birth weight infant? - Long-lasting Infection with Ureaplasma parvum.

    PubMed

    Glaser, K; Wohlleben, M; Speer, C P

    2015-02-01

    Ureaplasma spp. have been implicated in the pathogenesis of both preterm labor and neonatal morbidity including pneumonia and sepsis and the development of chronic lung disease of prematurity. Data on Ureaplasma meningitis are limited and partly controversially discussed. We report the unique case of a 9-month-old infant with progressive internal hydrocephalus of unknown origin and developmental delay due to a history of>200 days of inflammation of the central nervous system. The female extremely low birth weight infant had been referred to our hospital for ventriculoperitoneal shunt implantation. She had been born at 26+3 weeks of gestation with a birth weight of 940 g. With the exception of a moderate respiratory distress syndrome, postnatal period had been reported uneventful. However, internal hydrocephalus had become manifest at 4 weeks of postnatal age. Intraventricular hemorrhage had not been documented by cranial ultrasound and magnetic resonance imaging. Cerebrospinal fluid (CSF) analysis had repetitively revealed pronounced inflammation reflected by pleocytosis (50-86 leukocytes/μL, 60% lymphocytes), CSF protein levels of 578-1,026 mg/dL and undetectable CSF glucose. Although suggesting bacterial meningitis, microbial diagnostics had not been indicative, and empirical antibiotics had not affected the CSF findings. On admission to our hospital, CSF analysis still documented significant inflammation (125 leukocytes/μL, CSF protein 565 mg/dL, CSF glucose<2 mg/dL). Due to a prenatal history of cerclage, we initiated microbial diagnostics on Ureaplasma spp. and Mycoplasma hominis. U. parvum was detected in CSF by culture and PCR, no other pathogens were isolated. On intravenous treatment with chloramphenicol, CSF profile continuously normalized, and cultures and PCR became negative. Treatment was continued for 3 weeks, and the infant was discharged after uncomplicated ventriculoperitoneal shunt placement. During a 12-month observation period she has shown encouraging recovery. In preterm infants, in particular, internal hydrocephalus of unknown origin and sustained CSF inflammation are highly suggestive of Ureaplasma meningitis. Our case highlights that infection may escape detection if not explicitly considered, since microbial diagnosis requires complex media and PCR. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  1. CPTAC Releases Cancer Proteome Confirmatory Colon Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory colon study data. The goal of the study is to analyze the proteomes of approximately 100 confirmatory colon tumor patients, which includes tumor and adjacent normal samples, with liquid chromatography-tandem mass spectrometry (LC-MS/MS) global proteomic and phosphoproteomic profiling.

  2. CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.

  3. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    PubMed Central

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Érica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF. PMID:24818039

  4. Validation of a real time PCR for classical Swine Fever diagnosis.

    PubMed

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Erica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves; Camargos, Marcelo Fernandes

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5'NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5'NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  5. CSF lactate for accurate diagnosis of community-acquired bacterial meningitis.

    PubMed

    Giulieri, S; Chapuis-Taillard, C; Jaton, K; Cometta, A; Chuard, C; Hugli, O; Du Pasquier, R; Bille, J; Meylan, P; Manuel, O; Marchetti, O

    2015-10-01

    CSF lactate measurement is recommended when nosocomial meningitis is suspected, but its value in community-acquired bacterial meningitis is controversial. We evaluated the diagnostic performance of lactate and other CSF parameters in a prospective cohort of adult patients with acute meningitis. Diagnostic accuracy of lactate and other CSF parameters in patients with microbiologically documented episodes was assessed by receiver operating characteristic (ROC) curves. The cut-offs with the best diagnostic performance were determined. Forty-five of 61 patients (74%) had a documented bacterial (n = 18; S. pneumoniae, 11; N. meningitidis, 5; other, 2) or viral (n = 27 enterovirus, 21; VZV, 3; other, 3) etiology. CSF parameters were significantly different in bacterial vs. viral meningitis, respectively (p < 0.001 for all comparisons): white cell count (median 1333 vs. 143/mm(3)), proteins (median 4115 vs. 829 mg/l), CSF/blood glucose ratio (median 0.1 vs. 0.52), lactate (median 13 vs. 2.3 mmol/l). ROC curve analysis showed that CSF lactate had the highest accuracy for discriminating bacterial from viral meningitis, with a cutoff set at 3.5 mmol/l providing 100% sensitivity, specificity, PPV, NPV, and efficiency. CSF lactate had the best accuracy for discriminating bacterial from viral meningitis and should be included in the initial diagnostic workup of this condition.

  6. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study.

    PubMed

    Thomas, Xavier; Raffoux, Emmanuel; Renneville, Aline; Pautas, Cecile; de Botton, Stephane; Terre, Christine; Gardin, Claude; Hayette, Sandrine; Preudhomme, Claude; Dombret, Herve

    2010-04-01

    : Priming with granulocytic hematopoietic growth factors may modulate cell cycle kinetics of leukemic cells and render them more susceptible to phase-specific chemotherapeutic agents. In a first report, we have shown that priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) may enhance complete remission (CR) rate and event-free survival (EFS) in younger adults with acute myeloid leukemia (AML). : In this randomized trial, 259 patients with AML were randomized at baseline to receive or not receive GM-CSF concurrently with all cycles of chemotherapy. The effects of GM-CSF on survival were reported herein with a long-term follow-up and studied according to distinct biological subgroups defined on cytogenetics and molecular markers. : The EFS rate was better in the GM-CSF group (43% vs 34%; P = .04). GM-CSF did not improve the outcome in patients from good risk subgroups, while patients from poor risk subgroups benefited from GM-CSF therapy. In this population, the difference in terms of EFS probability was mainly observed in patients with high initial white blood cell count and in those with FLT3-ITD or MLL rearrangement. When combining these 2 molecular abnormalities for comparison of the effect of GM-CSF priming, the difference in terms of EFS was highly significant (5-year EFS, 39% with GM-CSF vs 8% without GM-CSF; P = .007). : Sensitization of leukemic cells and their progenitors by GM-CSF appears as a plausible strategy for improving the outcome of patients with newly diagnosed AML. Patients with poor-prognosis FLT3-ITD or MLL rearrangement might be a good target population to further investigate priming strategies. Cancer 2010. (c) 2010 American Cancer Society.

  8. Lower CSF Aβ is Associated with HAND in HIV-Infected Adults with a Family History of Dementia

    PubMed Central

    Fazeli, Pariya. L.; Moore, David J.; Franklin, Donald R.; Umlauf, Anya; Heaton, Robert K.; Collier, Ann C.; Marra, Christina M.; Clifford, David B.; Gelman, Benjamin B.; Sacktor, Ned C.; Morgello, Susan; Simpson, David M.; McCutchan, John A.; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background Both family history of dementia (FHD) and lower levels of Aβ-42 are indepentently associated with worse neurocognitive functioning in HIV-infected patients. Objective To examine the relationships between cerebrospinal fluid (CSF) Aβ-42 and FHD with HIV-associated neurocognitive disorders (HAND). Methods One hundred eighty-three HIV+ adults underwent neuropsychological and neuromedical assessments, and determination of CSF Aβ-42 concentration and FHD (defined as a self-reported first or second-degree relative with a dementia diagnosis). Univariate analyses and multivariable logistic regressions were used. Results FHD was not associated with HAND (p = 0.24); however, CSF Aβ-42 levels were lower (p = 0.03) in the HAND group, but were not associated with FHD (p = 0.89). Multivariable models showed a main effect of CSF Aβ-42 (p = 0.03) and a trend-level (p = 0.06) interaction between FHD and CSF Aβ-42, such that lower CSF Aβ-42 was associated with HAND in those with FHD (p < 0.01) compared to those without FHD (p = 0.83). An analysis in those with follow-up data showed that higher baseline CSF Aβ-42 was associated with lower risk of neurocognitive decline (p = 0.02). While we did not find an FHD X CSF Aβ-42 interaction (p = 0.83), when analyses were stratified by FHD, lower CSF Aβ-42 was associated at the trend-level with neurocognitive decline in the FHD group (p = 0.08) compared to the no FHD group (p = 0.15). Conclusions FHD moderates the relationship between of CSF Aβ-42 and HAND. The findings highlight the complexities in interpreting the relationships between biomarkers of age-related neurodegeneration and HAND. PMID:26673902

  9. Plant proteome analysis: a 2006 update.

    PubMed

    Jorrín, Jesús V; Maldonado, Ana M; Castillejo, Ma Angeles

    2007-08-01

    This 2006 'Plant Proteomics Update' is a continuation of the two previously published in 'Proteomics' by 2004 (Canovas et al., Proteomics 2004, 4, 285-298) and 2006 (Rossignol et al., Proteomics 2006, 6, 5529-5548) and it aims to bring up-to-date the contribution of proteomics to plant biology on the basis of the original research papers published throughout 2006, with references to those appearing last year. According to the published papers and topics addressed, we can conclude that, as observed for the three previous years, there has been a quantitative, but not qualitative leap in plant proteomics. The full potential of proteomics is far from being exploited in plant biology research, especially if compared to other organisms, mainly yeast and humans, and a number of challenges, mainly technological, remain to be tackled. The original papers published last year numbered nearly 100 and deal with the proteome of at least 26 plant species, with a high percentage for Arabidopsis thaliana (28) and rice (11). Scientific objectives ranged from proteomic analysis of organs/tissues/cell suspensions (57) or subcellular fractions (29), to the study of plant development (12), the effect of hormones and signalling molecules (8) and response to symbionts (4) and stresses (27). A small number of contributions have covered PTMs (8) and protein interactions (4). 2-DE (specifically IEF-SDS-PAGE) coupled to MS still constitutes the almost unique platform utilized in plant proteome analysis. The application of gel-free protein separation methods and 'second generation' proteomic techniques such as multidimensional protein identification technology (MudPIT), and those for quantitative proteomics including DIGE, isotope-coded affinity tags (ICAT), iTRAQ and stable isotope labelling by amino acids in cell culture (SILAC) still remains anecdotal. This review is divided into seven sections: Introduction, Methodology, Subcellular proteomes, Development, Responses to biotic and abiotic stresses, PTMs and Protein interactions. Section 8 summarizes the major pitfalls and challenges of plant proteomics.

  10. CPTAC researchers report first large-scale integrated proteomic and genomic analysis of a human cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, provides a more comprehensive view of the biological features that drive cancer than genomic analysis alone and may help identify the most important targets for cancer detection and intervention.

  11. Perioperative Granulocyte Colony-Stimulating Factor Does Not Prevent Severe Infections in Patients Undergoing Esophagectomy for Esophageal Cancer

    PubMed Central

    Schaefer, Hartmut; Engert, Andreas; Grass, Guido; Mansmann, Georg; Wassmer, Gernot; Hubel, Kai; Loehlein, Dietrich; Ulrich, Bernward C.; Lippert, Hans; Knoefel, Wolfram T.; Hoelscher, Arnulf H.

    2004-01-01

    Objective: Esophagectomy for esophageal cancer is associated with substantial postoperative morbidity as a result of infectious complications. In a prior phase II study, granulocyte colony-stimulating factor (G-CSF) was shown to improve leukocyte function and to reduce infection rates after esophagectomy. The aim of the current randomized, placebo-controlled, multicenter phase III trial was to investigate the clinical efficacy of perioperative G-CSF administration in reducing infection and mortality after esophagectomy for esophageal cancer. Patients and Methods: One hundred fifty five patients with resectable esophageal cancer were randomly assigned to perioperative G-CSF at standard doses (77 patients) or placebo (76 patients), administered from 2 days before until day 7 after esophagectomy. The G-CSF and placebo groups were comparable as regards age, gender, risk, cancer stage, frequency of neoadjuvant radiochemotherapy, and type of esophagectomy (transthoracic or transhiatal esophageal resection). Results: Of 155 randomized patients, 153 were eligible for the intention-to-treat analysis. The rate of infection occurring within the first 10 days after esophagectomy was 43.4% (confidence interval 32.8–55.9%) in the placebo and 44.2% (confidence interval 32.1–55.3%) in the G-CSF group (P = 0.927). 30-day mortality amounted to 5.2% in the G-CSF group versus 5.3% in the placebo group (P = 0.985). Similar results were found in the per-protocol analysis. Conclusion: Perioperative administration of G-CSF failed to reduce postoperative morbidity, infection rate, or mortality in patients with esophageal cancer who underwent esophagectomy. PMID:15213620

  12. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients.

    PubMed

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-10-03

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with positive axillary lymph nodes. Prospectively, 40 women with stage IIIA to IIIC breast cancer received ddEC-P ± trastuzumab as adjuvant treatment. PEG-G-CSF was injected subcutaneously in a dose of 6 mg or 3 mg on the 2 th day of each treatment cycle. With administration of PEG-G-CSF, all of the 40 patients completed 8 cycles of ddEC-P ± trastuzumab regimen without dose reductions or treatment delays. Moreover, no FN cases were observed. Further analysis showed that the proper dosage of PEG-G-CSF was 6 mg for ddEC treatment, and 3 mg for ddP treatment. PEG-G-CSF exhibits advantages compared with G-CSF in convenient of administration and tolerance for high risk Chinese breast cancer patients. More importantly, the proper dose of PEG-G-CSF for high risk Chinese breast cancer patients during ddEC-P chemotherapy may be 6 mg for ddEC treatment and 3 mg for ddP treatment.

  13. A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration

    PubMed Central

    Tezel, Gülgün

    2013-01-01

    Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249

  14. FunRich proteomics software analysis, let the fun begin!

    PubMed

    Benito-Martin, Alberto; Peinado, Héctor

    2015-08-01

    Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.

    PubMed

    Tholey, Andreas; Becker, Alexander

    2017-11-01

    Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.

    PubMed

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2014-01-01

    Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.

  17. Analysis of rhG-CSF-effects on platelets by in vitro bleeding test and transcranial Doppler ultrasound examination.

    PubMed

    Söhngen, D; Wienen, S; Siebler, M; Boogen, C; Scheid, C; Schulz, A; Kobbe, G; Diehl, V; Heyll, A

    1998-12-01

    Experimental evidence suggests a stimulatory effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on both platelets and coagulation. RhG-CSF is increasingly used to stimulate healthy volunteer donors for blood stem cell mobilization. We therefore assessed 25 healthy donors receiving rhG-CSF for changes in in vitro bleeding test (IVBT), coagulation parameters and cerebral microembolism by transcranial Doppler (TCD) ultrasound. A significant shortening of IVBT was found on day 4 of rhG-CSF administration together with increased levels of fibrinogen and factor VIII and reduced activities of protein C and protein S. Although these changes are quite small it is possible that they may lead to a hypercoagulable state especially in donors with other risk factors for thromboembolism. However, TCD examination failed to detect any signs of microembolism. We therefore conclude that rhG-CSF leads to significant changes in coagulation parameters, but has no effect on TCD detectable microembolism as a stroke risk factor. However donors receiving rhG-CSF should be examined carefully to detect pre-existing changes in the coagulation system and we would like to suggest a routine thrombophilia screen.

  18. [Cerebrospinal fluid findings in chronic active Epstein-Barr virus infection with central nervous system involvement].

    PubMed

    Yoshimori, Mayumi; Imadome, Ken-Ichi; Tomii, Shohei; Yamamoto, Kouhei; Miura, Osamu; Arai, Ayako

    2018-01-01

    As chronic active Epstein-Barr virus (EBV) infection (CAEBV) progresses, EBV-infected tumor cells invade the central nervous system (CNS). To establish a diagnostic procedure for CNS invasion, we retrospectively analyzed cerebrospinal fluid (CSF) obtained from eight patients. Two patients presented with consciousness disturbance and were diagnosed with CNS invasion based on scan and autopsy results, respectively. The remaining six patients were diagnosed without CNS invasion by clinical findings and scans. In the two patients with CNS invasion, the number of mononuclear cells and the protein concentration were increased, whereas the CSF to serum glucose ratio and the adenosine deaminase concentration were raised. In one of the two patients, however, bacterial meningitis could not be excluded. Cytological examination of CSF demonstrated class 1-3. Notably, the CSF EBV-DNA load was positive in all patients, independent of CNS invasion diagnosis, and the CSF load correlated with that of the peripheral blood. Taken together, this indicates that CSF may lack the specific markers of CNS invasion in CAEBV patients. The CSF EBV-DNA load and the cytological analysis did not reflect CNS invasion; therefore, new biomarkers need to be established.

  19. Sarcocystis neurona-specific immunoglobulin G in the serum and cerebrospinal fluid of horses administered S neurona vaccine.

    PubMed

    Witonsky, Sharon; Morrow, Jennifer K; Leger, Clare; Dascanio, John; Buechner-Maxwell, Virginia; Palmer, Wally; Kline, Kristen; Cook, Anne

    2004-01-01

    A vaccine against Sarcocystis neurona, which induces equine protozoal myeloencephalitis (EPM), has received conditional licensure in the United States. A major concern is whether the immunoglobulin G (IgG) response elicited by the vaccine will compromise the use of Western blotting (WB) as a diagnostic tool in vaccinated horses with neurologic disease. Our goals were to determine if vaccination (1) causes seroconversion: (2) causes at least a transient increase in S neurona-specific IgG in the cerebrospinal fluid (CSF); and (3) induces an IgG response that can be differentiated from that induced by natural exposure. Horses included in the study (n = 29) were older than 6 months with no evidence of neurologic disease. The presence or absence of anti-S neurona antibodies in the serum of each horse was determined by WB analysis. Seropositive horses had CSF collected and submitted for cytology, CSF index, and WB analysis. The vaccine was administered to all the horses and boostered 3-4 weeks later. On day 14 after the 2nd administration, serum and CSF were collected and analyzed. Eighty-nine percent (8 of 9) of the initial seronegative horses seroconverted after vaccination, of which 57% (4 of 7) had anti-S neurona IgG in their CSE Eighty percent (16 of 20) of the seropositive horses had an increase in serum S neurona IgG after vaccination. Of the 6 of 20 horses that were initially seropositive/CSF negative, 2 were borderline positive for anti-S neurona IgG in the CSF, 2 tested positive, and 2 were excluded because the CSF sample had been contaminated by blood. There were no WB banding patterns that distinguished samples from horses that seroconverted due to vaccination versus natural exposure. Caution must be used in interpreting WB analysis from neurologic horses that have been recently vaccinated for EPM.

  20. Analysis of various tracts of mastoid air cells related to CSF leak after the anterior transpetrosal approach.

    PubMed

    Tamura, Ryota; Tomio, Ryosuke; Mohammad, Farrag; Toda, Masahiro; Yoshida, Kazunari

    2018-03-16

    OBJECTIVE The anterior transpetrosal approach (ATPA) was established in 1984 and has been particularly effective for petroclival tumors. Although some complications associated with this approach, such as venous hemorrhage in the temporal lobe and nervous disturbances, have been resolved over the years, the incidence rate of CSF leaks has not greatly improved. In this study, some varieties of air cell tracts that are strongly related to CSF leaks are demonstrated. In addition, other pre- and postoperative risk factors for CSF leakage after ATPA are discussed. METHODS Preoperative and postoperative target imaging of the temporal bone was performed in a total of 117 patients who underwent ATPA, and various surgery-related parameters were analyzed. RESULTS The existence of air cells at the petrous apex, as well as fluid collection in the mastoid antrum detected by a postoperative CT scan, were possible risk factors for CSF leakage. Tracts that directly connected to the antrum from the squamous part of the temporal bone and petrous apex, rather than through numerous air cells, were significantly related to CSF leak and were defined as "direct tract." All patients with a refractory CSF leak possessed "unusual tracts" that connected to the attic, tympanic cavity, or eustachian tube, rather than through the mastoid antrum. CONCLUSIONS Preoperative assessment of petrous pneumatization types is necessary to prevent CSF leaks. Direct and unusual tracts are particularly strong risk factors for CSF leaks.

  1. Evaluation and comparison of an indirect fluorescent antibody test for detection of antibodies to Sarcocystis neurona, using serum and cerebrospinal fluid of naturally and experimentally infected, and vaccinated horses.

    PubMed

    Duarte, Paulo C; Daft, Barbara M; Conrad, Patricia A; Packham, Andrea E; Saville, William J; MacKay, Robert J; Barr, Bradd C; Wilson, W David; Ng, Terry; Reed, Stephen M; Gardner, Ian A

    2004-04-01

    The objectives of this study were to evaluate the accuracy of the indirect fluorescent antibody test (IFAT) using serum and cerebrospinal fluid (CSF) of horses naturally and experimentally infected with Sarcocystis neurona, to assess the correlation between serum and CSF titers, and to determine the effect of S. neurona vaccination on the diagnosis of infection. Using receiver-operating characteristic analysis, the areas under the curve for the IFAT were 0.97 (serum) and 0.99 (CSF). Sensitivity and specificity were 83.3 and 96.9% (serum, cutoff 80) and 100 and 99% (CSF, cutoff 5), respectively. Titer-specific likelihood ratios (LRs) ranged from 0.03 to 187.8 for titers between <10 and 640. Median time to conversion was 22-26 days postinfection (DPI) (serum) and 30 DPI (CSF). The correlation between serum and CSF titers was moderately strong (r = 0.6) at 30 DPI. Percentage of vaccinated antibody-positive horses ranged from 0 to 95% between 0 and 112 days after the second vaccination. Thus, the IFAT was reliable and accurate using serum and CSF. Use of LRs potentially improves clinical decision making. Correlation between serum and CSF titers affects the joint accuracy of the IFAT; therefore, the ratio of serum to CSF titers has potential diagnostic value. The S. neurona vaccine could possibly interfere with equine protozoal myeloencephalitis diagnosis.

  2. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia

    PubMed Central

    2013-01-01

    Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312

  3. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau.

    PubMed

    Anderson, Albert M; Croteau, David; Ellis, Ronald J; Rosario, Debra; Potter, Michael; Guillemin, Gilles J; Brew, Bruce J; Woods, Steven Paul; Letendre, Scott L

    2018-06-15

    There is mounting evidence that prospective memory (PM) is impaired during HIV infection despite treatment. In this prospective study, 66 adults (43 HIV+ and 23 HIV negative) underwent PM assessment and cerebrospinal fluid (CSF) examination. HIV+ participants had significantly lower PM but significantly higher CSF concentrations of CXCL10 and quinolinic acid (QUIN). Higher CSF phosphorylated Tau (pTau) was associated with worse PM. In a secondary analysis excluding outliers, higher QUIN correlated with higher pTau. CSF QUIN is thus elevated during HIV infection despite antiretroviral therapy and could indirectly contribute to impaired PM by influencing the formation of pTau. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    PubMed

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2018-01-16

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  6. ProteoSign: an end-user online differential proteomics statistical analysis platform.

    PubMed

    Efstathiou, Georgios; Antonakis, Andreas N; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Divanach, Peter; Trudgian, David C; Thomas, Benjamin; Papanikolaou, Nikolas; Aivaliotis, Michalis; Acuto, Oreste; Iliopoulos, Ioannis

    2017-07-03

    Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  8. CSF Analysis

    MedlinePlus

    ... one or more hours to avoid a potential post-test headache. The lumbar puncture procedure usually takes less ... in CSF with laboratory tests such as molecular tests or culture. Parasitic meningitis or encephalitis are rare and can be lethal. One example is an infection caused by the free-living ...

  9. Derivative component analysis for mass spectral serum proteomic profiles.

    PubMed

    Han, Henry

    2014-01-01

    As a promising way to transform medicine, mass spectrometry based proteomics technologies have seen a great progress in identifying disease biomarkers for clinical diagnosis and prognosis. However, there is a lack of effective feature selection methods that are able to capture essential data behaviors to achieve clinical level disease diagnosis. Moreover, it faces a challenge from data reproducibility, which means that no two independent studies have been found to produce same proteomic patterns. Such reproducibility issue causes the identified biomarker patterns to lose repeatability and prevents it from real clinical usage. In this work, we propose a novel machine-learning algorithm: derivative component analysis (DCA) for high-dimensional mass spectral proteomic profiles. As an implicit feature selection algorithm, derivative component analysis examines input proteomics data in a multi-resolution approach by seeking its derivatives to capture latent data characteristics and conduct de-noising. We further demonstrate DCA's advantages in disease diagnosis by viewing input proteomics data as a profile biomarker via integrating it with support vector machines to tackle the reproducibility issue, besides comparing it with state-of-the-art peers. Our results show that high-dimensional proteomics data are actually linearly separable under proposed derivative component analysis (DCA). As a novel multi-resolution feature selection algorithm, DCA not only overcomes the weakness of the traditional methods in subtle data behavior discovery, but also suggests an effective resolution to overcoming proteomics data's reproducibility problem and provides new techniques and insights in translational bioinformatics and machine learning. The DCA-based profile biomarker diagnosis makes clinical level diagnostic performances reproducible across different proteomic data, which is more robust and systematic than the existing biomarker discovery based diagnosis. Our findings demonstrate the feasibility and power of the proposed DCA-based profile biomarker diagnosis in achieving high sensitivity and conquering the data reproducibility issue in serum proteomics. Furthermore, our proposed derivative component analysis suggests the subtle data characteristics gleaning and de-noising are essential in separating true signals from red herrings for high-dimensional proteomic profiles, which can be more important than the conventional feature selection or dimension reduction. In particular, our profile biomarker diagnosis can be generalized to other omics data for derivative component analysis (DCA)'s nature of generic data analysis.

  10. Tumor Cold Ischemia | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.

  11. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    PubMed

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  12. G-CSF plus preemptive plerixafor vs hyperfractionated CY plus G-CSF for autologous stem cell mobilization in multiple myeloma: effectiveness, safety and cost analysis.

    PubMed

    Antar, A; Otrock, Z K; Kharfan-Dabaja, M A; Ghaddara, H A; Kreidieh, N; Mahfouz, R; Bazarbachi, A

    2015-06-01

    The optimal stem cell mobilization regimen for patients with multiple myeloma (MM) remains undefined. We retrospectively compared our experience in hematopoietic cell mobilization in 83 MM patients using fractionated high-dose CY and G-CSF with G-CSF plus preemptive plerixafor. All patients in the CY group (n=56) received fractionated high-dose CY (5 g/m(2) divided into five doses of 1 g/m(2) every 3 h) with G-CSF. All patients in the plerixafor group (n=27) received G-CSF and plerixafor preemptively based on an established algorithm. Compared with plerixafor, CY use was associated with higher total CD34+ cell yield (7.5 × 10(6) vs 15.5 × 10(6) cells/kg, P=0.005). All patients in both groups yielded ⩾4 × 10(6) CD34+ cells/kg. Conversely, CY use was associated with high frequency of febrile neutropenia, blood and platelet transfusions need and hospitalizations. The average total cost of mobilization in Lebanon was slightly higher in the plerixafor group ($7886 vs $7536; P=0.16). Our data indicate robust stem cell mobilization in MM patients with either fractionated high-dose CY and G-CSF or G-CSF alone with preemptive plerixafor. The chemo-mobilization approach was associated with twofold stem cell yield, slightly lower cost but significantly increased toxicity.

  13. Mortality of Dandy-Walker syndrome in the United States: Analysis by race, gender, and insurance status.

    PubMed

    McClelland, Shearwood; Ukwuoma, Onyinyechi I; Lunos, Scott; Okuyemi, Kolawole S

    2015-01-01

    Dandy-Walker syndrome (DWS) is a congenital disorder often diagnosed in early childhood. Typically manifesting with signs/symptoms of increased intracranial pressure, DWS is catastrophic unless timely neurosurgical care can be administered via cerebrospinal fluid (CSF) drainage. The rates of mortality, adverse discharge disposition (ADD), and CSF drainage in DWS may not be uniform regardless of race, gender or insurance status; such differences could reflect disparities in access to neurosurgical care. This study examines these issues on a nationwide level. The Kids' Inpatient Database spanning 1997-2003 was used for analysis. Only patients admitted for DWS (ICD-9-CM = 742.3) were included. Multivariate analysis was adjusted for several variables, including patient age, race, sex, admission type, primary payer, income, and hospital volume. More than 14,000 DWS patients were included. Increasing age predicted reduced mortality (OR = 0.87; P < 0.05), ADD (OR = 0.96; P < 0.05), and decreased likelihood of receiving CSF drainage (OR = 0.86; P < 0.0001). Elective admission type predicted reduced mortality (OR = 0.29; P = 0.0008), ADD (OR = 0.68; P < 0.05), and increased CSF drainage (OR = 2.02; P < 0.0001). African-American race (OR = 1.20; P < 0.05) and private insurance (OR = 1.18; P < 0.05) each predicted increased likelihood of receiving CSF drainage, but were not predictors of mortality or ADD. Gender, income, and hospital volume were not significant predictors of DWS outcome. Increasing age and elective admissions each decrease mortality and ADD associated with DWS. African-American race and private insurance status increase access to CSF drainage. These findings contradict previous literature citing African-American race as a risk factor for mortality in DWS, and emphasize the role of private insurance in obtaining access to potentially lifesaving operative care.

  14. Defining the impact of the use of granulocyte colony stimulating factors on the incidence of chemotherapy-induced neutropenia in patients with gynecologic malignancies.

    PubMed

    Julius, Justin M; Hammerstrom, Aimee; Wei, Caimiao; Rajesh, Raeshmma; Bodurka, Diane C; Kurian, Shiney; Smith, Judith A

    2017-03-01

    Purpose The objectives of this study were to characterize the incidence of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) with specific chemotherapy agents commonly used in the treatment of gynecologic malignancies, as well as defining the impact of granulocyte colony stimulating factors (G-CSF) on the prevention of CIN and FN in this patient population. Methods This retrospective analysis was conducted from a database of 635 gynecologic cancer patients who received chemotherapy between 1 September 2007 and 31 August 2008. A logistic regression analysis was conducted to determine the impact of potential covariates on the overall incidence of CIN. Results Overall, 28.3% of patients experienced CIN with one or more cycles chemotherapy, and 13.1% had treatment delays or dose reduction associated with CIN. The use of G-CSF prior to administration of chemotherapy resulted in a decrease in the incidence of CIN from 29.8% to 19.6% compared to no G-CSF use. No difference was observed in number of treatment delays or dose reductions in the 46 (7.2%) of gynecologic cancer patients that received G-CSF prophylaxis. Multivariate analysis found that both age and the number of current cycles jointly may predict risk of CIN. Conclusions Patients with gynecologic malignancies appear to be at a higher risk of development of neutropenia when treated with chemotherapy. The proactive use of G-CSF did decrease the risk of CIN by over 30%. Prospective study is warranted to determine the impact of G-CSF to reduce CIN in patients with gynecologic malignancies receiving chemotherapy.

  15. Building ProteomeTools based on a complete synthetic human proteome

    PubMed Central

    Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard

    2018-01-01

    The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259

  16. Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.

    PubMed

    Li, Ming; Gray, William; Zhang, Haixia; Chung, Christine H; Billheimer, Dean; Yarbrough, Wendell G; Liebler, Daniel C; Shyr, Yu; Slebos, Robbert J C

    2010-08-06

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher's Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples.

  17. Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling

    PubMed Central

    2010-01-01

    Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography−tandem mass spectrometry (LC−MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher’s Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography−multiple reaction monitoring mass spectrometry (LC−MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples. PMID:20586475

  18. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    PubMed

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.

  19. Biosimilar granulocyte colony-stimulating factor uptakes in the EU-5 markets: a descriptive analysis.

    PubMed

    Bocquet, François; Paubel, Pascal; Fusier, Isabelle; Cordonnier, Anne-Laure; Le Pen, Claude; Sinègre, Martine

    2014-06-01

    Biosimilars are copies of biological reference medicines. Unlike generics (copies of chemical molecules), biologics are complex, expensive and complicated to produce. The knowledge of the factors affecting the competition following patent expiry for biologics remains limited. The aims of this study were to analyse the EU-5 Granulocyte-Colony Stimulating Factor (G-CSF) markets and to determine the factors affecting the G-CSF biosimilar uptakes, particularly that of biosimilar prices relative to originators. Data on medicine volumes, values, and ex-manufacturer prices for all G-CSF categories were provided by IMS Health. Volumes were calculated in defined daily doses (DDD) and prices in Euros per DDD. In the EU-5 countries, there is 5 years of experience with biosimilar G-CSFs (2007-2011). Two G-CSF market profiles exist: (1) countries with a high retail market distribution, which are the largest G-CSF markets with low global G-CSF biosimilar uptakes (5.4% in France and 8.5% in Germany in 2011); and (2) countries with a dominant hospital channel, which are the smallest markets with higher G-CSF biosimilar uptakes (12.4% in Spain and 20.4% in the UK). The more the decisions are decentralized, the more their uptakes are high. The price difference between G-CSF biosimilars and their reference plays a marginal role at a global level (price differences of +13.3% in the UK and -20.4% in France). The competition with G-CSF biosimilars varies significantly between EU-5 countries, probably because of G-CSF distribution channel differences. Currently, this competition is not mainly based on prices, but on local political options to stimulate tendering between them and recently branded second- or third-generation products.

  20. Human herpesvirus infections of the central nervous system: laboratory diagnosis based on DNA detection by nested PCR in plasma and cerebrospinal fluid samples.

    PubMed

    Rimério, Carla Aparecida Tavares; De Oliveira, Renato Souza; de Almeida Bonatelli, Murilo Queiroz; Nucci, Anamarli; Costa, Sandra Cecília Botelho; Bonon, Sandra Helena Alves

    2015-04-01

    Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the "gold standard," and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture. © 2015 Wiley Periodicals, Inc.

  1. Obstructive Sleep Apnea is Associated With Early but Possibly Modifiable Alzheimer's Disease Biomarkers Changes.

    PubMed

    Liguori, Claudio; Mercuri, Nicola Biagio; Izzi, Francesca; Romigi, Andrea; Cordella, Alberto; Sancesario, Giuseppe; Placidi, Fabio

    2017-05-01

    Obstructive sleep apnea (OSA) is a common sleep disorder. The, literature lacks studies examining sleep, cognition, and Alzheimer's Disease (AD) cerebrospinal fluid (CSF) biomarkers in OSA patients. Therefore, we first studied cognitive performances, polysomnographic sleep, and CSF β-amyloid42, tau proteins, and lactate levels in patients affected by subjective cognitive impairment (SCI) divided in three groups: OSA patients (showing an Apnea-Hypopnea Index [AHI] ≥15/hr), controls (showing an AHI < 15/hr), and patients with OSA treated by continuous positive airway pressure (CPAP). We compared results among 25 OSA, 10 OSA-CPAP, and 15 controls who underwent a protocol counting neuropsychological testing in the morning, 48-hr polysomnography followed by CSF analysis. OSA patients showed lower CSF Aβ42 concentrations, higher CSF lactate levels, and higher t-tau/Aβ42 ratio compared to controls and OSA-CPAP patients. OSA patients also showed reduced sleep quality and continuity and lower performances at memory, intelligence, and executive tests than controls and OSA-CPAP patients. We found significant relationships among higher CSF tau proteins levels, sleep impairment, and increased CSF lactate levels in the OSA group. Moreover, lower CSF Aβ42 levels correlate with memory impairment and nocturnal oxygen saturation parameters in OSA patients. We hypothesize that OSA reducing sleep quality and producing intermittent hypoxia lowers CSF Aβ42 levels, increases CSF lactate levels, and alters cognitive performances in SCI patients, thus inducing early AD clinical and neuropathological biomarkers changes. Notably, controls as well as OSA-CPAP SCI patients did not show clinical and biochemical AD markers. Therefore, OSA may induce early but possibly CPAP-modifiable AD biomarkers changes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein.

    PubMed Central

    Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.

    1996-01-01

    The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995

  3. A Customized Quantitative PCR MicroRNA Panel Provides a Technically Robust Context for Studying Neurodegenerative Disease Biomarkers and Indicates a High Correlation Between Cerebrospinal Fluid and Choroid Plexus MicroRNA Expression.

    PubMed

    Wang, Wang-Xia; Fardo, David W; Jicha, Gregory A; Nelson, Peter T

    2017-12-01

    MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized CSF-miRNA low-density array (TLDA) panel that contains 47 targets: miRNAs shown previously to be relevant to neurodegenerative disease, miRNAs that are abundant in CSF, data normalizers, and controls for potential blood and tissue contamination. The advantages of using this CSF-miRNA TLDA panel include specificity, sensitivity, fast processing and data analysis, and cost effectiveness. We optimized technical parameters for this assay. Further, the TLDA panel can be tailored to other specific purposes. We tested whether the profile of miRNAs in the CSF resembled miRNAs isolated from brain tissue (hippocampus or cerebellum), blood, or the choroid plexus. We found that the CSF miRNA expression profile most closely resembles that of choroid plexus tissue, underscoring the potential importance of choroid plexus-derived signaling through CSF miRNAs. In summary, the TLDA miRNA array panel will enable evaluation and discovery of CSF miRNA biomarkers and can potentially be utilized in clinical diagnosis and disease stage monitoring.

  4. Elevated body mass index and risk of postoperative CSF leak following transsphenoidal surgery

    PubMed Central

    Dlouhy, Brian J.; Madhavan, Karthik; Clinger, John D.; Reddy, Ambur; Dawson, Jeffrey D.; O’Brien, Erin K.; Chang, Eugene; Graham, Scott M.; Greenlee, Jeremy D. W.

    2012-01-01

    Object Postoperative CSF leakage can be a serious complication after a transsphenoidal surgical approach. An elevated body mass index (BMI) is a significant risk factor for spontaneous CSF leaks. However, there is no evidence correlating BMI with postoperative CSF leak after transsphenoidal surgery. The authors hypothesized that patients with elevated BMI would have a higher incidence of CSF leakage complications following transsphenoidal surgery. Methods The authors conducted a retrospective review of 121 patients who, between August 2005 and March 2010, underwent endoscopic endonasal transsphenoidal surgeries for resection of primarily sellar masses. Patients requiring extended transsphenoidal approaches were excluded. A multivariate statistical analysis was performed to investigate the association of BMI and other risk factors with postoperative CSF leakage. Results In 92 patients, 96 endonasal endoscopic transsphenoidal surgeries were performed that met inclusion criteria. Thirteen postoperative leaks occurred and required subsequent treatment, including lumbar drainage and/or reoperation. The average BMI of patients with a postoperative CSF leak was significantly greater than that in patients with no postoperative CSF leak (39.2 vs 32.9 kg/m2, p = 0.006). Multivariate analyses indicate that for every 5-kg/m2 increase in BMI, patients undergoing a transsphenoidal approach for a primarily sellar mass have 1.61 times the odds (95% CI 1.10–2.29, p = 0.016, by multivariate logistic regression) of having a postoperative CSF leak. Conclusions Elevated BMI is an independent predictor of postoperative CSF leak after an endonasal endoscopic transsphenoidal approach. The authors recommend that patients with BMI greater than 30 kg/m2 have meticulous sellar reconstruction at surgery and close monitoring postoperatively. PMID:22443502

  5. Use of Granulocyte Colony–Stimulating Factor During Pregnancy in Women With Chronic Neutropenia

    PubMed Central

    Boxer, Laurence A.; Bolyard, Audrey Anna; Kelley, Merideth L.; Marrero, Tracy M.; Phan, Lan; Bond, Jordan M.; Newburger, Peter E.; Dale, David C.

    2014-01-01

    Objective To report outcomes associated with the administration of granulocyte colony–stimulating factor (G-CSF) to women with chronic neutropenia during pregnancy. Methods We conducted an observational study of women of child-bearing potential with congenital, cyclic, idiopathic, or autoimmune neutropenia enrolled in the Severe Chronic Neutropenia International Registry to determine outcomes of pregnancies, without and with chronic G-CSF therapy, 1999–2014. Treatment decisions were made by the patients’ personal physicians. A research nurse conducted telephone interviews of all enrolled U.S. women of child-bearing potential using a standard questionnaire. Comparisons utilized Fisher’s exact test analysis and Student’s t-test. Results One-hundred seven women reported 224 pregnancies, 124 without G-CSF therapy and 100 on chronic G-CSF therapy (median dose: 1.0 mcg/kg/day, range 0.02–8.6 mcg/kg/day). There were no significant differences in adverse events between the groups considering all pregnancies or individual mothers, e.g., spontaneous terminations (all pregnancies: no G-CSF 27/124, G-CSF 13/100; P=0.11, Fisher’s exact test,), preterm labors (all pregnancies, no G-CSF 9/124, G-CSF 2/100, P=0.12,). A study with at least 300 per group would be needed to detect a difference in these events with 80% statistical power (alpha=0.05). Four newborns of mothers with idiopathic or autoimmune neutropenia not on G-CSF (4/101) had life-threatening infections, whereas there were no similar events (0/90) in the treated group, but this difference was also not statistically significant. (p=0.124). Adverse events in the neonates were similar for the two groups. Conclusions This observational study showed no significant adverse effects of administration of G-CSF to women with severe chronic neutropenia during pregnancy. PMID:25560125

  6. Clinical, biological, and microbiological pattern associated with ventriculostomy-related infection: a retrospective longitudinal study.

    PubMed

    Mounier, Roman; Lobo, David; Cook, Fabrice; Fratani, Alexandre; Attias, Arie; Martin, Mathieu; Chedevergne, Karin; Bardon, Jean; Tazi, Sanaa; Nebbad, Biba; Bloc, Sébastien; Plaud, Benoît; Dhonneur, Gilles

    2015-12-01

    Our aim was to describe the pattern of ventriculostomy-related infection (VRI) development using a dynamic approach. Retrospective longitudinal study. We analyzed the files of 449 neurosurgical patients who underwent placement of external ventricular drain (EVD). During the study period, CSF sampling was performed on a daily base setting. VRI was defined as a positive CSF culture resulting in antibiotic treatment. For VRI patients, we arbitrary defined day 0 (D0) as the day antibiotic treatment was started. In these patients, we compared dynamic changes in clinical and biological parameters at four pre-determined time points: (D-4, D-3, D-2, D-1) with those of D0. For all CSF-positive cultures, we compared CSF biochemical markers' evolution pattern between VRI patients and the others, considered as a control cohort. Thirty-two suffered from VRI. Peripheral white blood cell count did not differ between D-4-D0. Median body temperature, CSF cell count, median Glasgow Coma Scale, CSF protein, and glucose concentrations were significantly different between D-4, D-3, D-2, and D0. At D0, 100 % of CSF samples yielded organisms in culture. The physician caring for the patient decided to treat VRI based upon positive CSF culture in only 28 % (9/32) of cases. In the control cohort, CSF markers' profile trends to normalize, while it worsens in the VRI patients. We showed that clinical symptoms and biological abnormalities of VRI evolved over time. Our data suggest that VRI decision to treat relies upon a bundle of evidence, including dynamic changes in CSF laboratory exams combined with microbiological analysis.

  7. A 3,387 bp 5'-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice.

    PubMed

    Serova, Irina A; Dvoryanchikov, Gennady A; Andreeva, Ludmila E; Burkov, Ivan A; Dias, Luciene P B; Battulin, Nariman R; Smirnov, Alexander V; Serov, Oleg L

    2012-06-01

    A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.

  8. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  9. Factors Influencing Norvancomycin Concentration in Plasma and Cerebrospinal Fluid in Patients After Craniotomy and Dosing Guideline: A Population Approach.

    PubMed

    Li, Xingang; Wu, Yuanxing; Sun, Shusen; Wang, Qiang; Zhao, Zhigang

    2018-01-01

    Antibacterial spectrum and activity of norvancomycin are comparable with vancomycin, and it has been widely used in China. Norvancomycin can penetrate into the cerebrospinal fluid (CSF) through the damaged blood-brain barrier in patients after craniotomy. Because higher inter-individual variability was observed, we aimed to identify factors related to drug concentration to guide clinicians with norvancomycin dosing. After craniotomy, patients with an indwelling catheter in the operational area/ventricle were intravenously administered norvancomycin. Venous blood and CSF specimens were collected at a scheduled time for measuring drug concentrations. Blood and CSF data were fitted simultaneously with the use of the nonlinear fixed-effects modeling method to develop the population pharmacokinetic model. Covariate analysis was applied to select candidate factors associated with pharmacokinetic parameters. A model-based simulation was performed to find optimized regimens for different subgroups of patients. A 3-compartmental model (central, peripheral, and CSF compartments) with 2 elimination pathways (drug elimination from the kidney and CSF outflow) was developed to characterize the in vivo process of norvancomycin. The covariate analysis identified that weight and drainage amount were strongly associated with the central volume and the drug clearance from CSF, respectively. Goodness-of-fit and model validation suggested that the proposed model was acceptable. A dosage regimen table was created for specific patient populations with different weights and drainage amounts to facilitate clinical application. We identified 2 clinical markers associated with plasma and CSF concentrations. The proposed simulation may be useful to clinicians for norvancomycin dosing in this specific population with normal kidney function. Copyright © 2018. Published by Elsevier Inc.

  10. Evaluation of peptide adsorption-controlled liquid chromatography-tandem mass spectrometric (PAC-LC-MS/MS) method for simple and simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides in dog cerebrospinal fluid.

    PubMed

    Goda, Ryoya; Kobayashi, Nobuhiro

    2012-05-01

    To evaluate the usefulness of the peptide adsorption-controlled liquid chromatography-tandem mass spectrometry (PAC-LC-MS/MS) for reproducible measurement of peptides in biological fluids, simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides (Aβ38, Aβ40, Aβ42 and Aβ43) in dog cerebrospinal fluid (CSF) was tried. Each stable isotope labeled Aβ was used as the internal standard to minimize the influence of CSF matrix on the reproducible Aβ quantitation. To reduce a loss of Aβ during the pretreatment procedures, the dog CSF diluted by water-acetic acid-methanol (2:6:1, v/v/v) was loaded on PAC-LC-MS/MS directly. Quantification of the Aβ in the diluted dog CSF was carried out using multiple reaction monitoring (MRM) mode. The [M+5H(5+)] and b(5+) ion fragment of each peptide were chosen as the precursor and product ions for MRM transitions of each peptide. The calibration curves were drawn from Aβ standard calibration solutions using PAC-LC-MS/MS. Analysis of dog CSF samples suggests that the basal concentration of Aβ38, Aβ40, Aβ42 and Aβ43 in dog CSF is approximately 300, 900, 200 and 30 pM, respectively. This is the first time Aβ concentrations in dog CSF have been reported. Additionally, the evaluation of intra- and inter-day reproducibility of analysis of Aβ standard solution, the freeze-thaw stability and the room temperature stability of Aβ standard solution suggest that the PAC-LC-MS/MS method enables reproducible Aβ quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology

    PubMed Central

    Michael, Benedict D.; Griffiths, Michael J.; Granerod, Julia; Brown, David; Davies, Nicholas W. S.; Borrow, Ray; Solomon, Tom

    2016-01-01

    Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation. PMID:26808276

  12. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology.

    PubMed

    Michael, Benedict D; Griffiths, Michael J; Granerod, Julia; Brown, David; Davies, Nicholas W S; Borrow, Ray; Solomon, Tom

    2016-01-01

    Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15-60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.

  13. Postoperative Central Nervous System Infection After Neurosurgery in a Modernized, Resource-Limited Tertiary Neurosurgical Center in South Asia.

    PubMed

    Chidambaram, Swathi; Nair, M Nathan; Krishnan, Shyam Sundar; Cai, Ling; Gu, Weiling; Vasudevan, Madabushi Chakravarthy

    2015-12-01

    Postoperative central nervous system infections (PCNSIs) are rare but serious complications after neurosurgery. The purpose of this study was to examine the prevalence and causative pathogens of PCNSIs at a modernized, resource-limited neurosurgical center in South Asia. A retrospective analysis was conducted of the medical records of all 363 neurosurgical cases performed between June 1, 2012, and June 30, 2013, at a neurosurgical center in South Asia. Data from all operative neurosurgical cases during the 13-month period were included. Cerebrospinal fluid (CSF) analysis indicated that 71 of the 363 surgical cases had low CSF glucose or CSF leukocytosis. These 71 cases were categorized as PCNSIs. The PCNSIs with positive CSF cultures (9.86%) all had gram-negative bacteria with Pseudomonas aeruginosa (n = 5), Escherichia coli (n = 1), or Klebsiella pneumoniae (n = 1). The data suggest a higher rate of death (P = 0.031), a higher rate of CSF leak (P < 0.001), and a higher rate of cranial procedures (P < 0.001) among the infected patients and a higher rate of CSF leak among the patients with culture-positive infections (P = 0.038). This study summarizes the prevalence, causative organism of PCNSI, and antibiotic usage for all of the neurosurgical cases over a 13-month period in a modernized yet resource-limited neurosurgical center located in South Asia. The results from this study highlight the PCNSI landscape in an area of the world that is often underreported in the neurosurgical literature because of the paucity of clinical neurosurgical research undertaken there. This study shows an increasing prevalence of gram-negative organisms in CSF cultures from PCNSIs, which supports a trend in the recent literature of increasing gram-negative bacillary meningitis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  15. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  16. Effects of irregular cerebrospinal fluid production rate in human brain ventricular system

    NASA Astrophysics Data System (ADS)

    Hadzri, Edi Azali; Shamsudin, Amir Hamzah; Osman, Kahar; Abdul Kadir, Mohammed Rafiq; Aziz, Azian Abd

    2012-06-01

    Hydrocephalus is an abnormal accumulation of fluid in the ventricles and cavities in the brain. It occurs when the cerebrospinal fluid (CSF) flow or absorption is blocked or when excessive CSF is secreted. The excessive accumulation of CSF results in an abnormal widening of the ventricles. This widening creates potentially harmful pressure on the tissues of the brain. In this study, flow analysis of CSF was conducted on a three-dimensional model of the third ventricle and aqueduct of Sylvius, derived from MRI scans. CSF was modeled as Newtonian Fluid and its flow through the region of interest (ROI) was done using EFD. Lab software. Different steady flow rates through the Foramen of Monro, classified by normal and hydrocephalus cases, were modeled to investigate its effects. The results show that, for normal and hydrocephalus cases, the pressure drop of CSF flow across the third ventricle was observed to be linearly proportionally to the production rate increment. In conclusion, flow rates that cause pressure drop of 5 Pa was found to be the threshold for the initial sign of hydrocephalus.

  17. Comprehensive Analysis of Temporal Alterations in Cellular Proteome of Bacillus subtilis under Curcumin Treatment

    PubMed Central

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956

  18. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    PubMed

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  19. Analyzing large-scale proteomics projects with latent semantic indexing.

    PubMed

    Klie, Sebastian; Martens, Lennart; Vizcaíno, Juan Antonio; Côté, Richard; Jones, Phil; Apweiler, Rolf; Hinneburg, Alexander; Hermjakob, Henning

    2008-01-01

    Since the advent of public data repositories for proteomics data, readily accessible results from high-throughput experiments have been accumulating steadily. Several large-scale projects in particular have contributed substantially to the amount of identifications available to the community. Despite the considerable body of information amassed, very few successful analyses have been performed and published on this data, leveling off the ultimate value of these projects far below their potential. A prominent reason published proteomics data is seldom reanalyzed lies in the heterogeneous nature of the original sample collection and the subsequent data recording and processing. To illustrate that at least part of this heterogeneity can be compensated for, we here apply a latent semantic analysis to the data contributed by the Human Proteome Organization's Plasma Proteome Project (HUPO PPP). Interestingly, despite the broad spectrum of instruments and methodologies applied in the HUPO PPP, our analysis reveals several obvious patterns that can be used to formulate concrete recommendations for optimizing proteomics project planning as well as the choice of technologies used in future experiments. It is clear from these results that the analysis of large bodies of publicly available proteomics data by noise-tolerant algorithms such as the latent semantic analysis holds great promise and is currently underexploited.

  20. Evolution of Clinical Proteomics and its Role in Medicine | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    NCI's Office of Cancer Clinical Proteomics Research authored a review of the current state of clinical proteomics in the peer-reviewed Journal of Proteome Research. The review highlights outcomes from the CPTC program and also provides a thorough overview of the different technologies that have pushed the field forward. Additionally, the review provides a vision for moving the field forward through linking advances in genomic and proteomic analysis to develop new, molecularly targeted interventions.

  1. Meta-analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression.

    PubMed

    Wang, Alexandre K; Miller, Brian J

    2018-01-13

    Schizophrenia, bipolar disorder, and major depressive disorder (MDD) have all been associated with immune system dysfunction, including aberrant cerebrospinal fluid (CSF) levels of cytokines and tryptophan catabolites; however, the pattern of alterations has not been compared across disorders. We performed a meta-analysis of CSF cytokine and tryptophan catabolites in patients with these major psychiatric disorders. Articles were identified by searching Pub Med, PsycInfo, and Web of Science, and the reference lists of these studies. Twenty-eight studies met the inclusion criteria (16 schizophrenia, 4 bipolar disorder, and 9 MDD). CSF levels of IL-1β and kynurenic acid were significantly increased in patients with schizophrenia and bipolar disorder compared to healthy controls (P < .001). CSF levels of IL-6 and IL-8 were significantly increased in patients with schizophrenia and MDD compared to healthy controls (P ≤ .013). There is preliminary evidence for similarities in the pattern of CSF cytokine and tryptophan catabolite alterations across major psychiatric disorders, although findings must be interpreted with caution in light of small numbers of studies/subjects. Many CSF alterations are also concordant with those in the peripheral blood, particularly for schizophrenia. Findings have important implications for our understanding of the pathophysiology and treatment of major psychiatric disorders. © The Author(s) 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells.

    PubMed

    Arntzen, Magnus Ø; Thiede, Bernd

    2012-02-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.

  3. ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells*

    PubMed Central

    Arntzen, Magnus Ø.; Thiede, Bernd

    2012-01-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no. PMID:22067098

  4. Clinical proteomic analysis of scrub typhus infection.

    PubMed

    Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il

    2018-01-01

    Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.

  5. Cerebrospinal fluid asparagine depletion during pegylated asparaginase therapy in children with acute lymphoblastic leukaemia.

    PubMed

    Henriksen, Louise T; Nersting, Jacob; Raja, Raheel A; Frandsen, Thomas L; Rosthøj, Steen; Schrøder, Henrik; Albertsen, Birgitte K

    2014-07-01

    L-asparaginase is an important drug in the treatment of childhood acute lymphoblastic leukaemia (ALL). Cerebrospinal fluid (CSF) asparagine depletion is considered a marker of asparaginase effect in the central nervous system (CNS) and may play a role in CNS-directed anti-leukaemia therapy. The objective of this study was to describe CSF asparagine depletion during 30 weeks of pegylated asparaginase therapy, 1000 iu/m(2) i.m. every second week, and to correlate CSF asparagine concentration with serum L-asparaginase enzyme activity. Danish children (1-17 years) with ALL, treated according to the Nordic Society of Paediatric Haematology and Oncology ALL2008 protocol, standard and intermediate risk, were included. CSF samples were obtained throughout L-asparaginase treatment at every scheduled lumbar puncture. A total of 128 samples from 31 patients were available for analysis. Median CSF asparagine concentration decreased from a pre-treatment level of 5·3 μmol/l to median levels ≤1·5 μmol/l. However, only 4/31 patients (five samples) had CSF asparagine concentrations below the limit of detection (0·1 μmol/l). In 11 patients, 24 paired same day serum and CSF samples were obtained. A decrease in CSF asparagine corresponded to serum enzyme activities above 50 iu/l. Higher serum enzyme activities were not followed by more extensive depletion. In conclusion, pegylated asparaginase 1000 iu/m(2) i.m. every second week effectively reduced CSF asparagine levels. © 2014 John Wiley & Sons Ltd.

  6. Population Pharmacokinetics of Combined Intravenous and Local Intrathecal Administration of Meropenem in Aneurysm Patients with Suspected Intracranial Infections After Craniotomy.

    PubMed

    Li, Xingang; Sun, Shusen; Wang, Qiang; Zhao, Zhigang

    2018-02-01

    For patients with intracranial infection, local intrathecal administration of meropenem may be a useful method to obtain a sufficient drug concentration in the cerebral spinal fluid (CSF). However, a large inter-individual variability may pose treatment efficacy at risk. This study aimed to identify factors affecting drug concentration in the CSF using population pharmacokinetics method. After craniotomy, aneurysm patients with an indwelling lumbar cistern drainage tube who received a combined intravenous and intrathecal administration of meropenem for the treatment of suspected intracranial infection were enrolled. Venous blood and CSF specimens were collected for determining meropenem concentrations. Nonlinear mixed-effects modeling method was used to fit blood and CSF concentrations simultaneously and to develop the population pharmacokinetic model. The proposed model was applied to simulate dosage regimens. A three-compartmental model was established to describe meropenem in vivo behavior. Lumbar CSF drainage resulted in a drug loss, and drug clearance in CSF (CL CSF ) was employed to describe this. The covariate analysis found that the drainage volume (mL/day) was strongly associated with CL CSF , and the effect of creatinine clearance was significant on the clearance of meropenem in blood (CL). Visual predictive check suggested that the proposed pharmacokinetic model agreed well with the observations. Simulation showed that both intravenous and intrathecal doses should be increased with the increases of minimum inhibitory concentration and daily CSF drainage volume. This model incorporates covariates of the creatinine clearance and the drainage volume, and a simple to use dosage regimen table was created to guide clinicians with meropenem dosing.

  7. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF.

    PubMed

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1(G93A) mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Motoneurons from SOD1(G93A) mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1(G93A) motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1(G93A) motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  8. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    PubMed

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  9. Meta-Review of CSF Core Biomarkers in Alzheimer’s Disease: The State-of-the-Art after the New Revised Diagnostic Criteria

    PubMed Central

    Ferreira, Daniel; Perestelo-Pérez, Lilisbeth; Westman, Eric; Wahlund, Lars-Olof; Sarría, Antonio; Serrano-Aguilar, Pedro

    2014-01-01

    Background: Current research criteria for Alzheimer’s disease (AD) include cerebrospinal fluid (CSF) biomarkers into the diagnostic algorithm. However, spreading their use to the clinical routine is still questionable. Objective: To provide an updated, systematic and critical review on the diagnostic utility of the CSF core biomarkers for AD. Data sources: MEDLINE, PreMedline, EMBASE, PsycInfo, CINAHL, Cochrane Library, and CRD. Eligibility criteria: (1a) Systematic reviews with meta-analysis; (1b) Primary studies published after the new revised diagnostic criteria; (2) Evaluation of the diagnostic performance of at least one CSF core biomarker. Results: The diagnostic performance of CSF biomarkers is generally satisfactory. They are optimal for discriminating AD patients from healthy controls. Their combination may also be suitable for mild cognitive impairment (MCI) prognosis. However, CSF biomarkers fail to distinguish AD from other forms of dementia. Limitations: (1) Use of clinical diagnosis as standard instead of pathological postmortem confirmation; (2) variability of methodological aspects; (3) insufficiently long follow-up periods in MCI studies; and (4) lower diagnostic accuracy in primary care compared with memory clinics. Conclusion: Additional work needs to be done to validate the application of CSF core biomarkers as they are proposed in the new revised diagnostic criteria. The use of CSF core biomarkers in clinical routine is more likely if these limitations are overcome. Early diagnosis is going to be of utmost importance when effective pharmacological treatment will be available and the CSF core biomarkers can also be implemented in clinical trials for drug development. PMID:24715863

  10. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

    PubMed Central

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS. PMID:25653590

  11. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.

    PubMed

    Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-09-01

    Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.

  12. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes

    PubMed Central

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-01-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607

  13. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

    PubMed

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-08-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis showed similar clustering of cytokine/chemokine molecules in immune mediated encephalitis (ADEM and anti-NMDAR E). Th1 and B cell (CXCL13 and CXCL10) molecules clustered together in patients with severe encephalopathy at admission and worse disability at follow up in all encephalitis. There was no correlation between CSF neopterin and IFN-γ or IFN-α. Conclusion A combination panel of cytokine/chemokines consisting of CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 measured using multiplex immunoassay may be used to diagnose and monitor intrathecal inflammation in the brain. Given their association with worse outcome, certain key chemokines (CXCL13, CXCL10) could represent potential therapeutic targets in encephalitis. PMID:27575749

  15. A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD

    PubMed Central

    Haldar, Swati; Beveridge, ’Alim J.; Wong, Joseph; Singh, Ajay; Galimberti, Daniela; Borroni, Barbara; Zhu, Xiongwei; Blevins, Janis; Greenlee, Justin; Perry, George; Mukhopadhyay, Chinmay K.; Schmotzer, Christine

    2013-01-01

    Abstract Aims: Most biomarkers used for the premortem diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) are surrogate in nature, and provide suboptimal sensitivity and specificity. Results: We report that CJD-associated brain iron dyshomeostasis is reflected in the cerebrospinal fluid (CSF), providing disease-specific diagnostic biomarkers. Analysis of 290 premortem CSF samples from confirmed cases of CJD, Alzheimer's disease, and other dementias (DMs), and 52 non-DM (ND) controls revealed a significant difference in ferroxidase (Frx) activity and transferrin (Tf) levels in sporadic Creutzfeldt-Jakob disease (sCJD) relative to other DM and ND controls. A combination of CSF Frx and Tf discriminated sCJD from other DMs with a sensitivity of 86.8%, specificity of 92.5%, accuracy of 88.9%, and area-under-the receiver-operating-characteristic (ROC) curve of 0.94. This combination provided a similar diagnostic accuracy in discriminating CJD from rapidly progressing cases who died within 6 months of sample collection. Surprisingly, ceruloplasmin and amyloid precursor protein, the major brain Frxs, displayed minimal activity in the CSF. Most of the Frx activity was concentrated in the <3-kDa fraction in normal and diseased CSF, and resisted heat and proteinase-K treatment. Innovation: (i) A combination of CSF Frx and Tf provides disease-specific premortem diagnostic biomarkers for sCJD. (ii) A novel, nonenzymatic, nonprotein Frx predominates in human CSF that is distinct from the currently known CSF Frxs. Conclusion: The underlying cause of iron imbalance is distinct in sCJD relative to other DMs associated with the brain iron imbalance. Thus, change in the CSF levels of iron-management proteins can provide disease-specific biomarkers and insight into the cause of iron imbalance in neurodegenerative conditions. Antioxid. Redox Signal. 19, 1662–1675. PMID:23379482

  16. Attenuated cerebrospinal fluid leukocyte count and sepsis in adults with pneumococcal meningitis: a prospective cohort study

    PubMed Central

    Weisfelt, Martijn; van de Beek, Diederik; Spanjaard, Lodewijk; Reitsma, Johannes B; de Gans, Jan

    2006-01-01

    Background A low cerebrospinal fluid (CSF) white-blood cell count (WBC) has been identified as an independent risk factor for adverse outcome in adults with bacterial meningitis. Whereas a low CSF WBC indicates the presence of sepsis with early meningitis in patients with meningococcal infections, the relation between CSF WBC and outcome in patients with pneumococcal meningitis is not understood. Methods We examined the relation between CSF WBC, bacteraemia and sepsis in a prospective cohort study that included 352 episodes of pneumococcal meningitis, confirmed by CSF culture, occurring in patients aged >16 years. Results CSF WBC was recorded in 320 of 352 episodes (91%). Median CSF WBC was 2530 per mm3 (interquartile range 531–6983 per mm3) and 104 patients (33%) had a CSF WBC <1000/mm3. Patients with a CSF WBC <1000/mm3 were more likely to have an unfavourable outcome (defined as a Glasgow Outcome Scale score of 1–4) than those with a higher WBC (74 of 104 [71%] vs. 87 of 216 [43%]; P < 0.001). CSF WBC was significantly associated with blood WBC (Spearman's test 0.29), CSF protein level (0.20), thrombocyte count (0.21), erythrocyte sedimentation rate (-0.15), and C-reactive protein levels (-0.18). Patients with a CSF WBC <1000/mm3 more often had a positive blood culture (72 of 84 [86%] vs. 138 of 196 [70%]; P = 0.01) and more often developed systemic complications (cardiorespiratory failure, sepsis) than those with a higher WBC (53 of 104 [51%] vs. 69 of 216 [32%]; P = 0.001). In a multivariate analysis, advanced age (Odds ratio per 10-year increments 1.22, 95%CI 1.02–1.45), a positive blood culture (Odds ratio 2.46, 95%CI 1.17–5.14), and a low thrombocyte count on admission (Odds ratio per 100,000/mm3 increments 0.67, 95% CI 0.47–0.97) were associated with a CSF WBC <1000/mm3. Conclusion A low CSF WBC in adults with pneumococcal meningitis is related to the presence of signs of sepsis and systemic complications. Invasive pneumococcal infections should possibly be regarded as a continuum from meningitis to sepsis. PMID:17038166

  17. Radical esophagectomy for a 92-year-old woman with granulocyte colony-stimulating factor-producing esophageal squamous cell carcinoma: a case report.

    PubMed

    Kitani, Mari; Yamagata, Yukinori; Tanabe, Asami; Yagi, Kouichi; Aikou, Susumu; Kiyokawa, Takashi; Nishida, Masato; Yamashita, Hiroharu; Mori, Kazuhiko; Nomura, Sachiyo; Seto, Yasuyuki

    2016-10-13

    Granulocyte colony-stimulating factor (G-CSF)-producing esophageal squamous cell carcinoma (ESCC) has been considered to have a poor prognosis. We successfully treated a case of G-CSF-producing ESCC in a 92-year-old woman. A 92-year-old woman was admitted to our hospital with the complaints of choking while swallowing and dysphagia. Esophagogastroduodenoscopy and contrast-enhanced computed tomography revealed a type 2 esophageal cancer located 26-35 cm from the dental arch, with no distant metastasis. The patient was diagnosed with G-CSF-producing ESCC based on remarkable leukocytosis and high G-CSF levels. The patient underwent radical subtotal esophagectomy. Subsequently, the level of neutrophils (from 23,500/μL to 5000/μL) and the level of G-CSF (from 131 to <19.5 pg/mL) decreased significantly. Immunohistochemistry analysis of the resected tissue specimen showed positive staining for G-CSF in the cytoplasm of the tumor cells. Although the patient developed aspiration pneumonitis, after antibiotic treatment, she promptly recovered and was discharged. Herein, we describe a case of successfully treated G-CSF-producing ESCC in a 92-year-old woman. Precise detection and safely performed immediate radical operation are considered essential to achieve a good clinical course.

  18. Marine proteomics: a critical assessment of an emerging technology.

    PubMed

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  19. Preprocessing and Analysis of LC-MS-Based Proteomic Data

    PubMed Central

    Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W.

    2016-01-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed. PMID:26519169

  20. Early Dynamics of Cerebrospinal CD14+ Monocytes and CD15+ Granulocytes in Patients after Severe Traumatic Brain Injury: A Cohort Study

    PubMed Central

    Postl, Lukas Kurt; Bogner, Viktoria; Beirer, Marc; Kanz, Karl Georg; Egginger, Christoph; Schmitt-Sody, Markus; Biberthaler, Peter; Kirchhoff, Chlodwig

    2015-01-01

    In traumatic brain injury (TBI) the analysis of neuroinflammatory mechanisms gained increasing interest. In this context certain immunocompetent cells might play an important role. Interestingly, in the actual literature there exist only a few studies focusing on the role of monocytes and granulocytes in TBI patients. In this regard it has recently reported that the choroid plexus represents an early, selective barrier for leukocytes after brain injury. Therefore the aim of this study was to evaluate the very early dynamics of CD14+ monocytes and CD15+ granulocyte in CSF of patients following severe TBI with regard to the integrity of the BBB. Cytometric flow analysis was performed to analyze the CD14+ monocyte and CD15+ granulocyte population in CSF of TBI patients. The ratio of CSF and serum albumin as a measure for the BBB's integrity was assessed in parallel. CSF samples of patients receiving lumbar puncture for elective surgery were obtained as controls. Overall 15 patients following severe TBI were enrolled. 10 patients were examined as controls. In patients, the monocyte population as well as the granulocyte population was significantly increased within 72 hours after TBI. The BBB's integrity did not have a significant influence on the cell count in the CSF. PMID:26568661

  1. Principal components derived from CSF inflammatory profiles predict outcome in survivors after severe traumatic brain injury.

    PubMed

    Kumar, Raj G; Rubin, Jonathan E; Berger, Rachel P; Kochanek, Patrick M; Wagner, Amy K

    2016-03-01

    Studies have characterized absolute levels of multiple inflammatory markers as significant risk factors for poor outcomes after traumatic brain injury (TBI). However, inflammatory marker concentrations are highly inter-related, and production of one may result in the production or regulation of another. Therefore, a more comprehensive characterization of the inflammatory response post-TBI should consider relative levels of markers in the inflammatory pathway. We used principal component analysis (PCA) as a dimension-reduction technique to characterize the sets of markers that contribute independently to variability in cerebrospinal (CSF) inflammatory profiles after TBI. Using PCA results, we defined groups (or clusters) of individuals (n=111) with similar patterns of acute CSF inflammation that were then evaluated in the context of outcome and other relevant CSF and serum biomarkers collected days 0-3 and 4-5 post-injury. We identified four significant principal components (PC1-PC4) for CSF inflammation from days 0-3, and PC1 accounted for the greatest (31%) percentage of variance. PC1 was characterized by relatively higher CSF sICAM-1, sFAS, IL-10, IL-6, sVCAM-1, IL-5, and IL-8 levels. Cluster analysis then defined two distinct clusters, such that individuals in cluster 1 had highly positive PC1 scores and relatively higher levels of CSF cortisol, progesterone, estradiol, testosterone, brain derived neurotrophic factor (BDNF), and S100b; this group also had higher serum cortisol and lower serum BDNF. Multinomial logistic regression analyses showed that individuals in cluster 1 had a 10.9 times increased likelihood of GOS scores of 2/3 vs. 4/5 at 6 months compared to cluster 2, after controlling for covariates. Cluster group did not discriminate between mortality compared to GOS scores of 4/5 after controlling for age and other covariates. Cluster groupings also did not discriminate mortality or 12 month outcomes in multivariate models. PCA and cluster analysis establish that a subset of CSF inflammatory markers measured in days 0-3 post-TBI may distinguish individuals with poor 6-month outcome, and future studies should prospectively validate these findings. PCA of inflammatory mediators after TBI could aid in prognostication and in identifying patient subgroups for therapeutic interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. When Cognitive Decline and Depression Coexist in the Elderly: CSF Biomarkers Analysis Can Differentiate Alzheimer's Disease from Late-Life Depression.

    PubMed

    Liguori, Claudio; Pierantozzi, Mariangela; Chiaravalloti, Agostino; Sancesario, Giulia M; Mercuri, Nicola B; Franchini, Flaminia; Schillaci, Orazio; Sancesario, Giuseppe

    2018-01-01

    Late-life depression (LLD) and Alzheimer's Disease (AD) are the two most frequent neuropsychiatric disorders affecting elderly. LLD and AD may clinically present with depressive and cognitive symptoms. Therefore, when cognitive decline is coupled with depression in the elderly, the differential diagnosis between LLD and AD could be challenging. The aim of the present study was to evaluate in a population of elderly patients affected by depression and dementia the usefulness of CSF AD biomarkers (tau proteins and β-amyloid 42 -Aβ 42 ) and 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18FFDG-PET) in early differentiating LLD from AD. Two hundred and fifty-six depressed and demented patients, after performing CSF AD biomarkers and 18FFDG-PET, were distributed in two groups on the basis of the current diagnostic guidelines for AD ( n = 201) and LLD ( n = 55). Patients were then observed for 2 years to verify the early diagnosis. After the 2 year follow-up we compared AD and LLD patients' CSF and 18FFDG-PET data obtained at baseline to a group of age- and sex-matched controls. We found CSF Aβ 42 levels significantly higher in LLD compared to AD patients. Remarkably, CSF Aβ 42 levels of LLD patients (range between 550 and 1204 pg/mL) did not overlap with those of AD patients (range between 82 and 528 pg/mL). Moreover, we documented no differences in CSF AD biomarkers (Aβ 42 and tau proteins) when comparing LLD patients to controls. In addition, AD patients showed the significant reduction of 18FFDG-PET uptake in temporo-parietal regions compared to both controls and LLD. Conversely, LLD and control groups did not differ at 18FFDG-PET analysis, although LLD patients showed heterogeneous patterns of glucose hypometabolism involving cortical and subcortical brain areas. It is noteworthy that at the end of the clinical follow-up, patients owing to AD group showed the expected significant decline of cognitive performances, whereas patients assigned to LLD group improved cognition as depressive symptoms recovered. Hence, in case of co-existence of cognitive impairment and depression in the elderly, we propose CSF AD biomarkers analysis to early differentiate LLD from AD and properly target the patient's therapeutic strategy and clinical follow-up.

  3. NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.

  4. Proteomics in medical microbiology.

    PubMed

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  5. Proteomic analysis of ligamentum flavum from patients with lumbar spinal stenosis.

    PubMed

    Kamita, Masahiro; Mori, Taiki; Sakai, Yoshihito; Ito, Sadayuki; Gomi, Masahiro; Miyamoto, Yuko; Harada, Atsushi; Niida, Shumpei; Yamada, Tesshi; Watanabe, Ken; Ono, Masaya

    2015-05-01

    Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age-related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide.

    PubMed

    Silva, Wanderson M; Carvalho, Rodrigo D; Soares, Siomar C; Bastos, Isabela Fs; Folador, Edson L; Souza, Gustavo Hmf; Le Loir, Yves; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-12-04

    Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.

  7. CPTAC Prospective Biospecimen Collection Solicitation | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A new funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.

  8. Proteomics: a new approach to the study of disease.

    PubMed

    Chambers, G; Lawrie, L; Cash, P; Murray, G I

    2000-11-01

    The global analysis of cellular proteins has recently been termed proteomics and is a key area of research that is developing in the post-genome era. Proteomics uses a combination of sophisticated techniques including two-dimensional (2D) gel electrophoresis, image analysis, mass spectrometry, amino acid sequencing, and bio-informatics to resolve comprehensively, to quantify, and to characterize proteins. The application of proteomics provides major opportunities to elucidate disease mechanisms and to identify new diagnostic markers and therapeutic targets. This review aims to explain briefly the background to proteomics and then to outline proteomic techniques. Applications to the study of human disease conditions ranging from cancer to infectious diseases are reviewed. Finally, possible future advances are briefly considered, especially those which may lead to faster sample throughput and increased sensitivity for the detection of individual proteins. Copyright 2000 John Wiley & Sons, Ltd.

  9. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  10. Birth of plant proteomics in India: a new horizon.

    PubMed

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Myoclonic encephalopathy due to bismuth salts: treatment with dimercaprol and analysis of CSF transmitters.

    PubMed

    Molina, J A; Calandre, L; Bermejo, F

    1989-03-01

    Two cases of myoclonic encephalopathy due to bismuth salts intoxication are reported. In both, treatment with dimercaprol led to clinical recovery. This therapy was shown to enhance bismuth clearance. We also present data on the CSF metabolites dopamine, norepinephrine and serotonin of one patient.

  12. Amyloid-β Precursor Protein Modulates the Sorting of Testican-1 and Contributes to Its Accumulation in Brain Tissue and Cerebrospinal Fluid from Patients with Alzheimer Disease.

    PubMed

    Barrera-Ocampo, Alvaro; Arlt, Sönke; Matschke, Jakob; Hartmann, Ursula; Puig, Berta; Ferrer, Isidre; Zürbig, Petra; Glatzel, Markus; Sepulveda-Falla, Diego; Jahn, Holger

    2016-09-01

    The mechanisms leading to amyloid-β (Aβ) accumulation in sporadic Alzheimer disease (AD) are unknown but both increased production or impaired clearance likely contribute to aggregation. To understand the potential roles of the extracellular matrix proteoglycan Testican-1 in the pathophysiology of AD, we used samples from AD patients and controls and an in vitro approach. Protein expression analysis showed increased levels of Testican-1 in frontal and temporal cortex of AD patients; histological analysis showed that Testican-1 accumulates and co-aggregates with Aβ plaques in the frontal, temporal and entorhinal cortices of AD patients. Proteomic analysis identified 10 fragments of Testican-1 in cerebrospinal fluid (CSF) from AD patients. HEK293T cells expressing human wild type or mutant Aβ precursor protein (APP) were transfected with Testican-1. The co-expression of both proteins modified the sorting of Testican-1 into the endocytic pathway leading to its transient accumulation in Golgi, which seemed to affect APP processing, as indicated by reduced Aβ40 and Aβ42 levels in APP mutant cells. In conclusion, patient data reflect a clearance impairment that may favor Aβ accumulation in AD brains and our in vitro model supports the notion that the interaction between APP and Testican-1 may be a key step in the production and aggregation of Aβ species. © 2016 Oxford University Press OR American Association of Neuropathologists.

  13. NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays.  This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser

  14. CPTAC Releases Largest-Ever Colorectal Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    On September 4, 2013, NCI’s Clinical Proteomics Tumor Analysis Consortium (CPTAC) publicly released proteomic data produced from colorectal tumor samples previously analyzed by The Cancer Genome Atlas (TCGA).  This is the initial release of proteomic tumor data designed to complement genomic data on the same tumors. The data is publicly available at the CPTAC data portal.

  15. A Simple Method for Rapid Depletion of Rubisco from Soybean (Glycine max) Leaf for Proteomic Analysis of Lower Abundance Proteins

    USDA-ARS?s Scientific Manuscript database

    2-DE analysis of complex plant proteomes has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the low abundance proteins within leaf tissue is difficult when it is comprised of 30 – 50% of the CO2 fixation enzyme Rubisco. Resolution can be improved t...

  16. Xylem sap proteomics.

    PubMed

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  17. The use of granulocyte colony stimulating factor (G-CSF) and management of chemotherapy delivery during adjuvant treatment for early-stage breast cancer--further observations from the IMPACT solid study.

    PubMed

    Mäenpää, Johanna; Varthalitis, Ioannis; Erdkamp, Frans; Trojan, Andreas; Krzemieniecki, Krzysztof; Lindman, Henrik; Bendall, Kate; Vogl, Florian D; Verma, Shailendra

    2016-02-01

    To investigate the use and impact of granulocyte colony-stimulating factors (G-CSF) on chemotherapy delivery and neutropenia management in breast cancer in a clinical practice setting. IMPACT Solid was an international, prospective observational study in patients with a physician-assessed febrile neutropenia (FN) risk of ≥20%. This analysis focused on stages I-III breast cancer patients who received a standard chemotherapy regimen for which the FN risk was published. Chemotherapy delivery and neutropenia-related outcomes were reported according to the FN risk of the regimen and intent of G-CSF use. 690 patients received a standard chemotherapy regimen; 483 received the textbook dose/schedule with a majority of these regimens (84%) having a FN risk ≥10%. Patients receiving a regimen with a FN risk ≥10% were younger with better performance status than those receiving a regimen with a FN risk <10%. Patients who received higher-risk regimens were more likely to receive G-CSF primary prophylaxis (48% vs 22%), complete their planned chemotherapy (97% vs 88%) and achieve relative dose intensity ≥85% (93% vs 86%) than those receiving lower-risk regimens. Most first FN events (56%) occurred in cycles not supported with G-CSF primary prophylaxis. Physicians generally recommend standard adjuvant chemotherapy regimens and were more likely to follow G-CSF guidelines for younger, good performance status patients in the curative setting, and often modify standard regimens in more compromised patients. However, G-CSF support is not optimal, indicated by G-CSF primary prophylaxis use in <50% of high-risk patients and observation of FN without G-CSF support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Impact of Aromatase Genetic Variation on Hormone Levels and Global Outcome after Severe TBI

    PubMed Central

    Garringer, Julie A.; Niyonkuru, Christian; McCullough, Emily H.; Loucks, Tammy; Dixon, C. Edward; Conley, Yvette P.; Berga, Sarah

    2013-01-01

    Abstract Although experimental traumatic brain injury (TBI) studies support estradiol as a neuroprotectant and potent stimulator of neuroplasticity, clinical studies suggest a negative association between endogenous estradiol profiles and mortality/poor outcomes. However, no studies have evaluated associations with cerebral spinal fluid (CSF) hormone profiles and aromatase gene (cytochrome P450 [CYP]19A1) variability on clinical TBI outcomes. We evaluated 110 adults with severe TBI. Average and daily estradiol, testosterone, and estradiol/testosterone ratios (E2:T) were measured using CSF and serum samples and compared to healthy controls. Eighteen tagging and four functional single-nucleotide polymorphisms (SNPs) for CYP19A1 were genotyped and compared to hormones, acute mortality, and Glasgow Outcome Scale (GOS) scores 6 months post-TBI. TBI subjects had lower CSF estradiol over time versus controls. CSF testosterone was initially high, but declined over time. E2/T ratios were initially low, compared to controls, but rose over time. Higher mean E2/T ratio in bivariate analysis was associated with lower mortality (p=0.019) and better GOS-6 scores (p=0.030). rs2470152 influenced CSF E2/T ratio and also serum and CSF testosterone (p≤0.05 all comparisons). Multiple-risk SNPs rs2470152, rs4646, and rs2470144 were associated with worse GOS-6 scores (p≤0.05, all comparisons), and those with>1 risk SNP variant had a higher risk for poor outcome, compared with those with ≤1 risk variant. TBI results in low CSF estradiol and dynamic CSF testosterone and E2/T ratio. In contrast to clinical serum hormone studies, higher CSF E2/T ratio was associated with better outcome. Further, genetic variation in CYP19A1 influences both hormone dynamics and outcome post-TBI. PMID:23540392

  19. Enhancement of Wound Healing by the Traditional Chinese Medicine Herbal Mixture Sophora flavescens in a Rat Model of Perianal Ulceration

    PubMed Central

    XU, XIAOPING; LI, XIAOHUA; ZHANG, LEI; LIU, ZHAOHUI; PAN, YUAN; CHEN, DONG; BIN, DONGHUA; DENG, QUN; SUN, YU; HOFFMAN, M. ROBERT; YANG, ZHIJIAN; YUAN, HONG

    2017-01-01

    Background/Aim: Hemorrhoidectomy is often associated with significant postoperative complications that may result in slow wound healing. The traditional Chinese medicine (TCM) compound Sophora flavescens (CSF) has shown efficacy on many inflammatory disorders. The aim of the present study was to examine the efficacy of CSF on wound healing in a rat model of perianal ulceration. Materials and Methods: A rat model of perianal ulceration was induced by subcutaneous injection of 75% glacial acetic acid. The animals with induced perianal ulcer received topical treatment of low, medium, and high doses of CFS twice daily. Potassium permanganate (PP); 0.02%) was given to the animals for comparison. Macroscopic and histological assessments of the ulcerated area were performed after treatment. The expression of pro-inflammatory cytokines prostaglandin E2 (PGE2) and interleukin-8 (IL-8) was detected by immunohistochemical analysis. Results: Topical administration of medium- and high-dose CSF significantly enhanced perianal ulcer healing as compared to the untreated control (p<0.05). The macroscopic ulceration score was significantly reduced only in the high-dose CSF-treated group as compared to the control (p<0.01). All doses of CSF and PP ameliorated histological damages in the rats with induced perianal ulceration. High-dose CSF or PP significantly reduced the expression of PGE2 and IL-8 as compared to the control (p<0.01). No treatment-related toxicity was found in either the CSF- or the PP-treated mice. Conclusion: CSF enhances wound healing in a rat model of perianal ulceration. The inhibitory effect of CSF on pro-inflammatory cytokines PGE2 and IL-8 may be involved in the mechanism of enhanced wound-healing. PMID:28652418

  20. Enhancement of Wound Healing by the Traditional Chinese Medicine Herbal Mixture Sophora flavescens in a Rat Model of Perianal Ulceration.

    PubMed

    Xu, Xiaoping; Li, Xiaohua; Zhang, Lei; Liu, Zhaohui; Pan, Yuan; Chen, Dong; Bin, Donghua; Deng, Qun; Sun, Y U; Hoffman, Robert M; Yang, Zhijian; Yuan, Hong

    2017-01-01

    Hemorrhoidectomy is often associated with significant postoperative complications that may result in slow wound healing. The traditional Chinese medicine (TCM) compound Sophora flavescens (CSF) has shown efficacy on many inflammatory disorders. The aim of the present study was to examine the efficacy of CSF on wound healing in a rat model of perianal ulceration. A rat model of perianal ulceration was induced by subcutaneous injection of 75% glacial acetic acid. The animals with induced perianal ulcer received topical treatment of low, medium, and high doses of CFS twice daily. Potassium permanganate (PP); 0.02%) was given to the animals for comparison. Macroscopic and histological assessments of the ulcerated area were performed after treatment. The expression of pro-inflammatory cytokines prostaglandin E 2 (PGE 2 ) and interleukin-8 (IL-8) was detected by immunohistochemical analysis. Topical administration of medium- and high-dose CSF significantly enhanced perianal ulcer healing as compared to the untreated control (p<0.05). The macroscopic ulceration score was significantly reduced only in the high-dose CSF-treated group as compared to the control (p<0.01). All doses of CSF and PP ameliorated histological damages in the rats with induced perianal ulceration. High-dose CSF or PP significantly reduced the expression of PGE 2 and IL-8 as compared to the control (p<0.01). No treatment-related toxicity was found in either the CSF- or the PP-treated mice. CSF enhances wound healing in a rat model of perianal ulceration. The inhibitory effect of CSF on pro-inflammatory cytokines PGE 2 and IL-8 may be involved in the mechanism of enhanced wound-healing. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Prediction of Clinical Outcomes by Chemokine and Cytokine Profiling In CSF from Radiation Treated Breast Cancer Primary with Brain Metastases

    NASA Astrophysics Data System (ADS)

    Lok, Edwin

    Whole brain radiation is the standard treatment for patients with brain metastasis but unfortunately tumors can recover from radiation-induced damage with the help of the immune system. The hypothesis that differences in immunokines in the cerebrospinal fluid (CSF) pre- and post-irradiation could reveal tumor biology and correlate with outcome of patients with metastatic breast cancer to the brain is tested. Collected CSF samples were analyzed using Luminex's multiplexing assays to survey global immunokine levels while Enzyme-Linked Immunosorbent Assays were used to quantify each individual immunokines. Cluster analysis was performed to segregate patients based on their common immunokine profile and each cluster was correlated with survival and other clinical parameters. Breast cancer brain metastasis was found to have altered immunokine profiles in the CSF, and that Interleukin-1α expression was elevated after irradiation. Therefore, immunokine profiling in the CSF could enable cancer physicians to monitor the status of brain metastases.

  2. Design and analysis issues in quantitative proteomics studies.

    PubMed

    Karp, Natasha A; Lilley, Kathryn S

    2007-09-01

    Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.

  3. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  4. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  5. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    PubMed

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.

  6. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  7. Baclofen Solution for Low-Volume Therapeutic Delivery.

    PubMed

    Meythaler, Jay M; Peduzzi, Jean D

    2017-06-01

    Baclofen is a zwitterion molecule where increased ions in the excipient increase the solubility. We developed baclofen in a stable solution similar to cerebrospinal fluid (CSF) without bicarbonate and proteins to improve the solubility of the baclofen and to reduce the potential toxicity to the central nervous system (CNS) and subarachnoid space. The objective is to develop a solution of baclofen wherein baclofen is solubilized in a multivalent physiological ion solution such as artificial cerebrospinal fluid (aCSF) at a concentration from 2 mg/cc to 10 mg/cc. First, to determine the solubility of Baclofen in aCSF, solubility was determined at six different pH levels at 37°C, by the addition of aCSF to a known amount of Baclofen. The final concentrations were confirmed by high performance liquid chromatography (HPLC) analysis. Second, the stability of Baclofen at 4 mg/cc investigated in a test manufacturing batch utilizing standard methods of production of 1500 20 cc vials inverted for 18 months at 25°C at 60% humidity. The stability and purity of the baclofen was verified at 18 months by HPLC analysis. Baclofen was initially soluble between pH of 6-8 above 7 mg/cc but fell back to 6.3-5.8 mg/cc level with time. Baclofen produced in vials with inversion were noted to be stable at 4 mg/cc at 18 months with less than 2% breakdown of the baclofen in solution. Baclofen is much more soluble in artificial CSF than normal saline. The artificial CSF may also be less toxic to the subarachnoid space than saline. © 2016 International Neuromodulation Society.

  8. Systems Proteomics for Translational Network Medicine

    PubMed Central

    Arrell, D. Kent; Terzic, Andre

    2012-01-01

    Universal principles underlying network science, and their ever-increasing applications in biomedicine, underscore the unprecedented capacity of systems biology based strategies to synthesize and resolve massive high throughput generated datasets. Enabling previously unattainable comprehension of biological complexity, systems approaches have accelerated progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of states spanning health and disease, network proteomics establishes a collation, integration, and prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale raw data. Providing unparalleled deconvolution of protein lists into global interactomes, integrative systems proteomics enables objective, multi-modal interpretation at molecular, pathway, and network scales, merging individual molecular components, their plurality of interactions, and functional contributions for systems comprehension. As such, network systems approaches are increasingly exploited for objective interpretation of cardiovascular proteomics studies. Here, we highlight network systems proteomic analysis pipelines for integration and biological interpretation through protein cartography, ontological categorization, pathway and functional enrichment and complex network analysis. PMID:22896016

  9. HTAPP: High-Throughput Autonomous Proteomic Pipeline

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2011-01-01

    Recent advances in the speed and sensitivity of mass spectrometers and in analytical methods, the exponential acceleration of computer processing speeds, and the availability of genomic databases from an array of species and protein information databases have led to a deluge of proteomic data. The development of a lab-based automated proteomic software platform for the automated collection, processing, storage, and visualization of expansive proteomic datasets is critically important. The high-throughput autonomous proteomic pipeline (HTAPP) described here is designed from the ground up to provide critically important flexibility for diverse proteomic workflows and to streamline the total analysis of a complex proteomic sample. This tool is comprised of software that controls the acquisition of mass spectral data along with automation of post-acquisition tasks such as peptide quantification, clustered MS/MS spectral database searching, statistical validation, and data exploration within a user-configurable lab-based relational database. The software design of HTAPP focuses on accommodating diverse workflows and providing missing software functionality to a wide range of proteomic researchers to accelerate the extraction of biological meaning from immense proteomic data sets. Although individual software modules in our integrated technology platform may have some similarities to existing tools, the true novelty of the approach described here is in the synergistic and flexible combination of these tools to provide an integrated and efficient analysis of proteomic samples. PMID:20336676

  10. Achievements and perspectives of top-down proteomics.

    PubMed

    Armirotti, Andrea; Damonte, Gianluca

    2010-10-01

    Over the last years, top-down (TD) MS has gained a remarkable space in proteomics, rapidly trespassing the limit between a promising approach and a solid, established technique. Several research groups worldwide have implemented TD analysis in their routine work on proteomics, deriving structural information on proteins with the level of accuracy that is impossible to achieve with classical bottom-up approaches. Complete maps of PTMs and assessment of single aminoacid polymorphisms are only a few of the results that can be obtained with this technique. Despite some existing technical and economical limitations, TD analysis is at present the most powerful instrument for MS-based proteomics and its implementation in routine workflow is a rapidly approaching turning point in proteomics. In this review article, the state-of-the-art of TD approach is described along with its major advantages and drawbacks and the most recent trends in TD analysis are discussed. References for all the covered topics are reported in the text, with the aim to support both newcomers and mass spectrometrists already introduced to TD proteomics.

  11. Raltegravir Treatment Intensification Does Not Alter Cerebrospinal Fluid HIV-1 Infection or Immunoactivation in Subjects on Suppressive Therapy

    PubMed Central

    Dahl, Viktor; Lee, Evelyn; Peterson, Julia; Spudich, Serena S.; Leppla, Idris; Sinclair, Elizabeth; Fuchs, Dietmar; Palmer, Sarah

    2011-01-01

    Background. Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. Methods. This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4+ and CD8+ T-cell surface antigen expression. Results. Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4+ and CD8+ T-cell activation. Conclusions. Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932. PMID:22021620

  12. Evaluation of the automated hematology analyzer ADVIA® 120 for cerebrospinal fluid analysis and usage of unique hemolysis reagent.

    PubMed

    Tanada, H; Ikemoto, T; Masutani, R; Tanaka, H; Takubo, T

    2014-02-01

    In this study, we evaluated the performance of the ADVIA 120 hematology system for cerebrospinal fluid (CSF) assay. Cell counts and leukocyte differentials in CSF were examined with the ADVIA 120 hematology system, while simultaneously confirming an effective hemolysis agent for automated CSF cell counts. The detection limits of both white blood cell (WBC) counts and red blood cell (RBC) counts on the measurement of CSF cell counts by the ADVIA 120 hematology system were superior at 2 cells/μL (10(-6) L). The WBC count was linear up to 9.850 cells/μL, and the RBC count was linear up to approximately 20 000 cells/μL. The intrarun reproducibility indicated good precision. The leukocyte differential of CSF cells, performed by the ADVIA120 hematology system, showed good correlation with the microscopic procedure. The VersaLyse hemolysis solution efficiently lysed the samples without interfering with cell counts and leukocyte differential, even in a sample that included approximately 50 000/μL RBC. These data show the ADVIA 120 hematology system correctly measured the WBC count and leukocyte differential in CSF. The VersaLyse hemolysis solution is considered to be optimal for hemolysis treatment of CSF when measuring cell counts and differentials by the ADVIA 120 hematology system. © 2013 John Wiley & Sons Ltd.

  13. Quantitative measurement of intervertebral disc signal using MRI.

    PubMed

    Niemeläinen, R; Videman, T; Dhillon, S S; Battié, M C

    2008-03-01

    To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx). A random sample of 30 subjects and intraclass correlation coefficients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. The repeatability of the spinal cord signal measurements was extremely high (>or=0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r=-0.30 to -0.40 versus r=-0.26 to -0.36). Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  14. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa.

    PubMed

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.

  15. Impact of cerebro-spinal fluid biomarkers of Alzheimer's disease in clinical practice: a multicentric study.

    PubMed

    Mouton-Liger, François; Wallon, David; Troussière, Anne-Cécile; Yatimi, Rachida; Dumurgier, Julien; Magnin, Eloi; de la Sayette, Vincent; Duron, Emannuelle; Philippi, Nathalie; Beaufils, Emilie; Gabelle, Audrey; Croisile, Bernard; Robert, Philippe; Pasquier, Florence; Hannequin, Didier; Hugon, Jacques; Paquet, Claire

    2014-01-01

    CSF biomarkers of Alzheimer's disease are well validated in clinical research; however, their pragmatic utility in daily practice is still unappreciated. These biomarkers are used in routine practice according to Health Authority Recommendations. In 604 consecutive patients explored for cognitive disorders, questionnaires were prospectively proposed and filled. Before and after CSF biomarker results, clinicians provided a diagnosis and an estimate of their diagnostic confidence. Analysis has compared the frequency of diagnosis before and after CSF biomarker results using the net reclassification improvement (NRI) method. We have evaluated external validity comparing with data of French Bank National of AD (BNA). A total of 561 patients [Alzheimer's disease (AD), n = 253; non-AD, n = 308] were included (mean age, 68.6 years; women, 52 %). Clinically suspected diagnosis and CSF results were concordant in 65.2 % of cases. When clinical hypothesis and biological results were discordant, a reclassification occurred in favour of CSF biomarkers results in 76.9 %. The NRI was 39.5 %. In addition, the results show a statistically significant improvement in clinician confidence for their diagnosis. In comparison with BNA data, patients were younger and more frequently diagnosed with AD. Clinicians tend to heavily rely on the CSF AD biomarkers results and are more confident in their diagnoses using CSF AD biomarkers. Thus, these biomarkers appear as a key tool in clinical practice.

  16. The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization.

    PubMed

    Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu

    2011-05-01

    Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.

  17. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    PubMed Central

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  18. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative.

    PubMed

    Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro

    2017-12-01

    The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.

  19. Quantitative proteomics analysis using 2D-PAGE to investigate the effects of cigarette smoke and aerosol of a prototypic modified risk tobacco product on the lung proteome in C57BL/6 mice.

    PubMed

    Elamin, Ashraf; Titz, Bjoern; Dijon, Sophie; Merg, Celine; Geertz, Marcel; Schneider, Thomas; Martin, Florian; Schlage, Walter K; Frentzel, Stefan; Talamo, Fabio; Phillips, Blaine; Veljkovic, Emilija; Ivanov, Nikolai V; Vanscheeuwijck, Patrick; Peitsch, Manuel C; Hoeng, Julia

    2016-08-11

    Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating the much lower effects of pMRTP aerosol than cigarette smoke on the mouse lung proteome. The combined analysis of 2D-PAGE and LC-MS/MS data identified an effect of cigarette smoke on the proteasome and actin cytoskeleton in the lung. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Cerebrospinal fluid protein and glucose examinations and tuberculosis:
Will laboratory safety regulations force a change of practice?

    PubMed

    Tormey, William P; O'Hagan, Christopher

    2015-01-01

    Cerebrospinal fluid (CSF) protein and glucose examinations are usually performed in chemical pathology departments on autoanalysers. Tuberculosis (TB) is a group 3 biological agent under Directive 2000/54/EC of the European Parliament but in the biochemistry laboratory, no extra precautions are taken in its analysis in possible TB cases. The issue of laboratory practice and safety in the biochemical analyses of CSF specimens, when tuberculosis infection is in question is addressed in the context of ambiguity in the implementation of current national and international health and safety regulations. Additional protective measures for laboratory staff during the analysis of CSF TB samples should force a change in current laboratory practice and become a regulatory issue under ISO 15189. Annual Mantoux skin test or an interferon-γ release assay for TB should be mandatory for relevant staff. This manuscript addresses the issue of biochemistry laboratory practice and safety in the biochemical analyses of CSF specimens when tuberculosis infection is in question in the context of the ambiguity of statutory health and safety regulations.

  1. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients.Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients. Electronic supplementary information (ESI) available: Additional data are available in the supplementary tables and supplementary figures. See DOI: 10.1039/c3nr06465d

  2. The subcommissural organ of the rat secretes Reissner's fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments

    PubMed Central

    Vio, Karin; Rodríguez, Sara; Yulis, Carlos R; Oliver, Cristian; Rodríguez, Esteban M

    2008-01-01

    Background The subcommissural organ (SCO) is a highly conserved brain gland present throughout the vertebrate phylum; it secretes glycoproteins into the cerebrospinal fluid (CSF), where they aggregate to form Reissner's fiber (RF). SCO-spondin is the major constituent protein of RF. Evidence exists that the SCO also secretes proteins that remain soluble in the CSF. The aims of the present investigation were: (i) to identify and partially characterize the SCO-secretory compounds present in the SCO gland itself and in the RF of the Sprague-Dawley rat and non-hydrocephalic hyh mouse, and in the CSF of rat; (ii) to make a comparative analysis of the proteins present in these three compartments; (iii) to identify the proteins secreted by the SCO into the CSF at different developmental periods. Methods The proteins of the SCO secreted into the CSF were studied (i) by injecting specific antibodies into ventricular CSF in vivo; (ii) by immunoblots of SCO, RF and CSF samples, using specific antibodies against the SCO secretory proteins (AFRU and anti-P15). In addition, the glycosylated nature of SCO-compounds was analysed by concanavalin A and wheat germ agglutinin binding. To analyse RF-glycoproteins, RF was extracted from the central canal of juvenile rats and mice; to investigate the CSF-soluble proteins secreted by the SCO, CSF samples were collected from the cisterna magna of rats at different stages of development (from E18 to PN30). Results Five glycoproteins were identified in the rat SCO with apparent molecular weights of 630, 450, 390, 320 and 200 kDa. With the exception of the 200-kDa compound, all other compounds present in the rat SCO were also present in the mouse SCO. The 630 and 390 kDa compounds of the rat SCO have affinity for concanavalin A but not for wheat germ agglutinin, suggesting that they correspond to precursor forms. Four of the AFRU-immunoreactive compounds present in the SCO (630, 450, 390, 320 kDa) were absent from the RF and CSF. These may be precursor and/or partially processed forms. Two other compounds (200, 63 kDa) were present in SCO, RF and CSF and may be processed forms. The presence of these proteins in both, RF and CSF suggests a steady-state RF/CSF equilibrium for these compounds. Eight AFRU-immunoreactive bands were consistently found in CSF samples from rats at E18, E20 and PN1. Only four of these compounds were detected in the cisternal CSF of PN30 rats. The 200 kDa compound appears to be a key compound in rats since it was consistently found in all samples of SCO, RF and embryonic and juvenile CSF. Conclusion It is concluded that (i) during the late embryonic life, the rat SCO secretes compounds that remain soluble in the CSF and reach the subarachnoid space; (ii) during postnatal life, there is a reduction in the number and concentration of CSF-soluble proteins secreted by the SCO. The molecular structure and functional significance of these proteins remain to be elucidated. The possibility they are involved in brain development has been discussed. PMID:18218138

  3. Multidimensional proteomics for cell biology.

    PubMed

    Larance, Mark; Lamond, Angus I

    2015-05-01

    The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.

  4. CPTAC Releases Cancer Proteome Confirmatory Ovarian Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying diagnostics and therapies that will improve patients’ lives. Because a comprehensive molecular view of cancer is important for ultimately guiding treatment, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) has released the cancer proteome confirmatory ovarian study data sets.

  5. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-02

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations.

  6. Advances of Proteomic Sciences in Dentistry.

    PubMed

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  7. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    PubMed

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  8. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli.

    PubMed

    Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza

    2008-12-01

    The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.

  9. Does more favourable handling of the cerebrospinal fluid increase the diagnostic sensitivity of Borrelia burgdorferi sensu lato-specific PCR in Lyme neuroborreliosis?

    PubMed

    Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne

    2018-04-01

    Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.

  10. Bioactivity of Autologous Irradiated Renal Cell Carcinoma Vaccines Generated by ex Vivo Granulocyte-Macrophage Colony-stimulating Factor Gene Transfer1

    PubMed Central

    Simons, Jonathan W.; Jaffee, Elizabeth M.; Weber, Christine E.; Levitsky, Hyam I.; Nelson, William G.; Carducci, Michael A.; Lazenby, Audrey J.; Cohen, Lawrence K.; Finn, Christy C.; Clift, Shirley M.; Hauda, Karen M.; Beck, Lisa A.; Leiferman, Kristen M.; Owens, Albert H.; Piantadosi, Steven; Dranoff, Glenn; Mulligan, Richard C.; Pardoll, Drew M.; Marshall, Fray F.

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients. PMID:9108457

  11. Laboratory-based clinical audit as a tool for continual improvement: an example from CSF chemistry turnaround time audit in a South-African teaching hospital.

    PubMed

    Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E

    2016-01-01

    Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist's work station (caused by a preference for microbiological testing prior to CSF chemistry). A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction.

  12. Utility of (1-3)-β-D-glucan testing for diagnostics and monitoring response to treatment during the multistate outbreak of fungal meningitis and other infections.

    PubMed

    Litvintseva, Anastasia P; Lindsley, Mark D; Gade, Lalitha; Smith, Rachel; Chiller, Tom; Lyons, Jennifer L; Thakur, Kiran T; Zhang, Sean X; Grgurich, Dale E; Kerkering, Thomas M; Brandt, Mary E; Park, Benjamin J

    2014-03-01

     The 2012 outbreak of fungal meningitis associated with contaminated methylprednisolone produced by a compounding pharmacy has resulted in >750 infections. An important question facing patients and clinicians is the duration of antifungal therapy. We evaluated (1-3)-β-d-glucan (BDG) as a marker for monitoring response to treatment.  We determined sensitivity and specificity of BDG testing using the Fungitell assay, by testing 41 cerebrospinal fluid (CSF) specimens from confirmed cases of fungal meningitis and 66 negative control CSF specimens. We also assessed whether BDG levels correlate with clinical status by using incident samples from 108 case patients with meningitis and 20 patients with serially collected CSF.  A cutoff value of 138 pg/mL provided 100% sensitivity and 98% specificity for diagnosis of fungal meningitis in this outbreak. Patients with serially collected CSF were divided into 2 groups: those in whom BDG levels declined with treatment and those in whom BDG remained elevated. Whereas most patients with a decline in CSF BDG had clinical improvement, all 3 patients with continually elevated BDG had poor clinical outcomes (stroke, meningitis relapse, or development of new disease).  Our data suggest that measuring BDG in CSF is a highly sensitive test for diagnosis of fungal meningitis in this outbreak. Analysis of BDG levels in serially collected CSF demonstrated that BDG may correlate with clinical response. Routine measurement of BDG in CSF may provide useful adjunctive data for the clinical management of patients with outbreak-associated meningitis.

  13. Mortality of Dandy-Walker syndrome in the United States: Analysis by race, gender, and insurance status

    PubMed Central

    McClelland, Shearwood; Ukwuoma, Onyinyechi I.; Lunos, Scott; Okuyemi, Kolawole S.

    2015-01-01

    Background: Dandy-Walker syndrome (DWS) is a congenital disorder often diagnosed in early childhood. Typically manifesting with signs/symptoms of increased intracranial pressure, DWS is catastrophic unless timely neurosurgical care can be administered via cerebrospinal fluid (CSF) drainage. The rates of mortality, adverse discharge disposition (ADD), and CSF drainage in DWS may not be uniform regardless of race, gender or insurance status; such differences could reflect disparities in access to neurosurgical care. This study examines these issues on a nationwide level. Materials and Methods: The Kids’ Inpatient Database spanning 1997-2003 was used for analysis. Only patients admitted for DWS (ICD-9-CM = 742.3) were included. Multivariate analysis was adjusted for several variables, including patient age, race, sex, admission type, primary payer, income, and hospital volume. Results: More than 14,000 DWS patients were included. Increasing age predicted reduced mortality (OR = 0.87; P < 0.05), ADD (OR = 0.96; P < 0.05), and decreased likelihood of receiving CSF drainage (OR = 0.86; P < 0.0001). Elective admission type predicted reduced mortality (OR = 0.29; P = 0.0008), ADD (OR = 0.68; P < 0.05), and increased CSF drainage (OR = 2.02; P < 0.0001). African-American race (OR = 1.20; P < 0.05) and private insurance (OR = 1.18; P < 0.05) each predicted increased likelihood of receiving CSF drainage, but were not predictors of mortality or ADD. Gender, income, and hospital volume were not significant predictors of DWS outcome. Conclusion: Increasing age and elective admissions each decrease mortality and ADD associated with DWS. African-American race and private insurance status increase access to CSF drainage. These findings contradict previous literature citing African-American race as a risk factor for mortality in DWS, and emphasize the role of private insurance in obtaining access to potentially lifesaving operative care. PMID:25883477

  14. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  15. CPTAC Releases Cancer Proteome Confirmatory Breast Study Data | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    An estimated 252,710 new cases of female breast cancer, accounting for 15% of all new cancer cases, occurred in 2017. To better understand proteogenomic abnormalities in breast cancer, the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) announces the release of the cancer proteome confirmatory breast study data. The goal of the study was to comprehensively characterize the proteome and phosphoproteome on approximately 100 prospectively collected breast tumor and adjacent normal tissues.

  16. Uptake and economic impact of first-cycle colony-stimulating factor use during adjuvant treatment of breast cancer.

    PubMed

    Hershman, Dawn L; Wilde, Elizabeth T; Wright, Jason D; Buono, Donna L; Kalinsky, Kevin; Malin, Jennifer L; Neugut, Alfred I

    2012-03-10

    In 2002, pegfilgrastim was approved by the US Food and Drug Administration and the benefits of dose-dense breast cancer chemotherapy, especially for hormone receptor (HR) -negative tumors, were reported. We examined first-cycle colony-stimulating factor use (FC-CSF) before and after 2002 and estimated US expenditures for dose-dense chemotherapy. We identified patients in Surveillance, Epidemiology, and End Results-Medicare greater than 65 years old with stages I to III breast cancer who had greater than one chemotherapy claim within 6 months of diagnosis(1998 to 2005) and classified patients with an average cycle length less than 21 days as having received dose-dense chemotherapy. The associations of patient, tumor, and physician-related factors with the receipt of any colony-stimulating factor (CSF) and FC-CSF use were analyzed by using generalized estimating equations. CSF costs were estimated for patients who were undergoing dose-dense chemotherapy. Among the 10,773 patients identified, 5,266 patients (48.9%) had a CSF claim. CSF use was stable between 1998 and 2002 and increased from 36.8% to 73.7% between 2002 and 2005, FC-CSF use increased from 13.2% to 67.9%, and pegfilgrastim use increased from 4.1% to 83.6%. In a multivariable analysis, CSF use was associated with age and chemotherapy type and negatively associated with black/Hispanic race, rural residence, and shorter chemotherapy duration. FC-CSF use was associated with high socioeconomic status but not with age or race/ethnicity. The US annual CSF expenditure for women with HR-positive tumors treated with dose-dense chemotherapy is estimated to be $38.8 million. A rapid increase in FC-CSF use occurred over a short period of time, which was likely a result of the reported benefits of dose-dense chemotherapy and the ease of pegfilgrastim administration. Because of the increasing evidence that elderly HR-positive patients do not benefit from dose-dense chemotherapy, limiting pegfilgrastim use would combat the increasing costs of cancer care.

  17. Changes in CSF flow after one-stage posterior vertebral column resection in scoliosis patients with syringomyelia and Chiari malformation type I.

    PubMed

    Wang, Yingsong; Xie, Jingming; Zhao, Zhi; Zhang, Ying; Li, Tao; Si, Yongyu

    2013-05-01

    Phase contrast-cine MRI (PC-cine MRI) studies in patients with syringomyelia and Chiari malformation Type I (CM-I) have demonstrated abnormal CSF flow across the foramen magnum, which can revert to normal after craniocervical decompression with syrinx shrinkage. In order to investigate the mechanisms leading to postoperative syringomyelia shrinkage, the authors studied the hydrodynamic changes of CSF flow in the craniocervical junction and spinal canal in patients with scoliosis associated with syringomyelia after one-stage deformity correction by posterior vertebral column resection. Preoperative and postoperative CSF flow dynamics at the levels of the foramen magnum, C-7, T-7 (or apex), and L-1 were assessed by electrocardiogram-synchronized cardiac-gated PC-cine MRI in 8 adolescent patients suffering from severe scoliosis with syringomyelia and CM-I (scoliosis group) and undergoing posterior vertebral column resection. An additional 8 patients with syringomyelia and CM-I without spinal deformity (syrinx group) and 8 healthy volunteers (control group) were also enrolled. Mean values were obtained for the following parameters: the duration of a CSF cycle, the duration of caudad CSF flow (CSF downflow [DF]) and cephalad CSF flow (CSF upflow [UF]), the ratio of DF duration to CSF cycle duration (DF%), and the ratio of UF duration to CSF cycle duration (UF%). The ratio of the stationary phase (SP) duration to CSF cycle duration was calculated (SP%). The maximum downflow velocities (VD max) and maximum upflow velocities (VU max) were measured. SPSS (version 14.0) was used for all statistical analysis. Patients in the scoliosis group underwent one-stage posterior vertebral column resection for deformity correction without suboccipital decompression. The mean preoperative coronal Cobb angle was 102.4° (range 76°-138°). The mean postoperative Cobb angle was 41.7° (range 12°-75°), with an average correction rate of 59.3%. During the follow-up, 1 patient with hypermyotonia experienced a significant decrease of muscle tension and 1 patient with reduced anal sphincter tone manifested recovery. A total of 5 patients demonstrated a significant decrease (> 30%) in syrinx size. With respect to changes in CSF flow dynamics, the syrinx group was characterized by slower and shorter downflow than the control group, and the difference was more significant at the foramen magnum and C-7 levels. In patients with scoliosis, CSF downflow at the foramen magnum level was significantly restricted, and a prolonged stationary phase indicated increased obstruction of CSF flow. After posterior vertebral column resection, the peak velocity of CSF flow at the foramen magnum increased, and the downflow phase duration was markedly prolonged. The parameters showed a return to almost normal CSF dynamics at the craniocervical region, and this improvement was maintained for 6-12 months of follow-up. There were distinct abnormalities of CSF flow at the craniocervical junction in patients with syringomyelia. Abnormal dynamics of downflow could be aggravated by associated severe spinal deformity and improved by correction via posterior vertebral column resection.

  18. Proteomic analysis of bovine nucleolus.

    PubMed

    Patel, Amrutlal K; Olson, Doug; Tikoo, Suresh K

    2010-09-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization. Copyright © 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  19. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.

    PubMed Central

    Qin, Y; Duquette, P; Zhang, Y; Talbot, P; Poole, R; Antel, J

    1998-01-01

    The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes. PMID:9727074

  20. Meta-analysis of classical swine fever prevalence in pigs in India: A 5-year study

    PubMed Central

    Patil, S. S.; Suresh, K. P.; Saha, S.; Prajapati, A.; Hemadri, D.; Roy, P.

    2018-01-01

    Aim: The aim of the study was to determine the overall prevalence of classical swine fever (CSF) in pigs in India, through a systematic review and meta-analysis of published data. Materials and Methods: Consortium for e-Resources in Agriculture, India, Google Scholar, PubMed, annual reports of All India Coordinated Research Project on Animal Disease Monitoring and Surveillance, and All India Animal Disease database of NIVEDI (NADRES) were used for searching and retrieval of CSF prevalence data (seroprevalence, virus antigen, and virus nucleic acid detection) in India using a search strategy combining keywords and related database-specific subject terms from January 2011 to December 2015 in English only. Results: A total of 22 data reports containing 6,158 samples size from 18 states of India were used for the quantitative synthesis, and overall 37% (95% confidence interval [CI]=0.24, 0.51) CSF prevalence in India was estimated. The data were classified into 4 different geographical zones of the country: 20% (95% CI=0.05, 0.55), 31% (95% CI=0.18, 0.47), 55% (95% CI=0.32, 0.76), and 34% (95% CI=0.14, 0.62). CSF prevalence was estimated in northern, eastern, western, and southern regions, respectively. Conclusion: This study indicates that overall prevalence of CSF in India is much lower than individual published reports. PMID:29657420

  1. MicroRNA Profile in Patients with Alzheimer's Disease: Analysis of miR-9-5p and miR-598 in Raw and Exosome Enriched Cerebrospinal Fluid Samples.

    PubMed

    Riancho, Javier; Vázquez-Higuera, José Luis; Pozueta, Ana; Lage, Carmen; Kazimierczak, Martha; Bravo, María; Calero, Miguel; Gonalezález, Andrea; Rodríguez, Eloy; Lleó, Alberto; Sánchez-Juan, Pascual

    2017-01-01

    MicroRNAs have been postulated as potential biomarkers for Alzheimer's disease (AD). Exosomes are nanovesicles which transport microRNAs, proteins, and other cargos. It has been hypothesized that the exosome traffic might be increased in neurodegenerative disorders. i) To assess the cerebrospinal fluid (CSF) microRNA profile in a group of AD patients and control subjects and to validate a group of microRNAs previously reported by other authors. ii) To compare microRNA levels in whole CSF and in the exosome-enriched fraction in AD patients. A panel of 760 microRNAs was analyzed in the CSF of 10 AD patients and 10 healthy subjects. Among microRNAs differently expressed, we selected those that had been previously reported by other authors. Candidates were validated in a larger group by individual qPCR assays. MicroRNA expression was also evaluated in exosome-enriched CSF samples of patients with AD and controls. Fifteen microRNAs were differently expressed in AD. MiR-9-5p, miR-134, and miR-598 were selected as candidates for further analysis. MiR-9-5p and miR-598 were detected in 50 and 75% of control CSF samples, respectively, while they were not detected in any AD CSF samples. We observed an opposite pattern when we evaluated the microRNA expression in the exosome-enriched CSF AD samples. No pattern variations were noted among healthy subjects. These data propose miR-9-5p and miR-598 as potential biomarkers for AD. Further studies in plasma and other body fluids will confirm their potential role as easily accessible biomarkers. In addition, our data suggest that exosome trafficking is different between AD and control subjects raising the need to take this phenomenon into consideration in future studies of AD biomarkers.

  2. Prophylactic antibiotics or G-CSF for the prevention of infections and improvement of survival in cancer patients undergoing chemotherapy.

    PubMed

    Herbst, Christine; Naumann, Frauke; Kruse, Eva-Brigitta; Monsef, Ina; Bohlius, Julia; Schulz, Holger; Engert, Andreas

    2009-01-21

    Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (G-CSF) or granulocyte-macrophage colony stimulating factors (GM-CSF); and antibiotics, frequently quinolones or cotrimoxazole. Important current guidelines recommend the use of colony stimulating factors when the risk of febrile neutropenia is above 20% but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. To compare the effectiveness of G-CSF or GM-CSF with antibiotics in cancer patients receiving myeloablative chemotherapy with respect to preventing fever, febrile neutropenia, infection, infection-related mortality, early mortality and improving quality of life. We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to 2007). We planned to include both full-text and abstract publications. Randomised controlled trials comparing prophylaxis with G-CSF or GM-CSF versus antibiotics in cancer patients of all ages receiving chemotherapy or bone marrow or stem cell transplantation were included for review. Both study arms had to receive identical chemotherapy regimes and other supportive care. Trial eligibility and quality assessment, data extraction and analysis were done in duplicate. Authors were contacted to obtain missing data. We included two eligible randomised controlled trials with 195 patients. Due to differences in the outcomes reported, the trials could not be pooled for meta-analysis. Both trials showed non-significant results favouring antibiotics for the prevention of fever or hospitalisation for febrile neutropenia. There is no evidence for or against antibiotics compared to G(M)-CSFs for the prevention of infections in cancer patients.

  3. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is inexpensive and commonly available, should be encouraged in all clinical settings.

  4. Comparison of the Cerebrospinal Fluid (CSF) Toluidine Red Unheated Serum Test and the CSF Rapid Plasma Reagin Test with the CSF Venereal Disease Research Laboratory Test for Diagnosis of Neurosyphilis among HIV-Negative Syphilis Patients in China

    PubMed Central

    Zhu, Lin; Gu, Xin; Peng, Rui-Rui; Wang, Cuini; Gao, Zixiao; Gao, Ying; Shi, Mei; Guan, Zhifang; Seña, Arlene C.

    2014-01-01

    In this study, we aimed to investigate the performance of nontreponemal antibody tests in cerebrospinal fluid (CSF) specimens from syphilis patients. From September 2009 to September 2012, CSF specimens were collected at the Shanghai Skin Disease Hospital in Shanghai, China, from 1,132 syphilis patients without HIV infection, including 154 with symptomatic and 56 with asymptomatic neurosyphilis. All of the CSF specimens underwent testing with a rapid plasma reagin (RPR) test, an RPR-V (commercial RPR antigen diluted 1:2 in 10% saline) test, the toluidine red unheated serum test (TRUST), and the Venereal Disease Research Laboratory (VDRL) test. Specificities, sensitivities, positive predictive values (PPVs), negative predictive values (NPVs), and kappa values were calculated to determine the performances of the tests. We compared results of the CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST among patients with symptomatic and asymptomatic neurosyphilis who had reactive CSF-Treponema pallidum particle agglutination (TPPA) test results. Overall, the CSF-VDRL test was reactive in 261 patients (23.1%). There were no cases in which the CSF-VDRL was nonreactive and CSF-RPR, CSF-RPR-V, or CSF-TRUST was reactive. Agreement between the results of CSF-TRUST and CSF-RPR was almost perfect (κ = 0.861), with substantial agreement between the results of CSF-RPR and CSF-RPR-V (κ = 0.740). The sensitivities of CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST were 81.4%, 76.2%, 79.5%, and 76.2%, respectively. Compared to CSF-VDRL, CSF-RPR, CSF-RPR-V, and CSF-TRUST had comparable PPVs and NPVs. However, the specificity of CSF-VDRL (90.3%) was significantly lower than those of the other tests (92.7 to 93.4%). Therefore, CSF-RPR, CSF-RPR-V, and CSF-TRUST can be considered alternative tests for neurosyphilis diagnosis in HIV-negative populations, particularly when the CSF-VDRL is not available. PMID:24335955

  5. YPED: An Integrated Bioinformatics Suite and Database for Mass Spectrometry-based Proteomics Research

    PubMed Central

    Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.

    2015-01-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262

  6. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    PubMed

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  8. The diagnostic value of cerebrospinal fluid lactate for post-neurosurgical bacterial meningitis: a meta-analysis.

    PubMed

    Xiao, Xiong; Zhang, Yang; Zhang, Liwei; Kang, Peng; Ji, Nan

    2016-09-13

    Bacterial meningitis is not rare in post-neurosurgical patients. If patients are not treated promptly, the mortality rate can reach 20 to 50 %. The concentration of cerebrospinal fluid (CSF) lactate has been reported to be helpful in the diagnosis of bacterial meningitis; however, no systematic evaluations have investigated CSF from a postoperative perspective. In this study, we performed a systematic evaluation and meta-analysis of the efficacy of using CSF lactate concentrations in the diagnosis of post-neurosurgical bacterial meningitis. We retrieved studies that investigated the diagnostic value of CSF lactate for the diagnosis of post-neurosurgical bacterial meningitis by searching PubMed, EBSCO, the Cochrane Library and ClinicalTrials.gov. All these databases were searched from inception to November 2015. We used Quality Assessment of Diagnostic Accuracy Studies (QUADAS), a tool for the quality assessment of diagnostic accuracy, to evaluate the quality of the included studies. The Meta-DiSc 1.4 and Review Manager 5.3 software programs were used to analyze the included studies. Forest plots and summary receiver operating characteristics (SROC) curves were also drawn. Five studies, involving a total of 404 post-neurosurgical patients, were selected from 1,672 articles according to the inclusion criteria. The quality of the five included studies was assessed using QUADAS, and the related results are presented in tables. The meta-analysis revealed the following diagnostic values regarding CSF lactate for post-neurosurgical bacterial meningitis: a pooled sensitivity of 0.92 (95 % CI 0.85-0.96), a pooled specificity of 0.88 (95 % CI 0.84-0.92 with significant heterogeneity), a diagnostic odds ratio of 83.09 (95 % CI 36.83-187.46), an area under the curve (AUCSROC) of 0.9601, an SE(AUC) of 0.0122, a Q* of 0.9046 and an SE(Q*) of 0.0179. The meta-analysis indicated that the CSF lactate concentration has relatively high sensitivity and specificity for the diagnosis of post-neurosurgical bacterial meningitis and thus has relatively good efficacy.

  9. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    PubMed Central

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  10. [Techniques for rapid production of monoclonal antibodies for use with antibody technology].

    PubMed

    Kamada, Haruhiko

    2012-01-01

    A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.

  11. Prestroke Proteomic Changes in Cerebral Microvessels in Stroke-Prone, Transgenic[hCETP]-Hyperlipidemic, Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Bergerat, Agnes; Decano, Julius; Wu, Chang-Jiun; Choi, Hyungwon; Nesvizhskii, Alexey I; Moran, Ann Marie; Ruiz-Opazo, Nelson; Steffen, Martin; Herrera, Victoria LM

    2011-01-01

    Stroke is the third leading cause of death in the United States with high rates of morbidity among survivors. The search to fill the unequivocal need for new therapeutic approaches would benefit from unbiased proteomic analyses of animal models of spontaneous stroke in the prestroke stage. Since brain microvessels play key roles in neurovascular coupling, we investigated prestroke microvascular proteome changes. Proteomic analysis of cerebral cortical microvessels (cMVs) was done by tandem mass spectrometry comparing two prestroke time points. Metaprotein-pathway analyses of proteomic spectral count data were done to identify risk factor–induced changes, followed by QSPEC-analyses of individual protein changes associated with increased stroke susceptibility. We report 26 cMV proteome profiles from male and female stroke-prone and non–stroke-prone rats at 2 months and 4.5 months of age prior to overt stroke events. We identified 1,934 proteins by two or more peptides. Metaprotein pathway analysis detected age-associated changes in energy metabolism and cell-to-microenvironment interactions, as well as sex-specific changes in energy metabolism and endothelial leukocyte transmigration pathways. Stroke susceptibility was associated independently with multiple protein changes associated with ischemia, angiogenesis or involved in blood brain barrier (BBB) integrity. Immunohistochemical analysis confirmed aquaporin-4 and laminin-α1 induction in cMVs, representative of proteomic changes with >65 Bayes factor (BF), associated with stroke susceptibility. Altogether, proteomic analysis demonstrates significant molecular changes in ischemic cerebral microvasculature in the prestroke stage, which could contribute to the observed model phenotype of microhemorrhages and postischemic hemorrhagic transformation. These pathways comprise putative targets for translational research of much needed novel diagnostic and therapeutic approaches for stroke. PMID:21519634

  12. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation.

    PubMed

    Achariyar, Thiyagaragan M; Li, Baoman; Peng, Weiguo; Verghese, Philip B; Shi, Yang; McConnell, Evan; Benraiss, Abdellatif; Kasper, Tristan; Song, Wei; Takano, Takahiro; Holtzman, David M; Nedergaard, Maiken; Deane, Rashid

    2016-12-08

    Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it's expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student's t- test. We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.

  13. CPTAC Accelerates Precision Proteomics Biomedical Research | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The accurate quantitation of proteins or peptides using Mass Spectrometry (MS) is gaining prominence in the biomedical research community as an alternative method for analyte measurement. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigators have been at the forefront in the promotion of reproducible MS techniques, through the development and application of standardized proteomic methods for protein quantitation on biologically relevant samples.

  14. Predictors of Hypocretin (Orexin) Deficiency in Narcolepsy Without Cataplexy

    PubMed Central

    Andlauer, Olivier; Moore, Hyatt; Hong, Seung-Chul; Dauvilliers, Yves; Kanbayashi, Takashi; Nishino, Seiji; Han, Fang; Silber, Michael H.; Rico, Tom; Einen, Mali; Kornum, Birgitte R.; Jennum, Poul; Knudsen, Stine; Nevsimalova, Sona; Poli, Francesca; Plazzi, Giuseppe; Mignot, Emmanuel

    2012-01-01

    Study Objectives: To compare clinical, electrophysiologic, and biologic data in narcolepsy without cataplexy with low (≤ 110 pg/ml), intermediate (110–200 pg/ml), and normal (> 200 pg/ml) concentrations of cerebrospinal fluid (CSF) hypocretin-1. Setting: University-based sleep clinics and laboratories. Patients: Narcolepsy without cataplexy (n = 171) and control patients (n = 170), all with available CSF hypocretin-1. Design and interventions: Retrospective comparison and receiver operating characteristics curve analysis. Patients were also recontacted to evaluate if they developed cataplexy by survival curve analysis. Measurements and Results: The optimal cutoff of CSF hypocretin-1 for narcolepsy without cataplexy diagnosis was 200 pg/ml rather than 110 pg/ml (sensitivity 33%, specificity 99%). Forty-one patients (24%), all HLA DQB1*06:02 positive, had low concentrations (≤ 110 pg/ml) of CSF hypocretin-1. Patients with low concentrations of hypocretin-1 only differed subjectively from other groups by a higher Epworth Sleepiness Scale score and more frequent sleep paralysis. Compared with patients with normal hypocretin-1 concentration (n = 117, 68%), those with low hypocretin-1 concentration had higher HLA DQB1*06:02 frequencies, were more frequently non-Caucasians (notably African Americans), with lower age of onset, and longer duration of illness. They also had more frequently short rapid-eye movement (REM) sleep latency (≤ 15 min) during polysomnography (64% versus 23%), and shorter sleep latencies (2.7 ± 0.3 versus 4.4 ± 0.2 min) and more sleep-onset REM periods (3.6 ± 0.1 versus 2.9 ± 0.1 min) during the Multiple Sleep Latency Test (MSLT). Patients with intermediate concentrations of CSF hypocretin-1 (n = 13, 8%) had intermediate HLA DQB1*06:02 and polysomnography results, suggesting heterogeneity. Of the 127 patients we were able to recontact, survival analysis showed that almost half (48%) with low concentration of CSF hypocretin-1 had developed typical cataplexy at 26 yr after onset, whereas only 2% had done so when CSF hypocretin-1 concentration was normal. Almost all patients (87%) still complained of daytime sleepiness independent of hypocretin status. Conclusion: Objective (HLA typing, MSLT, and sleep studies) more than subjective (sleepiness and sleep paralysis) features predicted low concentration of CSF hypocretin-1 in patients with narcolepsy without cataplexy. Citation: Andlauer O; Moore H; Hong SC; Dauvilliers Y; Kanbayashi T; Nishino S; Han F; Silber MH; Rico T; Einen M; Kornum BR; Jennum P; Knudsen S; Nevsimalova S; Poli F; Plazzi G; Mignot E. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. SLEEP 2012;35(9):1247–1255. PMID:22942503

  15. Michael T. Guarnieri | NREL

    Science.gov Websites

    accumulation," J. Proteomics (2013) "Comparative Proteomics Lends Insight into Genotype-Specific Pathogenicity," J. Proteomics (2013) "De Novo Transcriptomic Analysis of Hydrogen Production in the amino acid changes in the small envelope protein and rescued by a novel glycosolation site," J

  16. Cerebrospinal fluid Plasmodium falciparum histidine-rich protein-2 in pediatric cerebral malaria.

    PubMed

    Thakur, Kiran T; Vareta, Jimmy; Carson, Kathryn A; Kampondeni, Samuel; Potchen, Michael J; Birbeck, Gretchen L; MacCormick, Ian; Taylor, Terrie; Sullivan, David J; Seydel, Karl B

    2018-03-23

    Cerebral malaria (CM) causes a rapidly developing coma, and remains a major contributor to morbidity and mortality in malaria-endemic regions. This study sought to determine the relationship between cerebrospinal fluid (CSF) Plasmodium falciparum histidine rich protein-2 (PfHRP-2) and clinical, laboratory and radiographic features in a cohort of children with retinopathy-positive CM. Patients included in the study were admitted (2009-2013) to the Pediatric Research Ward (Queen Elizabeth Central Hospital, Blantyre, Malawi) meeting World Health Organization criteria for CM with findings of malarial retinopathy. Enzyme-linked immunosorbent assay was used to determine plasma and CSF PfHRP-2 levels. Wilcoxon rank-sum tests and multivariable logistic regression analysis assessed the association of clinical and radiographic characteristics with the primary outcome of death during hospitalization. In this cohort of 94 patients, median age was 44 (interquartile range 29-62) months, 53 (56.4%) patients were male, 6 (7%) were HIV-infected, and 10 (11%) died during hospitalization. Elevated concentrations of plasma lactate (p = 0.005) and CSF PfHRP-2 (p = 0.04) were significantly associated with death. On multivariable analysis, higher PfHRP-2 in the CSF was associated with death (odds ratio 9.00, 95% confidence interval 1.44-56.42) while plasma PfHRP-2 was not (odds ratio 2.05, 95% confidence interval 0.45-9.35). Elevation of CSF, but not plasma PfHRP-2, is associated with death in this paediatric CM cohort. PfHRP-2 egress into the CSF may represent alteration of blood brain barrier permeability related to the sequestration of parasitized erythrocytes in the cerebral microvasculature.

  17. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora

    Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less

  18. Advances of Proteomic Sciences in Dentistry

    PubMed Central

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  19. Recent advances in proteomics of cereals.

    PubMed

    Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash

    Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.

  20. SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis.

    PubMed

    Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V Lila; Karagouni, Amalia D; Tsakalidis, Athanasios; Kossida, Sophia

    2012-01-01

    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality.

  1. SAFE Software and FED Database to Uncover Protein-Protein Interactions using Gene Fusion Analysis

    PubMed Central

    Tsagrasoulis, Dimosthenis; Danos, Vasilis; Kissa, Maria; Trimpalis, Philip; Koumandou, V. Lila; Karagouni, Amalia D.; Tsakalidis, Athanasios; Kossida, Sophia

    2012-01-01

    Domain Fusion Analysis takes advantage of the fact that certain proteins in a given proteome A, are found to have statistically significant similarity with two separate proteins in another proteome B. In other words, the result of a fusion event between two separate proteins in proteome B is a specific full-length protein in proteome A. In such a case, it can be safely concluded that the protein pair has a common biological function or even interacts physically. In this paper, we present the Fusion Events Database (FED), a database for the maintenance and retrieval of fusion data both in prokaryotic and eukaryotic organisms and the Software for the Analysis of Fusion Events (SAFE), a computational platform implemented for the automated detection, filtering and visualization of fusion events (both available at: http://www.bioacademy.gr/bioinformatics/projects/ProteinFusion/index.htm). Finally, we analyze the proteomes of three microorganisms using these tools in order to demonstrate their functionality. PMID:22267904

  2. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    PubMed

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  3. The Relationship Between Monthdisease Incidence Rate and Climatic Factor of Classical Swine Fever

    NASA Astrophysics Data System (ADS)

    Wang, Hongbin; Xu, Danning; Xiao, Jianhua; Zhang, Ru; Dong, Jing

    The Swine Fever is a kind of acute, highly infective epidemic disease of animals; it is name as Classical Swine Fever (CSF) by World animal Health organization. Meteorological factors such as temperature, air pressure and rainfall affect the epidemic of CSF significantly through intermediary agent and CSF viral directly. However there is significant difference among different region for mode of effects. Accordingly, the analyze must adopt different methods. The dependability between incidence rate each month of CSF and meteorological factors from 1999 to 2004 was analyzed in this paper. The function of meteorological factors on CSF was explored and internal law was expected to be discovered. The correlation between the incidence rate of Swine Fever and meteorological factors, thus the foundation analysis of the early warning and the decision-making was made, the result indicated that the incidence rate of CSF has negative correlation with temperature, rainfall, cloudage; relative humidity has positive correlation with disease; for air pressure, except average air pressure of one month, other air pressure factors have positive correlation with disease; for wind speed, except Difference among moths of wind speed and average temperature of one month. have positive correlation with disease, other wind speed factors has negative correlation with disease.

  4. Cerebrospinal fluid rhinorrhea following trans-sphenoidal pituitary macroadenoma surgery: experience from 592 patients.

    PubMed

    Han, Zong-Li; He, Dong-Sheng; Mao, Zhi-Gang; Wang, Hai-Jun

    2008-06-01

    To determine the incidence, risk factors, diagnostic procedures, and management of cerebrospinal fluid (CSF) leaks following trans-sphenoidal pituitary macroadenoma surgery. Retrospective analysis of 592 patients. Intra- and post-operative CSF leaks occurred in 14.2 and 4.4% of patients, respectively. Surgical revision, tumor consistency, and tumor margins were independently associated with intra-operative leaks, while the tumor size, consistency, and margins were risk factors of post-operative leaks. The intra-operative leak rate of ACTH adenomas was greater than all other types combined; the incidence of post-operative CSF leaks was highest for FSH adenomas. There were no significant differences among various techniques and we achieved an initial repair success rates of 83.3 and 92.9% for intra- and post-operative CSF leaks, respectively. Of the 26 patients with post-operative CSF leaks, five were complicated by meningitis and four by post-infectious hydrocephalus which required ventriculoperitoneal shunts. CSF leaks have a propensity to occur in cases with fibrous tumors or tumors with indistinct margin and may have some relationship with the tumor type. Endoscopic and microscopic repairs were shown to be effective techniques in managing these types of leaks. Post-infectious hydrocephalus may influence the outcome of the repair and ventriculoperitoneal shunts were necessary in some cases.

  5. Proteomics Analysis of Bladder Cancer Exosomes*

    PubMed Central

    Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled

    2010-01-01

    Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function. PMID:20224111

  6. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium.

    PubMed

    Ellis, Matthew J; Gillette, Michael; Carr, Steven A; Paulovich, Amanda G; Smith, Richard D; Rodland, Karin K; Townsend, R Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel C

    2013-10-01

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verification using targeted mass spectrometry methods. ©2013 AACR.

  7. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  8. Rice proteome analysis: a step toward functional analysis of the rice genome.

    PubMed

    Komatsu, Setsuko; Tanaka, Naoki

    2005-03-01

    The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins.

  9. Placental Proteomics: A Shortcut to Biological Insight

    PubMed Central

    Robinson, John M.; Vandré, Dale D.; Ackerman, William E.

    2012-01-01

    Proteomics analysis of biological samples has the potential to identify novel protein expression patterns and/or changes in protein expression patterns in different developmental or disease states. An important component of successful proteomics research, at least in its present form, is to reduce the complexity of the sample if it is derived from cells or tissues. One method to simplify complex tissues is to focus on a specific, highly purified sub-proteome. Using this approach we have developed methods to prepare highly enriched fractions of the apical plasma membrane of the syncytiotrophoblast. Through proteomics analysis of this fraction we have identified over five hundred proteins several of which were previously not known to reside in the syncytiotrophoblast. Herein, we focus on two of these, dysferlin and myoferlin. These proteins, largely known from studies of skeletal muscle, may not have been found in the human placenta were it not for discovery-based proteomics analysis. This new knowledge, acquired through a discovery-driven approach, can now be applied for the generation of hypothesis-based experimentation. Thus discovery-based and hypothesis-based research are complimentary approaches that when coupled together can hasten scientific discoveries. PMID:19070895

  10. Application of an Improved Proteomics Method for Abundant Protein Cleanup: Molecular and Genomic Mechanisms Study in Plant Defense*

    PubMed Central

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2013-01-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779

  11. Shift from posttranscriptional to predominant transcriptional control of the expression of the GM-CSF gene during activation of human Jurkat cells.

    PubMed

    Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J

    1992-05-01

    The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.

  12. Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection

    PubMed Central

    Ahlgren, Erika; Hagberg, Lars; Fuchs, Dietmar; Andersson, Lars-Magnus; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2016-01-01

    Objective To investigate the role of homocysteine in neuronal injury in HIV infection. Methods Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. Results A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p < 0.0001). As expected, there was a significant inverse correlation between homocysteine and B12 (r = –0.41, p < 0.001) and folate (r = –0.40, p = < 0.001) levels. In a multiple linear regression analysis homocysteine stood out as an independent predictor of CSF NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). Conclusion A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causal link, homocysteine and functional B12/folate deficiency appear to play a role in neural injury in HIV-infected individuals. PMID:27441551

  13. Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection.

    PubMed

    Ahlgren, Erika; Hagberg, Lars; Fuchs, Dietmar; Andersson, Lars-Magnus; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2016-01-01

    To investigate the role of homocysteine in neuronal injury in HIV infection. Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p < 0.0001). As expected, there was a significant inverse correlation between homocysteine and B12 (r = -0.41, p < 0.001) and folate (r = -0.40, p = < 0.001) levels. In a multiple linear regression analysis homocysteine stood out as an independent predictor of CSF NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causal link, homocysteine and functional B12/folate deficiency appear to play a role in neural injury in HIV-infected individuals.

  14. Neutrophil-to-lymphocyte ratio in the differential diagnosis of acute bacterial meningitis.

    PubMed

    Mentis, A-F A; Kyprianou, M A; Xirogianni, A; Kesanopoulos, K; Tzanakaki, G

    2016-03-01

    The differential diagnosis of acute community-acquired meningitis is of paramount importance in both therapeutic and healthcare-related economic terms. Despite the routinely used markers, novel, easily calculated, and rapidly available biomarkers are needed particularly in resource-poor settings. A promising, exponentially studied inflammatory marker is the neutrophil-to-lymphocyte ratio (NLR), albeit not assessed in meningitis. The aim of this study was to investigate the utility of the NLR in the differential diagnosis of acute meningitis. Data on cerebrospinal fluid (CSF) and blood leukocyte parameters from more than 4,000 patients diagnosed with either bacterial or viral meningitis in Greece during the period 2006-2013 were retrospectively examined. The diagnostic accuracy of the NLR and neutrophil counts in CSF and blood were evaluated by receiver operating characteristic curves. The discrimination ability of both the NLR and neutrophil counts was significantly higher in CSF than in blood. The optimal cutoff values of the NLR and neutrophil counts were 2 in CSF vs 8 in blood, and 287 cells in CSF vs 12,100 cells in blood, respectively. For these values, sensitivity, negative predictive value, and odds ratio were statistically significantly higher in CSF than blood for both markers. Logistic regression analysis showed that the CSF NLR carries independent and additive information to neutrophil counts in the differential diagnosis of acute meningitis. This study is the first one to assess NLR in acute meningitis, providing promising results for its differential diagnosis.

  15. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    PubMed

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  16. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis.

    PubMed

    Chavez-Tapia, Norberto C; Mendiola-Pastrana, Indira; Ornelas-Arroyo, Victoria J; Noreña-Herrera, Camilo; Vidaña-Perez, Desiree; Delgado-Sanchez, Guadalupe; Uribe, Misael; Barrientos-Gutierrez, Tonatiuh

    2015-01-01

    Acute-on-chronic liver failure (ACLF) is associated with increased short and long-term mortality. Animal models of liver failure have demonstrated that granulocyte-colony stimulating factor (G-CSF) accelerates the liver regeneration process and improves survival. However, clinical evidence regarding the use of G-CSF in ACLF remains scarce. The aim of this study was to assess the benefits and harms of G-CSF in patients with acute-on-chronic liver failure. An electronic search was made in The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS up to November 2013. Randomized clinical trials comparing the use of any regimen of G-CSF against placebo or no intervention in patients with ACLF were included. Primary outcomes included overal mortality, mortality due multi-organ failure, and adverse events. Relative risk (RR) and mean difference (MD) were used. Two trials involving 102 patients were included. A significant reduction in short-term overall mortality was observed in patients receiving G-CSF compared to controls (RR 0.56; 95%CI 0.39,0.80). G-CSF failed to reduce mortality secondary to gastrointestinal bleeding (RR 1.45; 95%CI 0.50, 4.27). Adverse effects reported included: fever, rash, herpes zoster, headache and nausea. In conclusion, the use of G-CSF for the treatment of patients with ACLF significantly reduced short-term mortality. While the evidence is still limited, the apparent benefit observed on short-term mortality, mild adverse effects and lack of an alternative therapy make the use of G-CSF in ACLF patients a reasonable alternative when liver transplantation is contraindicated or unavailable.

  17. Simple and validated UHPLC-MS/MS analysis of nimodipine in plasma and cerebrospinal fluid of patients with subarachnoid haemorrhage.

    PubMed

    Mohamed, Susan; Riva, Roberto; Contin, Manuela

    2016-08-15

    We present a simple, fast and validated method for the determination of nimodipine in plasma and cerebrospinal fluid (CSF) of patients with subarachnoid haemorrhage using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Plasma or CSF 250μL aliquots were pretreated with acetonitrile spiked with lacosamide as internal standard. The chromatographic separation was performed on a Fusion (3μm) 50×2.0mm I.D. column with gradient elution of 0.1% (v/v) formic acid in water and 0.1% (v/v) formic acid in acetonitrile at a flow rate of 0.35mL/min. The MS/MS ion transitions were 419.1→343 for nimodipine and 251.1→91 for the internal standard. The linearity was determined from 2.0 to 40.0ng/mL in plasma and 40.0-800.0pg/mL in CSF. The lower limit of quantitation (LLOQ) of nimodipine was 0.4ng/mL in plasma and 40pg/mL in CSF. The mean recovery for nimodipine was ≥75% in plasma and ≥90% in CSF at all three considered concentrations. Intra- and interassay precision and accuracy were ≤15% at all quality control concentrations in plasma and CSF. The method was applied to measure plasma and CSF concentrations of nimodipine in a series of patients with subarachnoid haemorrhage treated with intravenous nimodipine. The present procedure, omitting time-consuming liquid-liquid extraction and drying steps, is faster, simpler and cheaper than published LC-MS/MS analytical methods for nimodipine in plasma and the first validated one for nimodipine in CSF. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of simvastatin on CSF Alzheimer disease biomarkers in cognitively normal adults.

    PubMed

    Li, Ge; Mayer, Cynthia L; Morelli, Daniel; Millard, Steven P; Raskind, Wendy H; Petrie, Eric C; Cherrier, Monique; Fagan, Anne M; Raskind, Murray A; Peskind, Elaine R

    2017-09-19

    To examine potential disease-modifying effects of statin drugs, we conducted a 12-month randomized, placebo-controlled clinical trial of simvastatin in cognitively normal adults using change in CSF Alzheimer disease biomarkers as primary outcome measure. Participants were 45-64 years old and statin-naive with normal cognition and normal or mildly elevated cholesterol. Forty-six participants completed the 1-year study per protocol (25 in the simvastatin and 21 in the placebo group). Simvastatin was titrated to 40 mg/d. CSF Aβ 42 , total tau, and p-tau 181 were measured at baseline and after 12 months of treatment using the INNO-BIA AlzBio3 assay. We used analysis of covariance to assess differences in biomarker change from baseline between treatment groups, adjusting for age, sex, and APOE ε4 status. Changes from baseline did not differ significantly between treatment groups for any CSF biomarker, with p values of 0.53, 0.36, and 0.25 for CSF Aβ 42 , total tau, and p-tau 181 , respectively. There was no significant modifying effect of sex, APOE ε4, or baseline high-density lipoprotein or triglycerides on treatment group for any of the biomarkers (all p > 0.18). However, a significant interaction between treatment group and baseline low-density lipoprotein (LDL) was observed for p-tau 181 ( p = 0.003), where greater decreases from baseline in CSF p-tau 181 concentrations were associated with higher baseline LDL level for the simvastatin group. Simvastatin-related reductions in CSF p-tau 181 concentrations may be modulated by LDL cholesterol. The potential disease-modifying effects of simvastatin on CSF phospho-tau should be further investigated in persons with hypercholesterolemia. © 2017 American Academy of Neurology.

  19. Abeta1-42 Detection in CSF of Alzheimer's disease is influenced by temperature: indication of reversible Abeta1-42 aggregation?

    PubMed

    Sancesario, Giulia M; Esposito, Zaira; Nuccetelli, Marzia; Bernardini, Sergio; Sorge, Roberto; Martorana, Alessandro; Federici, Giorgio; Bernardi, Giorgio; Sancesario, Giuseppe

    2010-06-01

    Amyloid-beta 1-42 (Abeta1-42), peptide detectable in cerebrospinal fluid (CSF), has been extensively studied as diagnostic marker for Alzheimer's disease; however, results are variable. We investigated whether Abeta1-42 detection in CSF may be affected by handling temperature after lumbar puncture. CSF was collected from patients affected by probable AD (n=27), other dementias (OD) (n=24), or other neurological disorders without cognitive impairment (OND) (n=23). After lumbar puncture, CSF samples were either maintained at 37 degrees C, or handled according to standard procedures and centrifuged at 4 degrees C for 10 min; thereafter, one aliquot was further stored at 4 degrees C and another at 37 degrees C, before freezing all samples 90 min later at -80 degrees C, pending analysis. Abeta1-42 and total tau were determined using a commercially available sandwich enzyme-linked immunosorbent assay ELISA. Reduced Abeta1-42 and increased total tau CSF levels were confirmed as characteristic hallmarks of the OD and AD groups, providing standard measurement in samples stored at 4 degrees C before freezing. However, avoiding cooling or reheating CSF from 4 to 37 degrees C before freezing strikingly increased the Abeta1-42 concentration detectable in the AD group (P<0.01), but not in control groups. The results indicate that a pool of Abeta1-42 cannot be detectable in the CSF of AD patients, because standard preanalytical cooling masks in some ways the epitope recognized by Abeta1-42 specific antibodies. Moreover, our study suggests that low temperature could induce Abeta1-42 conformational changes and multimeric aggregates in probable AD, but, more importantly, Abeta1-42 aggregation could be reversible. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  20. Is Cerebrospinal Fluid C-reactive Protein a Better Tool than Blood C-reactive Protein in Laboratory Diagnosis of Meningitis in Children?

    PubMed Central

    Malla, Kalpana K.; Malla, Tejesh; Rao, K. Seshagiri; Basnet, Sahisnuta; Shah, Ravi

    2013-01-01

    Objectives: This study aimed to test whether C-reactive protein (CRP) measurement could differentiate between different types of meningitis and become a routine test. Methods: A prospective study included 140 children admitted to Manipal Teaching Hospital, Pokhara, Nepal, between July 2009 and June 2011. The subjects had a blood test and detailed cerebrospinal fluid (CSF) analysis, including blood and CSF CRP levels. Results: Of those admitted, 31.1% had pyogenic meningitis (PM), 26.2% partially treated meningitis (PPM), 33% viral meningitis (VM), and 9.7% tubercular meningitis (TBM), with 26.4% controls. Organisms were isolated in 12.5% of the cases by blood culture and 25% of cases through CSF culture. Blood CRP was positive in all groups, with the highest values in PM (53.12 ± 28.88 mg/dl) and PPM (47.55 ± 34.34 mg/dl); this was not statistically significant (P = 0.08). The CSF CRP levels were significantly higher (P <0.001) in PM (45.75 ± 28.50 mg/dl) and PPM (23.11 ± 23.98 mg/dl). The sensitivity and specificity of blood CRP was 90.62%, 88.88%, 64.7%, 70% and 32.4%, 30.97%, 24.52%, 26.12% and that of CSF CRP was 96.87%, 66.66%, 20.58%, 10% and 74.73%, 63.71%, 50.94%, 55.35% for PM, PPM, VM and TBM, respectively. Conclusion: Because of its high sensitivity, both CSF CRP and blood CRP can be used to screen for bacterial meningitis (both PM and PPM). CSF CRP screening yielded results with a higher specificity than blood CRP; hence, it can be a supportive test along with CSF cytology, biochemistry, and microbiology for diagnosing meningitis. PMID:23573388

  1. Diagnostic accuracy of routine blood examinations and CSF lactate level for post-neurosurgical bacterial meningitis.

    PubMed

    Zhang, Yang; Xiao, Xiong; Zhang, Junting; Gao, Zhixian; Ji, Nan; Zhang, Liwei

    2017-06-01

    To evaluate the diagnostic accuracy of routine blood examinations and Cerebrospinal Fluid (CSF) lactate level for Post-neurosurgical Bacterial Meningitis (PBM) at a large sample-size of post-neurosurgical patients. The diagnostic accuracies of routine blood examinations and CSF lactate level to distinguish between PAM and PBM were evaluated with the values of the Area Under the Curve of the Receiver Operating Characteristic (AUC -ROC ) by retrospectively analyzing the datasets of post-neurosurgical patients in the clinical information databases. The diagnostic accuracy of routine blood examinations was relatively low (AUC -ROC <0.7). The CSF lactate level achieved rather high diagnostic accuracy (AUC -ROC =0.891; CI 95%, 0.852-0.922). The variables of patient age, operation duration, surgical diagnosis and postoperative days (the interval days between the neurosurgery and examinations) were shown to affect the diagnostic accuracy of these examinations. The variables were integrated with routine blood examinations and CSF lactate level by Fisher discriminant analysis to improve their diagnostic accuracy. As a result, the diagnostic accuracy of blood examinations and CSF lactate level was significantly improved with an AUC -ROC value=0.760 (CI 95%, 0.737-0.782) and 0.921 (CI 95%, 0.887-0.948) respectively. The PBM diagnostic accuracy of routine blood examinations was relatively low, whereas the accuracy of CSF lactate level was high. Some variables that are involved in the incidence of PBM can also affect the diagnostic accuracy for PBM. Taking into account the effects of these variables significantly improves the diagnostic accuracies of routine blood examinations and CSF lactate level. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort.

    PubMed

    Kim, S; Swaminathan, S; Shen, L; Risacher, S L; Nho, K; Foroud, T; Shaw, L M; Trojanowski, J Q; Potkin, S G; Huentelman, M J; Craig, D W; DeChairo, B M; Aisen, P S; Petersen, R C; Weiner, M W; Saykin, A J

    2011-01-04

    CSF levels of Aβ1-42, t-tau, and p-tau181p are potential early diagnostic markers for probable Alzheimer disease (AD). The influence of genetic variation on these markers has been investigated for candidate genes but not on a genome-wide basis. We report a genome-wide association study (GWAS) of CSF biomarkers (Aβ1-42, t-tau, p-tau181p, p-tau181p/Aβ1-42, and t-tau/Aβ1-42). A total of 374 non-Hispanic Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative cohort with quality-controlled CSF and genotype data were included in this analysis. The main effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed on each of 5 CSF biomarkers. The p values of all SNPs for each CSF biomarker were adjusted for multiple comparisons by the Bonferroni method. We focused on SNPs with corrected p<0.01 (uncorrected p<3.10×10(-8)) and secondarily examined SNPs with uncorrected p values less than 10(-5) to identify potential candidates. Four SNPs in the regions of the APOE, LOC100129500, TOMM40, and EPC2 genes reached genome-wide significance for associations with one or more CSF biomarkers. SNPs in CCDC134, ABCG2, SREBF2, and NFATC4, although not reaching genome-wide significance, were identified as potential candidates. In addition to known candidate genes, APOE, TOMM40, and one hypothetical gene LOC100129500 partially overlapping APOE; one novel gene, EPC2, and several other interesting genes were associated with CSF biomarkers that are related to AD. These findings, especially the new EPC2 results, require replication in independent cohorts.

  3. Laboratory-based clinical audit as a tool for continual improvement: an example from CSF chemistry turnaround time audit in a South-African teaching hospital

    PubMed Central

    Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E

    2016-01-01

    Introduction Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. Materials and methods A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. Results A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist’s work station (caused by a preference for microbiological testing prior to CSF chemistry). Conclusion A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction. PMID:27346964

  4. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review.

    PubMed

    Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2012-06-20

    With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Proteomic analysis of tissue samples in translational breast cancer research.

    PubMed

    Gromov, Pavel; Moreira, José M A; Gromova, Irina

    2014-06-01

    In the last decade, many proteomic technologies have been applied, with varying success, to the study of tissue samples of breast carcinoma for protein expression profiling in order to discover protein biomarkers/signatures suitable for: characterization and subtyping of tumors; early diagnosis, and both prognosis and prediction of outcome of chemotherapy. The purpose of this review is to critically appraise what has been achieved to date using proteomic technologies and to bring forward novel strategies - based on the analysis of clinically relevant samples - that promise to accelerate the translation of basic discoveries into the daily breast cancer clinical practice. In particular, we address major issues in experimental design by reviewing the strengths and weaknesses of current proteomic strategies in the context of the analysis of human breast tissue specimens.

  6. From proteomics to systems biology: MAPA, MASS WESTERN, PROMEX, and COVAIN as a user-oriented platform.

    PubMed

    Weckwerth, Wolfram; Wienkoop, Stefanie; Hoehenwarter, Wolfgang; Egelhofer, Volker; Sun, Xiaoliang

    2014-01-01

    Genome sequencing and systems biology are revolutionizing life sciences. Proteomics emerged as a fundamental technique of this novel research area as it is the basis for gene function analysis and modeling of dynamic protein networks. Here a complete proteomics platform suited for functional genomics and systems biology is presented. The strategy includes MAPA (mass accuracy precursor alignment; http://www.univie.ac.at/mosys/software.html ) as a rapid exploratory analysis step; MASS WESTERN for targeted proteomics; COVAIN ( http://www.univie.ac.at/mosys/software.html ) for multivariate statistical analysis, data integration, and data mining; and PROMEX ( http://www.univie.ac.at/mosys/databases.html ) as a database module for proteogenomics and proteotypic peptides for targeted analysis. Moreover, the presented platform can also be utilized to integrate metabolomics and transcriptomics data for the analysis of metabolite-protein-transcript correlations and time course analysis using COVAIN. Examples for the integration of MAPA and MASS WESTERN data, proteogenomic and metabolic modeling approaches for functional genomics, phosphoproteomics by integration of MOAC (metal-oxide affinity chromatography) with MAPA, and the integration of metabolomics, transcriptomics, proteomics, and physiological data using this platform are presented. All software and step-by-step tutorials for data processing and data mining can be downloaded from http://www.univie.ac.at/mosys/software.html.

  7. A systems approach to the policy-level risk assessment of exotic animal diseases: network model and application to classical swine fever.

    PubMed

    Delgado, João; Pollard, Simon; Snary, Emma; Black, Edgar; Prpich, George; Longhurst, Phil

    2013-08-01

    Exotic animal diseases (EADs) are characterized by their capacity to spread global distances, causing impacts on animal health and welfare with significant economic consequences. We offer a critique of current import risk analysis approaches employed in the EAD field, focusing on their capacity to assess complex systems at a policy level. To address the shortcomings identified, we propose a novel method providing a systematic analysis of the likelihood of a disease incursion, developed by reference to the multibarrier system employed for the United Kingdom. We apply the network model to a policy-level risk assessment of classical swine fever (CSF), a notifiable animal disease caused by the CSF virus. In doing so, we document and discuss a sequence of analyses that describe system vulnerabilities and reveal the critical control points (CCPs) for intervention, reducing the likelihood of U.K. pig herds being exposed to the CSF virus. © 2012 Society for Risk Analysis.

  8. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  9. Protective Role of Myeloid Cells Expressing a G-CSF Receptor Polymorphism in an Induced Model of Lupus.

    PubMed

    Sivakumar, Ramya; Abboud, Georges; Mathews, Clayton E; Atkinson, Mark A; Morel, Laurence

    2018-01-01

    The genetic analysis of the lupus-prone NZM2410 mouse has identified a suppressor locus, Sle2c2 , which confers resistance to spontaneous lupus in combination with NZM2410 susceptibility loci, or in the chronic graft-versus-host disease (cGVHD) induced model of lupus in the B6. Sle2c2 congenic strain. The candidate gene for  Sle2c2 , the Csf3r gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R/CD114), was validated when cGVHD was restored in B6. Sle2c2 mice after treatment with G-CSF. The goal of the project reported herein was to investigate the myeloid cells that confer resistance to cGVHD and to ascertain if the mechanism behind their suppression involves the G-CSF pathway. We showed that despite expressing the highest levels of G-CSF-R, neutrophils play only a modest role in the autoimmune activation induced by cGVHD. We also found reduced expression levels of G-CSF-R on the surface of dendritic cells (DCs) and a differential distribution of DC subsets in response to cGVHD in B6. Sle2c2 versus B6 mice. The CD8α + DC subset, known for its tolerogenic phenotype, was expanded upon induction of cGVHD in B6. Sle2c2 mice. In addition, the deficiency of CD8α + DC subset enhanced the severity of cGVHD in B6. Batf3 -/- and B6 .Sle2c2 mice, confirming their role in suppression of cGVHD. B6. Sle2c2 DCs presented lowered activation and antigen presentation abilities and expressed lower levels of genes associated with DC activation and maturation. Exposure to exogenous G-CSF reversed the majority of these phenotypes, suggesting that tolerogenic DCs maintained through a defective G-CSF-R pathway mediated the resistance to cGVHD in B6. Sle2c2 mice.

  10. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase-contrast MRI.

    PubMed

    Yildiz, Selda; Thyagaraj, Suraj; Jin, Ning; Zhong, Xiaodong; Heidari Pahlavian, Soroush; Martin, Bryn A; Loth, Francis; Oshinski, John; Sabra, Karim G

    2017-08-01

    To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. © 2017 International Society for Magnetic Resonance in Medicine.

  11. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium

    PubMed Central

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF. PMID:26942913

  12. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium.

    PubMed

    Strazielle, Nathalie; Creidy, Rita; Malcus, Christophe; Boucraut, José; Ghersi-Egea, Jean-François

    2016-01-01

    An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an "inverse" configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.

  13. Genetic and physical mapping of the Treacher Collins syndrome locus with respect to loci in the chromosome 5q3 region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabs, E.W.; Li, Xiang; Coss, C.

    Treacher Collins syndrome is an autosomal dominant, craniofacial developmental disorder, and its locus (TCOF1) has been mapped to chromosome 5q3. To refine the location of the gene within this region, linkage analysis was performed among the TCOF1 locus and 12 loci (IL9, FGFA, GRL, D5S207, D5S210, D5S376, CSF1R, SPARC, D5S119, D5S209, D5S527, FGFR4) in 13 Treacher Collins syndrome families. The highest maximum lod score was obtained between loci TCOF1 and D5S210 (Z = 10.52; [theta] = 0.02 [+-] 0.07). The best order, IL9-GRL-D5S207/D5S210-CSF1R-SPARC-D5S119, and genetic distances among these loci were determined in the 40 CEPH families by multipoint linkage analysis.more » YAC clones were used to establish the order of loci, centromere-5[prime]GRL3[prime]-D5S207-D5S210-D5S376-CSF1R-SPARC-D5S119-telomere. By combining known physical mapping data with ours, the order of chromosome 5q3 markers is centomere-IL9-FGFA-5[prime]GRL3[prime]-D5s207-D5S210-D5S376-CSF1R-SPARC-D5S119-D5S209-FGFR4-telomere. Based on this order, haplotype analysis suggests that the TCOF1 locus resides distal CSF1R and proximal to SPARC within a region less than 1 Mb in size. 29 refs., 2 figs., 2 tabs.« less

  14. The natural history of Dandy-Walker syndrome in the United States: A population-based analysis.

    PubMed

    McClelland, Shearwood; Ukwuoma, Onyinyechi I; Lunos, Scott; Okuyemi, Kolawole S

    2015-01-01

    Dandy-Walker syndrome (DWS) is a congenital disorder typically manifesting with hydrocephalus. The classic anatomic hallmarks of DWS are hypoplasia of the cerebellar vermis, anterior-posterior enlargement of the posterior fossa, upward displacement of the torcula and transverse sinuses, and cystic dilatation of the fourth ventricle. Although optimal treatment of DWS typically requires neurosurgical intervention to prevent intracranial pressure increases incompatible with life, the natural history of this disorder has yet to be evaluated on a nationwide level. The Kids' Inpatient Database covering 1997-2003 was used for analysis. Children younger than age 18 admitted for DWS (ICD-9-CM = 742.3) were analyzed with a matched control group. The primary procedure codes for operative CSF drainage were coded into the analysis. The incidence of DWS was 0.136%; 14,599 DWS patients were included. Multiple logistic regression models were used. Odds ratios (OR) were reported with 95% confidence intervals. Mortality (OR = 10.02; P < 0.0001) and adverse discharge disposition (OR = 4.59; P < 0.0001) were significantly greater in DWS patients compared with controls. 20.4% of DWS patients received operative cerebrospinal fluid (CSF) drainage, 81-times more than controls (P < 0.0001). CSF drainage reduced mortality by 44% among DWS patients (P < 0.0001). Although DWS is associated with a 10-fold increase in mortality, operative CSF drainage nearly halves the mortality rate. Based on these findings (Class IIB evidence), it is likely that the increased mortality associated with DWS is directly attributable to the nearly 80% of DWS patients who did not receive operative CSF drainage for hydrocephalus. Consequently, increased access to neurosurgical intervention could reduce the mortality rate of DWS towards that of the general population.

  15. CPA melanoma: diagnosis and management.

    PubMed

    Brackmann, Derald E; Doherty, Joni K

    2007-06-01

    Melanoma rarely invades the cerebellopontine angle (CPA) and can evade accurate diagnosis, which may alter management decisions. Diagnosis may be facilitated via careful history, magnetic resonance imaging (MRI) findings, and cerebrospinal fluid (CSF) analysis. Retrospective case review. Tertiary referral center. Thirteen internal auditory canal/CPA lesions in eight patients who presented with CPA syndrome and who had a pathological diagnosis consistent with malignant melanoma. There were four bilateral and four unilateral lesions. Six of eight patients had a history of melanoma. One was apparently primary CPA lesion, whereas all others were metastatic. T1- and T2-weighted precontrast and postcontrast gadolinium-enhanced MRI were obtained, including fat suppression and fluid-attenuated inversion recovery sequence images in two patients; lumbar puncture with CSF centrifugation and cytological analysis confirmed the diagnosis in two patients. Translabyrinthine craniotomy was performed for tumor extirpation in five patients. Symptoms at presentation, MRI findings, presence of malignant cells in CSF, tumor progression, intraoperative findings, response to treatment, time interval from initial diagnosis of melanoma elsewhere, and survival. Seven of eight patients had history and/or MRI findings suggestive of malignancy in the internal auditory canal and/or CPA, and diagnosis was confirmed via CSF analysis in two patients. In one patient, diagnosis was made at surgery. Internal auditory canal melanoma portends a grim prognosis, can occur up to 17 years after initial melanoma diagnosis/treatment, and can be detected with appropriate MRI sequences, especially enhanced fluid-attenuated inversion recovery images. In disseminated cases, diagnosis can be confirmed with lumbar puncture demonstrating malignant cells. Management includes tumor resection when melanoma seems to be solitary and malignant cells are not present in CSF. Intrathecal chemotherapy and radiation are recommended for dissemination, although the survival rate is still poor.

  16. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis

    PubMed Central

    2011-01-01

    Background Febrile neutropenia (FN) occurs following myelosuppressive chemotherapy and is associated with morbidity, mortality, costs, and chemotherapy reductions and delays. Granulocyte colony-stimulating factors (G-CSFs) stimulate neutrophil production and may reduce FN incidence when given prophylactically following chemotherapy. Methods A systematic review and meta-analysis assessed the effectiveness of G-CSFs (pegfilgrastim, filgrastim or lenograstim) in reducing FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. G-CSFs were compared with no primary G-CSF prophylaxis and with one another. Nine databases were searched in December 2009. Meta-analysis used a random effects model due to heterogeneity. Results Twenty studies compared primary G-CSF prophylaxis with no primary G-CSF prophylaxis: five studies of pegfilgrastim; ten of filgrastim; and five of lenograstim. All three G-CSFs significantly reduced FN incidence, with relative risks of 0.30 (95% CI: 0.14 to 0.65) for pegfilgrastim, 0.57 (95% CI: 0.48 to 0.69) for filgrastim, and 0.62 (95% CI: 0.44 to 0.88) for lenograstim. Overall, the relative risk of FN for any primary G-CSF prophylaxis versus no primary G-CSF prophylaxis was 0.51 (95% CI: 0.41 to 0.62). In terms of comparisons between different G-CSFs, five studies compared pegfilgrastim with filgrastim. FN incidence was significantly lower for pegfilgrastim than filgrastim, with a relative risk of 0.66 (95% CI: 0.44 to 0.98). Conclusions Primary prophylaxis with G-CSFs significantly reduces FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. Pegfilgrastim reduces FN incidence to a significantly greater extent than filgrastim. PMID:21943360

  17. Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)*

    PubMed Central

    Lamond, Angus I.; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V.; Serrano, Luis; Hartl, F. Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S.; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-01-01

    The term “proteomics” encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new “third generation” proteomics strategy that offers an indispensible tool for cell biology and molecular medicine. PMID:22311636

  18. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    PubMed Central

    2012-01-01

    Background Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis. Methods Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots. Results A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein). Conclusions A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC. PMID:22726388

  19. Gas chromatography-mass spectrometry-based metabolic profiling of cerebrospinal fluid from epileptic dogs.

    PubMed

    Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo

    2014-04-01

    Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.

  20. CSF ADA Determination in Early Diagnosis of Tuberculous Meningitis in HIV-Infected Patients.

    PubMed

    Ghosh, Gopal Chandra; Sharma, Brijesh; Gupta, B B

    2016-01-01

    Tuberculous and Cryptococcal meningitis are common in HIV patients. A highly specific and sensitive rapid test for diagnosis of Tuberculous meningitis especially in setting of HIV is not available in developing countries where the burden of disease is high. We measured ADA (adenosine deaminase) levels using spectrophotometric method in the CSF of HIV patients with meningitis to differentiate Tuberculous meningitis from meningitis due to other causes. Kruskal-Wallis test was used to compare ADA values between tuberculous meningitis (TBM) and nontuberculous (non-TB) meningitis patients and a receiver-operating characteristic (ROC) analysis curve was drawn from these values. Levels of ADA in the CSF of patients with TBM were significantly higher than those in patients with meningitis due to other causes. CSF ADA level determination with a cut-off value of 6 IU/L was found to be highly specific and fairly sensitive test for the diagnosis of TBM in HIV positive patients.

  1. Cerebrospinal fluid monocytes in bacterial meningitis, viral meningitis, and neuroborreliosis.

    PubMed

    Martinot, M; Greigert, V; Souply, L; Rosolen, B; De Briel, D; Mohseni Zadeh, M; Kaiser, J-D

    2018-04-05

    Cerebrospinal fluid (CSF) leukocytes analysis is commonly used to diagnose meningitis and to differentiate bacterial from viral meningitis. Interpreting CSF monocytes can be difficult for physicians, especially in France where lymphocytes and monocytes results are sometimes pooled. We assessed SF monocytes in patients presenting with microbiologically confirmed meningitis (CSF leukocyte count>10/mm 3 for adults or >30/mm 3 for children<2 months), i.e. bacterial meningitis (BM), viral meningitis (VM), and neuroborreliosis (NB). Two-hundred patients (82 BM, 86 VM, and 32 NB) were included. The proportions of monocytes were higher in VM (median 8%; range 0-57%) than in BM (median 5%; range 0-60%, P=0.03) or NB (median 5%; range 0-53%, P=0.46), with a high value overlap between conditions. CSF monocytes should not be used to discriminate BM from VM and NB because of value overlaps. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Osmolar relation between cerebrospinal fluid and serum in hyperosmolar hypernatraemic dehydration.

    PubMed Central

    Habel, A H; Simpson, H

    1976-01-01

    The relation between cerebrospinal fluid (CSF) and serum osmolality was studied in 16 patients with hyperosmolar hypernatraemic dehydration before treatment. After correcting shock and acidosis, 0-45% saline in 2-5 or 5% dextrose was infused in each patient over a 48- to 72-hour period. During rehydration, serum osmolality, electrolyte concentrations, urea nitrogen, and blood pH were measured sequentially. Five patients developed severe neurological abnormalities within 48 hours of addmission (convulsions 2, convulsions with hemiplegia 2, hemiplegia 1). Of these, 3 had residual defects on follow-up at least one year later. This group was indistinguishable from the 11 without significant neurological abnormality, both on clinical grounds before rehydration, and after analysis of admission and subsequent serum biochemical variables. A significant osmolar gap (greater than 4 mmol/kg H2O) between serum and CSF was found in 13 patients. Severe neurological disturbance only occurred when CSF osmolality exceeded that of serum by 7 or more mmol/kg H2O. Discriminant analysis of the paired osmolar data showed that D = -117+1-74 X(CSF osmolality) -1-41 X (serum osmolality), and that severe neurological abnormality was predicted when D was positive. PMID:11753

  3. Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample.

    PubMed

    La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M; Ayakta, Nagehan; Baker, Suzanne L; Bourakova, Viktoriya; Boxer, Adam L; Cha, Jungho; Karydas, Anna; Jerome, Gina; Maass, Anne; Mensing, Ashley; Miller, Zachary A; O'Neil, James P; Pham, Julie; Rosen, Howard J; Tsai, Richard; Visani, Adrienne V; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2018-01-23

    To assess the relationships between fluid and imaging biomarkers of tau pathology and compare their diagnostic utility in a clinically heterogeneous sample. Fifty-three patients (28 with clinical Alzheimer disease [AD] and 25 with non-AD clinical neurodegenerative diagnoses) underwent β-amyloid (Aβ) and tau ([ 18 F]AV1451) PET and lumbar puncture. CSF biomarkers (Aβ 42 , total tau [t-tau], and phosphorylated tau [p-tau]) were measured by multianalyte immunoassay (AlzBio3). Receiver operator characteristic analyses were performed to compare discrimination of Aβ-positive AD from non-AD conditions across biomarkers. Correlations between CSF biomarkers and PET standardized uptake value ratios (SUVR) were assessed using skipped Pearson correlation coefficients. Voxelwise analyses were run to assess regional CSF-PET associations. [ 18 F]AV1451-PET cortical SUVR and p-tau showed excellent discrimination between Aβ-positive AD and non-AD conditions (area under the curve 0.92-0.94; ≤0.83 for other CSF measures), and reached 83% classification agreement. In the full sample, cortical [ 18 F]AV1451 was associated with all CSF biomarkers, most strongly with p-tau ( r = 0.75 vs 0.57 for t-tau and -0.49 for Aβ 42 ). When restricted to Aβ-positive patients with AD, [ 18 F]AV1451 SUVR correlated modestly with p-tau and t-tau (both r = 0.46) but not Aβ 42 ( r = 0.02). On voxelwise analysis, [ 18 F]AV1451 correlated with CSF p-tau in temporoparietal cortices and with t-tau in medial prefrontal regions. Within AD, Mini-Mental State Examination scores were associated with [ 18 F]AV1451-PET, but not CSF biomarkers. [ 18 F]AV1451-PET and CSF p-tau had comparable value for differential diagnosis. Correlations were robust in a heterogeneous clinical group but attenuated (although significant) in AD, suggesting that fluid and imaging biomarkers capture different aspects of tau pathology. This study provides Class III evidence that, in a clinical sample of patients with a variety of suspected neurodegenerative diseases, both CSF p-tau and [ 18 F]AV1451 distinguish AD from non-AD conditions. Copyright © 2017 American Academy of Neurology.

  4. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys

    PubMed Central

    2011-01-01

    Background Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Methods Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. Results In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of clyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. Conclusion G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild-type counterpart both in vitro and in vivo. G-CSFa can be explored for the development of a new generation of recombinant therapeutic drug for leukopenia. PMID:21668998

  5. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys.

    PubMed

    Jiang, Yongping; Jiang, Wenhong; Qiu, Yuchang; Dai, Wei

    2011-06-13

    Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of cyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild-type counterpart both in vitro and in vivo. G-CSFa can be explored for the development of a new generation of recombinant therapeutic drug for leukopenia.

  6. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves.

    PubMed

    Kieffer, Pol; Planchon, Sébastien; Oufir, Mouhssin; Ziebel, Johanna; Dommes, Jacques; Hoffmann, Lucien; Hausman, Jean-François; Renaut, Jenny

    2009-01-01

    A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.

  7. Understanding the Mechanism of Thermotolerance Distinct From Heat Shock Response Through Proteomic Analysis of Industrial Strains of Saccharomyces cerevisiae*

    PubMed Central

    Shui, Wenqing; Xiong, Yun; Xiao, Weidi; Qi, Xianni; Zhang, Yong; Lin, Yuping; Guo, Yufeng; Zhang, Zhidan; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    Saccharomyces cerevisiae has been intensively studied in responses to different environmental stresses such as heat shock through global omic analysis. However, the S. cerevisiae industrial strains with superior thermotolerance have not been explored in any proteomic studies for elucidating the tolerance mechanism. Recently a new diploid strain was obtained through evolutionary engineering of a parental industrial strain, and it exhibited even higher resistance to prolonged thermal stress. Herein, we performed iTRAQ-based quantitative proteomic analysis on both the parental and evolved industrial strains to further understand the mechanism of thermotolerant adaptation. Out of ∼2600 quantifiable proteins from biological quadruplicates, 193 and 204 proteins were differentially regulated in the parental and evolved strains respectively during heat-stressed growth. The proteomic response of the industrial strains cultivated under prolonged thermal stress turned out to be substantially different from that of the laboratory strain exposed to sudden heat shock. Further analysis of transcription factors underlying the proteomic perturbation also indicated the distinct regulatory mechanism of thermotolerance. Finally, a cochaperone Mdj1 and a metabolic enzyme Adh1 were selected to investigate their roles in mediating heat-stressed growth and ethanol production of yeasts. Our proteomic characterization of the industrial strain led to comprehensive understanding of the molecular basis of thermotolerance, which would facilitate future improvement in the industrially important trait of S. cerevisiae by rational engineering. PMID:25926660

  8. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis

    PubMed Central

    Padula, Matthew P.; Berry, Iain J.; O′Rourke, Matthew B.; Raymond, Benjamin B.A.; Santos, Jerran; Djordjevic, Steven P.

    2017-01-01

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O′Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single ‘spots’ in a polyacrylamide gel, allowing the quantitation of changes in a proteoform′s abundance to ascertain changes in an organism′s phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the ‘Top-Down’. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O’Farrell’s paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism′s proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer. PMID:28387712

  9. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis.

    PubMed

    Padula, Matthew P; Berry, Iain J; O Rourke, Matthew B; Raymond, Benjamin B A; Santos, Jerran; Djordjevic, Steven P

    2017-04-07

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O'Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single 'spots' in a polyacrylamide gel, allowing the quantitation of changes in a proteoform's abundance to ascertain changes in an organism's phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the 'Top-Down'. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O'Farrell's paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism's proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer.

  10. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  11. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    PubMed

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Translational plant proteomics: a perspective.

    PubMed

    Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep

    2012-08-03

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Third Ventricular Cerebrospinal Fluid Cysts of Thalamic Origin: Review of Embryologic Origin, Presentation, and Management Strategies with a Case Series.

    PubMed

    Vasquez, Ciro A; Casey, Michael; Folzenlogen, Zach; Ormond, David R; Lillehei, Kevin; Youssef, A Samy

    2017-07-01

    Third ventricular cerebrospinal fluid (CSF) cysts of thalamic origin are rare. The objective of this study is to review their possible pathogenesis, clinical presentation, and management strategies with a case series describing management via an endoscopic approach with fenestration using a single burr-hole technique. A systematic literature review of reported cases of thalamic cysts was conducted with further meta-analysis of CSF cysts that involve the third ventricle. The mode of presentation, pathologic analysis, surgical management, and outcomes were analyzed. Twenty-two studies reported between 1990 and 2013 described 42 cases of thalamic cyst. Of those cases, 13 were consistent with CSF cyst that originated in the thalamus and involved the third ventricle. Eight cases (61.5%) were treated via endoscopic fenestration, 2 cases (15.4%) were surgically drained, 2 cases (15.4%) were stereotactically aspirated, and 1 case (7.69%) was observed. The most common presenting symptoms were gait disturbance (26.3%) and headaches (26.3%) followed by tremors (15.8%) and weakness (15.8%). In our series, a single burr-hole technique was a successful definitive treatment, with an average period of 23 months. Third ventricular CSF cysts of thalamic origin most commonly present with hydrocephalus. They can be safely definitively treated via endoscopic fenestration to the CSF circulation using a single burr-hole technique. Long-term follow-up shows lasting improvement in symptoms without reaccumulation of the cyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development of a diagnostic system for bilirubin detection in cerebral spinal fluid

    NASA Astrophysics Data System (ADS)

    Bhadri, Prashant R.; Salgaonkar, Vasant A.; Majumdar, Anindya; Morgan, Chad J.; Zuccarello, Mario; Pyne, Gail J.; Dulaney, Elizabeth; Caffery, James, Jr.; Shukla, Rakesh; Beyette, Fred R., Jr.

    2004-11-01

    A weakened portion of an artery in the brain leads to a medical condition known as a cerebral aneurysm. A subarachnoid hemorrhage (SAH) occurs when an aneurysm ruptures. For those individuals suspected of having a SAH, a computerized tomography (CT) scan of the brain usually demonstrates evidence of the bleeding. However, in a considerable portion of people, the CT scan is unable to detect the blood that has escaped from the blood vessel. Recent studies have indicated nearly 30% of patients with a SAH are initially misdiagnosed. For circumstances when a SAH is suspected despite a normal CT scan, physicians make the diagnosis of SAH by performing a spinal tap. A spinal tap uses a needle to sample the cerebrospinal fluid (CSF) collected from the patient"s lumbar spine. However, it is also possible for blood to be introduced into the CSF as a result of the spinal tap procedure. Therefore, an effective solution is required to help medical personnel differentiate between the blood that results from a tap and that from a ruptured aneurysm. In this paper, the development of a prototype is described which is sensitive and specific for measuring bilirubin in CSF, hemorrhagic-CSF and CSF-like solutions. To develop this instrument a combination of spectrophotometric analysis, custom data analysis software and other hardware interfaces are assembled that lay the foundation for the development of portable and user-friendly equipment suitable for assisting trained medical personnel with the diagnosis of a ruptured cerebral aneurysm.

  15. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection

    PubMed Central

    Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.

    2005-01-01

    Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557

  16. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  17. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis.

    PubMed

    Li, Zi-Yi; Huang, Min; Wang, Xiu-Kun; Zhu, Ying; Li, Jin-Song; Wong, Catherine C L; Fang, Qun

    2018-04-17

    Single cell proteomic analysis provides crucial information on cellular heterogeneity in biological systems. Herein, we describe a nanoliter-scale oil-air-droplet (OAD) chip for achieving multistep complex sample pretreatment and injection for single cell proteomic analysis in the shotgun mode. By using miniaturized stationary droplet microreaction and manipulation techniques, our system allows all sample pretreatment and injection procedures to be performed in a nanoliter-scale droplet with minimum sample loss and a high sample injection efficiency (>99%), thus substantially increasing the analytical sensitivity for single cell samples. We applied the present system in the proteomic analysis of 100 ± 10, 50 ± 5, 10, and 1 HeLa cell(s), and protein IDs of 1360, 612, 192, and 51 were identified, respectively. The OAD chip-based system was further applied in single mouse oocyte analysis, with 355 protein IDs identified at the single oocyte level, which demonstrated its special advantages of high enrichment of sequence coverage, hydrophobic proteins, and enzymatic digestion efficiency over the traditional in-tube system.

  18. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  19. The effect of macrophage colony-stimulating factor on haemopoietic recovery after autologous bone marrow transplantation.

    PubMed

    Khwaja, A; Yong, K; Jones, H M; Chopra, R; McMillan, A K; Goldstone, A H; Patterson, K G; Matheson, C; Ruthven, K; Abramson, S B

    1992-06-01

    Macrophage colony-stimulating factor (M-CSF) is active in the late stages of monocyte maturation, activates mature monocyte-macrophages and enhances their production of various other cytokines. We have examined the effects of a 21 d course of escalating doses of M-CSF purified from human urine (hM-CSF) on recovery following autologous bone marrow transplantation (ABMT) in 20 patients with malignant lymphomas. Four patients were treated at each dose level of 4, 8, 16, 32 and 64 x 10(6) U/m2/d and results compared to 46 concurrent controls. There was no significant difference in recovery to an absolute neutrophil count (ANC) of 0.5 x 10(9)/l (median 20 d in hM-CSF group versus 22 in controls) or in recovery of platelets to 50 x 10(9)/l (32 d versus 39 d, 0.05 less than P less than 0.1); hM-CSF patients received a median of 81 platelet units following ABMT (controls 112 units, P = NS). hM-CSF patients had a median of 5.5 d with fever greater than 37.5 degrees C (control 8, P = NS), received parenteral antibiotics for 14.5 d (control 17, P = NS) and had a 50% incidence of bacteraemia (control 48%). hM-CSF treated patients were discharged by a median of day 29 following transplantation (control 33, P less than 0.05). Platelet and neutrophil recovery correlated significantly with the number of marrow mononuclear cells (MNC) reinfused in the hM-CSF group (P = 0.05 and P = 0.014 respectively) but not in controls. Subgroup analysis showed that hM-CSF patients receiving greater than 2 x 10(8) MNC/kg body weight reached an ANC of 0.5 x 10(9)/l by a median of day 16.5 (control 18.5, NS), became platelet transfusion independent by day 17 (control 29, P less than 0.05) and reached a platelet count of 50 x 10(9)/l by day 21 (control 40, P less than 0.05). No significant toxicity attributable to hM-CSF treatment was seen. These results suggest that hM-CSF accelerates platelet recovery following ABMT and that relatively large marrow innocula are required to see this effect.

  20. A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry.

    PubMed

    Kusakabe, Yoshiomi; Uchida, Kanji; Hiruma, Takahiro; Suzuki, Yoko; Totsu, Tokie; Suzuki, Takuji; Carey, Brenna C; Yamada, Yoshitsugu; Trapnell, Bruce C

    2014-11-01

    Impaired signaling by granulocyte/macrophage-colony stimulating factor (GM-CSF) drives the pathogenesis of two diseases (autoimmune and hereditary pulmonary alveolar proteinosis (PAP)) representing over ninety percent of patients who develop PAP syndrome but not a broad spectrum of diseases that cause PAP by other mechanisms. We previously exploited the ability of GM-CSF to rapidly increase cell-surface CD11b levels on neutrophils (CD11bSurface) to establish the CD11b stimulation index (CD11b-SI), a test enabling the clinical research diagnosis of impaired GM-CSF signaling based on measuring CD11bSurface by flow cytometry using fresh, heparinized blood. (CD11b-SI is defined as GM-CSF-stimulated- CD11bSurface minus unstimulated CD11bSurface divided by un-stimulated CD11bSurface multiplied by 100.) Notwithstanding important and unique diagnostic utility, the test is sensitive to experimental conditions that can affect test performance. The present study was undertaken to optimize and standardize CD11b-SI test for detecting impaired GM-CSF signaling in heparinized human blood specimens from PAP patients. Results demonstrated the test was sensitive to choice of anticoagulant, pretesting incubation on ice, a delay between phlebotomy and test performance of more than one hour, and the concentration GM-CSF used to stimulate blood. The standardized CD11b-SI test reliably distinguished blood specimens from autoimmune PAP patients with impaired GM-CSF signaling from those of health people with normal signaling. Intra-subject differences were smaller than inter-subject differences in repeated measures. Receiver operating characteristic curve analysis identified a CD11b-SI test result of 112 as the optimal cut off threshold for diagnosis of impaired GM-CSF signaling in autoimmune PAP for which the sensitivity and specificity were both 100%. These results support the use of this standardized CD11b-SI for routine clinical identification of impaired GM-CSF signaling in patients with autoimmune PAP. The CD11b-SI may also have utility in clinical trials of novel therapeutic strategies targeting reduction in GM-CSF bioactivity now under evaluation for multiple common autoimmune and inflammatory disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    PubMed

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic recovery and short hospital stay compared with cytokine-primed PBSC. Using primed BMSC, no difference in malignant relapse or relapse-free survival was observed. These findings suggest that despite widespread use of PBSC for transplantation, BMSC, when collected following hematopoietically stimulating cytokines, may remain a satisfactory source of stem cells for autologous transplantation. G-CSF and GM-CSF are both effective in priming autologous PBSC or BMSC for collection.

  2. Brain volume in early MS patients with and without IgG oligoclonal bands in CSF.

    PubMed

    Fenu, G; Lorefice, L; Sechi, V; Loi, L; Contu, F; Cabras, F; Coghe, G; Frau, J; Secci, M A; Melis, C; Schirru, L; Costa, G; Melas, V; Arru, M; Barracciu, M A; Marrosu, M G; Cocco, E

    2018-01-01

    Oligoclonal bands of IgG (OB) are proposed as an early prognostic factor of the disease. Growing attention is directed towards brain volume evaluation as a possible marker of the severity of MS. Previous studies found that MS patients lacking OB have less brain atrophy. to evaluate a possible relationship between OB and cerebral volume in a cohort of early MS patients. Inclusion criteria were: diagnosis of relapsing-remitting MS; CSF analysis and MRI acquired simultaneously and within 12 months from clinical onset. A total of 15 healthy controls underwent MRI. In 20 MS patients, CSF analysis did not show OB synthesis (OB negative group). A control group of 25 MS patients in whom OB was detected was also randomly recruited (OB positive group). T test showed a significant difference in NWV between the OB positive and OB negative groups (P value = 0.01), and between the OB positive group and the healthy controls (P value = 0.001). No differences were detected between OB negative group and healthy controls. Multivariable linear regression showed a relationship between NWV and OB synthesis (P value = 0.02) controlling for age, gender, and EDSS. Our preliminary results suggest that OB positive patients show more atrophy of white matter since early phases of the disease, supporting the role of CSF analysis as a prognostic factor in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sherlock Holmes and the proteome--a detective story.

    PubMed

    Righetti, Pier Giorgio; Boschetti, Egisto

    2007-02-01

    The performance of a hexapeptide ligand library in capturing the 'hidden proteome' is illustrated and evaluated. This library, insolubilized on an organic polymer and available under the trade name 'Equalizer Bead Technology', acts by capturing all components of a given proteome, by concentrating rare and very rare proteins, and simultaneously diluting the abundant ones. This results in a proteome of 'normalized' relative abundances, amenable to analysis by MS and any other analytical tool. Examples are given of analysis of human urine and serum, as well as cell and tissue lysates, such as Escherichia coli and Saccharomyces cerevisiae extracts. Another important application is impurity tracking and polishing of recombinant DNA products, especially biopharmaceuticals meant for human consumption.

  5. The natural history of Dandy-Walker syndrome in the United States: A population-based analysis

    PubMed Central

    McClelland, Shearwood; Ukwuoma, Onyinyechi I.; Lunos, Scott; Okuyemi, Kolawole S.

    2015-01-01

    Background: Dandy-Walker syndrome (DWS) is a congenital disorder typically manifesting with hydrocephalus. The classic anatomic hallmarks of DWS are hypoplasia of the cerebellar vermis, anterior-posterior enlargement of the posterior fossa, upward displacement of the torcula and transverse sinuses, and cystic dilatation of the fourth ventricle. Aims: Although optimal treatment of DWS typically requires neurosurgical intervention to prevent intracranial pressure increases incompatible with life, the natural history of this disorder has yet to be evaluated on a nationwide level. Settings and Design/Materials and Methods: The Kids’ Inpatient Database covering 1997-2003 was used for analysis. Children younger than age 18 admitted for DWS (ICD-9-CM = 742.3) were analyzed with a matched control group. The primary procedure codes for operative CSF drainage were coded into the analysis. The incidence of DWS was 0.136%; 14,599 DWS patients were included. Statistical Analysis Used: Multiple logistic regression models were used. Odds ratios (OR) were reported with 95% confidence intervals. Results and Conclusions: Mortality (OR = 10.02; P < 0.0001) and adverse discharge disposition (OR = 4.59; P < 0.0001) were significantly greater in DWS patients compared with controls. 20.4% of DWS patients received operative cerebrospinal fluid (CSF) drainage, 81-times more than controls (P < 0.0001). CSF drainage reduced mortality by 44% among DWS patients (P < 0.0001). Although DWS is associated with a 10-fold increase in mortality, operative CSF drainage nearly halves the mortality rate. Based on these findings (Class IIB evidence), it is likely that the increased mortality associated with DWS is directly attributable to the nearly 80% of DWS patients who did not receive operative CSF drainage for hydrocephalus. Consequently, increased access to neurosurgical intervention could reduce the mortality rate of DWS towards that of the general population. PMID:25552847

  6. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    PubMed Central

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  7. Use of Fetal Magnetic Resonance Image Analysis and Machine Learning to Predict the Need for Postnatal Cerebrospinal Fluid Diversion in Fetal Ventriculomegaly.

    PubMed

    Pisapia, Jared M; Akbari, Hamed; Rozycki, Martin; Goldstein, Hannah; Bakas, Spyridon; Rathore, Saima; Moldenhauer, Julie S; Storm, Phillip B; Zarnow, Deborah M; Anderson, Richard C E; Heuer, Gregory G; Davatzikos, Christos

    2018-02-01

    Which children with fetal ventriculomegaly, or enlargement of the cerebral ventricles in utero, will develop hydrocephalus requiring treatment after birth is unclear. To determine whether extraction of multiple imaging features from fetal magnetic resonance imaging (MRI) and integration using machine learning techniques can predict which patients require postnatal cerebrospinal fluid (CSF) diversion after birth. This retrospective case-control study used an institutional database of 253 patients with fetal ventriculomegaly from January 1, 2008, through December 31, 2014, to generate a predictive model. Data were analyzed from January 1, 2008, through December 31, 2015. All 25 patients who required postnatal CSF diversion were selected and matched by gestational age with 25 patients with fetal ventriculomegaly who did not require CSF diversion (discovery cohort). The model was applied to a sample of 24 consecutive patients with fetal ventriculomegaly who underwent evaluation at a separate institution (replication cohort) from January 1, 1998, through December 31, 2007. Data were analyzed from January 1, 1998, through December 31, 2009. To generate the model, linear measurements, area, volume, and morphologic features were extracted from the fetal MRI, and a machine learning algorithm analyzed multiple features simultaneously to find the combination that was most predictive of the need for postnatal CSF diversion. Accuracy, sensitivity, and specificity of the model in correctly classifying patients requiring postnatal CSF diversion. A total of 74 patients (41 girls [55%] and 33 boys [45%]; mean [SD] gestational age, 27.0 [5.6] months) were included from both cohorts. In the discovery cohort, median time to CSF diversion was 6 days (interquartile range [IQR], 2-51 days), and patients with fetal ventriculomegaly who did not develop symptoms were followed up for a median of 29 months (IQR, 9-46 months). The model correctly classified patients who required CSF diversion with 82% accuracy, 80% sensitivity, and 84% specificity. In the replication cohort, the model achieved 91% accuracy, 75% sensitivity, and 95% specificity. Image analysis and machine learning can be applied to fetal MRI findings to predict the need for postnatal CSF diversion. The model provides prognostic information that may guide clinical management and select candidates for potential fetal surgical intervention.

  8. Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1.

    PubMed

    Wada, Yoshinao; Dell, Anne; Haslam, Stuart M; Tissot, Bérangère; Canis, Kévin; Azadi, Parastoo; Bäckström, Malin; Costello, Catherine E; Hansson, Gunnar C; Hiki, Yoshiyuki; Ishihara, Mayumi; Ito, Hiromi; Kakehi, Kazuaki; Karlsson, Niclas; Hayes, Catherine E; Kato, Koichi; Kawasaki, Nana; Khoo, Kay-Hooi; Kobayashi, Kunihiko; Kolarich, Daniel; Kondo, Akihiro; Lebrilla, Carlito; Nakano, Miyako; Narimatsu, Hisashi; Novak, Jan; Novotny, Milos V; Ohno, Erina; Packer, Nicolle H; Palaima, Elizabeth; Renfrow, Matthew B; Tajiri, Michiko; Thomsson, Kristina A; Yagi, Hirokazu; Yu, Shin-Yi; Taniguchi, Naoyuki

    2010-04-01

    The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiative's activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.

  9. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    PubMed

    Dayon, Loïc; Guiraud, Seu Ping; Corthésy, John; Da Silva, Laeticia; Migliavacca, Eugenia; Tautvydaitė, Domilė; Oikonomidi, Aikaterini; Moullet, Barbara; Henry, Hugues; Métairon, Sylviane; Marquis, Julien; Descombes, Patrick; Collino, Sebastiano; Martin, François-Pierre J; Montoliu, Ivan; Kussmann, Martin; Wojcik, Jérôme; Bowman, Gene L; Popp, Julius

    2017-06-17

    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ 1-42 ] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ 1-42 , tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers.

  10. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal.

    PubMed

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-05-18

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development.

  11. Analysis of PNGase F-resistant N-glycopeptides using SugarQb for Proteome Discoverer 2.1 reveals cryptic substrate specificities.

    PubMed

    Stadlmann, Johannes; Hoi, David M; Taubenschmid, Jasmin; Mechtler, Karl; Penninger, Josef M

    2018-05-18

    SugarQb (www.imba.oeaw.ac.at/sugarqb) is a freely available collection of computational tools for the automated identification of intact glycopeptides from high-resolution HCD MS/MS data-sets in the Proteome Discoverer environment. We report the migration of SugarQb to the latest and free version of Proteome Discoverer 2.1, and apply it to the analysis of PNGase F-resistant N-glycopeptides from mouse embryonic stem cells. The analysis of intact glycopeptides highlights unexpected technical limitations to PNGase F-dependent glycoproteomic workflows at the proteome level, and warrants a critical re-interpretation of seminal data-sets in the context of N-glycosylation-site prediction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    PubMed Central

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V.; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J.; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wiśniewski, Jacek R.; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools. PMID:17090601

  13. Proteomics of filamentous fungi.

    PubMed

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2007-09-01

    Proteomic analysis, defined here as the global assessment of cellular proteins expressed in a particular biological state, is a powerful tool that can provide a systematic understanding of events at the molecular level. Proteomic studies of filamentous fungi have only recently begun to appear in the literature, despite the prevalence of these organisms in the biotechnology industry, and their importance as both human and plant pathogens. Here, we review recent publications that have used a proteomic approach to develop a better understanding of filamentous fungi, highlighting sample preparation methods and whole-cell cytoplasmic proteomics, as well as subproteomics of cell envelope, mitochondrial and secreted proteins.

  14. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release.

    PubMed

    Pampena, María B; Barrio, María M; Juliá, Estefanía P; Blanco, Paula A; von Euw, Erika M; Mordoh, José; Levy, Estrella Mariel

    2017-01-01

    In a previous work, we showed that CSF-470 vaccine plus bacillus Calmette-Guerin (BCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) as adjuvants resulted in a significant benefit in the distant metastasis-free survival when comparing vaccinated vs . IFN-α2b-treated high-risk cutaneous melanoma patients in a Phase II study. Immune monitoring demonstrated an increase in anti-tumor innate and adaptive immunities of vaccinated patients, with a striking increase in IFN-γ secreting lymphocytes specific for melanoma antigens (Ags). In an effort to dissect the first steps of the immune response elicited by CSF-470 vaccine plus adjuvants, we evaluated, in an in vitro model, leukocyte migration, cytokine production, and monocyte phagocytosis of vaccine cells. Our results demonstrate that leukocytes recruitment, mostly from the innate immune system, is an early event after CSF-470 vaccine plus BCG plus GM-CSF interaction with immune cells, possibly explained by the high expression of CCL2/MCP-1 and other chemokines by vaccine cells. Early release of TNF-α and IL-1β pro-inflammatory cytokines and efficient tumor Ags phagocytosis by monocytes take place and would probably create a favorable context for Ag processing and presentation. Although the presence of the vaccine cells hampered cytokines production stimulated by BCG in a mechanism partially mediated by TGF-β and IL-10, still significant levels of TNF-α and IL-1β could be detected. Thus, BCG was required to induce local inflammation in the presence of CSF-470 vaccine cells.

  15. Evaluation of new monoclonal antibody-based latex agglutination test for detection of cryptococcal polysaccharide antigen in serum and cerebrospinal fluid.

    PubMed Central

    Kiska, D L; Orkiszewski, D R; Howell, D; Gilligan, P H

    1994-01-01

    We evaluated the performance of CRYPTO-LEX (Trinity Laboratories, Inc., Raleigh, N. C.), a new mouse immunoglobulin M monoclonal antibody latex agglutination reagent which reacts with the capsular polysaccharide of the four serogroups of Cryptococcus neoformans. This test was compared with CALAS (Meridian Diagnostics, Cincinnati, Ohio) for the ability to detect cryptococcal antigen in serum and cerebrospinal fluid (CSF). A total of 580 clinical specimens (327 serum and 253 CSF samples), primarily from human immunodeficiency virus-infected patients, were tested in this study. Sixty-seven specimens (44 serum and 23 CSF samples) were positive for cryptococcal antigen with both tests, and 511 (282 serum and 229 CSF samples) were negative. The two latex reagents agreed for 326 of 327 serum specimens (44 positives and 282 negatives). One serum specimen with a titer of 1:2 was CALAS positive but CRYPTO-LEX negative. The titer correlation coefficient for the two tests was 0.884 when two highly discordant serum specimens were eliminated from analysis of the data. The two latex tests agreed for 252 of 253 CSF specimens (23 positives and 229 negatives). One specimen with a titer of 1:2 was positive with CALAS and negative by CRYPTO-LEX. The correlation coefficient of the two tests for CSF titers was 0.886. The sensitivity and specificity of CRYPTO-LEX were 97 and 100%, respectively, with a 99.6% correlation with CALAS. These data show that the performance of CRYPTO-LEX is comparable to that of CALAS for detection of cryptococcal antigen in serum and CSF. PMID:7814566

  16. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    PubMed Central

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  17. Idiopathic normal pressure hydrocephalus: analysis of factors related to cerebrospinal fluid dynamics determining functional prognosis.

    PubMed

    Bárcena, A; Mestre, C; Cañizal, J M; Rivero, B; Lobato, R D

    1997-01-01

    This investigation has been undertaken to analyze the findings with both the cerebrospinal fluid (CSF) pressure (Pcsf) and CSF pulse pressure (PP) in order to predict the outcome of patients with the syndrome of idiopathic normal pressure hydrocephalus (NPH). Accordingly, a prospective clinical study was planned in which two groups of patients with NPH, having analogous prevalence of several matched clinical and radiological parameters, were separated on the basis of their positive or negative response to shunting. Both the resting Pcsf and CSF PP profiles were compared in these two groups, and between them and normal controls. CSF PP amplitude and CSF PP latency correlated directly in conditions associated with either normal or high compliance (controls and patients with Alzheimer-like disorders), whereas this correlation was inverse in states of low compliance (NPH). On the other hand, shunt-responders showed a resting Pcsf significantly higher than both non-responders and controls. The following conclusions were obtained: 1) CSF PP is a high-amplitude and relative low-latency wave in NPH when compared with controls: 2) CSF PP amplitude and latency correlate directly in normal subjects and in those with primary cerebral atrophy; 3) a non-reversible stage of NPH could be conceived in contradistinction to the reversible one, in both of which an inverse correlation between the amplitude and the latency takes place, the main difference between them being the resting Pcsf, which is significantly lower in the former than in the latter, depending on the degree of atrophic changes developed.

  18. Differential allelic expression of IL13 and CSF2 genes associated with asthma.

    PubMed

    Burkhardt, Jana; Kirsten, Holger; Wolfram, Grit; Quente, Elfi; Ahnert, Peter

    2012-07-01

    An important area of genetic research is the identification of functional mechanisms in polymorphisms associated with diseases. A highly relevant functional mechanism is the influence of polymorphisms on gene expression levels (differential allelic expression, DAE). The coding single nucleotide polymorphisms (SNPs) CSF2(rs25882) and IL13(rs20541) have been associated with asthma. In this work, we investigated whether the mRNA expression levels of CSF2 or IL13 were correlated with these SNPs. Samples were analyzed by mass spectrometry-based quantification of gene expression. Both SNPs influenced gene expression levels (CSF2(rs25882): p(overall) = 0.008 and p(DAE samples) = 0.00006; IL13(rs20541): p(overall) = 0.059 and p(DAE samples) = 0.036). For CSF2, the expression level was increased by 27.4% (95% CI: 18.5%-35.4%) in samples with significant DAE in the presence of one copy of risk variant CSF2(rs25882-T). The average expression level of IL13 was increased by 29.8% (95% CI: 3.1%-63.4%) in samples with significant DAE in the presence of one copy of risk variant IL13(rs20541-A). Enhanced expression of CSF2 could stimulate macrophages and neutrophils during inflammation and may be related to the etiology of asthma. For IL-13, higher expression could enhance the functional activity of the asthma-associated isoform. Overall, the analysis of DAE provides an efficient approach for identifying possible functional mechanisms that link disease-associated variants with altered gene expression levels.

  19. Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.

    PubMed

    Holland, Ashling

    2018-01-01

    Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.

  20. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.

    PubMed

    Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L

    2010-07-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.

  1. Studies of a Biochemical Factory: Tomato Trichome Deep Expressed Sequence Tag Sequencing and Proteomics1[W][OA

    PubMed Central

    Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.

    2010-01-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087

  2. Autocrine CSF-1 and CSF-1 Receptor Co-expression Promotes Renal Cell Carcinoma Growth

    PubMed Central

    Menke, Julia; Kriegsmann, Jörg; Schimanski, Carl Christoph; Schwartz, Melvin M.; Schwarting, Andreas; Kelley, Vicki R.

    2011-01-01

    Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Co-expression of the monocytic growth factor CSF-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and anti-apoptosis during regeneration of renal tubules. Here we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were co-expressed in RCC and TEC proximally adjacent to RCC. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and EGF signaling in RCC. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R and EGF expression in RCC. Further, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCC. PMID:22052465

  3. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  4. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.

    PubMed

    Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan

    2015-08-03

    Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome.

    PubMed

    Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude

    2011-12-10

    The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association.

    PubMed

    Lindsey, Merry L; Mayr, Manuel; Gomes, Aldrin V; Delles, Christian; Arrell, D Kent; Murphy, Anne M; Lange, Richard A; Costello, Catherine E; Jin, Yu-Fang; Laskowitz, Daniel T; Sam, Flora; Terzic, Andre; Van Eyk, Jennifer; Srinivas, Pothur R

    2015-09-01

    The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings. © 2015 American Heart Association, Inc.

  7. Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease

    PubMed Central

    Stoessel, Daniel; Schulte, Claudia; Teixeira dos Santos, Marcia C.; Scheller, Dieter; Rebollo-Mesa, Irene; Deuschle, Christian; Walther, Dirk; Schauer, Nicolas; Berg, Daniela; Nogueira da Costa, Andre; Maetzler, Walter

    2018-01-01

    Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD. PMID:29556190

  8. Kynurenic acid and psychotic symptoms and personality traits in twins with psychiatric morbidity.

    PubMed

    Kegel, Magdalena E; Johansson, Viktoria; Wetterberg, Lennart; Bhat, Maria; Schwieler, Lilly; Cannon, Tyrone D; Schuppe-Koistinen, Ina; Engberg, Göran; Landén, Mikael; Hultman, Christina M; Erhardt, Sophie

    2017-01-01

    Increased cytokines and kynurenic acid (KYNA) levels in cerebrospinal fluid (CSF) have been reported in patients with schizophrenia and bipolar disorder. The aim of the present study was to investigate cytokines and kynurenines in the CSF of twin pairs discordant for schizophrenia or bipolar disorder and to study these CSF markers in relation to psychotic symptoms and personality traits. CSF levels of tryptophan (TRP), KYNA, quinolinic acid (QUIN), interleukin (IL)-6, IL-8 and tumor necrosis factor-alpha (TNF-α) were analyzed in 23 twins with schizophrenia or bipolar disorder, and in their not affected co-twins. Ratings of psychotic symptoms and personality traits were made using the Scales for Assessment of Negative and Positive symptoms, the Structured Clinical Interview for DSM-IV - Axis II Disorders, and the Schizotypal Personality Questionnaire - Brief. A total score for psychotic symptoms and personality traits was constructed for analysis. CSF KYNA was associated with the score for psychotic symptom and personality traits. TNF-α and IL-8 were associated, and the intra-pair differences scores of TNF-α and IL-8 were highly correlated. Intraclass correlations indicated genetic influences on CSF KYNA, TRP, IL-8 and TNF-α. The association between KYNA and psychotic symptoms further supports a role of KYNA in psychotic disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Sequential promotion of normal and leukemic hemopoiesis by recombinant human granulocyte colony-stimulating factor during the course of myelodysplastic syndrome.

    PubMed

    Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T

    1993-12-01

    A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.

  10. Impact of APOE4-CSF Aβ interaction on hippocampal volume loss over 1 year in MCI

    PubMed Central

    Chiang, G.C.; Insel, P.S.; Tosun, D.; Schuff, N.; Truran-Sacrey, D.; Raptentsetsang, S.T.; Thompson, P.M.; Reiman, E.M.; Jack, C.R.; Fox, N.C.; Jagust, W.J.; Harvey, D.J.; Beckett, L.A.; Gamst, A.; Aisen, P.S.; Petersen, R.C.; Weiner, M.W.

    2011-01-01

    Background The majority of studies relating amyloid pathology with brain volumes have been cross-sectional. Apolipoprotein E4 (APOE4), a genetic risk factor for Alzheimer’s disease (AD), is also associated with hippocampal volume loss. No studies have considered the effects of amyloid pathology and APOE4 together on longitudinal volume loss. Methods We evaluated whether an abnormal level of cerebrospinal fluid beta-amyloid (CSF Aβ) and APOE4 carrier status were independently associated with greater hippocampal volume loss over 1 year. We then assessed whether APOE4 status and CSF Aβ acted synergistically, testing the significance of an interaction term in the regression analysis. We included 297 participants: 77 cognitively normal (NC), 144 with mild cognitive impairment (MCI), and 76 with AD. Results An abnormal CSF Aβ level was found to be associated with greater hippocampal volume loss over 1 year in each group. APOE4 was associated with hippocampal volume loss only in the NC and MCI groups. APOE4 carriers with abnormal CSF Aβ in the MCI group acted synergistically to produce disproportionately greater volume loss than noncarriers. Conclusion Baseline CSF Aβ predicts progression of hippocampal volume loss. APOE4 carrier status amplifies the degree of neurodegeneration in MCI. Understanding the effect of interactions between genetic risk and amyloid pathology will be important in clinical trials and our understanding of the disease process. PMID:21889115

  11. Tau Phosphorylation Pathway Genes and Cerebrospinal Fluid Tau Levels in Alzheimer’s Disease

    PubMed Central

    Bekris, Lynn M.; Millard, Steve; Lutz, Franziska; Li, Gail; Galasko, Doug R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby W.; Yu, Chang-En; Peskind, Elaine R.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5′ and 3′ regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner. PMID:22927204

  12. Cerebrospinal fluid cytokines in the diagnosis of bacterial meningitis in infants.

    PubMed

    Srinivasan, Lakshmi; Kilpatrick, Laurie; Shah, Samir S; Abbasi, Soraya; Harris, Mary C

    2016-10-01

    Bacterial meningitis poses diagnostic challenges in infants. Antibiotic pretreatment and low bacterial density diminish cerebrospinal fluid (CSF) culture yield, while laboratory parameters do not reliably identify bacterial meningitis. Pro and anti-inflammatory cytokines are elevated in bacterial meningitis and may be useful diagnostic adjuncts when CSF cultures are negative. In a prospective cohort study of infants, we used cytometric bead arrays to measure tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), IL-6, IL-8, IL-10, and IL-12 in CSF. Receiver operating characteristic (ROC) analyses and Principal component analysis (PCA) were used to determine cytokine combinations that identified bacterial meningitis. Six hundred and eighty four infants < 6 mo were included; 11 had culture-proven bacterial meningitis. IL-6 and IL-10 were the individual cytokines possessing greatest accuracy in diagnosis of culture proven bacterial meningitis (ROC analyses; area under the concentration-time curve (AUC) 0.91; 0.9103 respectively), and performed as well as, or better than combinations identified using ROC and PCA. CSF cytokines were highly correlated with each other and with CSF white blood cell count (WBC) counts in infants with meningitis. A subset of antibiotic pretreated culture-negative subjects demonstrated cytokine patterns similar to culture positive subjects. CSF cytokine levels may aid diagnosis of bacterial meningitis, and facilitate decision-making regarding treatment for culture negative meningitis.

  13. Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia.

    PubMed

    Huan, Tao; Xian, Jia Wen; Leung, Wing Nang; Li, Liang; Chan, Chun Wai

    2016-11-01

    Cerebrospinal fluid (CSF) is an important biofluid for diagnosis of and research on neurological diseases. However, in-depth metabolomic profiling of CSF remains an analytical challenge due to the small volume of samples, particularly in small animal models. In this work, we report the application of a high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) workflow for CSF metabolomics in Gastrodia elata and Uncaria rhynchophylla water extract (GUW)-treated experimental cerebral ischemia model of rat. The GUW is a commonly used Traditional Chinese Medicine (TCM) for hypertension and brain disease. This study investigated the amine- and phenol-containing biomarkers in the CSF metabolome. After GUW treatment for 7 days, the neurological deficit score was significantly improved with infarct volume reduction, while the integrity of brain histological structure was preserved. Over 1957 metabolites were quantified in CSF by dansylation LC-MS. The analysis of this comprehensive list of metabolites suggests that metabolites associated with oxidative stress, inflammatory response, and excitotoxicity change during GUW-induced alleviation of ischemic injury. This work is significant in that (1) it shows CIL LC-MS can be used for in-depth profiling of the CSF metabolome in experimental ischemic stroke and (2) identifies several potential molecular targets (that might mediate the central nervous system) and associate with pharmacodynamic effects of some frequently used TCMs.

  14. [Use of the methods of mathematical modeling for evaluation of the data of cerebrospinal fluid examination in patients with bacterial meningoencephalitis].

    PubMed

    Iarosh, O A; Iarosh, A A

    1991-01-01

    As many as 300 patients of different age groups underwent a probability statistical analysis of cytosis and CSF protein depending on the outcome of bacterial meningoencephalitis. The clinical and CSF interrelations discovered reflect the function of the blood-brain barrier and can be used as an additional test for predicting the disease outcome.

  15. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809

  16. A comparative proteomic strategy for subcellular proteome research: ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.

    PubMed

    Jiang, Xiao-Sheng; Dai, Jie; Sheng, Quan-Hu; Zhang, Lei; Xia, Qi-Chang; Wu, Jia-Rui; Zeng, Rong

    2005-01-01

    Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.

  17. Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis.

    PubMed

    Charidimou, Andreas; Friedrich, Jan O; Greenberg, Steven M; Viswanathan, Anand

    2018-02-27

    To perform a meta-analysis of 4 core CSF biomarkers (β-amyloid [Aβ]42, Aβ40, total tau [t-tau], and phosphorylated tau [p-tau]) to assess which of these are most altered in sporadic cerebral amyloid angiopathy (CAA). We systematically searched PubMed for eligible studies reporting data on CSF biomarkers reflecting amyloid precursor protein metabolism (Aβ42, Aβ40), neurodegeneration (t-tau), and tangle pathology (p-tau) in symptomatic sporadic CAA cohorts vs controls and patients with Alzheimer disease (AD). Biomarker performance was assessed in random-effects meta-analysis based on ratio of mean (RoM) biomarker concentrations: (1) in patients with CAA vs healthy controls and (2) in patients with CAA vs patients with AD. RoM >1 indicates higher biomarker concentration in patients with CAA vs comparison population and RoM <1 indicates higher concentration in comparison groups. Three studies met inclusion criteria. These comprised 5 CAA patient cohorts (n = 59 patients) vs healthy controls (n = 94 cases) and AD cohorts (n = 158). Three core biomarkers differentiated CAA from controls: CSF Aβ42 (RoM 0.49, 95% confidence interval [CI] 0.38-0.64, p < 0.003), Aβ40 (RoM 0.70, 95% CI 0.63-0.78, p < 0.0001), and t-tau (RoM 1.54, 95% CI 1.15-2.07, p = 0.004); p-tau was marginal (RoM 1.24, 95% CI 0.99-1.54, p = 0.062). Differentiation between CAA and AD was strong for CSF Aβ40 (RoM 0.76, 95% CI 0.69-0.83, p < 0.0001), but not Aβ42 (RoM 1.00; 95% CI 0.81-1.23, p = 0.970). For t-tau and p-tau, average CSF ratios in patients with CAA vs patients with AD were 0.63 (95% CI 0.54-0.74, p < 0.0001) and 0.60 (95% CI 0.50-0.71, p < 0.0001), respectively. Specific CSF patterns of Aβ42, Aβ40, t-tau, and p-tau might serve as molecular biomarkers of CAA, but analyses in larger CAA cohorts are needed. © 2018 American Academy of Neurology.

  18. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty response

    USDA-ARS?s Scientific Manuscript database

    In the present study we used 2D-DIGE technique to document the Rhododendron proteome during the seasonal development of cold hardiness. We selected two genotypes with different cold hardiness levels. This enabled us to perform comparative analysis of their proteome profiles and screen differentially...

  19. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    PubMed

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  20. MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*

    PubMed Central

    Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying

    2016-01-01

    Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644

  1. Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation.

    PubMed

    Hulme, Charlotte H; Wilson, Emma L; Fuller, Heidi R; Roberts, Sally; Richardson, James B; Gallacher, Pete; Peffers, Mandy J; Shirran, Sally L; Botting, Catherine H; Wright, Karina T

    2018-05-02

    Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI  has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders.

  2. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection*

    PubMed Central

    Kulej, Katarzyna; Avgousti, Daphne C.; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N.; Kim, Eui Tae; Garcia, Benjamin A.; Weitzman, Matthew D.

    2017-01-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. PMID:28179408

  3. Leptomeningeal metastases: a RANO proposal for response criteria

    PubMed Central

    Junck, Larry; Brandsma, Dieta; Soffietti, Riccardo; Rudà, Roberta; Raizer, Jeffrey; Boogerd, Willem; Taillibert, Sophie; Groves, Morris D.; Rhun, Emilie Le; Walker, Julie; van den Bent, Martin; Wen, Patrick Y.; Jaeckle, Kurt A.

    2017-01-01

    Abstract Leptomeningeal metastases (LM) currently lack standardization with respect to response assessment. A Response Assessment in Neuro-Oncology (RANO) working group with expertise in LM developed a consensus proposal for evaluating patients treated for this disease. Three basic elements in assessing response in LM are proposed: a standardized neurological examination, cerebral spinal fluid (CSF) cytology or flow cytometry, and radiographic evaluation. The group recommends that all patients enrolling in clinical trials undergo CSF analysis (cytology in all cancers; flow cytometry in hematologic cancers), complete contrast-enhanced neuraxis MRI, and in instances of planned intra-CSF therapy, radioisotope CSF flow studies. In conjunction with the RANO Neurological Assessment working group, a standardized instrument was created for assessing the neurological exam in patients with LM. Considering that most lesions in LM are nonmeasurable and that assessment of neuroimaging in LM is subjective, neuroimaging is graded as stable, progressive, or improved using a novel radiological LM response scorecard. Radiographic disease progression in isolation (ie, negative CSF cytology/flow cytometry and stable neurological assessment) would be defined as LM disease progression. The RANO LM working group has proposed a method of response evaluation for patients with LM that will require further testing, validation, and likely refinement with use. PMID:28039364

  4. Cerebrospinal Fluid Cytokine Expression Profile in Multiple Sclerosis and Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola

    2018-02-01

    Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.

  5. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  6. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    PubMed

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for discovery and label-free PRM analysis have been deposited to the ProteomeXchange Consortium with identifiers and , respectively.

  7. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components*

    PubMed Central

    van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome. PMID:27601599

  8. Recent progress in GM-CSF-based cancer immunotherapy.

    PubMed

    Yan, Wan-Lun; Shen, Kuan-Yin; Tien, Chun-Yuan; Chen, Yu-An; Liu, Shih-Jen

    2017-03-01

    Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.

  9. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages

    PubMed Central

    Lou, Jieqiong; Low-Nam, Shalini T.; Kerkvliet, Jason G.; Hoppe, Adam D.

    2014-01-01

    ABSTRACT Activation of the macrophage colony stimulating factor-1 receptor (CSF-1R) by CSF-1 stimulates pronounced macropinocytosis and drives proliferation of macrophages. Although the role of macropinocytosis in CSF-1R signaling remains unknown, we show here that, despite internalizing large quantities of plasma membrane, macropinosomes contribute little to the internalization of the CSF-1–CSF-1R complex. Rather, internalization of the CSF-1R in small endocytic vesicles that are sensitive to clathrin disruption, outcompetes macropinosomes for CSF-1R endocytosis. Following internalization, small vesicles carrying the CSF-1R underwent homotypic fusion and then trafficked to newly formed macropinosomes bearing Rab5. As these macropinosomes matured, acquiring Rab7, the CSF-1R was transported into their lumen and degraded. Inhibition of macropinocytosis delayed receptor degradation despite no disruption to CSF-1R endocytosis. These data indicate that CSF-1-stimulated macropinosomes are sites of multivesicular body formation and accelerate CSF-1R degradation. Furthermore, we demonstrate that macropinocytosis and cell growth have a matching dose dependence on CSF-1, suggesting that macropinosomes might be a central mechanism coupling CSF-1R signaling and macrophage growth. PMID:25335894

  10. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive nanoLC-MS.

    PubMed

    Zhu, Ying; Clair, Geremy; Chrisler, William; Shen, Yufeng; Zhao, Rui; Shukla, Anil; Moore, Ronald; Misra, Ravi; Pryhuber, Gloria; Smith, Richard; Ansong, Charles; Kelly, Ryan T

    2018-05-24

    We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analysed by ultrasensitive nanoLC-MS. An average of ~670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Proteomic approaches and their application to plant gravitropism.

    PubMed

    Basu, Proma; Luesse, Darron R; Wyatt, Sarah E

    2015-01-01

    Proteomics is a powerful technique that allows researchers a window into how an organism responds to a mutation, a specific environment, or at a distinct point during development by quantifying relative protein abundance and posttranslational modifications. Here, we describe methods for the proteomic analysis of Arabidopsis thaliana tissue. Extraction protocols are provided for isolation of soluble, plasma membrane, and tonoplast proteins. In addition, basic analysis and quality metrics for MS/MS data are discussed. The protocols outlined have the potential to unlock new avenues of research that are not possible through basic genetics or transcriptomic approaches. By combining proteomic information with known gene regulatory patterns, researchers can gain a complete picture of how molecular pathways, such as those required for gravitropism, are initiated, regulated, and terminated.

  12. Association analysis of rare variants near the APOE region with CSF and neuroimaging biomarkers of Alzheimer's disease.

    PubMed

    Nho, Kwangsik; Kim, Sungeun; Horgusluoglu, Emrin; Risacher, Shannon L; Shen, Li; Kim, Dokyoon; Lee, Seunggeun; Foroud, Tatiana; Shaw, Leslie M; Trojanowski, John Q; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Weiner, Michael W; Green, Robert C; Toga, Arthur W; Saykin, Andrew J

    2017-05-24

    The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer's disease (LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However, no common variants in the region remain significant after adjusting for APOE genotype. We report a rare variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging biomarkers of LOAD. Whole genome sequencing (WGS) was performed on 817 blood DNA samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sequence data from 757 non-Hispanic Caucasian participants was used in the present analysis. We extracted all rare variants (MAF (minor allele frequency) < 0.05) within a 312 kb window in APOE's vicinity encompassing 12 genes. We assessed CSF and neuroimaging (MRI and PET) biomarkers as LOAD-related quantitative endophenotypes. Gene-based analyses of rare variants were performed using the optimal Sequence Kernel Association Test (SKAT-O). A total of 3,334 rare variants (MAF < 0.05) were found within the APOE region. Among them, 72 rare non-synonymous variants were observed. Eight genes spanning the APOE region were significantly associated with CSF Aβ 1-42 (p < 1.0 × 10 -3 ). After controlling for APOE genotype and adjusting for multiple comparisons, 4 genes (CBLC, BCAM, APOE, and RELB) remained significant. Whole-brain surface-based analysis identified highly significant clusters associated with rare variants of CBLC in the temporal lobe region including the entorhinal cortex, as well as frontal lobe regions. Whole-brain voxel-wise analysis of amyloid PET identified significant clusters in the bilateral frontal and parietal lobes showing associations of rare variants of RELB with cortical amyloid burden. Rare variants within genes spanning the APOE region are significantly associated with LOAD-related CSF Aβ 1-42 and neuroimaging biomarkers after adjusting for APOE genotype. These findings warrant further investigation and illustrate the role of next generation sequencing and quantitative endophenotypes in assessing rare variants which may help explain missing heritability in AD and other complex diseases.

  13. Announcing the Launch of CPTAC’s Proteogenomics DREAM Challenge | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    This week, we are excited to announce the launch of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) Proteogenomics Computational DREAM Challenge.  The aim of this Challenge is to encourage the generation of computational methods for extracting information from the cancer proteome and for linking those data to genomic and transcriptomic information.  The specific goals are to predict proteomic and phosphoproteomic data from other multiple data types including transcriptomics and genetics.

  14. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  15. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    PubMed Central

    Whigham, Arlene; Clarke, Rosemary; Brenes-Murillo, Alejandro J; Estes, Brett; Madhessian, Diana; Lundberg, Emma; Wadsworth, Patricia

    2017-01-01

    The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase. PMID:29052541

  16. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    PubMed

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  17. Progress in Top-Down Proteomics and the Analysis of Proteoforms

    PubMed Central

    Toby, Timothy K.; Fornelli, Luca; Kelleher, Neil L.

    2017-01-01

    From a molecular perspective, enactors of function in biology are intact proteins that can be variably modified at the genetic, transcriptional, or post-translational level. Over the past 30 years, mass spectrometry (MS) has become a powerful method for the analysis of proteomes. Prevailing bottom-up proteomics operates at the level of the peptide, leading to issues with protein inference, connectivity, and incomplete sequence/modification information. Top-down proteomics (TDP), alternatively, applies MS at the proteoform level to analyze intact proteins with diverse sources of intramolecular complexity preserved during analysis. Fortunately, advances in prefractionation workflows, MS instrumentation, and dissociation methods for whole-protein ions have helped TDP emerge as an accessible and potentially disruptive modality with increasingly translational value. In this review, we discuss technical and conceptual advances in TDP, along with the growing power of proteoform-resolved measurements in clinical and translational research. PMID:27306313

  18. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes.

    PubMed

    Miao, Jun; Chen, Zhao; Wang, Zenglei; Shrestha, Sony; Li, Xiaolian; Li, Runze; Cui, Liwang

    2017-04-01

    The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum , which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes *

    PubMed Central

    Miao, Jun; Chen, Zhao; Wang, Zenglei; Shrestha, Sony; Li, Xiaolian; Li, Runze; Cui, Liwang

    2017-01-01

    The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium. The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. PMID:28126901

  20. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  1. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-03

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.

  2. MitoMiner: a data warehouse for mitochondrial proteomics data

    PubMed Central

    Smith, Anthony C.; Blackshaw, James A.; Robinson, Alan J.

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process. PMID:22121219

  3. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  4. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  5. The Challenge of Human Spermatozoa Proteome: A Systematic Review.

    PubMed

    Gilany, Kambiz; Minai-Tehrani, Arash; Amini, Mehdi; Agharezaee, Niloofar; Arjmand, Babak

    2017-01-01

    Currently, there are 20,197 human protein-coding genes in the most expertly curated database (UniProtKB/Swiss-Pro). Big efforts have been made by the international consortium, the Chromosome-Centric Human Proteome Project (C-HPP) and independent researchers, to map human proteome. In brief, anno 2017 the human proteome was outlined. The male factor contributes to 50% of infertility in couples. However, there are limited human spermatozoa proteomic studies. Firstly, the development of the mapping of the human spermatozoa was analyzed. The human spermatozoa have been used as a model for missing proteins. It has been shown that human spermatozoa are excellent sources for finding missing proteins. Y chromosome proteome mapping is led by Iran. However, it seems that it is extremely challenging to map the human spermatozoa Y chromosome proteins based on current mass spectrometry-based proteomics technology. Post-translation modifications (PTMs) of human spermatozoa proteome are the most unexplored area and currently the exact role of PTMs in male infertility is unknown. Additionally, the clinical human spermatozoa proteomic analysis, anno 2017 was done in this study.

  6. A proteomics performance standard to support measurement quality in proteomics.

    PubMed

    Beasley-Green, Ashley; Bunk, David; Rudnick, Paul; Kilpatrick, Lisa; Phinney, Karen

    2012-04-01

    The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Making the most of sparse clinical data by using a predictive-model-based analysis, illustrated with a stavudine pharmacokinetic study.

    PubMed

    Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B

    2001-02-01

    A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.

  8. PatternLab for proteomics 4.0: A one-stop shop for analyzing shotgun proteomic data

    PubMed Central

    Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V; Santos, Marlon D M; Fischer, Juliana S G; Aquino, Priscila F; Moresco, James J; Yates, John R; Barbosa, Valmir C

    2017-01-01

    PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for analyzing shotgun proteomic data. PatternLab contains modules for formatting sequence databases, performing peptide spectrum matching, statistically filtering and organizing shotgun proteomic data, extracting quantitative information from label-free and chemically labeled data, performing statistics for differential proteomics, displaying results in a variety of graphical formats, performing similarity-driven studies with de novo sequencing data, analyzing time-course experiments, and helping with the understanding of the biological significance of data in the light of the Gene Ontology. Here we describe PatternLab for proteomics 4.0, which closely knits together all of these modules in a self-contained environment, covering the principal aspects of proteomic data analysis as a freely available and easily installable software package. All updates to PatternLab, as well as all new features added to it, have been tested over the years on millions of mass spectra. PMID:26658470

  9. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  10. Expanding the bovine milk proteome through extensive fractionation.

    PubMed

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the different fractions reduced the number to 376 unique proteins in 2 replicates. In addition, 366 proteins were detected by this process in 1 replicate. Hence, by applying different fractionation techniques to milk, we expanded the milk proteome. The milk proteome map may serve as a reference for scientists working in the dairy sector. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System.

    PubMed

    Hawley, Catherine A; Rojo, Rocio; Raper, Anna; Sauter, Kristin A; Lisowski, Zofia M; Grabert, Kathleen; Bain, Calum C; Davis, Gemma M; Louwe, Pieter A; Ostrowski, Michael C; Hume, David A; Pridans, Clare; Jenkins, Stephen J

    2018-03-15

    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r -mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Δ Csf1- enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r- driven reporter lines, Csf1r -mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Δ Csf1r -ECFP- Csf1r -mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r- mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines. Copyright © 2018 The Authors.

  12. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    PubMed Central

    Johanson, Conrad E; Duncan, John A; Klinge, Petra M; Brinker, Thomas; Stopa, Edward G; Silverberg, Gerald D

    2008-01-01

    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion PMID:18479516

  13. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    PubMed Central

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  14. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    PubMed

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several proteins with biomarker potential have been identified and successfully validated. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Optimizing of MALDI-ToF-based low-molecular-weight serum proteome pattern analysis in detection of breast cancer patients; the effect of albumin removal on classification performance.

    PubMed

    Pietrowska, M; Marczak, L; Polanska, J; Nowicka, E; Behrent, K; Tarnawski, R; Stobiecki, M; Polanski, A; Widlak, P

    2010-01-01

    Mass spectrometry-based analysis of the serum proteome allows identifying multi-peptide patterns/signatures specific for blood of cancer patients, thus having high potential value for cancer diagnostics. However, because of problems with optimization and standardization of experimental and computational design, none of identified proteome patterns/signatures was approved for diagnostics in clinical practice as yet. Here we compared two methods of serum sample preparation for mass spectrometry-based proteome pattern analysis aimed to identify biomarkers that could be used in early detection of breast cancer patients. Blood samples were collected in a group of 92 patients diagnosed at early (I and II) stages of the disease before the start of therapy, and in a group of age-matched healthy controls (104 women). Serum specimens were purified and analyzed using MALDI-ToF spectrometry, either directly or after membrane filtration (50 kDa cut-off) to remove albumin and other large serum proteins. Mass spectra of the low-molecular-weight fraction (2-10 kDa) of the serum proteome were resolved using the Gaussian mixture decomposition, and identified spectral components were used to build classifiers that differentiated samples from breast cancer patients and healthy persons. Mass spectra of complete serum and membrane-filtered albumin-depleted samples have apparently different structure and peaks specific for both types of samples could be identified. The optimal classifier built for the complete serum specimens consisted of 8 spectral components, and had 81% specificity and 72% sensitivity, while that built for the membrane-filtered samples consisted of 4 components, and had 80% specificity and 81% sensitivity. We concluded that pre-processing of samples to remove albumin might be recommended before MALDI-ToF mass spectrometric analysis of the low-molecular-weight components of human serum Keywords: albumin removal; breast cancer; clinical proteomics; mass spectrometry; pattern analysis; serum proteome.

  16. A comprehensive and scalable database search system for metaproteomics.

    PubMed

    Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W

    2016-08-16

    Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.

  17. Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718.

    PubMed

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences.

  18. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    PubMed

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  19. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets.

    PubMed

    Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo

    2018-04-06

    Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .

  20. Molecular diagnostics and ITS-based phylogenic analysis of Streptococcus suis serotype 2 in central Vietnam.

    PubMed

    Nguyen, Bach Hoang; Phan, Dieu Hong Nu; Nguyen, Hien Xuan; Le, An Van; Alberti, Alberto

    2015-07-04

    Streptococcus suis (S. suis) serotype 2 has recently become the most prevalent cause of meningitis in adults in many areas of Vietnam. This study provides data on S. suis molecular diagnosis in central Vietnam using a real-time polymerase chain reaction (PCR) assay targeting the S. suis serotype 2 cps2J gene. Additionally, 16S-23S rDNA intragenic spacer (ITS)-based phylogenic analysis of strains isolated from cerebrospinal fluid (CSF) in Thua Thien Hue Province, Vietnam, is presented and discussed. Pathogenic bacteria were isolated from 40 CSF samples, and 18 were identified as S. suis by culture-dependent methods. Capsular serotyping was assessed by real-time PCR. ITS sequences were obtained after traditional PCR and were used in phylogenic analyses. Pathogenic bacteria were isolated from 36 out of 40 CSF samples. A total of 18 S. suis strains were isolated and assigned to serotype 2 by real-time PCR. One CSF sample, negative when tested by culture-dependent methods, was positive to S. suis serotype 2 by real-time PCR. Pairwise alignments of the 18 ITS sequences did not reveal any variable nucleotide position, and resulted in a single sequence type. Sequences were similar to S. suis serotype 2 reference ITS sequences (> 98.1%), and there was no lack of an ITS spacer region in the isolates. S. suis serotype 2 is the most prevalent serotype in central Vietnam. Real-time PCR assay proved to be a reliable diagnostic method for early detection of S. suis 2 in CSF samples.

Top