Science.gov

Sample records for csi detector array

  1. Testing and Installation of a High Efficiency CsI Scintillator Array

    NASA Astrophysics Data System (ADS)

    Viscariello, Natalie; Casarotto, Stuart; Frank, Nathan; Smith, Jenna; Thoennessen, Michael

    2011-10-01

    Experiments on neutron-rich nuclei have identified changes to the structure of nuclei far from stability. The Sweeper-MoNA- LISA facility at the National Superconducting Cyclotron Laboratory (NSCL), located at Michigan State University, is used for performing experiments on neutron-rich nuclei. Currently, these experiments are limited to the mass region below neon due to the resolution of the charged fragment detectors, which limit the isotope separation. The resolution of the system will be improved with changes to the setup, primarily due to a new scintillator array. The new array will consist of twenty-five sodium-doped CsI crystals arranged in a 5 × 5 configuration. The array will be used to measure the kinetic energy of charged fragments with energies in the GeV range. The improved resolution will allow experiments of unbound systems above neon. The testing and assembly of the detector array will be presented.

  2. Charged-particle detection efficiencies of close-packed CsI arrays

    NASA Astrophysics Data System (ADS)

    Morfouace, P.; Lynch, W. G.; Tsang, M. B.

    2017-03-01

    Detector efficiency determination is essential to correct the measured yields and extract reliable cross sections of particles emitted in nuclear reactions. We investigate the efficiencies for measuring the full energies of light charged particle in arrays of CsI crystals employed in particle detection arrays such as HiRA, LASSA and MUST2. We perform these simulations with a GEANT4 Monte Carlo transport code implemented in the NPTool framework. Both Coulomb multiple scattering and nuclear reactions within the crystal can significantly reduce the efficiency of detecting the full energy of high energy particles. The calculated efficiencies decrease exponentially as a function of the range of the particle and are quite similar for both the hydrogen (p , d , t) and helium (3He, α) isotopes. The use of a close-packed array introduces significant position dependent efficiency losses at the interior boundaries between crystals that need to be considered in the design of an array and in the efficiency corrections of measured energy spectra.

  3. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  4. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  5. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  6. Solid state neutron detector array

    SciTech Connect

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  7. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  8. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  9. Large-format electrographic and array detectors for a space Schmidt imaging telescope

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Fischer, Jacqueline; Wray, James D.; Lowrance, John L.

    1990-01-01

    Possible optical designs of imaging detectors for the spaceborne Schmidt telescope proposed by Carruthers et al. (1990) are discussed, surveying the currently or potentially available technology. Consideration is given to FUV electrographic detectors of large format (e.g., 120 mm with 10-micron resolution) using CsI photocathodes, the possible extension of the same technology to the mid-UV using Cs2Te instead of CsI, large CCD arrays for the visible and NIR, electron-bombarded CCDs for the FUV and mid-UV, and the data handling and processing requirements of these detectors.

  10. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  11. A CsI low-temperature detector for dark matter search

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Dafinei, I.; Gektin, A.; Gironi, L.; Gotti, C.; Gütlein, A.; Hauff, D.; Maino, M.; Nagorny, S. S.; Nisi, S.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.; Vasyukov, S.

    2016-11-01

    Cryogenic detectors have a long history of success in the field of rare event searches. In particular scintillating calorimeters are very suitable detectors for this task since two signals are induced by a particle interaction in a scintillating crystal. The thermal signal provides a precise measurement of the deposited energy while the simultaneously measured scintillation light signal yields particle discrimination as the amount of produced scintillation light depends on the nature of the interacting particle. We investigate the calorimetric properties and background rejection capabilities of two large CsI (undoped) crystals (∼122 g each) operated as scintillating calorimeters at milli-Kelvin temperatures. Furthermore, we discuss the feasibility of this detection approach towards a future background-free dark matter experiment based on alkali halide crystals, with active particle discrimination via the two-channel detection.

  12. Massively parallel MRI detector arrays.

    PubMed

    Keil, Boris; Wald, Lawrence L

    2013-04-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas via reception, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called "ultimate" SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  14. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  15. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  16. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  17. Arrays of Bolometric Detectors for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Moseley, S. H.; Freund, M.; Allen, C.; Harper, A.; Loewenstein, R.; Dowell, C. D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Large format two dimensional arrays of bolometric detectors are required for many millimeter and submillimeter applications. We describe the development and testing of such arrays and the plans for using them in both a ground-based and airborne instrument.

  18. Si:As BIB detector arrays

    NASA Technical Reports Server (NTRS)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  19. Si:As BIB detector arrays

    NASA Technical Reports Server (NTRS)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  20. (Data acquisition for Ge detector arrays)

    SciTech Connect

    Hensley, D.C.

    1989-10-09

    The traveler presented three invited lectures entitled An Overview of Data Acquisition for Ge Detector Arrays,'' Specialized Data Acquisition for Ge Detector Arrays,'' and Gamma-Ray Angular Correlations from Heavy-Ion Inelastic Scattering Measured in the Spin Spectrometer'' and acted as a Study Group Coordinator at the Nuclear Structure in the Era of New Spectroscopy Workshop in Copenhagen, Denmark.

  1. Quantum efficiency of opaque CsI photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1982-01-01

    The arrays are overcoated with a CsI photocathode in the VUV. The measurements are part of the development program for the Extreme Ultraviolet Explorer. Monochromatic light from a hollow cathode discharge source passing through a McPherson grazing incidence monochromator is used to illuminate the CsI photocathode. The beam diameter is kept small (approximately 2 mm) to confine it within the individual thickness strips. A bias grid is used to produce a 50-V/mm electric field to guarantee collection of all photoelectrons emitted by the CEMA (channel electron multiplier array) webbing. The CEMAs are operated with a gain of 2-3 x 10 to the 6th and are moderately saturated. A channeltron secondary transfer standard is used to determine the absolute QE in the EUV, whereas an NBS calibrated windowed photodiode is used to measure the FUV absolute QE. It is noted that the CsI gives a factor of 3 increase in the QE in the EUV and a factor of 50-5000 in the FUV.

  2. Quantum efficiency of opaque CsI photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1982-01-01

    The arrays are overcoated with a CsI photocathode in the VUV. The measurements are part of the development program for the Extreme Ultraviolet Explorer. Monochromatic light from a hollow cathode discharge source passing through a McPherson grazing incidence monochromator is used to illuminate the CsI photocathode. The beam diameter is kept small (approximately 2 mm) to confine it within the individual thickness strips. A bias grid is used to produce a 50-V/mm electric field to guarantee collection of all photoelectrons emitted by the CEMA (channel electron multiplier array) webbing. The CEMAs are operated with a gain of 2-3 x 10 to the 6th and are moderately saturated. A channeltron secondary transfer standard is used to determine the absolute QE in the EUV, whereas an NBS calibrated windowed photodiode is used to measure the FUV absolute QE. It is noted that the CsI gives a factor of 3 increase in the QE in the EUV and a factor of 50-5000 in the FUV.

  3. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  4. Large Format Detector Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2006-01-01

    Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.

  5. Infrared array detectors. [for astronomical observation

    NASA Technical Reports Server (NTRS)

    Arens, J. F.

    1982-01-01

    Arrays of detectors sensitive to infrared radiation will enable astronomical observations to be made with shorter observing times than with discrete detectors and with good relative spatial accuracy. Systems using such arrays are being developed for astronomy in several regions of the electromagnetic spectrum. An example of an infrared system is given here consisting of a 32x32 element bismuth doped silicon charge injection device array that has been used in an astronomical camera.

  6. Infrared array detectors. [for astronomical observation

    NASA Technical Reports Server (NTRS)

    Arens, J. F.

    1982-01-01

    Arrays of detectors sensitive to infrared radiation will enable astronomical observations to be made with shorter observing times than with discrete detectors and with good relative spatial accuracy. Systems using such arrays are being developed for astronomy in several regions of the electromagnetic spectrum. An example of an infrared system is given here consisting of a 32x32 element bismuth doped silicon charge injection device array that has been used in an astronomical camera.

  7. The hyperion particle-γ detector array

    DOE PAGES

    Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...

    2017-03-08

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  8. The hyperion particle-γ detector array

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Ota, S.; Fisher, S.; Parker, J.; Beausang, C. W.; Dag, M.; Humby, P.; Koglin, J.; McCleskey, E.; McIntosh, A. B.; Saastamoinen, A.; Tamashiro, A. S.; Wilson, E.; Wu, T. C.

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  9. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  10. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  11. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  12. Low background IR detector and detector array evaluations

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Jared, D. A.; Lee, J. H.; Mccreight, C. R.; Mckelvey, M. E.; Stafford, P. S.

    1983-01-01

    A technology program has been underway at Ames since 1978 to develop and evaluate detectors and integrated detector arrays for low-background astronomical applications. The approach is to evaluate existing (less than 24 micron) array technology under low-background conditions, with the aim of adapting and optimizing existing devices. For longer wavelengths, where the technology is much less mature, development is sponsored and devices are evaluated, in both discrete and array formats, for eventual applications. The status of this program has been reported previously. We rely on industrial and university sources for the detectors. Typically, after a brief functionality check in the supplier's laboratory, we work with the device at Ames to characterize its low-background performance. In the case of promising arrays or detectors, we conduct ground-based telescope testing to face the problems associated with real applications. A list of devices tested at Ames is given. In the array category, accumulation-mode charge-injection-devices (AMCIDs) appear repeatedly; this reflects our recent experience with the 2 x 64 and 16 x 16 arrays. Results from the 1 x 16 CID and InSb CCD have been reported. The status of our tests of the discrete Ge:x detectors from Lawrence Berkeley Laboratory are described below. Tests of a 1 x 2 switched sample photoconductor array are just beginning. A 32-channel CMOS multiplexer has been tested at 10 K. Low-temperature silicon MOSFETs and germanium JFETs have also been tested, primarily at Ball Aerospace. This paper describes results to date on three elements of this program: AMCID array, discrete Ge:Ga detectors, and Ge JFET preamplifiers.

  13. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  14. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  15. Neutron detector characterization for SCINTIA array

    SciTech Connect

    Matei, C.; Hambsch, F. J.; Oberstedt, S.

    2011-07-01

    SCINTIA is a new detector array of organic scintillators under development at the Inst. for Reference Materials and Measurements (IRMM). The present design of SCINTIA includes NE213, p-terphenyl and Li glass neutron detectors positioned in a spherical configuration around the target. The properties of a novel p-terphenyl neutron detector to be used with SCINTIA have been investigated using photon sources and neutrons from a time tagged {sup 252}Cf(sf) source. The results show that the p-terphenyl crystal has better energy resolution, increased proton light output and neutron efficiency when compared to a similar size NE213 equivalent neutron detector. (authors)

  16. Array Detectors for Plasma Spectrochemistry.

    DTIC Science & Technology

    1988-02-04

    Applied Spectroscopy , (1987), 41, 1114. (2) R.B. Bilhorn, P.M. Epperson, J.V. Sweedler, M.B. Denton, Applied Spectroscopy , (1987), 41, 1125. 19. Abstract (continued) ,7different detector element based on the actual photon flux falling on each element during a specific measurement; binning, allowing the combination of charge stored in multiple elements while on the detector; and frame transfer, allowinq computer summation of multiple exposures of a single analysis.tA/,: -. • -’- ,, ,- - Readout modes such as random access

  17. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Multi-Anode Microchannel Array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 square mm are now under evaluation at visible, ultraviolet and soft x-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 square mm are under development for use in the NASA Goddard Space Flight Center's Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with CsI photocathodes can provide a high-resolution imaging capability at extreme ultraviolet (EUV) and soft x-ray wavelengths and can deliver a maximum count rate from each array in excess of 1 million counts s-1. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode-of-operation and performance characteristics of the MAMA detectors are described and the program for the development of the very-large-format detectors is outlined.

  18. Imaging Using Energy Discriminating Radiation Detector Array

    SciTech Connect

    Willson, Paul D.; Clajus, Martin; Tuemer, Tuemay O.; Visser, Gerard; Cajipe, Victoria

    2003-08-26

    Industrial X-ray radiography is often done using a broad band energy source and always a broad band energy detector. There exist several major advantages in the use of narrow band sources and or detectors, one of which is the separation of scattered radiation from primary radiation. ARDEC has developed a large detector array system in which every detector element acts like a multi-channel analyzer. A radiographic image is created from the number of photons detected in each detector element, rather than from the total energy absorbed in the elements. For high energies, 25 KeV to 4 MeV, used in radiography, energy discriminating detectors have been limited to less than 20,000 photons per second per detector element. This rate is much too slow for practical radiography. Our detector system processes over two million events per second per detector pixel, making radiographic imaging practical. This paper expounds on the advantages of the ARDEC radiographic imaging process.

  19. Faraday Cup Detector Array with Electronic Interface

    NASA Astrophysics Data System (ADS)

    Scheidemann, Adi A.; Schumacher, Frank. J.; Darling, Robert B.; Isakharov, Arthur; Jones, Patrick

    2000-03-01

    A position sensitive Faraday cup detector array [FCDA] for ion beam detection has been developed. The FCDA is combined with an electronic multiplexing unit that allows collecting and integrating the charge deposited in the array and simultaneously reading out the same. The interface allows a duty cycle of > 98% for the position sensitive read-out, thus monitoring the entire array simultaneously. The multiplexing is achieved by collecting the charge with large number of small, and electronically de-coupled Faraday cups. The device measures absolute ion currents, has a wide dynamic range from 0.2 picoA to 2 microA, and a cross talk of less than 750:1. Read-out speeds ranging from 37 Hz to 117 kHz have been demonstrated. The low cross talk of the FCDA originates from an effective electronic de-coupling of the cups and a gray-code driven MUX-cascade as interface. The integration of the interface with the detector array on a printed circuit board allows further, reducing the number of feedthroughs that are necessary to monitor the array to six. Detector pitch sizes from 150 mm to 2.1mm haven been realized. A linear system composed of 256 elements and a square arrangement with 64 elements will be discussed.

  20. A Study of the quality of CsI detectors and pulse-shape discrimination of scintillators for ?[U+0251]-particles, ?[U+0263]-particles, and neutrons

    NASA Astrophysics Data System (ADS)

    Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua

    2016-09-01

    This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.

  1. Study of a Li doped CsI scintillator crystal as a neutron detector

    NASA Astrophysics Data System (ADS)

    Madi Filho, T.; Pereira, M. C. C.; Berretta, J. R.; Cárdenas, J. P. N.

    2015-07-01

    The radiation monitoring system is an important requirement in the premises of a nuclear reactor. A variety of types of radiation (neutrons. gamma. beta and fission products) exist in a reactor. associated to the broad energy spectrum of these radiations. implying the need of detectors to be used in the reactor system and security. as well as radiation monitoring. As the neutron sources are associated to gamma radiation. it is necessary that the neutron detecting system may be capable to discriminate the gamma interference. In our work environment. there are two Nuclear Research Reactors and a neutron irradiator with two AmBe sources (592GBq of Am. each). These conditions warrant the development of new types of detectors. Due to the absence of charge in the neutron. it is necessary to use a converter material that generates radiations capable to produce signals in the detector. Materials with high cross section. like Li or B. are used for this purpose. The CsIcrystal doped with 6Li has been studied. The concentration of the lithium doping element (Li) studied was 10-3M. The detector test was done using an AmBe source (37GBq) and gamma sources. The crystal was coupled to a photomultiplier.

  2. Adaptive Detector Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    2000-01-01

    The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.

  3. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; hide

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  4. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  5. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  6. Broadband optical absorption enhancement of hexagonal nanoconical frustum arrays texturing for c-Si film solarcells

    NASA Astrophysics Data System (ADS)

    Wangyang, Peihua; Wang, Qingkang; Hu, Kexiang; Wan, Xia; Huang, Kun

    2013-05-01

    In this paper, the optical properties of the silicon hexagonal nanoconical frustum (SiHNF) arrays are theoretically studied via simulation based on the Rigorous Coupled Wave Analysis (RCWA) in detail. The results show that the SiHNF bottom diameter (Dbot) should be equal to the array periodicity for efficient solar energy harvesting, and the optimized light absorption could be realized when the SiHNF height reaches 1000 nm with Dtop equal to100 nm. The optimal SiHNF arrays has the periodicity of 700 nm, the top diameter of 100 nm and the SiHNF height of 1000 nm, yielding an ultimate efficiency of 30.54%, which is more than two times of a 2.33 μm thick Si thin film solar cells. Comparing to nanopillar and square nanoconical frustum structures, the enhanced ultimate efficiency of SiHNF structure is less sensitive to the incident zenith angle and SiHNF top diameter. The possible physical mechanism behind the observation is also explored in thiswork.

  7. Interference effects in reticon photodiode array detectors.

    PubMed

    Mount, G H; Sanders, R W; Brault, J W

    1992-03-01

    A detector system incorporating the Reticon RL1024S photodiode array has been constructed at the National Oceanic and Atmospheric Administration Aeronomy Laboratory as part of a double spectrograph to be used to study the Earth's atmosphere from ground-based and aircraft-based platforms. To determine accurately the abundances of atmospheric trace gases, this new system must be able to measure spectral absorptions as small as 0.02%. The detector, manufactured by EG&G Reticon, exhibits superior signal-to-noise characteristics at the light levels characteristic of scattered skylights, but interference in the passivating layer (a thin layer of SiO(2) that is deposited during the manufacture to protect the silicon active area from water vapor) causes major problems in achieving the required precision. The mechanism of the problems and the solution we have implemented are described in detail.

  8. Microphone array based novel infant deafness detector.

    PubMed

    Agnihotri, Chinmayee; Thiyagarajan, S; Kalyansundar, Archana

    2010-01-01

    This work focuses on an infant deafness detector unit, using the concept of microphone array. This instrument is based on the principle of evoked acoustic emissions (OAEs). The key feature of the microphone array is its ability to increase signal-to-noise ratio (SNR) and reproducibility of the OAE responses. These further significantly contribute to improve the sensitivity and specificity of the overall system. Low level sound pressure values are recorded by the sensitive microphones in microphone array unit and processed using TI's DSP6416. The sound stimulus transmitted to human ear is generated and controlled by the 6416 DSP (Digital signal processor). Hardware circuit details and the algorithm used in signal processing are discussed in this paper. Standard averaging technique is used in the implemented algorithm. The final result speaks about the hearing capacity of a patient. The proof that the usage of microphone arrays leads to better SNR values than using a single microphone in an OAE probe, is successfully carried out in this work.

  9. Electromagnetic modeling and resonant detectors and arrays

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Sun, J.; DeCuir, E. A.; Olver, K. A.; Wijewarnasuriya, P.

    2015-05-01

    We recently developed a finite element three-dimensional electromagnetic model for quantum efficiency (QE) computation. It is applicable to any arbitrary detector geometry and materials. Using this model, we can accurately account for the open literature experimental results that we have investigated, which include those from GaAs solar cells, GaSb type-II superlattices, and GaAs quantum wells. We applied the model to design a photon trap to increase detector QE. By accumulating and storing incident light in the resonator-QWIP structure, we observed experimental QE as high as 71%. This improvement shows that we are now able to fully determine the optical properties of QWIPs. For example, we can design QWIPs to detect at certain wavelengths with certain bandwidths. To illustrate this capability, we designed QWIPs with its QE spectrum matching well with the transmission spectrum of a medium. We subsequently produced several focal plane arrays according to these designs with 640 × 512 and 1 K × 1 K formats. In this paper, we will compare the modeled QE and the experimental results obtained from single detectors as well as FPAs.

  10. MTF Determination of SENTINEL-4 Detector Arrays

    NASA Astrophysics Data System (ADS)

    Reulke, R.; Sebastian, I.; Williges, C.; Hohn, R.

    2017-05-01

    The Institute for Optical Sensor Systems was involved in many international space projects in recent years. These include, for example, the fokal plane array (FPA) of the hyperspectral sensors ENMAP or Sentinel-4, but also the FPA for the high resolution FPA for Kompsat-3. An important requirement of the customer is the measurement of the detector MTF for different wavelengths. A measuring station under clean room conditions and evaluation algorithms was developed for these measurements. The measurement setup consist of a collimator with slit target in focus for illumination at infinity, a gimbal mounted detector facing an auxiliary lens in front, a halogen lamp with monochromator or filter, as well as optical and electrical ground support equipment. Different targets and therefore also different measurement and data evaluation opportunities are possible with this setup. Examples are slit, edge, pin hole but also a Siemens star. The article describes the measurement setup, the different measuring and evaluation procedures and exemplary results for Sentinel-4 detector.

  11. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  12. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  13. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  14. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  15. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  16. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  17. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  18. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  19. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  20. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  1. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  2. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  3. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  4. Modulation transfer function of a trapezoidal pixel array detector

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Guo, Rongli; Ni, Jinping; Dong, Tao

    2016-01-01

    The modulation transfer function (MTF) is the tool most commonly used for quantifying the performance of an electro-optical imaging system. Recently, trapezoid-shaped pixels were designed and used in a retina-like sensor in place of rectangular-shaped pixels. The MTF of a detector with a trapezoidal pixel array is determined according to its definition. Additionally, the MTFs of detectors with differently shaped pixels, but the same pixel areas, are compared. The results show that the MTF values of the trapezoidal pixel array detector are obviously larger than those of rectangular and triangular pixel array detectors at the same frequencies.

  5. Performance characteristics of multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The multi-anode microchannel arrays (MAMAs) are state-of-the-art, pulse-counting, photoelectric array detectors designed specifically for use in space astrophysics instruments. The present paper provides a description of recent progress related to the development of ultraviolet and visible-light versions of the MAMA detectors, taking into account a comparison of the operating characteristics of these devices with those of photoconductive array detectors, such as the CCDs. Attention is given to MAMA detector system design parameters, the operating characteristics of MAMAs and CCDs, MAMA performance characteristics, and future developments.

  6. Multianode microchannel array detectors for Space Shuttle imaging applications

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric, photoncounting array detectors that have been developed and qualified specifically for use in space. MAMA detectors with formats as large as 256 x 1024 pixels are now in use or under construction for a variety of imaging and tracking applications. These photo-emissive detectors can be operated in a windowless configuration at extreme ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. The construction and modes-of-operation of the MAMA detectors are briefly described and the scientific objectives of a number of sounding rocket and Space Shuttle instruments utilizing these detectors are outlined. Performance characteristics of the MAMA detectors that are of fundamental importance for operation in the Space Shuttle environment are described and compared with those of the photo-conductive array detectors such as the CCDs and CIDs.

  7. A 16 x 16 element extrinsic silicon detector array

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two bismuth-doped silicon accumulation-mode charge-injection device (AMCID) infrared detector arrays are studied. The geometry and composition of the arrays, and a description of the cold and warm electronics components of the system are described. Instructions for setting up and operating the array system, plus results of a functional test, are included.

  8. Results from the Puebla extensive air shower detector array

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.; Saavedrac, O.

    2003-07-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays ( Eo > 10 14eV). The array is located at the Campus of Puebla University and consists of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. In this report we discuss the stability and the calibration of the detector array, as derived from the 10 detectors in operation in the first stage. The main characteristics of the array allow us also to use it as an educational and training facility. First distributions of the arrival direction and the lateral shower srpead are also given.

  9. PbS-PbSe IR detector arrays

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1986-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chipping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  10. Hybridization of detector array and integrated circuit for readout

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.; Grunthaner, Frank J.

    1992-04-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  11. Scientific Applications and Promise of Cryogenic Detector Arrays

    NASA Astrophysics Data System (ADS)

    Moseley, Samuel Harvey

    2009-12-01

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  12. Particle Identification in the NIMROD-ISiS Detector Array

    SciTech Connect

    Wuenschel, S.; Hagel, K.; May, L. W.; Wada, R.; Yennello, S. J.

    2009-03-10

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  13. Improved efficiency for nanopillar array of c-Si photovoltaic by down-conversion and anti-reflection of quantum dots

    NASA Astrophysics Data System (ADS)

    Lin, Chien-chung; Chen, Hsin-Chu; Han, Hau-Vei; Tsai, Yu-Lin; Chang, Chia-Hua; Tsai, Min-An; Kuo, Hao-Chung; Yu, Peichen

    2012-02-01

    Improvement of efficiency for crystalline silicon (c-Si) with nanopillar arrays (NPAs) solar cell was demonstrated by deployment of CdS quantum dots (QDs). The NPAs was fabricated by colloidal lithography of self-assembled polystyrene (PS) nanospheres with a 600 nm in size and reactive-ion etching techniques, and then a colloidal CdS QDs with a concentration of 5 mg/mL was spun on the surface of c-Si with NPAs solar cell. Under a simulated one-sun condition, the device with CdS QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. Additionally, we also found that the device with CdS QDs shows a 32% reduction in electrical resistance, compared with the one without QDs solar cell, under an ultraviolet (UV) light of 355nm illumination. This reduced electrical resistance can directly contribute to our fill-factor (FF) enhancement. For further investigation, the excitation spectrum of photoluminescence (PL), absorbance spectrum, current-voltage (I-V) characteristics, reflectance and external quantum efficiency (EQE) of the device were measured and analyzed. Based on the spectral response and optical measurement, we believe that CdS QDs not only have the capability for photon down-conversion in ultraviolet region, but also provide extra antireflection capability.

  14. SAPHIRE: A New Flat-Panel Digital Mammography Detector With Avalanche Photoconductor and High-Resolution Field Emitter Readout

    DTIC Science & Technology

    2006-06-01

    CsI), and form a charge image that is read out by a high-resolution field emitter array (FEA). We call the proposed detector SAPHIRE ( Scintillator ...CsI), and form a charge image that is read out by a high-resolution field emitter array (FEA). We call the proposed detector SAPHIRE ( Scintillator ... detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI ( Scintillator HARP Active Matrix Flat Panel Imager)”, Med. Phys

  15. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems.

    PubMed

    Freed, Melanie; Park, Subok; Badano, Aldo

    2010-06-01

    Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems. Despite the detailed results that MANTIS produces, the long simulation times required make inclusion of these results impractical in rigorous optimization and reconstruction algorithms. As a result, there is a need for detector blur models that can be rapidly generated. In this study, the authors have derived an analytical model for deterministic detector blur functions, referred to here as point response functions (PRFs), of columnar CsI phosphor screens. The analytical model is x-ray energy and incidence angle dependent and draws on results from MANTIS to indirectly include complicated interactions that are not explicitly included in the mathematical model. Once the mathematical expression is derived, values of the coefficients are determined by a two-dimensional (2D) fit to MANTIS-generated results based on a figure-of-merit (FOM) that measures the normalized differences between the MANTIS and analytical model results averaged over a region of interest. A smaller FOM indicates a better fit. This analysis was performed for a monochromatic x-ray energy of 25 keV, a CsI scintillator thickness of 150 microm, and four incidence angles (0 degrees, 15 degrees, 30 degrees, and 45 degrees). The FOMs comparing the analytical model to MANTIS for these parameters were 0.1951 +/- 0.0011, 0.1915 +/- 0.0014, 0.2266 +/- 0.0021, and 0.2416 +/- 0.0074 for 0 degrees, 15 degrees, 30

  16. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems.

    PubMed

    Freed, Melanie; Park, Subok; Badano, Aldo

    2010-06-01

    Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems. Despite the detailed results that MANTIS produces, the long simulation times required make inclusion of these results impractical in rigorous optimization and reconstruction algorithms. As a result, there is a need for detector blur models that can be rapidly generated. In this study, the authors have derived an analytical model for deterministic detector blur functions, referred to here as point response functions (PRFs), of columnar CsI phosphor screens. The analytical model is x-ray energy and incidence angle dependent and draws on results from MANTIS to indirectly include complicated interactions that are not explicitly included in the mathematical model. Once the mathematical expression is derived, values of the coefficients are determined by a two-dimensional (2D) fit to MANTIS-generated results based on a figure-of-merit (FOM) that measures the normalized differences between the MANTIS and analytical model results averaged over a region of interest. A smaller FOM indicates a better fit. This analysis was performed for a monochromatic x-ray energy of 25 keV, a CsI scintillator thickness of 150μm, and four incidence angles (0°, 15°, 30°, and 45°). The FOMs comparing the analytical model to MANTIS for these parameters were 0.1951±0.0011, 0.1915±0.0014, 0.2266±0.0021, and 0.2416±0.0074 for 0°, 15°, 30°, and 45°, respectively. As a comparison, the

  17. Gamma-spectrometry with Compton suppressed detectors arrays

    SciTech Connect

    Schueck, C.; Hannachi, F.; Chapman, R.; Lisle, J.C.; Mo, J.N.; Paul, E.; Love, D.J.G.; Nolan, P.J.; Nelson, A.H.; Walker, P.M.

    1985-01-01

    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and /sup 154/Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs.

  18. Rubicon - a New Diode Array Detector System

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, T.; Rudolph, R.; Tug, H.

    A photon-counting system with a 512-channel parallel output digital image tube is presented. Electronics developed separately for each detector channel as well as data aquisition are optimized for low power consumption and high counting rates. This detector, characterized by wide dynamic range, very low noise and high photometric accuracy, is especially suitable for spectrophotometry and calibrations.

  19. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  20. Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment

    NASA Astrophysics Data System (ADS)

    Atanova, O.; Cordelli, M.; Corradi, G.; Colao, F.; Davydov, Yu. I.; Donghia, R.; Di Falco, S.; Giovannella, S.; Happacher, F.; Martini, M.; Miscetti, S.; Morescalchi, L.; Murat, P.; Pezzullo, G.; Saputi, A.; Sarra, I.; Soleti, S. R.; Tagnani, D.; Tereshchenko, V.; Usubov, Z.

    2017-05-01

    This paper describes the measurements of energy and time response and resolution of a 3×3 array made of undoped CsI crystals 3×3×20 cm3 coupled to large area Hamamatsu Multi Pixel Photon Counters 12×12 mm2. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applying a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.

  1. Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment

    DOE PAGES

    Atanova, O.; Cordelli, M.; Corradi, G.; ...

    2017-02-13

    This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applyingmore » a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.« less

  2. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  3. A Study of Lane Differentiation Using An Array of Detectors.

    SciTech Connect

    McKigney E. A.; Gholkar, R. V.; Vega, D. A.

    2004-01-01

    The authors discuss a method for locating a radioactive source in the context of determining which lane a source is in on a roadway. This method is appropriate for use over a large range of source velocities, and could provide an advance alarm prior to a vehicle passing a portal monitor. This is a novel method which uses data from the entire array simultaneously to locate the source, rather than relying on only one or two sensors. A description of the underlying method will be given, along with results from five and six detector arrays. The five detector array was used mainly for static tests. The six detector array was used for dynamic tests, including slow movement of a source in a vehicle.

  4. LWIR detector arrays based on nipi superlattices

    NASA Technical Reports Server (NTRS)

    Maserjian, J.; Grunthaner, F. J.; Elliott, C. T.

    1990-01-01

    It is proposed that nipi superlattice structures in InSb or InAs can be grown with modern techniques to achieve tunable and stable LWIR detectors with high performance. Key device and material considerations for the application of such nipi superlattices to LWIR detectors are examined. It is shown that practical absorption coefficients (of about 100/cm) can be achieved with high doping concentrations (of about 10 to the 19th/cu cm) achievable in these materials. In particular, recent delta doping techniques being developed in molecular beam epitaxy offer promise of higher doping concentrations, improved uniformity, and greater flexibility in tailoring the structures for optimum detector performance.

  5. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  6. Surface detector array for the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Salazar, H.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The Pierre Auger international collaboration will install two observatories, one in the southern hemisphere and other in the northern hemisphere. Each observatory will consist of two different subsystem: a surface detector array of about 1600 water Cherenkov detectors (WCD) and a set of fluorescence eyes to measure the longitudinal development of air showers. The large area covered by the surface detectors requires efficient calibration and monitoring methods that can be implemented remotely. We present several complementary methods to calibrate and monitor the performance of the individual surface detector stations. We also present some results of the studies made with a full size prototype tank in Puebla, Mexico and in Malargue, Argentina. .

  7. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Ringdal, F; Harris, D B; Dodge, D; Gibbons, S J

    2009-07-23

    Waveform correlation detectors compare a signal template with successive windows of a continuous data stream and report a detection when the correlation coefficient, or some comparable detection statistic, exceeds a specified threshold. Since correlation detectors exploit the fine structure of the full waveform, they are exquisitely sensitive when compared to power (STA/LTA) detectors. The drawback of correlation detectors is that they require complete knowledge of the signal to be detected, which limits such methods to instances of seismicity in which a very similar signal has already been observed by every station used. Such instances include earthquake swarms, aftershock sequences, repeating industrial seismicity, and many other forms of controlled explosions. The reduction in the detection threshold is even greater when the techniques are applied to arrays since stacking can be performed on the individual channel correlation traces to achieve significant array gain. In previous years we have characterized the decrease in detection threshold afforded by correlation detection across an array or network when observations of a previous event provide an adequate template for signals from subsequent events located near the calibration event. Last year we examined two related issues: (1) the size of the source region calibration footprint afforded by a master event, and (2) the use of temporally incoherent detectors designed to detect the gross envelope structure of the signal to extend the footprint. In Case 1, results from the PETROBAR-1 marine refraction profile indicated that array correlation gain was usable at inter-source separations out to one or two wavelengths. In Case 2, we found that incoherent detectors developed from a magnitude 6 event near Svalbard were successful at detecting aftershocks where correlation detectors derived from individual aftershocks were not. Incoherent detectors might provide 'seed' events for correlation detectors that then could

  8. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  9. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  10. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  11. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  12. Uncooled Infrared Detector Arrays With Electrostatically Levitated Sensing Elements

    DTIC Science & Technology

    2005-03-28

    detectors"" vout operating at room temperature . Their resistance changes V2 Ni l following a temperature rise from the absorption of incident radiation...advantages of this approach are: Although in recent times, uncooled microbolometer 1) The detector temperature is not disturbed by thermal arrays have seen...levels by performing the deposition at an elevated temperature . The technology developed here was applied to a new class of acoustic transducer, a

  13. Status of the Neutral Current Detector Array at SNO

    NASA Astrophysics Data System (ADS)

    Cox, Adam

    2003-05-01

    The third phase of data taking at the Sudbury Neutrino Observatory (SNO) is currently scheduled to begin in the autumn of 2003 with the installation of the Neutral Current Detectors (NCD). The NCDs, an array of ^3He proportional counters, will make an independent measurement of the flux of ^8B solar neutrinos at SNO. The latest results in experimental neutrino physics have given the SNO collaboration the opportunity to maximize the physics capabilities of SNO by deploying just half of the initially proposed NCD array. In order to minimize backgrounds, only the best counters with the lowest intrinsic radioactivity have been selected for deployment into the SNO detector.

  14. Detector array evaluation and figures of merit

    NASA Technical Reports Server (NTRS)

    Dereniak, Eustace L.

    1990-01-01

    The commonly used methods to evaluate the performance of a two-dimensional focal-plane array using charge transfer devices are reviewed. Two figures of merit that attempt to combine quantum efficiency, read noise and dark-current generation into a single parameter are discussed. The figures of merit are suggested as possible alternatives to the D asterisk.

  15. Review of multianode microchannel array detector systems

    NASA Astrophysics Data System (ADS)

    Timothy, J. Gethyn

    2016-07-01

    Multianode microchannel arrays (MAMAs) are a family of digital photon-counting imaging arrays designed specifically for use in space. Two MAMAs with formats of 1024×1024 pixels were included in the Space Telescope Imaging Spectrograph (STIS) to cover the far-ultraviolet (FUV) from 115 to 170 nm and the near-ultraviolet (NUV) from 165 to 310 nm. STIS was installed on orbit in the Hubble Space Telescope in February 1997. The flight-spare FUV MAMA was installed on orbit in the Advanced Camera for Surveys in March 2002, and the flight-spare NUV MAMA was installed on orbit in the Cosmic Origins Spectrograph in May 2009. This paper describes the construction, modes of operation, and on-orbit performances of the MAMAs and the resulting lessons for future space astrophysics missions.

  16. Simulation and research of the gamma-ray detectors based on the CsI crystals and silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Romanova, G. E.; Radilov, A. V.; Denisov, V. M.; Bokatyi, I. O.; Titov, A. B.

    2017-05-01

    The paper discusses the problems of development of the SiPM-based gamma-detectors. The main focus is on the most effective coupling between the scintillation crystal and the SiPM. We have used a simple optical model to study the different schemes of the coupling and analyze these variants from the point of view of efficiency and uniformity of the signal on the SiPM areas. We present the process and the results of the modeling.

  17. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  18. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  19. A broadband superconducting detector suitable for use in large arrays.

    PubMed

    Day, Peter K; LeDuc, Henry G; Mazin, Benjamin A; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2003-10-23

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of DeltaE < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

  20. A Broadband Superconducting Detector Suitable for Use in Large Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; LeDuc, Henry G.; Mazin, Benjamin A.; Vayonakis, Anastasios; Zmuldzinas, Jonas

    2003-01-01

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of (Delta)E < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

  1. A Broadband Superconducting Detector Suitable for Use in Large Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; LeDuc, Henry G.; Mazin, Benjamin A.; Vayonakis, Anastasios; Zmuldzinas, Jonas

    2003-01-01

    Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of (Delta)E < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

  2. First Results from the Telescope Array RAdar (TARA) Detector

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2014-03-01

    The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.

  3. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  4. Application of pixel array detectors at x-ray synchrotrons.

    SciTech Connect

    Miceli, N.; X-Ray Science Division

    2009-03-01

    Pixel array detectors have only recently been seriously used at x-ray synchrotrons. We describe the application of a digital pixel array detector (Pilatus100k) to a variety of synchrotron experiments at the Advanced Photon Source at Argonne National Laboratory. The Pilatus100k was developed at the Paul Scherrer Institut (PSI). It has been commercialized by a PSI spinoff (Dectrics Ltd.) This is the first commercially available pixel array detector for x-ray synchrotron applications. The APS synchrotron provides tunable x-ray pulses with duration of {approx}80 ps and a repetition period of 153 ns (24-bunch mode). The Pilatus100k is a direct detection x-ray detector where each 172 micron pixel counts individual x-ray pulses above a lower threshold. It consists of {approx}100k pixels each of which is capable of single-photon counting (>3 keV) at count rates up to {approx}1 MHz. In addition, the Pilatus100k is an electronically gateable detector. We present data showing that the Pilatus100k is capable of isolating a single x-ray bunch at the APS in 24 bunch mode. We will also present a variety of different experiments exploiting the unique capabilities of the Pilatus100k.

  5. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  6. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  7. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  8. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  9. Applications of pyroelectric materials in array-based detectors.

    PubMed

    Holden, Anthony J

    2011-09-01

    The development of low-cost, uncooled (room temperature operation) thermal detector arrays has been accelerating in recent years and now commercial products are becoming widely available. As costs come down and volumes rise, these devices are entering the consumer marketplace, providing everything from sophisticated security and people-monitoring devices to hand-held thermal imagers for preventative maintenance and building inspection. Two technologies have established significant market shares in uncooled thermal detector array products. These are resistive microbolometers and pyroelectric ceramics. To address the true mass market, the pyroelectric arrays offer significant cost advantage. In this paper, recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability are compared and contrasted with competing technologies. This includes the use of low-element-count arrays for applications in people counting and queue measurement, and the drive for cost-effective imaging arrays for mass-market thermal imaging. The technical challenges in materials production, device development, and low-cost manufacture are reviewed and future opportunities and challenges are outlined.

  10. Compact Two-Dimensional Array of Stressed GE:GA Detectors

    NASA Astrophysics Data System (ADS)

    Doi, Y.; Makiuti, S.; Okuda, H.; Nakagawa, T.; Shibai, H.; Kawada, M.; Hiromoto, N.; Fujiwara, M.; Okumura, K.

    2000-08-01

    We have developed a 4 × 8 array of stressed Ge:Ga detectors. This array detector has a high density format of entrance pupils so that we can minimize the size of the camera optics. The cutoff wavelength of the detector is about 170 μm, and the detector's NEP is better than 10^16 W Hz^-1/2. We are going apply this array detector to balloon-borne astronomical observations. Furthermore, we are developing this detector into a 5 × 15 array detector that will be placed onboard the IRIS satellite to be launched in 2003.

  11. Order-sorting filter transmittance measured with an array detector

    NASA Technical Reports Server (NTRS)

    Heaney, James B.; Bradley, Scott E.; Bly, Vincent T.; Ewin, Audrey J.; La, Anh T.

    1993-01-01

    The simultaneous measurement of the spectrally and spatially variant transmittance of a linear variable order-sorting filter in a manner that closely resembles its conditions of actual use is described. The transmittance of a prototype order-sorting filter was measured in the 400- to 880-nm wavelength region by illuminating it with the output beam of a spectrophotometer while the filter was attached to the front of a 30 x 32 pixel silicon array detector. The filter was designed to be used in the output beam of a grating spectrometer to prevent the dispersal of higher diffracted orders onto an array detector. Areas of the filter that were spatially matched to the corresponding detector pixel column had measured peak transmittances of about 90 percent that were uniform to within +/- 1.5 percent along a given column. Transmittances for incident wavelengths shorter than the desired bandpass, corresponding to the order overlap region, were measured in the 0.003 range. Line spread function measurements made with the array detector indicated no significant beam spreading caused by inserting the filter into the beam.

  12. The photoemissive cell of a vacuum ultraviolet radiation detector array

    NASA Astrophysics Data System (ADS)

    Il'ichev, E. A.; Kuleshov, A. E.; Nabiev, R. M.; Petrukhin, G. N.; Rychkov, G. S.; Teverovskaya, E. G.

    2017-04-01

    A photoemissive "solar-blind" cell of a vacuum ultraviolet detector array for the 50-225 nm wavelength range is described. The cell is a cavity in the shape of frustum of a pyramid in a silicon wafer, the walls of which are coated by polycrystalline diamond film acting the part of a photosensitive cathode. The design of the cell allows one to manage the work of the detector in the "pass through" mode; i.e., photons fall to one side of the wafer, and photoelectrons release from its opposite side. Estimation of photosensitivity of the cell gives a value of about ten photons.

  13. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  14. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  15. A new detector array for charged particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Cowin, R. L.; Watson, D. L.; Chappell, S. P. G.; Clarke, N. M.; Freer, M.; Fulton, B. R.; Cunningham, R. A.; Curtis, N.; Dillon, G. K.; Lilley, J.; Jones, C. D.; Lee, P.; Rae, W. D. M.

    1999-02-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30° in the laboratory with the target placed at 535mm from the front of the telescopes or 6-52° with the target placed at 215mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85MeV 12C ions the telescope energy resolution (gas plus silicon) is 345keV with an angular resolution of 0.03°. Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI combination. The strip detector energy resolution is 200keV, with an angular resolution of 0.1°.

  16. Optical butting of linear infrared detector array for pushbroom imager

    NASA Astrophysics Data System (ADS)

    Qiu, Minpu; Ma, Wenpo

    2017-02-01

    High resolution and large FOV represents the developing trends of space optical imaging systems, Considering the characters of infrared optical systems, A low cost and low technical risk method of optical butting concept which offer the promise of butting smaller arrays into long linear detector assemblies is presented in this paper, the design method of optical butting is described, and a hypothetical system is demonstrated as well.

  17. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  18. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  19. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  20. The Telescope Array Middle Drum fluorescence detector simulation on GPUs

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, Tareq; Telescope-Array Collaboration

    2014-06-01

    In recent years, the Graphics Processing Unit (GPU) has been recognized and widely used as an accelerator for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of fluorescence detector response to air showers presents many opportunities for parallelization. In this paper we report on a Monte Carlo program used for the simulation of the Telescope Array Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed description of the code implementation is given, and results on the accuracy and performance of the simulation are presented as well. Improvements in computational throughput in excess of 50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

  1. The detector calibration system for the CUORE cryogenic bolometer array

    NASA Astrophysics Data System (ADS)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  2. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placementmore » of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  3. The detector calibration system for the CUORE cryogenic bolometer array

    SciTech Connect

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  4. MICRO PIN ARRAY DETECTOR (MIPA): FIRST TEST RESULTS.

    SciTech Connect

    REHAK,P.; SMITH,G.C.; WARREN,J.B.; YU,B.

    1999-06-28

    A novel gas proportional detector, consisting of an array of pins immersed into a cathode made out of closely packed hexagonals has been developed. The resulting geometry of the detector is 3 dimensional. Electron multiplication is limited to a region in close proximity to the tip of each pin, where the electric field decreases with distance from the pin at a rate faster than 1/r, the rate that exists in a traditional wire chamber. The multiplication region is limited to a small part of the detector volume leading to stability of operation up to high charge gas gains. The amplification region is located far enough from any dielectric surface that the gas gain is insensitive to the charge state of the surface, a significant benefit compared with many other micro-pattern detectors. The microscopic dimensions of the individual pins of the array result in signals whose total duration is about a microsecond. Two identical, but opposite polarity signals are detected, one on the pin and one on the cathode. Both signals can be used by two independent, charge division, read-out systems to obtain unambiguous x-y position information of the primary ionization.

  5. MICRO PIN ARRAY DETECTOR (MIPA): FIRST TEST RESULTS.

    SciTech Connect

    REHAK,P.; SMITH,G.C.; WARREN,J.B.; YU,B.

    1999-06-28

    A novel gas proportional detector, consisting of an array of pins immersed into a cathode made out of closely packed hexagonals has been developed. The resulting geometry of the detector is 3 dimensional. Electron multiplication is limited to a region in close proximity to the tip of each pin, where the electric field decreases with distance from the pin at a rate faster than l/r, the rate that exists in a traditional wire chamber. The multiplication region is limited to a small part of the detector volume leading to stability of operation up to high charge gas gains. The amplification region is located far enough from any dielectric surface that the gas gain is insensitive to the charge state of the surface, a significant benefit compared with many other micro-pattern detectors. The microscopic dimensions of the individual pins of the array result in signals whose total duration is about a microsecond. Two identical, but opposite polarity signals are detected, one on the pin and one on the cathode. Both signals can be used by two independent, charge division, read-out systems to obtain unambiguous x-y position information of the primary ionization.

  6. Distributed Antenna-Coupled TES for FIR Detectors Arrays

    NASA Technical Reports Server (NTRS)

    Day, Peter K.; Leduc, Henry G.; Dowell, C. Darren; Lee, Richard A.; Zmuidzinas, Jonas

    2007-01-01

    We describe a new architecture for a superconducting detector for the submillimeter and far-infrared. This detector uses a distributed hot-electron transition edge sensor (TES) to collect the power from a focal-plane-filling slot antenna array. The sensors lay directly across the slots of the antenna and match the antenna impedance of about 30 ohms. Each pixel contains many sensors that are wired in parallel as a single distributed TES, which results in a low impedance that readily matches to a multiplexed SQUID readout These detectors are inherently polarization sensitive, with very low cross-polarization response, but can also be configured to sum both polarizations. The dual-polarization design can have a bandwidth of 50The use of electron-phonon decoupling eliminates the need for micro-machining, making the focal plane much easier to fabricate than with absorber-coupled, mechanically isolated pixels. We discuss applications of these detectors and a hybridization scheme compatible with arrays of tens of thousands of pixels.

  7. Digital readouts for large microwave low-temperature detector arrays

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Day, Peter K.; Irwin, Kent D.; Reintsema, Carl D.; Zmuidzinas, Jonas

    2006-04-01

    Over the last several years many different types of low-temperature detectors (LTDs) have been developed that use a microwave resonant circuit as part of their readout. These devices include microwave kinetic inductance detectors (MKID), microwave SQUID readouts for transition edge sensors (TES), and NIS bolometers. Current readout techniques for these devices use analog frequency synthesizers and IQ mixers. While these components are available as microwave integrated circuits, one set is required for each resonator. We are exploring a new readout technique for this class of detectors based on a commercial-off-the-shelf technology called software defined radio (SDR). In this method a fast digital to analog (D/A) converter creates as many tones as desired in the available bandwidth. Our prototype system employs a 100 MS/s 16-bit D/A to generate an arbitrary number of tones in 50 MHz of bandwidth. This signal is then mixed up to the desired detector resonant frequency (˜10 GHz), sent through the detector, then mixed back down to baseband. The baseband signal is then digitized with a series of fast analog to digital converters (80 MS/s, 14-bit). Next, a numerical mixer in a dedicated integrated circuit or FPGA mixes the resonant frequency of a specified detector to 0 Hz, and sends the complex detector output over a computer bus for processing and storage. In this paper we will report on our results in using a prototype system to readout a MKID array, including system noise performance, X-ray pulse response, and cross-talk measurements. We will also discuss how this technique can be scaled to read out many thousands of detectors.

  8. Development and Production of Array Barrier Detectors at SCD

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.

    2017-09-01

    XB n or XB p barrier detectors exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave infrared (MWIR) detector with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated detector-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave infrared applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) detector has a ˜9.3- μm cut-off wavelength. The detector contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) detectors using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.

  9. Muon–hadron detector of the carpet-2 array

    SciTech Connect

    Dzhappuev, D. D.; Kudzhaev, A. U. Klimenko, N. F.

    2016-05-15

    The 1-GeV muon–hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01) code package and performed for primary protons and iron nuclei.

  10. Muon-hadron detector of the carpet-2 array

    NASA Astrophysics Data System (ADS)

    Dzhappuev, D. D.; Kudzhaev, A. U.; Klimenko, N. F.

    2016-05-01

    The 1-GeV muon-hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01) code package and performed for primary protons and iron nuclei.

  11. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  12. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  13. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  14. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  15. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  16. Design of micro-sensor-array detector for toxic gas

    NASA Astrophysics Data System (ADS)

    Liao, Hai-yang; Tian, Peng

    2010-08-01

    To quickly measure the trace concentration of the single component toxic gas (e.g. sarin), a micro-array toxic gas detector is designed. A 3 x 3 gas sensor array with metalloporphyrins as sensitive materials is introduced. A micro-capsule that can be easy to be loaded and unloaded is designed for the gas reaction. A fiber-array optical path is designed, which is based on the principle that gas sensors will show different colors after reaction with the toxic gas. The tricolor information about the concentration of gas is collected by the color liner CCD. A control handling system with C8051F021 MCU as the core is implemented and embedded into the detector to perform the functions of gas sampling, data collection and analysis calculation. Data acquisition experimental results show that the proposed scheme can effectively collect the color information after gas reaction. Moreover, the system has many important advantages, such as small size, compact structure, high degree of automation, fast detection speed and high performance-cost ratio, etc.

  17. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature

  18. Intra-pixel response of infrared detector arrays for JWST

    NASA Astrophysics Data System (ADS)

    Hardy, Tim; Baril, M. R.; Pazder, J.; Stilburn, J. S.

    2008-07-01

    The near-infrared instruments on the James Webb Space Telescope will use 5 micron cutoff HAWAII-2RG detector arrays. We have investigated the response of this type of detector at sub-pixel resolution to determine whether variations at this scale would affect the performance of the instruments. Using a simple experimental setup we were able to get measurements with a resolution of approximately 4 microns. We have measured an un-hybridized HAWAII-1RG multiplexer, a hybridized HAWAII-1RG device with a 5 micron cutoff HgCdTe detector layer, and a hybridized HAWAII-2RG device with a 5 micron cutoff substrate-removed HgCdTe detector layer. We found that the intra-pixel response functions of the hybrid devices are basically smooth and well behaved, and vary little from pixel to pixel. However, we did find numerous sub-pixel sized defects, notably some long straight thin features like scratches. We were not able to detect any significant variations with wavelength between 0.65 and 2.2 microns, but in the -1RG device there was a variation with temperature. When cooled from 80K to 40K, the pixel response became narrower, and some signal began to be lost at the edges of the pixel. We believe this reflects a reduction in charge diffusion at the lower temperature.

  19. Curved-channel microchannel array plates. [photoelectric detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The microchannel array plate (MCP) is a photoelectric detector with an imaging capability comparable to that of a photographic plate. Recently MCPs in which the channels are curved to inhibit ion feedback have become available. These devices represent a major advance in MCP technology, since a single curved-channel MCP can be operated stably at high gain in the pulse-counting mode without any of the problems of stability of response or short lifetime reported for 'chevron' MCP detectors. Attention is given to the mode of operation of channel electron multipliers (CEM) and MCP, curved-channel MCP, test procedures, and performance characteristics. The accumulated test data show that the fundamental operating characteristics of the curved-channel MCP are directly related to those for the CEM.

  20. Performance simulations of the medusa neutron detector array (abstract)

    SciTech Connect

    Kremens, R.L.; Russotto, M.A.; Tudman, S. )

    1995-01-01

    A 960-channel neutron detector array is under construction to measure various neutron reaction products from direct-drive laser-driven inertially confined fusion experiments. Analytical and Monte-Carlo model simulations have been completed which demonstrate the usefulness of this diagnostic for broad classes of fusion experiments. The modeling accounts for neutron production rate and spectra from the target and detector and acquisition electronics response. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and the University of Rochester. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  1. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  2. An MLC calibration method using a detector array

    SciTech Connect

    Simon, Thomas A.; Kahler, Darren; Simon, William E.; Fox, Christopher; Li, Jonathan; Palta, Jatinder; Liu, Chihray

    2009-10-15

    Purpose: The authors have developed a quantitative calibration method for a multileaf collimator (MLC) which measures individual leaf positions relative to the MLC backup jaw on an Elekta Synergy linear accelerator. Methods: The method utilizes a commercially available two-axis detector array (Profiler 2; Sun Nuclear Corporation, Melbourne, FL). To calibrate the MLC bank, its backup jaw is positioned at the central axis and the opposing jaw is retracted to create a half-beam configuration. The position of the backup jaws field edge is then measured with the array to obtain what is termed the radiation defined reference line. The positions of the individual leaf ends relative to this reference line are then inferred by the detector response in the leaf end penumbra. Iteratively adjusting and remeasuring the leaf end positions to within specifications completes the calibration. Using the backup jaw as a reference for the leaf end positions is based on three assumptions: (1) The leading edge of an MLC leaf bank is parallel to its backup jaw's leading edge, (2) the backup jaw position is reproducible, and (3) the measured radiation field edge created by each leaf end is representative of that leaf's position. Data from an electronic portal imaging device (EPID) were used in a similar analysis to check the results obtained with the array. Results: The relative leaf end positions measured with the array differed from those measured with the EPID by an average of 0.11 {+-}0.09 mm per leaf. The maximum leaf positional change measured with the Profiler 2 over a 3 month period was 0.51 mm. A leaf positional accuracy of {+-}0.4 mm is easily attainable through the iterative calibration process. The method requires an average of 40 min to measure both leaf banks. Conclusions: This work demonstrates that the Profiler 2 is an effective tool for efficient and quantitative MLC quality assurance and calibration.

  3. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  4. Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays

    PubMed Central

    Ayers, Sunitha; Gillis, Kevin D.; Lindau, Manfred; Minch, Bradley A.

    2010-01-01

    High-throughput electrode arrays are required for advancing devices for testing the effect of drugs on cellular function. In this paper, we present design criteria for a potentiostat circuit that is capable of measuring transient amperometric oxidation currents at the surface of an electrode with submillisecond time resolution and picoampere current resolution. The potentiostat is a regulated cascode stage in which a high-gain amplifier maintains the electrode voltage through a negative feedback loop. The potentiostat uses a new shared amplifier structure in which all of the amplifiers in a given row of detectors share a common half circuit permitting us to use fewer transistors per detector. We also present measurements from a test chip that was fabricated in a 0.5-μm, 5-V CMOS process through MOSIS. Each detector occupied a layout area of 35μm × 15μm and contained eight transistors and a 50-fF integrating capacitor. The rms current noise at 2kHz bandwidth is ≈ 110fA. The maximum charge storage capacity at 2kHz is 1.26 × 106 electrons. PMID:20514150

  5. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  6. The Status of GLAST CsI Calorimeter

    SciTech Connect

    Chekhtman, A.

    2003-09-18

    GLAST is a gamma-ray observatory for celestial sources in the energy range from 20 MeV to 300 GeV. This is NASA project with launch anticipated in 2006. The principal instrument of the GLAST mission is the Large Area Telescope (LAT), consisting of an Anti Coincidence Detector (ACD), a silicon-strip detector Tracker (TKR) and a hodoscopic CsI Calorimeter (CAL). It consists of 16 identical modules arranged in a 4 x 4 array. Each module has horizontal dimensions 38 x 38 cm{sup 2} and active thickness 8.5 radiation length. It contains 96 CsI (Tl) crystals arranged in 8 layers with 12 crystals per layer. The scintillation light is measured by PIN photodiodes mounted on both ends of each crystal. The sum of signals at the two ends of the crystal provides the energy measurement. The difference in these signals provides the position measurement along the crystal. The calorimeter was designed to meet the goals of good energy resolution (better than 10% for photon energies 100 MeV-100 GeV), position resolution of {approx} 1 mm for photon energies > 1 GeV, and a rejection factor of > 100 for charged cosmic rays, under limitations on calorimeter weight (95 kg per module) and power consumption (6 W per module). The Monte Carlo simulation and prototype beam test results confirm that proposed design meets the requirements. Calorimeter production is planned to start in 2003.

  7. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  8. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  9. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  10. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  11. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  12. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  13. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  14. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  15. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  16. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  17. Matrix-addressed x-ray detector arrays

    NASA Astrophysics Data System (ADS)

    Street, Robert A.; Apte, Raj B.; Boyce, James B.; Ho, Jackson; Lau, Rachel; Lemmi, Francesco; Lu, Jeng-Ping; Mulato, Marcelo; Ready, Steve E.; Van Schuylenbergh, Koenraad

    2000-11-01

    Amorphous silicon (a-Si:H) technology has created a successful manufacturing business for large area active matrix arrays, of which liquid crystal displays (AMLCD) are the best known, and image sensors are an emerging technology for medical x-ray imaging. The large area, flat plate, format is the key feature of the technology that sets it apart from other digital imaging approaches. The principal requirements for medical imaging are sensitivity and high dynamic range. A-Si:H detectors have already proved to perform at least as well as x-ray film for radiographic applications and comparable to image intensifiers for fluoroscopy. There are several approaches to improving the performance of the image sensors is order to achieve higher sensitivity and higher spatial resolution. This paper describes some of these approaches.

  18. Thermal crosstalk simulation and measurement of linear terahertz detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Huang, Zehua; Wang, Jun; Li, Mingyu; Gou, Jun; Jiang, Yadong

    2015-11-01

    Thermal simulation of differently structured linear terahertz detector arrays (TDAs) based on lithium tantalate was performed by finite element analysis (FEA). Simulation results revealed that a relatively simple TDA structure can have good thermal insulation, i.e., low thermal crosstalk effect (TCE), between adjacent pixels, which was thus selected for the real fabrication of TDA sample. Current responsivity (Ri) of the sample for a 2.52 THz source was measured to be 6.66 × 10-6 A/W and non-uniformity (NU) of Ri was 4.1%, showing good performance of the sample. TCE test result demonstrated that small TCE existed in the sample, which was in good agreement with the simulation results.

  19. Electrical breakdown gas detector featuring carbon nanotube array electrodes.

    PubMed

    Kim, Seongyul; Pal, Sunil; Ajayan, Pulickel M; Borca-Tasciuc, Theodorian; Koratkar, Nikhil

    2008-01-01

    We demonstrate here detection of dichloro-difluoro-methane and oxygen in mixtures with helium using a carbon nanotube electrical breakdown sensor device. The sensor is comprised of an aligned array of multiwalled carbon nanotubes deposited on a nickel based super-alloy (Inconel 600) as the anode; the counter electrode is a planar nickel sheet. By monitoring the electrical breakdown characteristics of oxygen and dichloro-difluoro-methane in a background of helium, we find that the detection limit for dichloro-difluoro-methane is approximately 0.1% and the corresponding limit for oxygen is approximately 1%. A phenomenologigal model is proposed to describe the trends observed in detection of the two mixtures. These results indicate that carbon nanotube based electrical breakdown sensors show potential as end detectors in gas-chromatography devices.

  20. Modulation transfer function of antenna-coupled infrared detector arrays.

    PubMed

    Boreman, G D; Dogariu, A; Christodoulou, C; Kotter, D

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.

  1. LAMBDA — Large Area Medipix3-Based Detector Array

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.

    2012-11-01

    Medipix3 is a photon-counting readout chip for X-ray detection. It has a small pixel size (55 μm) and a high frame rate with zero dead time, which makes it attractive for experiments at synchrotrons. Using Medipix3, DESY are developing the LAMBDA (Large Area Medipix3-Based Detector Array) system. A single LAMBDA module carries either a single large silicon sensor of 1536 by 512 pixels, or two smaller high-Z sensors. The sensor is bonded to 12 Medipix3 chips, and mounted on a ceramic carrier board. The readout system for the module then provides a fast FPGA, a large RAM and four 10 Gigabit Ethernet links to allow operation at high frame rates. Multiple modules may then be tiled together a larger area. Currently, the first large silicon modules have been constructed and tested at low speed, and the firmware for fast readout is being developed.

  2. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  3. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  4. Energy spectrum measured by the telescope array surface detector

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitri

    2012-05-01

    Two conflicting measurements of the ultra high energy cosmic ray (UHECR) flux have been reported by the Akeno Giant Air Shower Array (AGASA) and the High Resolution Fly's Eye (HiRes) experiments. HiRes observes a ˜5sigma suppression at E = 1019.75 eV, which is in agreement with the prediction of Greisen-Zatsepin-Kuz'min (GZK) theory. AGASA, in contrast, sees the flux extended well beyond E = 1020 eV with no visible break, suggesting that the flux is limited only by the rate at which the sources can produce the UHECR and not by interaction of energetic particles with the cosmic microwave background, thus challenging the relativistic invariance principle. In response to this discrepancy, a new experiment named the Telescope Array (TA) has been deployed, which combines the detection elements used separately by HiRes and AGASA. We describe the TA surface detector (SD) analysis using a technique new to the field, which consists of a detailed Monte-Carlo (MC) simulation of the SD response to the natural cosmic rays, validating the MC by comparing its distributions with the data, and calculation of the SD aperture from the MC. We will also describe our reconstruction procedure, based solely upon the data, and its application to both data and the MC. Finally, we will describe the energy spectrum resulting from this analysis, which is found to be in excellent agreement with the HiRes result, and as such, is the first confirmation of the GZK effect by a ground array of scintillation counters.

  5. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  6. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    NASA Astrophysics Data System (ADS)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  7. Progress of Multicolor Single Detector to Detector Array Development for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Bhat, Ishwara; Xiao, Ye-Gao; Bandra, Sumith; Gunapala, Sarath D.

    2004-01-01

    Knowledge of the spatial and temporal distribution of atmospheric species such as CO2, O3, H2O, and CH4 is important for understanding the chemistry and physical cycles involving Earth s atmosphere. Although several remote sensing techniques are suitable for such measurements they are considered high cost techniques involving complicated instrumentation. Therefore, simultaneous measurement of atmospheric species using a single remote sensing instrument is significant for minimizing cost, size and complexity. While maintaining the instrument sensitivity and range, quality of multicolor detector, in terms of high quantum efficiency and low noise are vital for these missions. As the first step for developing multicolor focal plan array, the structure of a single element multicolor detector is presented in this paper. The detector consists of three p-n junction layers of Si, GaSb and InAs wafer bonded to cover the spectral range UV to 900 nm, 800 nm to 1.7 m, and 1.5 m to 3.4 m, respectively. Modeling of the absorption coefficient for each material was carried out for optimizing the layers thicknesses for maximum absorption. The resulted quantum efficiency of each layer has been determined except InAs layer. The optical and electrical characterization of each layer structure is reported including dark current and spectral response measurements of Si pin structure and of GaSb and InAs p-n junctions. The effect of the material processing is discussed.

  8. Stressed and unstressed Ge:Ga detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1992-01-01

    The construction and operation of 2D arrays of both unstressed and stressed Ge:Ga photoconductive detectors for far-IR astronomy from the Kuiper Airborne Observatory is presented. The 25 element (5 x 5) arrays are designed for a new cryogenically cooled spectrometer. The 2D spatial array described has the advantage of absolute registry between pixels in a map.

  9. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a

  10. 13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Cabrera, Mario S.; Dorn, Meghan L.; Pipher, Judith L.; Forrest, William J.

    2016-07-01

    With the recent success of our development of 10 micron HgCdTe infrared (IR) detector arrays,1,2 we have used what we learned and extended the cutoff wavelength to 13 microns. These 13 micron HgCdTe detector arrays can operate at higher temperatures than Si:As, e.g. in a properly designed spacecraft with passive cooling, the 13 micron IR array will work well at temperatures around 30K. We present the initial measurements of dark current, noise and quantum efficiency for the first deliveries of 13 micron HgCdTe detector arrays from Teledyne Imaging Sensors. We also discuss our plans to develop 15 micron cutoff HgCdTe detector arrays which would facilitate the detection of the broad CO2 absorption feature in the atmospheres of exoplanets, particularly those in the habitable zone of their host star.

  11. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  12. Synthesis arrangement and parity correction of linear array infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Hong, Pu; Wang, Bo; Wang, Chensheng

    2010-11-01

    According to the configuration and technical specification of the detector, which has multiple channels, channels mixing, high speed outputs and separate columns between odd and even, a real time digital processing unit based on the CPLD, FPGA and DSP has been developed to achieve the data synthesis and arrangement function and the parity correction algorithm. A special interface circuit with 4 CPLDs is designed to complete the first synthesis step where the 16 channels of data are combined into 4 channels. The second step is finished in FPGA and ROM address encoder where the 4 channels of data are combined into 1 channel. For output data synchronization, FIFO is adopted to achieve the delay of even channels in the parity correction. Data of odd channels enters the columns synthesis unit without any processing and even channels shall be processed in the columns synthesis unit after entering the FIFO unit first and experiencing the delay process. Thereby the pre-processing before image processing of the linear array thermal imager is accomplished.

  13. Bi-material resonant infrared thermal detector and array

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2014-10-01

    A resonant infrared thermal sensor with high sensitivity, whose sensing element is a bi-material structure with thermal expansion mismatch effect, is presented in this paper. The sensor detects infrared radiation by means of tracking the change in resonance frequency of the bi-material structure with temperature change attributed to the infrared radiation from targets. The bi-material structure can amplify the change in resonance frequency compared to a single material sensing structure. In accordance with the theory of vibration mechanics and design principle of infrared thermal detector, the bi-material resonant sensor by means of which an array can be achieved is designed. The simulation results, by ANSYS software analysis based on multi-layer shell finite element, demonstrate that the dependence of resonance frequency on temperature of the designed sensing structure achieves 1Hz/0.01°C. A microarray with 6×6 resonant infrared sensors is fabricated based on microelectronics processes being compatible with integrated circuit fabrication technology. The frequency variation corresponding to the temperature shift can be obtained by electrical measurement.

  14. The CSI Schools Project

    ERIC Educational Resources Information Center

    Dorling, Mark; Johnstone, Emm

    2012-01-01

    The popularity of forensic science in schools continues to grow alongside the proportion of prime time scheduling devoted to CSI television shows. Yet the understanding of how forensic tests are used in narrowing down a field of possible suspects to the point where just one can be arrested or taken to trial is far less well understood. Students…

  15. The CSI Schools Project

    ERIC Educational Resources Information Center

    Dorling, Mark; Johnstone, Emm

    2012-01-01

    The popularity of forensic science in schools continues to grow alongside the proportion of prime time scheduling devoted to CSI television shows. Yet the understanding of how forensic tests are used in narrowing down a field of possible suspects to the point where just one can be arrested or taken to trial is far less well understood. Students…

  16. Infrared detectors and focal plane arrays; Proceedings of the Meeting, Orlando, FL, Apr. 18, 19, 1990

    NASA Astrophysics Data System (ADS)

    Dereniak, Eustace L.; Sampson, Robert E.

    1990-09-01

    The papers contained in this volume provide an overview of recent advances and the current state of developments in the field of infrared detectors and focal plane arrays. Topics discussed include nickel silicide Schottky-barrier detectors for short-wavelength infrared applications; high performance PtSi linear and focal plane arrays; and multispectral band Schottky-barrier IRSSD for remote-sensing applications. Papers are also presented on the performance of an Insi hybrid focal array; characterization of IR focal plane test stations; GaAs CCD readout for engineered bandgap detectors; and fire detection system for aircraft cargo bays.

  17. The Design and Performance of the 384: Element Submillimeter Detector Array for SHARC II

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.; Allen, Christine; Benford, Dominic; Silverberg, Robert; Staguhn, Johannes; Dowell, Darren; Phillips, Tom

    2003-01-01

    We report on the performance of the SHARC II detector, a 12 x 32 array of ion implanted Si pop-up bolometers. This 384 element detector array was built as a prototype for the High Angular Resolution Widefield Camera (HAWC) for the Stratospheric Observatory for Infrared Astronomy (SOFIA). We will discuss the design process, the characterization of the detectors, and the performance of the array in the SHARC II instrument. SHARC II is now a facility instrument on the Caltech Submillimeter Observatory, providing background-limited imaging at 350 and 450 microns.

  18. Method of fabricating a PbS-PbSe IR detector array

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1987-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chiping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  19. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  20. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  1. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  2. Assembly and integration process of the first high density detector array for the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Ward, Jonathan; Schmitt, Benjamin L.; Henderson, Shawn; Koopman, Brian J.; Gallardo, Patricio A.; Vavagiakis, Eve M.; Niemack, Michael D.; McMahon, Jeff; Duff, Shannon M.; Schillaci, Alessandro; Hubmayr, Johannes; Hilton, Gene C.; Beall, James A.; Wollack, Edward J.

    2016-07-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroic Transition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  3. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.; Grunthaner, Frank J.

    1993-08-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  4. Underground Prototype Water Cherenkov Muon Detector with the Tibet Air Shower Array

    SciTech Connect

    Amenomori, M.; Nanjo, H.; Bi, X. J.; Ding, L. K.; Feng, Zhaoyang; He, H. H.; Hu, H. B.; Lu, H.; Lu, S. L.; Ren, J. R.; Tan, Y. H.; Wang, B.; Wang, H.; Wang, Y.; Wu, H. R.; Zhang, H. M.; Zhang, J. L.; Zhang, Y.; Chen, D.; Kawata, K.

    2008-12-24

    We are planning to build a 10,000 m{sup 2} water-Cherenkov-type muon detector (MD) array under the Tibet air shower (AS) array. The Tibet AS+MD array will have the sensitivity to detect gamma rays in the 100 TeV region by an order of the magnitude better than any other previous existing detectors in the world. In the late fall of 2007, a prototype water Cherenkov muon detector of approximately 100 m{sup 2} was constructed under the existing Tibet AS array. The preliminary data analysis is in good agreement with our MC simulation. We are now ready for further expanding the underground water Cherenkov muon detector.

  5. Characteristics of stereo images from detectors in focal plane array.

    PubMed

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  6. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector

    PubMed Central

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2016-01-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging. PMID:27041789

  7. Arrays of SiO(2) Substrate-Free Micromechanical Uncooled THz and Infrared Detectors

    SciTech Connect

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan; Datskos, Panos G

    2008-01-01

    We describe the design, fabrication, and characterization of arrays of uncooled infrared and terahertz micromechanical detectors that utilize SiO2 as a main structural material. Materials with highly dissimilar coefficients of thermal expansion, namely, Al and SiO2, were used to form folded bimaterial regions. This approach improved the detector sensitivity by 12 times compared to SiNx-based detectors of similar shape and size. Two types of structural SiO2 layers were investigated: thermally grown and plasma-enhanced chemical-vapor-deposited SiO2. Fabrication of the detector arrays relied on a straightforward process flow that involved three photolithography steps and no wet etching. The noise equivalent temperature difference intrinsic to the detectors fabricated during this work can reach 3.8 mK when excluding any contribution from the optical readout used to interrogate the arrays.

  8. Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors

    NASA Astrophysics Data System (ADS)

    Grbovic, D.; Lavrik, N. V.; Rajic, S.; Datskos, P. G.

    2008-09-01

    We describe the design, fabrication, and characterization of arrays of uncooled infrared and terahertz micromechanical detectors that utilize SiO2 as a main structural material. Materials with highly dissimilar coefficients of thermal expansion, namely, Al and SiO2, were used to form folded bimaterial regions. This approach improved the detector sensitivity by 12 times compared to SiNx-based detectors of similar shape and size. Two types of structural SiO2 layers were investigated: thermally grown and plasma-enhanced chemical-vapor-deposited SiO2. Fabrication of the detector arrays relied on a straightforward process flow that involved three photolithography steps and no wet etching. The noise equivalent temperature difference intrinsic to the detectors fabricated during this work can reach 3.8 mK when excluding any contribution from the optical readout used to interrogate the arrays.

  9. Design data brochure for CSI series V solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Generalized information on system configuration, system sizing, and mechanical layout is presented to assist the architect or designer in preparing construction drawings and specifications for the installation of the CSI integrated solar heating systems. Efficiency in space utilization of a full length collector and the importance of proper sizing of the collector array are among the topics discussed. Details of storage and transport subsystems are provided along with drawings and specifications of all components of the CSI system.

  10. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  11. Brief Introduction to the γ-DETECTOR Array at Institute of Modern Physics in Lanzhou

    NASA Astrophysics Data System (ADS)

    Hua, W.; Zhang, N. T.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Zhou, X. H.; Zhang, Y. H.; Lei, X. G.; Guo, Y. X.

    2013-11-01

    A new γ-detector array at Institute of modern physics in Lanzhou is now in construction. The spherical frame is designed using Solidworks, and is assembled by 4 kinds of irregular polygons. 32 detectors could be placed on this frame in maximum, which are arranged with 4-4-4-8-4-4-4 configuration.

  12. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  13. Vacuum photodiode detector array for broadband UV detection in a tokamak plasma.

    PubMed

    Zweben, S J; Menyuk, C R; Taylor, R J

    1979-08-01

    An array of vacuum photodiode detectors has been used to monitor discharge equilibrium, stability, and cleanliness in the Macrotor tokamak. These detectors use the photoelectric effect on small tungsten plates to measure UV emission in the band lambda approximately 200-1200 angstroms, and so are sensitive mainly to impurity line radiation in Macrotor. The response of this system to controlled impurity contamination experiments and to disruptions is described. The design, construction, and background problems associated with these detectors are discussed in detail.

  14. Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays

    NASA Technical Reports Server (NTRS)

    Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.

    1984-01-01

    Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.

  15. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  16. Detector arrays for high resolution spectroscopy from 5-28 microns (Contributed)

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.; Jennings, D. E.; Moseley, S. H.; Lamb, G.

    A linear Si:As BIB detector array (Rockwell International) is being implemented in a postdispersion detection system for ground based Fourier transform spectrometers. The array version can be used as a multichannel narrow band filter for extended spectral coverage or for imaging with a narrow bandpass. A Si:As solid state photomultiplier array (Rockwell) is evaluated for use in high resolution infrared spectrometers. Test results and applications are discussed.

  17. Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1983-01-01

    Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.

  18. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  19. A new air Cerenkov array detector for the observation of extended air showers.

    NASA Astrophysics Data System (ADS)

    Lorenz, E.

    A new detector concept for the observation of extended air showers (EAS) is presented. The detector consists of an array of wide angle open Cerenkov counters. The array will be sensitive up to 35° zenith angle and an energy above 20 TeV. The incident direction will be determined by fast timing with an angular resolution of better than 4 mrad. By combining the array with a scintillator matrix and muon counters the author expects to achieve a γ/hadron separation between 50-500. The main aim of this detector will be the search for cosmic γ sources and diffuse β production from the galactic mid plane. The detector will be installed on La Palma within the HEGRA experiment.

  20. Electronics for the Extensive Air Shower Detector Array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Pérez, E.; Conde, R.; Martínez, O.; Murrieta, T.; Salazar, H.; Villaseñor, L.

    2006-09-01

    In this paper we describe in detail the electronics cards that were designed to be the basis of the data acquisition system (DAS) of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this observatory is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m2 cross section and five smaller ones of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described here uses analog to digital converters of 10 bits working at a sampling speed of 40 MS/s and field-programmable gate array (FPGA).

  1. The array of scintillation detectors with natural boron for EAS neutrons investigations

    NASA Astrophysics Data System (ADS)

    Gromushkin, D. M.; Bogdanov, F. A.; Khokhlov, S. S.; Kokoulin, R. P.; Kompaniets, K. G.; Petrukhin, A. A.; Shulzhenko, I. A.; Stenkin, Yu. V.; Yashin, I. I.; Yurin, K. O.

    2017-07-01

    The new URAN array has been constructed in the National Research Nuclear University MEPhI (Moscow, Russia). It is aimed at studying of primary cosmic rays in the "knee" region of energy spectrum and detects neutrons produced in interactions of EAS particles with nuclei of atmosphere or matter. The array consists of 72 detectors based on the scintillator with natural boron. Scintillator represents a silicon plate with the granules of ZnS(Ag) and B2O3 mixture. The area of the detector is 0.36 sq. m. Detectors are located on two roofs of the MEPhI laboratory buildings and are combined into clusters of 12 detectors. The structure and the main elements of the URAN array are described.

  2. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3×1018eV, for all zenith angles between 0∘ and 60∘, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  3. Control Structures Interaction (CSI) Technology

    NASA Technical Reports Server (NTRS)

    Layman, W. E.

    1989-01-01

    Control Structures Interaction (CSI) technology for control of space structures is being developed cooperatively by JPL, LaRC and MSFC for NASA OAST/RM. The mid-'90s goal of JPL's CSI program is to demonstrate with analysis, ground and flight tests, the super quiet structures needed for large diffraction-limited instruments such as optical stellar interferometers and large advanced successors to the Hubble Space Telescope. Microprecision CSI technology is intended as a new "building block" for use by the designers of large optical systems. The thrust of the microprecision CSI technology effort is to achieve nanometer-levels of space structure stability/accuracy with designs which employ otherwise conventional spacecraft technologies. JPL design experiences have indicated the following CSI technology development areas are especially applicable to large optical system projects: (1) Active structural members; (2) Control/structures design methods; (3) Microdynamic effects characterization; and (4) Ground and flight test validation of CSI methods.

  4. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-05

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  5. Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples.

    PubMed

    Baccouche, S; Al-Azmi, D; Karunakara, N; Trabelsi, A

    2012-01-01

    Gamma-ray measurements in terrestrial/environmental samples require the use of high efficient detectors because of the low level of the radionuclide activity concentrations in the samples; thus scintillators are suitable for this purpose. Two scintillation detectors were studied in this work; CsI(Tl) and NaI(Tl) with identical size for measurement of terrestrial samples for performance study. This work describes a Monte Carlo method for making the full-energy efficiency calibration curves for both detectors using gamma-ray energies associated with the decay of naturally occurring radionuclides (137)Cs (661keV), (40)K (1460keV), (238)U ((214)Bi, 1764keV) and (232)Th ((208)Tl, 2614keV), which are found in terrestrial samples. The magnitude of the coincidence summing effect occurring for the 2614keV emission of (208)Tl is assessed by simulation. The method provides an efficient tool to make the full-energy efficiency calibration curve for scintillation detectors for any samples geometry and volume in order to determine accurate activity concentrations in terrestrial samples.

  6. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  7. Terahertz detectors arrays based on orderly aligned InN nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-08-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series.

  8. Imaging by time-tagging photons with the multi-anode microchannel array detector system

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Morgan, J. S.

    1986-01-01

    The capability and initial use of the Multi-Anode Microchannel Array (MAMA) detector in the time-tag mode is reported. The detector hardware currently in use consists of a visible-light detector tube with a semitransparent photocathode proximity-focused to a high-gain curved-channel microchannel plate MCP. The photoevents are detected by a (256 x 1024)-pixel coincidence-anode array with pixel dimensions of 25 x 25 microns connected to charge-sensitive amplifiers and event-detection circuitry. In the time-lag mode, the detector delivers the pixel address and the time of arrival for each detected photon to an accuracy of 10 microns. The maximum count rate is limited by the speed of data-acquisition hardware. The MAMA detector in the time-lag mode is currently being evaluated in programs of astrometry and speckle imaging.

  9. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  10. Some energy considerations in gamma ray burst location determinations by an anisotropic array of detectors

    NASA Technical Reports Server (NTRS)

    Young, J. H.

    1986-01-01

    The anisotropic array of detectors to be used in the Burst and Transient Experiment (BATSE) for locating gamma ray burst sources is examined with respect to its ability to locate those sources by means of the relative response of its eight detectors. It was shown that the energy-dependent attenuation effects of the aluminum window covering each detector has a significant effect on source location determinations. Location formulas were derived as a function of detector counts and gamma ray energies in the range 50 to 150 keV. Deviation formulas were derived and serve to indicate the location error that would be cuased by ignoring the influence of the passive absorber.

  11. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  12. Automated response matching for organic scintillation detector arrays

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.

    2017-07-01

    This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.

  13. Non-volatile resistive photo-switches for flexible image detector arrays

    NASA Astrophysics Data System (ADS)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J. W.

    2015-09-01

    The increasing quest to find lightweight, conformable or flexible image detectors for machine vision or medical imaging brings organic electronics into the spotlight for these fields of application. Here were we introduce a unique imaging device concept and its utilization in an organic, flexible detector array with simple passive matrix wiring. We present a flexible organic image detector array built up from non-volatile resistive multi-bit photo-switchable elements. This unique realization is based on an organic photodiode combined with an organic resistive memory device wired in a simple crossbar configuration. The presented concept exhibits significant advantages compared to present organic and inorganic detector array technologies, facilitating the detection and simultaneous storage of the image information in one detector pixel, yet also allowing for simple read-out of the information from a simple passive-matrix crossbar wiring. This concept is demonstrated for single photo-switchable pixels as well as for arrays with sizes up to 32 by 32 pixels (1024 bit). The presented results pave the way for a versatile flexible and easy-to-fabricate sensor array technology. In a final step, the concept was expanded to detection of x-rays.

  14. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  15. Waveguide biosensor with integrated detector array for tuberculosis testing

    NASA Astrophysics Data System (ADS)

    Yan, Rongjin; Lynn, N. Scott; Kingry, Luke C.; Yi, Zhangjing; Slayden, Richard A.; Dandy, David S.; Lear, Kevin L.

    2011-01-01

    A label-free immunoassay using a local evanescent array coupled (LEAC) biosensor is reported. Complementary metal oxide semiconductor chips with integrated photoconductor arrays are used to detect an antibody to a M. tuberculosis protein antigen, HspX. The metrology limits of the LEAC sensor using dc and ac measurement systems correspond to average film thicknesses of 28 and 14 pm, respectively. Limits of detection are 87 and 108 pm, respectively, for mouse immunoglobulin G antibody patterning and antigen detection.

  16. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  17. Semiconductor detectors and focal plane arrays for far-infrared imaging

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2013-12-01

    The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging systems in the next decades. This paper presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.

  18. Coherent summation of spatially distorted Doppler lidar signals using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin Pui; Killinger, Dennis K.

    1992-01-01

    We have investigated the improvement in the signal-to-noise ratio for a coherent Doppler lidar through the use of a multi-element heterodyne detector array. Such an array enables the spatial summation of atmospheric refractive turbulence induced speckles, and time varying target speckles. Our recent experiments have shown that the non-coherent summation of the lidar signals from a heterodyne detector array can enhance the heterodyne mixing efficiency and thus the signal-to-noise ratio. In this paper, we expand this work to include the coherent summation of array signals. The digitized heterodyne signals were stored in a personal computer. Fast Fourier transforms were performed on both the non-coherent and coherent summations of the detector array signals. It was found that the coherent summation greatly enhanced the accuracy in the Doppler frequency estimate. A theoretical analysis was performed and indicated good agreement with experimental results. We have also applied these results to the more general lidar applications including atmospheric wind sensing, and have found that in most lidar applications the Doppler frequency estimate is increased through the use of the heterodyne detector array.

  19. Radiation Effects on Stressed Ge:Ga Array Detector of Far-Infrared Surveyor on AKARI

    NASA Astrophysics Data System (ADS)

    Suzuki, Toyoaki; Kaneda, Hidehiro; Matsuura, Shuji; Shirahata, Mai; Nakagawa, Takao; Doi, Yasuo; Onaka, Takashi; Hibi, Yasunori; Shibai Mitsunobu Kawada, Hiroshi

    2008-08-01

    AKARI, the Japanese infrared astronomical satellite, was launched on 2006 February 21 (UT) and put into a sun-synchronous polar orbit at an altitude of 700 km. Cosmic radiations, particularly protons in the South Atlantic Anomaly (SAA), were expected to affect the performance of the stressed Ge:Ga array far-infrared detector on board AKARI. One of the influences is the radioactivation of the detector housing; γ -rays from the radioactivated detector housing interact with Ge:Ga elements, producing spikes (so-called glitches) in the electric outputs of the detector. Prior to the launch, we performed a 100 MeV proton-beam irradiation test for an engineering model of the stressed Ge:Ga array, which simulated the SAA passage. In the test, we observed glitches in the detector output that were due to the radioactivation of the detector housing. By investigating the test data, we have computed the glitch rate of the flight array detector expected in the AKARI orbit, including its change with time from the launch to the end of the AKARI mission. After the launch of AKARI, we have compared the performance observed in the orbit to that predicted by the proton-beam test. The glitch rate really changed with time after the launch; we have found that the in-orbit behavior is consistent with the prediction.

  20. Performance of high resolution decoding with Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Horch, Elliott P.

    1993-01-01

    The Multi-Anode Microchannel Array (MAMA) is a microchannel plate based photon counting detector with applications in ground-based and space-based astronomy. The detector electronics decode the position of each photon event, and the decoding algorithm that associates a given event with the appropriate pixel is determined by the geometry of the anode array. The standard MAMA detector has a spatial resolution set by the anode array of 25 microns, but the MCP pore resolution exceeds this. The performance of a new algorithm that halves the pixel spacing and improves the pixel spatial resolution is described. The new algorithm does not degrade the pulse-pair resolution of the detector and does not require any modifications to the detector tube. Measurements of the detector's response demonstrate that high resolution decoding yields a 60 percent enhancement in spatial resolution. Measurements of the performance of the high resolution algorithm with a 14 micron MAMA detector are also described. The parameters that control high resolution performance are discussed. Results of the application of high resolution decoding to speckle interferometry are presented.

  1. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1995-12-31

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.

  2. Performance of high resolution decoding with Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Horch, Elliott P.

    1993-01-01

    The Multi-Anode Microchannel Array (MAMA) is a microchannel plate based photon counting detector with applications in ground-based and space-based astronomy. The detector electronics decode the position of each photon event, and the decoding algorithm that associates a given event with the appropriate pixel is determined by the geometry of the anode array. The standard MAMA detector has a spatial resolution set by the anode array of 25 microns, but the MCP pore resolution exceeds this. The performance of a new algorithm that halves the pixel spacing and improves the pixel spatial resolution is described. The new algorithm does not degrade the pulse-pair resolution of the detector and does not require any modifications to the detector tube. Measurements of the detector's response demonstrate that high resolution decoding yields a 60 percent enhancement in spatial resolution. Measurements of the performance of the high resolution algorithm with a 14 micron MAMA detector are also described. The parameters that control high resolution performance are discussed. Results of the application of high resolution decoding to speckle interferometry are presented.

  3. Proton Transfer Reactions Studied Using the VANDLE Neutron Detector Array

    NASA Astrophysics Data System (ADS)

    Thornsberry, C. R.; Burcher, S.; Gryzwacz, R.; Jones, K. L.; Paulauskas, S. V.; Smith, K.; Vostinar, M.; Allen, J.; Bardayan, D. W.; Blankstein, D.; Deboer, J.; Hall, M.; O'Malley, P. D.; Reingold, C.; Tan, W.; Cizewski, J. A.; Lepailleur, A.; Walter, D.; Febbraro, M.; Pain, S. D.; Marley, S. T.

    2016-09-01

    Proton transfer reactions, such as (d,n), are powerful tools for the study of single particle proton states of exotic nuclei. Measuring the outgoing neutron allows for the extraction of spectroscopic information from the recoil nucleus. With the development of new radioactive ion beam facilities, such as FRIB in the U.S., comes the need for new tools for the study of reactions involving radioactive nuclei. Neutron detectors, such as VANDLE, are sensitive to gamma rays in addition to neutrons. This results in high background rates for measurements with high external trigger rates. The use of discriminating recoil particle detectors, such as phoswich detectors, allow for the selection of a clean recoil tag by separating the recoil nucleus of interest from unreacted RIB components. Developments of low energy proton transfer measurements in inverse kinematics and recent (d,n) results will be presented. This work supported in part by the U.S. Department of Energy and the National Science Foundation.

  4. MAJORANA: An Ultra-Low Background Enriched-Germanium Detector Array for Fundamental Physics Measurements

    NASA Astrophysics Data System (ADS)

    Detwiler, Jason

    2009-10-01

    The Majorana collaboration aims to perform a search for neutrinoless double-beta decay (0νββ) by fielding arrays of HPGe detectors mounted in ultra-clean electroformed-copper cryostats located deep underground. Recent advances in HPGe detector technology, in particular P-type Point-Contact (PPC) detectors, show great promise for identifying and reducing backgrounds to the 0νββ signal, which should result in improved sensitivity over previous generation experiments. The ultra-low energy threshold possible in PPC detectors also enables a broader physics program including sensitive searches for dark matter and axions. The Majorana Demonstrator R&D program will field three ˜20 kg modules of PPC detectors at Sanford Underground Laboratory. Half of the detector mass will be enriched to 86% in ^76Ge. I will present the motivation, design, recent progress and current status of this R&D effort, and discuss its physics reach.

  5. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  6. Development of a forward-angle gamma-ray detector array for MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Votaw, Daniel; MoNA Collaboration Collaboration

    2017-01-01

    In recent years invariant mass spectroscopy has been successfully applied to measure neutron-unbound states. In this method neutrons are measured in coincidence with charged fragments following reactions with radioactive beams produced in projectile fragmentation reactions. When the final nucleus has bound excited states it is necessary to include gamma-ray detection in order to extract the excitation energy of the initial state. Because the MoNA-LISA setup at NSCL uses a large-gap Sweeper magnet to deflect the charged particles, conventional gamma-ray scintillation arrays cannot be used efficiently because of the large fringe field of the magnet. Thus we are developing a small cesium iodide (CsI) array using silicon photomultipliers (SiPMs) which are agnostic to the presence of a magnetic field. Using GEANT4 simulations the parameters of the array will be optimized to achieve the required efficiency and energy resolution of the Doppler-corrected energy spectra, necessary to extract the gamma-ray transitions in the final nucleus. NSF PHY-1002511, DOE-NNSA DE-NA0000979.

  7. A methodology for dosimetry audit of rotational radiotherapy using a commercial detector array.

    PubMed

    Hussein, Mohammad; Tsang, Yatman; Thomas, Russell A S; Gouldstone, Clare; Maughan, David; Snaith, Julia A D; Bolton, Steven C; Nisbet, Andrew; Clark, Catharine H

    2013-07-01

    To develop a methodology for the use of a commercial detector array in dosimetry audits of rotational radiotherapy. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were asked to create a rotational radiotherapy treatment plan for a three-dimensional treatment-planning-system (3DTPS) test and audited. Phantom measurements using a commercial 2D ionisation chamber (IC) array were compared with measurements using 0.125 cm(3) IC, Gafchromic film and alanine pellets in the same plane. Relative and absolute gamma index (γ) comparisons were made for Gafchromic film and 2D-Array planes, respectively. Comparisons between individual detectors within the 2D-Array against the corresponding IC and alanine measurement showed a statistically significant concordance correlation coefficient (both ρc>0.998, p<0.001) with mean difference of -1.1 ± 1.1% and -0.8 ± 1.1%, respectively, in a high dose PTV. In the γ comparison between the 2D-Array and film it was that the 2D-Array was more likely to fail planes where there was a dose discrepancy due to the absolute analysis performed. It has been found that using a commercial detector array for a dosimetry audit of rotational radiotherapy is suitable in place of standard systems of dosimetry. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme.

  9. Position, Orientation and Velocity Detection of Unmanned Underwater Vehicles (UUVs) Using an Optical Detector Array

    PubMed Central

    Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson

    2017-01-01

    This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936

  10. Application and Design of Satellite Infrared Spectral Imaging Radiometers with Uncooled Microbolometer Array Detectors

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Lancaster, Regie; Maschhoff, Kevin; Starr, David OC (Technical Monitor)

    2001-01-01

    Uncooled infrared microbolometer array detectors have application for space borne spectral imaging radiometer of several types to lower size, power and cost and provide improved performance. Other advantages of eliminating cooling requirement are simplified systems, simplified satellite integration and improved reliability. A prototype microbolometer instrument for cloud observations was flown on the STS-85 space shuttle mission. Extensive data were acquired at_km resolution at four thermal infrared wavelength bands. From the 320x280 detector array both spectral and angular information can be used to advantage in cloud retrievals and has been demonstrated. An engineering model Compact Visible and Infrared Imaging Radiometer (COVIR) for small satellite missions has been developed. Application of advanced microbolometer array detectors for three axis stabilized GOES thermal imagers has been studied.

  11. Real-time human identification using a pyroelectric infrared detector array and hidden Markov models.

    PubMed

    Fang, Jian-Shuen; Hao, Qi; Brady, David J; Guenther, Bob D; Hsu, Ken Y

    2006-07-24

    This paper proposes a real-time human identification system using a pyroelectric infrared (PIR) detector array and hidden Markov models (HMMs). A PIR detector array with masked Fresnel lens arrays is used to generate digital sequential data that can represent a human motion feature. HMMs are trained to statistically model the motion features of individuals through an expectation-maximization (EM) learning process. Human subjects are recognized by evaluating a set of new feature data against the trained HMMs using the maximum-likelihood (ML) criterion. We have developed a prototype system to verify the proposed method. Sensor modules with different numbers of detectors and different sampling masks were tested to maximize the identification capability of the sensor system.

  12. Position, Orientation and Velocity Detection of Unmanned Underwater Vehicles (UUVs) Using an Optical Detector Array.

    PubMed

    Eren, Firat; Pe'eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M Robinson

    2017-07-29

    This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications.

  13. FPGA-based electronics for confocal line scanners with linear detector arrays

    NASA Astrophysics Data System (ADS)

    Abeytunge, Sanjee; Toledo-Crow, Ricardo; Rajadhyaksha, Milind

    2009-02-01

    One-dimensional linear detector arrays have been used in the development of microscopes. Our confocal line scanning microscope electronics incorporate two printed circuit boards: control board and detector board. This architecture separates control electronics from detection electronics allowing us to minimize the footprint at microscope detector head. The Field Programmable Gate array (FPGA) on the control board generates timing and synchronization signals to three systems: detector board, frame grabber and galvanometric mirror scanner. The detector is kept away from its control electronics, and the clock and control signals are sent over a differential twisted-pair cable. These differential signals are translated to single ended signals and forwarded to the detector at the microscope detector head. The synchronization signals for the frame grabber are sent over a shielded cable. The control board also generates a saw tooth analog ramp to drive the galvanometric mirror scanner. The analog video output of the detector is fed into an operational amplifier where the white and the black levels are adjusted. Finally the analog video is send to the frame grabber via a shielded cable. FPGA-based electronics offer an inexpensive convenient means to control and synchronize simple line-scanning confocal microscopes.

  14. Parasitic antenna effect in terahertz plasmon detector array for real-time imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Jong-Ryul; Lee, Woo-Jae; Ryu, Min Woo; Rok Kim, Kyung; Han, Seong-Tae

    2015-10-01

    The performance uniformity of each pixel integrated with a patch antenna in a terahertz plasmon detector array is very important in building the large array necessary for a real-time imaging system. We found a parasitic antenna effect in the terahertz plasmon detector whose response is dependent on the position of the detector pixel in the illumination area of the terahertz beam. It was also demonstrated that the parasitic antenna effect is attributed to the physical structure consisting of signal pads, bonding wires, and interconnection lines on a chip and a printed circuit board. Experimental results show that the performance of the detector pixel is determined by the sum of the effects of each parasitic antenna and the on-chip integrated antenna designed to detect signals at the operating frequency. The parasitic antenna effect can be minimized by blocking the interconnections with a metallic shield.

  15. Recent results of the energy spectrum and mass composition from Telescope Array Fluorescence Detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Daisuke

    2013-02-01

    The Telescope Array experiment is the largest hybrid detector to observe Ultra-High Energy Cosmic Rays in the northern hemisphere. The observation started in November 2007 for Fluorescence Detector (FD) and in March 2008 for Surface Detectors (SD). Here, we present the preliminary results of the energy spectrum and mass composition of the UHECRs measured by the FD and hybrid technique from the Telescope Array three year observations. The energy spectrum measured by the Middle Drum FD station, which is the refurbished HiRes-I detector is consistent with the results from HiRes. The energy spectrum with the two newly constructed FDs and SD is also in good agreement with the result from HiRes, especially for the energy scale. The mass composition study with the slant depth of the maximum shower development (Xmax) is obtained by using the stereo and hybrid analysis. The result of the mass composition is consistent with the proton prediction.

  16. Analysis of upper and lower bounds of the frame noise in linear detector arrays

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1991-01-01

    This paper estimates the upper and lower bounds of the frame noise of a linear detector array that uses a one-dimensional scan pattern. Using chi-square distribution, it is analytically shown why it is necessary to use the average of the variances and not the average of the standard deviations to estimate these bounds. Also, a criteria for determining whether any excessively noisy lines exist among the detectors is derived from these bounds. Using a Gaussian standard random variable generator, these bounds are demonstrated to be accurate within the specified confidence interval. A silicon detector array is then used for actual dark current measurements. The criterion developed for determination of noisy detectors is checked on the experimentally obtained data.

  17. Infrared imaging using arrays of SiO2 micromechanical detectors.

    PubMed

    Datskos, P G; Lavrik, N V; Hunter, S R; Rajic, S; Grbovic, D

    2012-10-01

    In this Letter, we describe the fabrication of an array of bimaterial detectors for infrared (IR) imaging that utilize SiO(2) as a structural material. All the substrate material underneath the active area of each detector element was removed. Each detector element incorporates an optical resonant cavity layer in the IR-absorbing region of the sensing element. The simplified microfabrication process requires only four photolithographic steps with no wet etching or sacrificial layers. The thermomechanical deflection sensitivity was 7.9×10(-3) rad/K, which corresponds to a noise equivalent temperature difference (NETD) of 2.9 mK. In the present work, the array was used to capture IR images while operating at room temperature and atmospheric pressure without the need for vacuum packaging. The average measured NETD of our IR detector system was approximately 200 mK, but some sensing elements exhibited an NETD of 50 mK.

  18. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  19. Measurements and analysis of optical crosstalk in a microwave kinetic inductance detector array

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Ferrari, L.; Baselmans, J. J. A.; Baryshev, A.

    2016-07-01

    The main advantage of Microwave Kinetic Inductance Detector arrays (MKID) is their multiplexing capability, which allows for building cameras with a large number of pixels and good sensitivity, particularly suitable to perform large blank galaxy surveys. However, to have as many pixels as possible it is necessary to arrange detectors close in readout frequency. Consequently KIDs overlap in frequency and are coupled to each other producing crosstalk. Because crosstalk can be only minimised by improving the array design, in this work we aim to correct for this effect a posteriori. We analysed a MKID array consisting of 880 KIDs with readout frequencies at 4-8 GHz. We measured the beam patterns for every detector in the array and described the response of each detector by using a two-dimensional Gaussian fit. Then, we identified detectors affected by crosstalk above -30 dB level from the maximum and removed the signal of the crosstalking detectors. Moreover, we modelled the crosstalk level for each KID as a function of the readout frequency separation starting from the assumption that the transmission of a KID is a Lorenztian function in power. We were able to describe the general crosstalk level of the array and the crosstalk of each KID within 5 dB, so enabling the design of future arrays with the crosstalk as a design criterion. In this work, we demonstrate that it is possible to process MKID images a posteriori to decrease the crosstalk effect, subtracting the response of each coupled KID from the original map.

  20. Germanium blocked-impurity-band detector arrays - Unpassivated devices with bulk substrates

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.; Guptill, Matthew T.; Huffman, James E.; Krabach, Timothy N.; Raines, S. N.; Satyapal, Shobita

    1993-01-01

    We have fabricated and characterized six-element monolithic arrays of Ge:Ga blocked-impurity-band detectors, with threshold wavelength 220 microns, peak quantum efficiency 14 percent, detective quantum efficiency 9 percent, dark current 300 e(-)/s, and response uniformity better than 4 percent. The devices are described very well by the standard model of blocked-impurity-band detectors and appear to satisfy many of the requirements of low-background astronomical instruments.

  1. Measuring the ultra-high energy comic ray flux with the Telescope Array Middle Drum detector

    NASA Astrophysics Data System (ADS)

    Sonley, Thomas

    2009-10-01

    The Telescope Array (TA) Experiment, located 200 kilometers southwest of Salt Lake City, Utah, is the largest Ultra-High Energy cosmic ray detector in the northern hemisphere. TA is a follow up to the High Resolution Fly's Eye (HiRes) and AGASA experiments, and seeks to gain insight into cosmic ray acceleration by measuring the flux of cosmic rays with energies over 10^18 eV. The detector consists of 507 scintillator counters distributed in a square grid with 1.2 km spacing. Three fluorescence detector stations sit on the corners of a 30 km equilateral triangle overlooking the array of surface detectors, and provide full hybrid coverage with the scintillator array above 10 EeV. Telescope Array underwent commissioning in 2007 and began routine data collection operations at the beginning of 2008. One of the three fluorescence stations, the Middle Drum (MD) site, is instrumented with detectors previously used at the HiRes-1 site. The inclusion of the MD site makes possible a direct comparison between the fluorescence energy scales and spectra between TA and HiRes. We will present a progress report on the analysis of the TA data collected by the MD site.

  2. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Pérez, E.; Salazar, H.; Villaseñor, L.

    2005-11-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla ( 19∘N, 90∘W, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86 m2 cross-section and 12 liquid scintillator detectors of 1 m2 distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays.

  3. Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Pérez, E.; Salazar, H.; Villaseñor, L.

    We describe the design of an extensive air shower detector array built in the Campus of the University of Puebla (located at 19°N, 90°W, 800 gcm -2) to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m 2 cross section and five smaller ones of 1.86 m 2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. In this paper we discuss the calibration and stability of the array, and discuss the capability of hybrid arrays, such as this one consisting of water Cherenkov and liquid scintillator detectors, to allow a separation of the electromagnetic and muon components of extensive air showers. This separation plays an important role in the determination of the mass and identity of the primary cosmic ray. This facility is also used to train students interested in the field of cosmic rays.

  4. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    PubMed Central

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  5. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.

    PubMed

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-05-07

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  6. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  7. 20 element HgI sub 2 energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1991-01-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  8. 20 element HgI{sub 2} energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1991-12-31

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  9. Extensive Air Shower Detector Array at the Universidad Autonoma de Puebla

    NASA Astrophysics Data System (ADS)

    Cotzomi, J.; Moreno, E.; Aguilar, S.; Palma, B.; Martinez, O.; Salazar, H.; Villasenor, L.

    2002-07-01

    We describe the operation of an Extensive Air Shower Array located at the campus of the FCFM-BUAP. The array consists of 8 liquid scintillation detectors with a surface of 1 m2 each and a detector spacing of 20 m in a square grid. The array was designed to measure the energy and arrival direction of primary particles that generate extensive air showers (EAS) in the region of 1013 eV - 1016 eV. The angular distribution measured with this array, Cos8(Theta) xSin(Theta), agrees very well with the literature. We also present the measured energies of a number of vertical showers in the range of 5 x1012 eV to 5 x1013 eV.

  10. Development of sensitive long-wave infrared detector arrays for passively cooled space missions

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig; Lee, Donald; Beletic, James; Chen, Chi-Yi A.; Demers, Richard T.; Dorn, Meghan; Edwall, Dennis; Fazar, Candice Bacon; Forrest, William J.; Liu, Fengchuan; Mainzer, Amanda K.; Pipher, Judith L.; Yulius, Aristo

    2013-09-01

    The near-earth object camera (NEOCam) is a proposed infrared space mission designed to discover and characterize most of the potentially hazardous asteroids larger than 140 m in diameter that orbit near the Earth. NASA has funded technology development for NEOCam, including the development of long wavelength infrared detector arrays that will have excellent zodiacal background emission-limited performance at passively cooled focal plane temperatures. Teledyne Imaging Sensors has developed and delivered for test at the University of Rochester the first set of approximately 10 μm cutoff, 1024×1024 pixel HgCdTe detector arrays. Measurements of these arrays show the development to be extremely promising: noise, dark current, quantum efficiency, and well depth goals have been met by this technology at focal plane temperatures of 35 to 40 K, readily attainable with passive cooling. The next set of arrays to be developed will address changes suggested by the first set of deliverables.

  11. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  12. A low noise readout integrated circuit for Nb5N6 microbolometer array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou; Wan, Chao; Xiao, Peng; Jiang, Chengtao; Tu, Xuecou; Jia, Xiaoqing; Kang, Lin; Chen, Jian; Wu, Peiheng

    2017-02-01

    We present a readout circuit for 1 × 64 Nb5N6 microbolometer array detector. The intrinsic average responsivity of the detectors in the array is 650 V/W, and the corresponding noise equivalent power (NEP) is 17 pW/√Hz. Due to the low noise of the detector, we design a low noise readout circuit with 64 channels. The readout integrated circuit (ROIC) is fabricated under CMOS process with 0.18μm design rule, which has built-in bias and adjustable numerical-controlled output current. Differential structure is used for each pixel to boost capacity of resisting disturbance. A multiplexer and the second stage amplifier is followed after the ROIC. It is shown that the ROIC achieves an average gain of 47dB and a voltage noise spectral density of 9.34nV/√Hz at 10KHz. The performance of this readout circuit nearly fulfills the requirements for THz array detector. This readout circuit is fit for the detector, which indicates a good way to develop efficient and low-cost THz detector system.

  13. Performances Of Arrays Of Ge:Ga Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Mccreight, C.; Farhoomand, J.

    1992-01-01

    Report presents evaluation of performances of two electronic modules containing few-element linear focal-plane arrays of Ge:Ga photodetectors and associated multiplexing readout circuitry. Tested to demonstrate feasibility of many-element, two-dimensional focal-plane arrays of far-infrared detectors and associated circuitry for use in astronomical and other low-background scientific observations. Revealed deficiencies that must be overcome in future designs.

  14. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.

    2013-01-01

    In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.

  15. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.

    2013-01-01

    In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.

  16. Measurement of the proton-air cross section with Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Telescope Array Collaboration

    2015-08-01

    In this work we are reporting on the measurement of the proton-air inelastic cross section σp-air inel using the Telescope Array detector. Based on the measurement of the σp-air inel, the proton-proton cross section σp -p value is also determined at √{s }=9 5-8+5 TeV . Detecting cosmic ray events at ultrahigh energies with the Telescope Array enables us to study this fundamental parameter that we are otherwise unable to access with particle accelerators. The data used in this report are the hybrid events observed by the Middle Drum fluorescence detector together with the surface array detector collected over five years. The value of the σp-air inel is found to be equal to 567.0 ±70.5 [Stat]-25+29[Sys] mb . The total proton-proton cross section is subsequently inferred from Glauber formalism and the Block, Halzen and Stanev QCD inspired fit and is found to be equal to 17 0-44+48[Stat]-17+19[Sys] mb .

  17. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; hide

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  18. X-ray source considerations in operation of digital detector arrays

    SciTech Connect

    Jensen, Terrence; Wendt, Scott

    2014-02-18

    Digital Detector Arrays (DDA) are increasingly replacing film in radiography applications. Standards exist for characterizing the performance of these detectors, and for using them in specific inspections. We have observed that the selection of the x-ray source to use with these detectors can also have a significant influence on the performance. We look at differences between standard, and micro-focus x-ray tubes, and end-window vs. side-window micro-focus tubes. We find that for best results, one must calibrate the DDA for the source settings used during an inspection. This is particularly true for variable-focus sources.

  19. Laboratory characterization of direct readout Si:Sb and Si:Ga infrared detector arrays

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Moss, Nicolas N.; Mcmurray, R. E., Jr.; Estrada, John A.; Goebel, John H.; Mccreight, Craig R.; Savage, Maureen L.; Junga, Frank; Whittemore, Thomas

    1989-01-01

    Highlights of recent results obtained at Ames Research Center in performance evaluations of infrared detector arrays are presented. Antimony- and gallium-doped silicon direct readout 58x62 element hybrid devices from Ames' ongoing detector technology development program are described. The observed characteristics meet most of the performance goals specified by the Space Infrared Telescope Facility (SIRTF) instrument teams and compare favorably with the best performance reported for discrete non-integrating extrinsic silicon detectors. Initial results of radiation environment testing are reported, and non-ideal behavior demonstrated by these test devices is discussed.

  20. Experience using an automated fault location system with a time-of-flight wall detector array

    NASA Astrophysics Data System (ADS)

    Olson, D.; Greiman, W.; Hall, D.; Balaban, D.; Day, C.

    1990-08-01

    We describe the architecture of a general purpose monitoring system and give examples of its use with a 300 element detector array in a relativistic heavy ion experiment. The system has a simple and well defined interface between the detector specific parts of the system and those which are independent of any detector specific features. Tracking simple statistics on the fundamental data items (ADC and TDC values) are sufficient to diagnose the higher level components in the system. The monitoring of on-line beam data provides a sensitive monitor of global parameters of the experiment.

  1. A 4 π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Alexander, A.; Bracken, D. S.; Brzychczyk, J.; Dorsett, J.; Ensman, R.; Renshaw Foxford, E.; Hamilton, T.; Komisarcik, K.; McDonald, K. N.; Morley, K. B.; Poehlman, J.; Powell, C.; Viola, V. E.; Yoder, N. R.; Ottarson, J.; Madden, N.

    1994-12-01

    Operating characteristics of the Indiana Silicon Sphere 4 π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units.

  2. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  3. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  4. Digital Radiography and Computed Tomography Project -- Fully Integrated Linear Detector ArrayStatus Report

    SciTech Connect

    Tim Roney; Robert Seifert; Bob Pink; Mike Smith

    2011-09-01

    The field-portable Digital Radiography and Computed Tomography (DRCT) x-ray inspection systems developed for the Project Manager for NonStockpile Chemical Materiel (PMNSCM) over the past 13 years have used linear diode detector arrays from two manufacturers; Thomson and Thales. These two manufacturers no longer produce this type of detector. In the interest of insuring the long term viability of the portable DRCT single munitions inspection systems and to improve the imaging capabilities, this project has been investigating improved, commercially available detectors. During FY-10, detectors were evaluated and one in particular, manufactured by Detection Technologies (DT), Inc, was acquired for possible integration into the DRCT systems. The remainder of this report describes the work performed in FY-11 to complete evaluations and fully integrate the detector onto a representative DRCT platform.

  5. Two-color thermal detector with thermal chopping for infrared focal-plane arrays.

    PubMed

    Leonov, V N; Butler, D P

    2001-06-01

    Micromachined thermal infrared (IR) detectors are emerging into the marketplace to provide high-performance thermal (IR) imagery at low cost. Thermal detectors can be improved when a tunable wavelength response is provided and when a thermal chopper is incorporated into the detector by use of microelectromechanical (MEM) elements. Most thermal detectors require a chopper, continuous synchronous chopping in the case of pyroelectric detectors, or asynchronous chopping in the case of staring microbolometers. Mechanical choppers are bulky and costly. We present the fundamental principles of micromachined thermal detectors that possess tunable wavelength or color response and a technique for thermal chopping. A micromirror, switching between two spatial positions under the detector, provides a response to two wavelength windows by tuning the optical resonant cavity. The image can then be integrated at the readout level to achieve a multicolor IR picture. A thermal MEM chopper can be used instead of a mechanical chopper to maintain the same video frame rate and to allow for an interlaced resetting of staring thermal arrays. Unlike the second generation of uncooled IR arrays, the actual temperature of objects can be obtained by a comparison of the response in two wavelength windows, in addition to the direct measurement of IR power that they radiate in the entire 8-14-microm spectral region.

  6. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  7. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    NASA Astrophysics Data System (ADS)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  8. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    PubMed

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-07

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  9. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  10. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2008-09-01

    correlation coefficient (CC), or some comparable detection statistic, exceeds a given threshold. Since these methods exploit characteristic details of the...multiple channels since stacking can be performed on the correlation coefficient traces with a significant array-gain. A detected event that is co-located...with the master event will record the same time-difference at every site in an arbitrarily spaced network which means that the correlation coefficient traces

  11. Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Franz, David E.; Ewin, Audrey J.; Jhabvala, Christine; Babu, Sachi; Snodgrass, Stephen; Costen, Nicholas; Zincke, Christian

    2009-01-01

    The silicon substrate carrier was created so that a large-area array (in this case 62,000+ elements of a microshutter array) and a variety of discrete passive and active devices could be mounted on a single board, similar to a printed circuit board. However, the density and number of interconnects far exceeds the capabilities of printed circuit board technology. To overcome this hurdle, a method was developed to fabricate this carrier out of silicon and implement silicon integrated circuit (IC) technology. This method achieves a large number of high-density metal interconnects; a 100-percent yield over a 6-in. (approximately equal to 15-cm) diameter wafer (one unit per wafer); a rigid, thermally compatible structure (all components and operating conditions) to cryogenic temperatures; re-workability and component replaceability, if required; and the ability to precisely cut large-area holes through the substrate. A method that would employ indium bump technology along with wafer-scale integration onto a silicon carrier was also developed. By establishing a silicon-based version of a printed circuit board, the objectives could be met with one solution. The silicon substrate would be 2 mm thick to survive the environmental loads of a launch. More than 2,300 metal traces and over 1,500 individual wire bonds are required. To mate the microshutter array to the silicon substrate, more than 10,000 indium bumps are required. A window was cut in the substrate to allow the light signal to pass through the substrate and reach the microshutter array. The substrate was also the receptacle for multiple unpackaged IC die wire-bonded directly to the substrate (thus conserving space over conventionally packaged die). Unique features of this technology include the implementation of a 2-mmthick silicon wafer to withstand extreme mechanical loads (from a rocket launch); integrated polysilicon resistor heaters directly on the substrate; the precise formation of an open aperture

  12. Confined Space Imager (CSI) Software

    SciTech Connect

    Karelilz, David

    2013-07-03

    The software provides real-time image capture, enhancement, and display, and sensor control for the Confined Space Imager (CSI) sensor system The software captures images over a Cameralink connection and provides the following image enhancements: camera pixel to pixel non-uniformity correction, optical distortion correction, image registration and averaging, and illumination non-uniformity correction. The software communicates with the custom CSI hardware over USB to control sensor parameters and is capable of saving enhanced sensor images to an external USB drive. The software provides sensor control, image capture, enhancement, and display for the CSI sensor system. It is designed to work with the custom hardware.

  13. Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    DTIC Science & Technology

    2007-09-01

    correlation coefficient , or some comparable detection statistic, exceeds a given threshold. Since these methods exploit characteristic details of the full waveform, they provide exquisitely sensitive detectors with far lower detection thresholds than typical short-term average/long-term average (STA/LTA) algorithms. The drawback is that the form of the sought-after signal needs to be known quite accurately a priori, which limits such methods to instances of seismicity whereby a very similar signal has already been observed by every station used. Such instances include

  14. Uniform Non-stoichiometric Titanium Nitride Thin Films for Improved Kinetic Inductance Detector Arrays

    NASA Astrophysics Data System (ADS)

    Coiffard, G.; Schuster, K.-F.; Driessen, E. F. C.; Pignard, S.; Calvo, M.; Catalano, A.; Goupy, J.; Monfardini, A.

    2016-08-01

    We describe the fabrication of homogeneous sub-stoichiometric titanium nitride films for microwave kinetic inductance detector (KID) arrays. Using a 6'' sputtering target and a homogeneous nitrogen inlet, the variation of the critical temperature over a 2'' wafer was reduced to {<}25 %. Measurements of a 132-pixel KID arrays from these films reveal a sensitivity of 16 kHz/pW in the 100 GHz band, comparable to the best aluminum KIDs. We measured a noise equivalent power of NEP = 3.6× 10^{-15} W/Hz^{1/2}. Finally, we describe possible routes to further improve the performance of these TiN KID arrays.

  15. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  16. Converting films for X-ray detectors, applied to amorphous silicon arrays

    SciTech Connect

    Ross, S.; Zentai, G.

    1998-12-31

    This paper presents results from the on-going efforts to characterize semiconductor thin films for direct X-ray conversion. The authors deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area X-ray detector for protein crystallography, and for other X-ray imaging fields.

  17. Converting films for x-ray detectors, applied to amorphous silicon arrays.

    SciTech Connect

    Ross, S.; Zentai, G.

    1997-12-05

    This paper presents results from our on-going efforts to characterize semiconductor thin films for direct x-ray conversion. We deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area x-ray detector for protein crystallography, and for other x-ray imaging fields.

  18. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    NASA Astrophysics Data System (ADS)

    Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert

    2016-03-01

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  19. Arrays of Encapsulated CdZnTe Gamma-Ray Detectors for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.; Smith, M. K.; Sweet, M. R.

    2000-01-01

    Recent results from encapsulated multi-element CdZnTe room-temperature semiconductor gamma-ray detectors are presented. Our multi-element-array design is a good low-mass and low-power candidate for elemental mapping on future planetary missions.

  20. Arrays of Encapsulated CdZnTe Gamma-Ray Detectors for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.; Smith, M. K.; Sweet, M. R.

    2000-01-01

    Recent results from encapsulated multi-element CdZnTe room-temperature semiconductor gamma-ray detectors are presented. Our multi-element-array design is a good low-mass and low-power candidate for elemental mapping on future planetary missions.

  1. First Data with the Hybrid Array of Gamma-Ray Detectors (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, Karl; Burcher, S.; Carter, A. B.; Gryzwacz, R.; Jones, K. L.; Munoz, S.; Paulauskas, S. V.; Schmitt, K.; Thornsberry, C.; Chipps, K. A.; Febbraro, M.; Pain, S. D.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Toomey, B.

    2016-09-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reaction and beta-decay measurements. These experiments benefit from particle-gamma coincident measurements providing information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries often used to increase the gamma efficiency in other systems. First experimental data with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA will be presented. This work is supported in part by the U.S. Department of Energy, Office of Science Nuclear Physics and the National Science Foundation.

  2. Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, W.; Wang, Y.; Wei, L. F.; Mckenney, C. M.; Dober, B.; Billings, T.; Hubmayr, J.; Ferreira, L. S.; Vissers, M. R.; Gao, J.

    2017-07-01

    We present a cryogenic wafer mapper based on light emitting diodes (LEDs) for spatial mapping of a large microwave kinetic inductance detector (MKID) array. In this scheme, an array of LEDs, addressed by DC wires and collimated through horns onto the detectors, is mounted in front of the detector wafer. By illuminating each LED individually and sweeping the frequency response of all the resonators, we can unambiguously correspond a detector pixel to its measured resonance frequency. We have demonstrated mapping a 76.2 mm 90-pixel MKID array using a mapper containing 126 LEDs with 16 DC bias wires. With the frequency to pixel-position correspondence data obtained by the LED mapper, we have found a radially position-dependent frequency non-uniformity of ≲ 1.6 % over the 76.2 mm wafer. Our LED wafer mapper has no moving parts and is easy to implement. It may find broad applications in superconducting detectors and quantum computing/information experiments.

  3. Calculation of narcissus effect in scanning systems with detector arrays by exact numerical ray tracing

    NASA Astrophysics Data System (ADS)

    Kroeninger, Werner

    1993-04-01

    The narcissus-effect is a well known phenomena in IR-scanning systems. Several methods of calculation have been proposed. Due to advances in IR-detector technology it is now possible to use detector line-arrays instead of single detectors for scanning systems. We have modified the model published by A. S. Lau. In our calculations the transmission of all optical components is taken into account, especially the transmission of the imager is also considered. We have developed a program based on this model. With this tool the calculations of the narcissus-equivalent temperature can be done by exact numerical ray-tracing for an array with up to twelve detectors. Separately for each of them you can see the exact narcissus-effect over the whole scan angle, showing a varying intensity over the detector array. The calculation can be done in arbitrary small steps over the whole scanning angle. Thus it is possible to take into account all effects of vignetting due to the mountings of the components or any other mechanical limitations. An example of such a scanning system is presented.

  4. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  5. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  6. Performance Measurements On A 32X32 InSb-CID Detector Array For Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Tiphene, D.; Lacombe, F.; Rouan, D.

    1989-01-01

    The use at liquid helium temperature of a InSb-CID detector array differs significantly from opera-tion at conditions usually adopted by the manufacturer (77K). In particular, the dark current behaviour hugely changes between the two temperatures. Only the tunnel current, independant of temperature conditions, is still active at 4.2K while the thermal-family currents vanish. We have studied the tunnel current of one InSb-MIS detector to determine its suitability to the low background conditions that will be met in the space experiment ISO. The search for the maximum integration time and the best quantum efficiency, the constraint about the photonic response linearity (especially at low photon flux), and the reduction of the readout noise constitute the main points of this study. Moreover, laboratory measurements showed secondary effects due to the detector (lag) or to the wiring (crosstalk). The CID array reactions to high energy radiations (Gamma rays) are finally discussed.

  7. Recent progress with multi-anode microchannel array detector systems. [for use in instruments on telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1982-01-01

    The construction and modes of operation of Multi-Anode Microchannel Arrays (MAMA's) are briefly reviewed. The MAMA detectors, which are a family of photoelectric, photon-counting array detectors being developed specifically for use in instruments on ground-based and space-borne telescopes, combine the high sensitivity and photometric stability of a conventional channel electron multiplier with a high-resolution imaging capability. The MAMA detectors feature low applied potential (less than 3 kV), high gain (greater than 10 to the 6th electrons/pulse), an absolute event timing accuracy of 100 ns or better, a very long count lifetime (greater than 2.5 x 10 to the 11th counts/sq mm), and a power consumption of less than 30 W for a complete system

  8. The Belle detector

    NASA Astrophysics Data System (ADS)

    Abashian, A.; Gotow, K.; Morgan, N.; Piilonen, L.; Schrenk, S.; Abe, K.; Adachi, I.; Alexander, J. P.; Aoki, K.; Behari, S.; Doi, Y.; Enomoto, R.; Fujii, H.; Fujita, Y.; Funahashi, Y.; Haba, J.; Hamasaki, H.; Haruyama, T.; Hayashi, K.; Higashi, Y.; Hitomi, N.; Igarashi, S.; Igarashi, Y.; Iijima, T.; Ikeda, Hirokazu; Ikeda, Hitomi; Itoh, R.; Iwai, M.; Iwasaki, H.; Iwasaki, Y.; Joo, K. K.; Kasami, K.; Katayama, N.; Kawai, M.; Kichimi, H.; Kobayashi, T.; Koike, S.; Kondo, Y.; Lee, M. H.; Makida, Y.; Manabe, A.; Matsuda, T.; Murakami, T.; Nagayama, S.; Nakao, M.; Nozaki, T.; Ogawa, K.; Ohkubo, R.; Ohnishi, Y.; Ozaki, H.; Sagawa, H.; Saito, M.; Sakai, Y.; Sasaki, T.; Sato, N.; Sumiyoshi, T.; Suzuki, J.; Suzuki, J. I.; Suzuki, S.; Takasaki, F.; Tamai, K.; Tanaka, M.; Tatomi, T.; Tsuboyama, T.; Tsukada, K.; Tsukamoto, T.; Uehara, S.; Ujiie, N.; Uno, S.; Yabsley, B.; Yamada, Y.; Yamaguchi, H.; Yamaoka, H.; Yamaoka, Y.; Yamauchi, M.; Yoshimura, Y.; Zhao, H.; Abe, R.; Iwai, G.; Kawasaki, T.; Miyata, H.; Shimada, K.; Takahashi, S.; Tamura, N.; Abe, K.; Hanada, H.; Nagamine, T.; Nakajima, M.; Nakajima, T.; Narita, S.; Sanpei, M.; Takayama, T.; Ueki, M.; Yamaga, M.; Yamaguchi, A.; Ahn, B. S.; Kang, J. S.; Kim, Hyunwoo; Park, C. W.; Park, H.; Ahn, H. S.; Jang, H. K.; Kim, C. H.; Kim, S. K.; Lee, S. H.; Park, C. S.; Won, E.; Aihara, H.; Higuchi, T.; Kawai, H.; Matsubara, T.; Nakadaira, T.; Tajima, H.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Akatsu, M.; Fujimoto, K.; Hirose, M.; Inami, K.; Ishikawa, A.; Itami, S.; Kani, T.; Matsumoto, T.; Nagai, I.; Okabe, T.; Oshima, T.; Senyo, K.; Sugi, A.; Sugiyama, A.; Suitoh, S.; Suzuki, S.; Tomoto, M.; Yoshida, K.; Akhmetshin, R.; Chang, P.; Chao, Y.; Chen, Y. Q.; Hou, W. S.; Hsu, S. C.; Huang, H. C.; Huang, T. J.; Lee, M. C.; Lu, R. S.; Peng, J. C.; Peng, K. C.; Sahu, S.; Sung, H. F.; Tsai, K. L.; Ueno, K.; Wang, C. C.; Wang, M. Z.; Alimonti, G.; Browder, T. E.; Casey, B. C. K.; Fang, F.; Guler, H.; Jones, M.; Li, Y.; Olsen, S. L.; Peters, M.; Rodriguez, J. L.; Rosen, M.; Swain, S.; Trabelsi, K.; Varner, G.; Yamamoto, H.; Zheng, Y. H.; An, Q.; Chen, H. F.; Wang, Y. F.; Xu, Z. Z.; Ye, S. W.; Zhang, Z. P.; Asai, M.; Asano, Y.; Mori, S.; Stanič, S.; Tsujita, Y.; Zhang, J.; Žontar, D.; Aso, T.; Aulchenko, V.; Beiline, D.; Bondar, A.; Dneprovsky, L.; Eidelman, S.; Garmash, A.; Kuzmin, A.; Romanov, L.; Root, N.; Shwartz, B.; Sidorov, A.; Sidorov, V.; Usov, Y.; Zhilich, V.; Bakich, A. M.; Peak, L. S.; Varvell, K. E.; Banas, E.; Bozek, A.; Jalocha, P.; Kapusta, P.; Natkaniec, Z.; Ostrowicz, W.; Palka, H.; Rozanka, M.; Rybicki, K.; Behera, P. K.; Mohapatra, A.; Satapathy, M.; Chang, Y. H.; Chen, H. S.; Dong, L. Y.; Li, J.; Liu, H. M.; Mao, Z. P.; Yu, C. X.; Zhang, C. C.; Zhang, S. Q.; Zhao, Z. G.; Zheng, Z. P.; Cheon, B. G.; Choi, Y.; Kim, D. W.; Nam, J. W.; Chidzik, S.; Korotuschenko, K.; Leonidopoulos, C.; Liu, T.; Marlow, D.; Mindas, C.; Prebys, E.; Rabberman, R.; Sands, W.; Wixted, R.; Choi, S.; Dragic, J.; Everton, C. W.; Gordon, A.; Hastings, N. C.; Heenan, E. M.; Moffitt, L. C.; Moloney, G. R.; Moorhead, G. F.; Sevior, M. E.; Taylor, G. N.; Tovey, S. N.; Drutskoy, A.; Kagan, R.; Pakhlov, P.; Semenov, S.; Fukunaga, C.; Suda, R.; Fukushima, M.; Goriletsky, V. I.; Grinyov, B. V.; Lyubinsky, V. R.; Panova, A. I.; Shakhova, K. V.; Shpilinskaya, L. I.; Vinograd, E. L.; Zaslavsky, B. G.; Guo, R. S.; Haitani, F.; Hoshi, Y.; Neichi, K.; Hara, K.; Hara, T.; Hazumi, M.; Hojo, T.; Jackson, D.; Miyake, H.; Nagashima, Y.; Ryuko, J.; Sumisawa, K.; Takita, M.; Yamanaka, T.; Hayashii, H.; Miyabayashi, K.; Noguchi, S.; Hikita, S.; Hirano, H.; Hoshina, K.; Mamada, H.; Nitoh, O.; Okazaki, N.; Yokoyama, T.; Ishino, H.; Ichizawa, S.; Hirai, T.; Kakuno, H.; Kaneko, J.; Nakamura, T.; Ohshima, Y.; Watanabe, Y.; Yanaka, S.; Inoue, Y.; Nakano, E.; Takahashi, T.; Teramoto, Y.; Kang, J. H.; Kim, H. J.; Kim, Heejong; Kwon, Y.-J.; Kawai, H.; Kurihara, E.; Ooba, T.; Suzuki, K.; Unno, Y.; Kawamura, N.; Yuta, H.; Kinoshita, K.; Satpathy, A.; Kobayashi, S.; Kuniya, T.; Murakami, A.; Tsukamoto, T.; Kumar, S.; Singh, J.; Lange, J.; Stock, R.; Matsumoto, S.; Watanabe, M.; Matsuo, H.; Nishida, S.; Nomura, T.; Sakamoto, H.; Sasao, N.; Ushiroda, Y.; Nagasaka, Y.; Tanaka, Y.; Ogawa, S.; Shibuya, H.; Hanagaki, K.; Okuno, S.; Shen, D. Z.; Yan, D. S.; Yin, Z. W.; Tan, N.; Wang, C. H.; Yamaki, T.; Yamashita, Y.

    2002-02-01

    The Belle detector was designed and constructed to carry out quantitative studies of rare B-meson decay modes with very small branching fractions using an asymmetric e +e - collider operating at the ϒ(4S) resonance, the KEK-B-factory. Such studies require data samples containing ˜10 7 B-meson decays. The Belle detector is configured around a 1.5 T superconducting solenoid and iron structure surrounding the KEK-B beams at the Tsukuba interaction region. B-meson decay vertices are measured by a silicon vertex detector situated just outside of a cylindrical beryllium beam pipe. Charged particle tracking is performed by a wire drift chamber (CDC). Particle identification is provided by d E/d x measurements in CDC, aerogel threshold Cherenkov counter and time-of-flight counter placed radially outside of CDC. Electromagnetic showers are detected in an array of CsI( Tl) crystals located inside the solenoid coil. Muons and K L mesons are identified by arrays of resistive plate counters interspersed in the iron yoke. The detector covers the θ region extending from 17° to 150°. The part of the uncovered small-angle region is instrumented with a pair of BGO crystal arrays placed on the surfaces of the QCS cryostats in the forward and backward directions. Details of the design and development works of the detector subsystems, which include trigger, data acquisition and computer systems, are described. Results of performance of the detector subsystems are also presented.

  9. Technical note: a method for improving the calibration reproducibility of an ionization chamber detector array.

    PubMed

    Goodall, Simon; Morgan, Steve

    2014-09-01

    This paper describes an extension to a wide field calibration method implemented on a commercial detector array in order to improve the reproducibility of the calibration procedure. Following the standard array calibration procedure, two additional 10×10 cm exposures were acquired for each array axis with the detector array shifted by ±10 cm in the transverse or axial axes, or by ±10√2 cm in the positive or negative diagonal axes. These exposures were compared with a final baseline 10×10 cm exposure captured with the detector repositioned at the isocenter. The measurements were used to calculate a linear off-axis correction gradient which was then applied to the stored calibration factors. The mean coefficient of variation between five repeat calibrations was reduced from 4.17% to 0.48% and the maximum percentage error in individual calibration factors was reduced from 6.46% to 0.77%. The reproducibility of the calibration factors of an ionization chamber array was increased by capturing a baseline exposure and two further off-axis readings per calibration axis.

  10. Resonant detectors and focal plane arrays for infrared detection

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Allen, S. C.; Sun, J. G.; DeCuir, E. A.

    2017-08-01

    We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2-0.5 × 1018 cm-3 and a thin active layer thickness of 0.6-1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.

  11. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  12. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  13. Novel Usage for a Cosmic Ray Detector: Study of Lightning at Telescope Array

    NASA Astrophysics Data System (ADS)

    Belz, John; Okuda, Takeshi

    We describe observations performed at the Telescope Array Observatory in which "bursts" of air shower triggers of the surface detector occur in close temporal and spatial coincidence with lighting. These events appear to be consistent with other observations of high-energy particle showers produced by lightning. Telescope Array has the ability to reconstruct these showers using modified UHECR air shower reconstruction techniques, and thus determine the source of particles in the atmospheric breakdown. We describe new efforts to deploy lightning mapping detectors at the Telescope Array site which will enable further study of this phenomenon, along with enabling us to search for evidence of lightning strikes being "seeded" under certain atmospheric conditions by the passage of a UHECR air shower.

  14. Study on single-channel signals of water Cherenkov detector array for the LHAASO project

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Yao, Z. G.; Chen, M. J.; Yu, C. X.; Zha, M.; Wu, H. R.; Gao, B.; Wang, X. J.; Liu, J. Y.; Liao, W. Y.; Huang, D. Z.

    2017-05-01

    The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m2 and capacity of 350,000 tons of purified water, is one of the major components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the results obtained with prototype array.

  15. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  16. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500.

    PubMed

    Stelljes, T S; Harmeyer, A; Reuter, J; Looe, H K; Chofor, N; Harder, D; Poppe, B

    2015-04-01

    The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm(2) measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array's readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor kNR for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array's central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1% over the range from 5 to 1000 MU. The

  17. 3D Dose Verification Using Tomotherapy CT Detector Array

    SciTech Connect

    Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul

    2012-02-01

    Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

  18. Ion chromatography detector based on solid-state ion-selective electrode array.

    PubMed

    Lee, D K; Lee, H J; Cha, G S; Nam, H; Paeng, K J

    2000-12-15

    A variety of neutral carrier type ionophores for monovalent cations were employed to prepare solid-state cation-selective electrodes (SSEs) for use as a detector in single-column ion chromatography (IC). The polyurethane-based pseudoreference electrode made it possible to assemble an array type SSE detector for IC. An SSE-based detector provides not only the overall chromatogram for the separated ion species (monensin methyl ester-nonactin-based membrane), but also the enhanced chromatogram for specified ions of interest (valinomycin as K+ and nonactin for NH4+). This feature makes it possible to perform highly quantitative analysis with low detection limits even if the separation efficiency of the ion-exchange is not sufficient. Since SSE-based IC detectors are easily miniaturized and replaceable at low cost, they are an ideal component of a portable IC system.

  19. Overview of alternative infrared detectors and focal plane arrays for LWIR applications

    NASA Astrophysics Data System (ADS)

    Bernhardt, S.; Ribet-Mohamed, I.; Haïdar, R.; Maine, S.; Guérineau, N.; Vincent, G.; Derelle, S.; Druart, G.; Rommeluère, S.; Primot, J.; Deschamps, J.

    For a variety of scientific, space and defence applications, there is an increasing demand for long-wavelength infrared (LWIR) detector focal plane arrays and compact infrared instruments. In the first part, we present an overview of alternative detectors to standard mercury cadmium telluride photodiodes for LWIR detection, such as the HgCdTe avalanche photodiode, the quantum-well infrared photo-detectors, the superlattice detectors and the carbone nanotubes-based bolometers. In the second part, we focus on new concepts developed to meet the requirement of miniaturization of infrared instruments. Original IRFPA-based micro-optical assemblies have been achieved, demonstrating several optical functions such as imagery, spectral filtering, spectrometry and wavefront sensing.

  20. Operation of a multiple cell array detector in plasma experiments with a heavy ion beam diagnostic

    SciTech Connect

    Goncalves, B.; Malaquias, A.; Nedzelskiy, I. S.; Pereira, L.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.; Khrebtov, S.M.; Dreval, N.B.; Krupnik, L.I.; Hidalgo, C.; Depablos, J.

    2004-10-01

    A multiple cell array detector (MCAD) has been developed to investigate the spatial structure of plasma turbulence in fusion plasmas. This system is expected to provide simultaneous measurements of edge and core density fluctuations with both temporal and spatial resolution, extending the range and number of the sample volumes simultaneously recorded by a heavy ion beam diagnostic (HIBD). Since the detector (usually located close to the vessel wall of a plasma device) operates in a strong plasma radiation environment, the effective shielding of the detector presents a special problem. This article describes and compares the MCAD operation conditions on ISTTOK tokamak and TJ-II stellarator. Experimental results of the detector performance are presented together with the first measurements of n{sub e}{sigma}{sub eff} in the TJ-II plasmas.

  1. Time-resolved step-scan infrared imaging system utilizing a linear array detector.

    PubMed

    Sugiyama, Hiroshi; Koshoubu, Jun; Kashiwabara, Seiichi; Nagoshi, Toshiyuki; Larsen, Richard A; Akao, Kenichi

    2008-01-01

    A time-resolved infrared (IR) imaging system combined with a multichannel IR microscope, which utilizes a 16 channel linear array (LA) detector, and step-scan Fourier transform infrared (FT-IR) microscope was developed. The LA detector integrates a readout circuit on each detector element, so the detected signals can be read simultaneously. Thus, this system can perform high speed imaging using the step-scan method, similar to a single channel detector. To verify the capabilities of this system, a reflective sample was examined whose position was altered using a piezo actuator activated by an alternating voltage. In addition, the localization of relaxation dynamics for the liquid crystal (LC) molecules in an LC cell under oscillating electric field conditions was detected by this system.

  2. New detector array - the HRIBF Modular Total Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  3. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  4. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  5. Bias and nonlinearity of ultraviolet calibration curves measured using diode-array detectors

    SciTech Connect

    Dose, E.V.; Guiochon, G. Oak Ridge National Lab., TN )

    1989-11-01

    Models for the dependence of diode-array UV chromatographic detector response on bandpass and on the shape of the absorbing sample's spectrum are presented. The equations derived comprise terms describing two sources of non-ideal response due to the polychromatic nature of the detected radiation. The bias, or deviation at low concentrations of the measured absorbance from the ideal, zero-bandwidth value, increases roughly as the product of the spectrum's local second derivative and the square of the bandwidth. Calibration curve nonlinearity at higher concentrations, present for monochromator-based detectors and transmittance-averaging diode-array detectors, is described quantitatively. These equations confirm that the calibration curves always bend downward when the sample's absorption spectrum varies at all within the bandpass. A distinction is drawn between transmittance-averaging and absorbance-averaging diode-array detectors. Experimental results illustrate the types of bias and nonlinearity seen in each class at the high concentrations of interest to preparative-scale liquid chromatography and quality-control applications.

  6. Large format array NIR detectors for future ESA astronomy missions: characterization and comparison

    NASA Astrophysics Data System (ADS)

    Gooding, David; Crouzet, Pierre-Elie; Duvet, Ludovic; Prod'homme, Thibaut; Smit, Hans; Ter Haar, Jörg; Blommaert, Sander; Visser, Ivo; Lemmel, Frederic; Heijnen, Jerko; Van Der Luijt, Cornelis; Butler, Bart; Beaufort, Thierry

    2016-08-01

    The Payload Technology Validation section in the Future Missions office of ESA's Science directorate at ESTEC provides testing support to present and future missions at different stages in their lifetime, from early technology developments to mission operation validation. In this framework, a test setup to characterize near-infrared (NIR) detectors has been created. In the context of the Astronomy Large Format Array for the near-infrared ("ALFA-N") technology development program, detectors from different suppliers are tested. We report on the characterization progress of the ALFA-N detectors, for which a series of rigorous tests have been performed on two different detectors; one provided by CEA/Leti-CEA/IRFU-SOFRADIR, France and the other by SELEX- UK/ATC, UK. Experimental techniques, the test bench and methods are presented. The conversion gain of two different detectors is measured using the photon transfer curve method. For a Leti LPE detector the persistence effect has been probed across a range of illumination levels to reveal a sharp linear increase of persistence below full-well and a plateauing beyond saturation. The same detector has been proton irradiated which has resulted in no significant dark current increase.

  7. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  9. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Harris, J. T.; Friedrich, S.

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100-2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays - currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I-V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  10. Arrays of silicon drift detectors for an extraterrestrial X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Rehak, Pavel; Carini, Gabriella; Chen, Wei; De Geronimo, Gianluigi; Fried, Jack; Li, Zheng; Pinelli, Donald A.; Peter Siddons, D.; Vernon, Emerson; Gaskin, Jessica A.; Ramsey, Brian D.

    2010-12-01

    Arrays of Silicon Drift Detectors (SDD) were designed, produced and tested. These arrays are the central part of an X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C-Fe) fluoresced by ambient radiation on the investigated celestial object. The basic building element (or cell) of the arrays consists of a single hexagonal SDD. Signal electrons drift toward the center of the hexagon where a very low capacitance anode is located. The hexagonal shape of an individual SDD allows for a continuous covering of large detection areas of various shapes. To match the number of SDD cells with the external Application Specific Integrated Circuit (ASIC), two arrays, one with 16 and another with 64 cells were developed. One side of SDDs, called the window side, is a continuous thin rectifying junction through which the X-ray radiation enters the detector. The opposite side, called the device side contains electron collecting anodes as well as all other electrodes needed to generate the drift field and to sink leakage current produced on Si-SiO 2 interface. On both sides of the detector array there is a system of guard rings, which smoothly adjusts the voltage of the boundary cells to the ground potential of the silicon outside the sensitive volume. The drift voltage inside the detector is generated by an implanted rectifying contact, which forms a hexagonal spiral. This spiral produces the main valley where signal electrons drift as well as the voltage divider to produce the drift field. System performance is shown by a spectrum of Mn X-rays produced by the decay of 55Fe.

  11. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  12. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NASA Astrophysics Data System (ADS)

    Schaart, Dennis R.; van Dam, Herman T.; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J.

    2009-06-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 × 4 SiPM array coupled to either the front or back surface of a 13.2 mm × 13.2 mm × 10 mm LYSO:Ce3+ crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an ~0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45°, demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF2 detector, equals 960 ps FWHM.

  13. A novel, SiPM-array-based, monolithic scintillator detector for PET.

    PubMed

    Schaart, Dennis R; van Dam, Herman T; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J

    2009-06-07

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce(3+) crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an approximately 0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45 degrees , demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF(2) detector, equals 960 ps FWHM.

  14. X-ray characterization of a multichannel smart-pixel array detector.

    PubMed

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  15. Thermal Imaging Systems Utilizing Pyroelectric Detector Arrays Coupled With Solid-State Readout Techniques

    NASA Astrophysics Data System (ADS)

    Nystrom, Sven C.

    1980-05-01

    Pyroelectric detectors have the advantage of being inherently accoupled to the target scene and they are therefore ideally suited for use in high-background and/or long-wavelength thermal imaging systems. This paper presents the results of a study to determine the feasibility and to predict the performance of focal planes employing very thin pyroelectric detector arrays together with solid-state readout circuitry. Detectivities within a factor of two of the radiation-limited performance have been achieved by wire bond connecting pyroelectric detectors to a Hughes CCD with a modulating gate input. It is shown that the voltage responsivity is symmetric with respect to the thermal and electrical time con-stants; the traditional role of these time constants (Tpc < Til) can be reversed to that Tw. becomes greater than Tth. The lumped parameter analysis creaks down for very thin detectors when the thermal time constant must be severely adjusted and for detector arrays in the absence of adequate thermal isolation between elements; in this case, thermal spreading must be accounted for. A more extensive treatment utilizing a thermal diffusion analysis allows such cases to be considered.

  16. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    SciTech Connect

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  17. Development of a mercuric iodide detector array for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Patt, Bradley E.; Iwanczyk, Jan S.; Tornai, Martin P.; Levin, Craig S.; Hoffman, Edward J.

    1995-02-01

    A nineteen element mercuric iodide (HgI 2) detector array has been developed as a prototype for a larger (169 element) array, which is intended for use as an intra-operative gamma camera (IOGC). This work is motivated by the need for identifying and removing residual tumor cells after the removal of bulk tumor, while sparing normal tissue. Prior to surgery, a tumor seeking radiopharmaceutical is injected into the patient, and the IOGC is used to locate and map out the radioactivity. The IOGC can be used with commercially available radioisotopes such as 201Tl, 99mTc, and 123I which have low energy X- and gamma-rays. The use of HgI 2 detector arrays in this application facilitates construction of an imaging head that is very compact and has a high signal-to-noise ratio. The prototype detectors were configured as discrete pixel elements joined by fine wires into novel pseudo crossed-grid arrays to promote improved electric field distribution compared with previous designs, and to maximize the fill factor for the expected circular probe shape. Pixel dimensions are hexagonal with 1.5 mm and 1.9 mm diameters separated by 0.2 mm thick lead septa. The overall detectors are hexagonal with a diameter of ˜1 cm. The sensitive detector thickness is 1.2 mm, which corresponds to >99% efficiency at 59 keV and 67% efficiency at 140 keV. Row, column, and pixel spectra have been measured on the prototypical detector array. Energy resolution was found to vary with the width of the row/column coincidence window that was applied. With the low edge of the coincidence window at 30% below the photopeak, pixel energy resolutions of 2.98% and 3.88% FWHM were obtained on the best individual pixels at 59 keV ( 241Am) and 140 keV ( 99mTc), respectively. To characterize this array as an imaging device, the spatial response of the pixels was measured with stepped point sources. The spatial response corresponded well with the pixel geometry, indicating that the spatial resolution was determined

  18. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Su, Hong; Chen, Zhi-Qiang; Dong, Cheng-Fu; Qian, Yi; Gao, Shan-Shan; Zhou, Chao-Yang; Lu, Wan; Ye, Rui-Ping; Ma, Jun-Bing

    2010-10-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  19. Speckle spectroscopy; an application for the multi-anode microchannel array detector system

    NASA Technical Reports Server (NTRS)

    Butcher, H. R.; Joseph, C. L.; Timothy, J. G.

    1982-01-01

    Plans to combine the High Angular Resolution Imager/Spectrometer on the 4-meter Mayall telescope at the Kitt Peak National Observatory and the (256 x 1024)-pixel Multi-Anode Microchannel Array detector system to produce a unique instrument for speckle spectroscopy are described. The pulse-counting detector system will provide distortion-free imaging and will time tag each spatially-resolved photon event with an accuracy of 100 ns. The Imager/Spectrometer will provide a spatial resolution of 0.07 arcsec orthogonal to the plane of dispersion and 0.18 arcsec in the plane of dispersion.

  20. Numerical modeling of a dark current suppression mechanism in IR detector arrays

    NASA Astrophysics Data System (ADS)

    Glasmann, Andreu; Hubbard, Taylor; Bellotti, Enrico

    2017-02-01

    As material growth and processing have improved, state of the art infrared detector arrays remain limited by material properties and not processing or growth quality. In particular, the dark current can be dominated by diffusion of minority carriers in the quasineutral regions. In this work, we present a unique detector architecture that allows for dark current suppression below the fundamental diffusion limit. We have extensively studied this effect, and report dark current, photocurrent, and quantum efficiency. Finally, we conclude by offering a path to implementing this architecture into existing FPAs.

  1. High-resolution spectroscopy with the multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.

    1982-01-01

    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  2. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.

    PubMed

    Pichler, B J; Swann, B K; Rochelle, J; Nutt, R E; Cherry, S R; Siegel, S B

    2004-09-21

    Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 x 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 x 2.0 x 12 mm3) with custom-built monolithic 3 x 3 APD arrays was investigated. The APDs had a 5 x 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF(-1) noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 x 4.0 x 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

  3. 20-element HgI[sub 2] energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1992-10-01

    This paper describes recent progress in the development of HgI[sub 2] energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K[sub alpha]) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel.

  4. Development of a Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Jiang, J.; Matalon, A.; Matthews, J. N.; Motloch, P.; Privitera, P.; Takizawa, Y.; Yamazaki, K.

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECR) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report preliminary results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photo-multiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment.

  5. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  6. SU-E-T-524: In-Vivo Diode Dosimetry Proton Therapy Range Verification Validation Study for Pediatric CSI

    SciTech Connect

    Toltz, A; Seuntjens, J; Hoesl, M; Schuemann, J; Lu, H; Paganetti, H

    2015-06-15

    Purpose: With the aim of reducing acute esophageal radiation toxicity in pediatric patients receiving craniospinal irradiation (CSI), we investigated the implementation of an in-vivo, adaptive proton therapy range verification methodology. Simulation experiments and in-phantom measurements were conducted to validate the range verification technique for this clinical application. Methods: A silicon diode array system has been developed and experimentally tested in phantom for passively scattered proton beam range verification for a prostate treatment case by correlating properties of the detector signal to the water equivalent path length (WEPL). We propose to extend the methodology to verify range distal to the vertebral body for pediatric CSI cases by placing this small volume dosimeter in the esophagus of the anesthetized patient immediately prior to treatment. A set of calibration measurements was performed to establish a time signal to WEPL fit for a “scout” beam in a solid water phantom. Measurements are compared against Monte Carlo simulation in GEANT4 using the Tool for Particle Simulation (TOPAS). Results: Measurements with the diode array in a spread out Bragg peak of 14 cm modulation width and 15 cm range (177 MeV passively scattered beam) in solid water were successfully validated against proton fluence rate simulations in TOPAS. The resulting calibration curve allows for a sensitivity analysis of detector system response with dose rate in simulation and with individual diode position through simulation on patient CT data. Conclusion: Feasibility has been shown for the application of this range verification methodology to pediatric CSI. An in-vivo measurement to determine the WEPL to the inner surface of the esophagus will allow for personalized adjustment of the treatment plan to ensure sparing of the esophagus while confirming target coverage. A Toltz acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the

  7. The HgI sub 2 energy dispersive x-ray array detectors and minaturized processing electronics project

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szawlowski . Inst. of Physics); Patt, W.K. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.)

    1990-04-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays for synchrotron radiation research and their associated miniaturized processing electronics. Deploying a 5 element HgI{sub 2} array detector under realistic operating conditions at SSRL, an energy resolution of 252 eV FWHM at 5.9 keV (Mn-K{alpha}) was obtained. The authors also report energy resolution and throughput measurements versus input count rate. The results from the HgI{sub 2} system are then compared to those obtained under identical conditions from a commercial 13 element Ge detector array.

  8. Development of an 8× 8 CPW Microwave Kinetic Inductance Detector (MKID) Array at 0.35 THz

    NASA Astrophysics Data System (ADS)

    Li, Jing; Yang, Jin-Ping; Lin, Zhen-Hui; Liu, Dong; Shi, Sheng-Cai; Mima, S.; Furukawa, N.; Otani, C.

    2016-07-01

    Microwave kinetic inductance detectors (MKIDs) are promising for THz direct detector arrays of large size, particularly with simple frequency-division multiplexing. Purple Mountain Observatory is developing a terahertz superconducting imaging array (TeSIA) for the DATE5 telescope to be constructed at Dome A, Antarctica. Here we report on the development of a prototype array for the TeSIA, namely an 8× 8 CPW MKID array at 0.35 THz. The resonance frequencies of the MKIDs span the 4-5.575 GHz band with an interval of 25 MHz. Each detector is integrated with a twin-slot antenna centered at 0.5 THz and with a relative bandwidth of 10 %, while the whole MKID array with a micro-lens array. Detailed design and measurement results will be presented.

  9. A 2D silicon detector array for quality assurance in small field dosimetry: DUO.

    PubMed

    Shukaili, Khalsa Al; Petasecca, Marco; Newall, Matthew; Espinoza, Anthony; Perevertaylo, Vladimir L; Corde, Stéphanie; Lerch, Michael; Rosenfeld, Anatoly B

    2017-02-01

    Nowadays, there are many different applications that use small fields in radiotherapy treatments. The dosimetry of small radiation fields is not trivial due to the problems associated with lateral disequilibrium and source occlusion and requires reliable quality assurance (QA). Ideally such a QA tool should provide high spatial resolution, minimal beam perturbation and real time fast measurements. Many different types of silicon diode arrays are used for QA in radiotherapy; however, their application in small filed dosimetry is limited, in part, due to a lack of spatial resolution. The Center of Medical Radiation Physics (CMRP) has developed a new generation of a monolithic silicon diode array detector that will be useful for small field dosimetry in SRS/SRT. The objective of this study is to characterize a monolithic silicon diode array designed for dosimetry QA in SRS/SRT named DUO that is arranged as two orthogonal 1D arrays with 0.2 mm pitch. DUO is two orthogonal 1D silicon detector arrays in a monolithic crystal. Each orthogonal array contains 253 small pixels with size 0.04 × 0.8 mm(2) and three central pixels are with a size of 0.18 × 0.18 mm(2) each. The detector pitch is 0.2 mm and total active area is 52 × 52 mm(2) . The response of the DUO silicon detector was characterized in terms of dose per pulse, percentage depth dose, and spatial resolution in a radiation field incorporating high gradients. Beam profile of small fields and output factors measured on a Varian 2100EX LINAC in a 6 MV radiation fields of square dimensions and sized from 0.5 × 0.5 cm(2) to 5 × 5 cm(2) . The DUO response was compared under the same conditions with EBT3 films and an ionization chamber. The DUO detector shows a dose per pulse dependence of 5% for a range of dose rates from 2.7 × 10(-4) to 1.2 × 10(-4) Gy/pulse and 23% when the rate is further reduced to 2.8 × 10(-5) Gy/pulse. The percentage depth dose measured to 25 cm depth in solid water phantom beyond the

  10. A surface micromachined thermopile detector array with an interference-based absorber

    NASA Astrophysics Data System (ADS)

    Wu, H.; Emadi, A.; Sarro, P. M.; de Graaf, G.; Wolffenbuttel, R. F.

    2011-07-01

    A thermo-electric (TE) infrared detector array composed of 23 thermopiles, each with 5 thermocouples on a suspended beam of 650 × 36 µm2 dimensions, has been fabricated in a CMOS-compatible MEMS process. The array is used for realization of an IR micro-spectrometer in the 1-5 µm spectral range. Interference filter-based IR absorbers using titanium/aluminum layers with a silicon carbide cavity layer have been designed, fabricated and validated. These thin film stacks are more suitable for the subsequent processes as compared to conventional techniques. The silicon carbide layer is also used for device protection. The TE detector with an interference filter-based absorber features a sensitivity of 294 V W-1 in the 2.15 µm wavelength range and a thermal time constant of 4.85 ms in vacuum.

  11. Acceptance and Angular Resolution of an Infill Array for the Pierre Auger Surface Detector

    SciTech Connect

    Medina, C.; Gomez Berisso, M.; Allekotte, I.; Etchegoyen, A.; Supanitsky, D.; Medina-Tanco, G.

    2007-02-12

    The Pierre Auger Observatory has been designed to study the highest-energy cosmic rays in nature (E {>=} 1019 eV). The determination of their arrival direction, energy and composition is performed by the analysis of the atmospheric showers they produce. The Auger Surface Array will consist of 1600 water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km. In this paper we show how adding a ''small'' area of surface detectors at half the above mentioned spacing would make it possible to lower the detection threshold by one order of magnitude, thus allowing the Observatory to reach lower energies where the cross-over from galactic to extragalactic sources is expected. We also analyze the angular resolution that can be attained with such an infill array.

  12. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, Dayong; Zhou, Xun; Rong, Lu; Li, Zeyu; Li, Lei; Min, Wan; Huang, Haochong; Wang, Yunxin

    2016-05-01

    Terahertz computed tomography makes use of the penetrability of terahertz radiation and obtains three-dimensional (3-D) object projection data. Continuous-wave terahertz digital holographic tomography with a pyroelectric array detector is presented. Compared with scanning terahertz computed tomography, a pyroelectric array detector can obtain a large quantity of projection data in a short time. To obtain a 3-D image, in-line digital holograms of the object are recorded from various directions and reconstructed to obtain two-dimensional (2-D) projection data; then 2-D cross-sectional images and 3-D images of the internal structure of the object are obtained by the filtered back projection algorithm. The presented system can rapidly reconstruct the 3-D object and reveals the internal 3-D structure of the object. A 3-D reconstruction of a polyethylene straw is presented with a 6% error in retrieved diameter.

  13. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    NASA Astrophysics Data System (ADS)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  14. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  15. Underground water Cherenkov muon detector array with the Tibet air shower array for gamma-ray astronomy in the 100 TeV region

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Bi, X. J.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, A. F.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, B.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.

    2007-06-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10 1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  16. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  17. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.

    DTIC Science & Technology

    1974-06-01

    the background is shown in Figure 2-8. In this system the field stop is scare I with a vertical slit and essentially all the energy falling on the...cylindrical mirror will be o focused as a vertical iine on the detector array. Several of the previous problems have been solved in this system. The...patterns Limillid only by DAC, AD,,.J Access y u, limited by speed. anid Display Mtsaitor strict possible formats. xalbe Modification of timing salto

  19. Lung counting: comparison of detector performance with a four detector array that has either metal or carbon fibre end caps, and the effect on mda calculation.

    PubMed

    Ahmed, Asm Sabbir; Hauck, Barry; Kramer, Gary H

    2012-08-01

    This study described the performance of an array of high-purity Germanium detectors, designed with two different end cap materials-steel and carbon fibre. The advantages and disadvantages of using this detector type in the estimation of the minimum detectable activity (MDA) for different energy peaks of isotope (152)Eu were illustrated. A Monte Carlo model was developed to study the detection efficiency for the detector array. A voxelised Lawrence Livermore torso phantom, equipped with lung, chest plates and overlay plates, was used to mimic a typical lung counting protocol with the array of detectors. The lung of the phantom simulated the volumetric source organ. A significantly low MDA was estimated for energy peaks at 40 keV and at a chest wall thickness of 6.64 cm.

  20. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    SciTech Connect

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  1. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  2. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    SciTech Connect

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  3. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    NASA Astrophysics Data System (ADS)

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-11-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  4. A space qualified thermal imaging system using a Pt Si detector array

    NASA Astrophysics Data System (ADS)

    Astheimer, Robert W.

    1989-06-01

    EDO Corporation, Barnes Engineering Division designed and constructed a high resolution thermal imaging system on contract to Lockheed for use in the SDI Star Lab. This employs a Pt Si CCD array which is sensitive in the spectral range of 3 to 5 microns. Star Lab will be flown in the Shuttle bay and consists basically of a large, reflecting, tracking telescope with associated sensors and electronics. The thermal imaging system is designed to operate in the focal plane of this telescope. The configuration of the system is illustrated. The telescope provides a collimated beam output which is focussed onto the detector array by a silicon objective lens. The detector array subtends a field of view of 1.6 degrees x 1.22 degrees. A beam switching mirror permits bypassing the large telescope to give a field of 4 degrees x 3 degrees. Two 8 position filter wheels are provided, and background radiation is minimized by Narcissus mirrors. The detector is cooled with a Joule-Thompson cryostat fed from a high pressure supply tank. This was selected instead of a more convenient closed-cycle system because of concern with vibration. The latter may couple into the extremely critical Starlab tracking telescope. The electronics produce a digitized video signal for recording. Offset and responsivity correction factors are stored for all pixels and these corrections are made to the digitized output in real time.

  5. A space qualified thermal imaging system using a Pt Si detector array

    NASA Technical Reports Server (NTRS)

    Astheimer, Robert W.

    1989-01-01

    EDO Corporation, Barnes Engineering Division designed and constructed a high resolution thermal imaging system on contract to Lockheed for use in the SDI Star Lab. This employs a Pt Si CCD array which is sensitive in the spectral range of 3 to 5 microns. Star Lab will be flown in the Shuttle bay and consists basically of a large, reflecting, tracking telescope with associated sensors and electronics. The thermal imaging system is designed to operate in the focal plane of this telescope. The configuration of the system is illustrated. The telescope provides a collimated beam output which is focussed onto the detector array by a silicon objective lens. The detector array subtends a field of view of 1.6 degrees x 1.22 degrees. A beam switching mirror permits bypassing the large telescope to give a field of 4 degrees x 3 degrees. Two 8 position filter wheels are provided, and background radiation is minimized by Narcissus mirrors. The detector is cooled with a Joule-Thompson cryostat fed from a high pressure supply tank. This was selected instead of a more convenient closed-cycle system because of concern with vibration. The latter may couple into the extremely critical Starlab tracking telescope. The electronics produce a digitized video signal for recording. Offset and responsivity correction factors are stored for all pixels and these corrections are made to the digitized output in real time.

  6. Development of mercuric iodide energy dispersive x-ray array detectors

    SciTech Connect

    Iwanczyk, J.S.; Warburton, W.K.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1988-02-01

    There are various areas of synchrotron radiation research particularly Extended X-Ray Absorption Fine Structure (EXAFS) on dilute solutions and anomalous scattering, which would strongly benefit from the availability of energy dispersive detector arrays with high energy resolution and good spatial resolution. The goal of this development project is to produce high energy resolution mercuric iodide (HgI/sub 2/) detector sub-modules, consisting of several elements. These sub-modules can later be grouped into larger arrays of 100-400 elements. A prototype 5 element HgI/sub 2/ array detector was constructed and tested. Dimensions of each element were 7.3 mm x 0.7 mm. An energy resolution of 335 eV (FWHM) for Mn0K..cap alpha.. at 5.9 keV has been measured. The novel fiber-optic pulsed light feedback has been introduced into the charge preamplifiers in order to minimize electronic crosstalk between channels.

  7. MOCVD growth of ZnO nanowire arrays for advanced UV detectors

    NASA Astrophysics Data System (ADS)

    Rivera, Abdiel; Mazady, Anas; Zeller, John; Anwar, Mehdi; Manzur, Tariq; Sood, Ashok

    2013-03-01

    Zinc oxide (ZnO) is a biocompatible and versatile functional material having a bandgap of 3.37 eV that exhibits both semiconducting and piezoelectric properties and has a diverse group of growth morphologies. We have grown highly ordered vertical arrays of ZnO nanowires (NWs) using a metal organic chemical vapor deposition (MOCVD) growth process on various substrates. The NWs were grown on p-Si (100), SiO2, and m-plane sapphire substrates. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. The unique diffraction pattern for ZnO (002) concurred with the SEM inspection indicating vertical orientation of the NWs. UV detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity for applications such as missile plume detection and threat warning. Compared to the photomultiplier tubes (PMTs) prevalent in current missile warning systems, the NW detector arrays are expected to exhibit low noise, extended lifetimes, and low power requirements for UV detector applications.

  8. 3D simulation of detector parameters for backside illuminated InSb 2D arrays

    NASA Astrophysics Data System (ADS)

    Fishman, Tal; Nahum, Vered; Saguy, Erez; Calahorra, Zippora; Shtrichman, Itay

    2007-09-01

    Accurate and reliable numerical simulation tools are necessary for the development of advanced semiconductor devices. SCD is using the Silvaco Atlas simulation tool to simultaneously solve the Poisson, Continuity and transport equations for 3D detector structures. In this work we describe a set of systematic experiments performed in order to calibrate the Atlas simulation to SCD's backside illuminated InSb focal plane arrays (FPA) realized with planar technology. From these experiments we extract physical parameters such as diffusion length, surface recombination velocity, and SRH lifetime. The actual and predicted performance (e.g. dark-current and MTF) of present and future detectors is presented. We have studied arrays with pitch in the range of 15 to 30 μm. We find that the MTF width is inversely proportional to the pitch. Thus, the spatial resolution of the detector improves with decreasing pixel size as expected. Using the Atlas simulation we predict the performance of planar InSb arrays with smaller pixel dimensions, e.g., 12 and 10 μm.

  9. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  10. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  11. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    SciTech Connect

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-10-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 {micro}m x 500 {micro}m, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals.

  12. a Cosmic Ray Detector Array for Schools in the Cambridge Region

    NASA Astrophysics Data System (ADS)

    Wotton, S. A.; Goodrick, M. J.; Hommels, B.; Parker, M. A.

    2011-06-01

    Particle physics, astrophysics and cosmology are areas of research that have captured the imagination of the general public in recent years. By giving school students first-hand experience of building and operating a particle detector and the analysis of the data in a collaborative environment we anticipate that they will gain a deeper insight into the many and diverse facets of experimental particle physics. Cosmic rays provide a readily available source of high energy particles and other projects have already exploited this in building arrays of cosmic ray detectors located in schools and linked together via the internet. We aim to extend this concept by creating our own network of detectors in our region with a particular emphasis on hands-on involvement by school students in the partner schools. This talk outlines our plans towards the implementation of this project and our wider goals of integrating our local network with other projects both nationally and internationally.

  13. Studies of Nuclear Structure using Radioactive Decay and a Large Array of Compton Suppressed Ge Detectors

    NASA Astrophysics Data System (ADS)

    Wood, John L.

    2000-11-01

    Radioactive decay has long played a role in contributing to the elucidation of nuclear structure. However compared to in-beam gamma-ray spectroscopy, which has been combined with the extraordinary power of multi-detector arrays, radioactive decay scheme studies have been carried out usually with rather modest detector set-ups (two detectors, no Compton suppression). An extensive program to rectify this situation has been initiated using the "8-PI spectrometer"[1]. This is an array of 20 Compton-suppressed Ge detectors with exceptional stability and peak-to-total ratio. Experiments performed[2] recently at Lawrence Berkeley Laboratory, to better characterize nuclear deformation properties and the onset of deformation in nuclei, will be described. Future plans for the study of nuclei far from beta stability at the TRIUMF/ISAC Facility using the 8-PI spectrometer will also be outlined. [1] J.P.Martin et al., Nucl.Instr.Meth. A 257, 301 (1987). [2] See, e.g., W.D.Kulp et al. Bull.Am.Phys.Soc. 44, 63 (1999); W.D.Kulp et al., ibid., Williamsburg Meeting, Oct 4-7 (2000).

  14. Arrays of Segmented, Tapered Light Guides for Use with Large, Planar Scintillation Detectors

    PubMed Central

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-01-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector’s active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system. PMID:26538685

  15. Charge-coupled-device/fiberoptic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-12-31

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3 x 3 array. Nine, thermoelectrically cooled 1,024 x 1,024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  16. Charge-coupled-device/fiberoptic taper array X-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-03-01

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3x3 array. Nine, thermoelectrically cooled 1024 x 1024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  17. Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment

    NASA Astrophysics Data System (ADS)

    Quaglia, R.; Schembari, F.; Bellotti, G.; Butt, A. D.; Fiorini, C.; Bombelli, L.; Giacomini, G.; Ficorella, F.; Piemonte, C.; Zorzi, N.

    2016-07-01

    This work deals with the development of new Silicon Drift Detectors (SDDs) and readout electronics for the upgrade of the SIDDHARTA experiment. The detector is based on a SDDs array organized in a 4×2 format with each SDD square shaped with 64 mm2 (8×8) active area. The total active area of the array is therefore 32×16 mm2 while the total area of the detector (including 1 mm border dead area) is 34 × 18mm2. The SIDDHARTA apparatus requires 48 of these modules that are designed and manufactured by Fondazione Bruno Kessler (FBK). The readout electronics is composed by CMOS preamplifiers (CUBEs) and by the new SFERA (SDDs Front-End Readout ASIC) circuit. SFERA is a 16-channels readout ASIC designed in a 0.35 μm CMOS technology, which features in each single readout channel a high order shaping amplifier (9th order Semi-Gaussian complex-conjugate poles) and a high efficiency pile-up rejection logic. The outputs of the channels are connected to an analog multiplexer for the external analog to digital conversion. An on-chip 12-bit SAR ADC is also included. Preliminary measurements of the detectors in the single SDD format are reported. Also measurements of low X-ray energies are reported in order to prove the possible extension to the soft X-ray range.

  18. Charge-coupled device/fiber optic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1998-04-01

    A large area charge-coupled device (CCD) based fiber optic taper array detector (APS-1) is installed at the insertion-device beamline of the Structural Biology Center at the Argonne Advanced Photon Source x-ray synchrotron. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of x-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high x-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the 2-D x-ray patterns to visible light images by a thin layer of x-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiber optic tapers arranged in a 3{times}3 array. Nine, thermoelectrically cooled 1024{times}1024pixel CCDs image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters ensure short readout time and low readout noise. We discuss the design and measured performance of the detector. {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}{ital Key words:} charge-coupled device; fiber optic taper; x-ray diffraction; crystallography; imaging detector. {copyright} {ital 1998} {ital Society of Photo-Optical Instrumentation Engineers}

  19. Development of Passively Cooled Long Wave Infrared Detector Arrays for NEOCam

    NASA Astrophysics Data System (ADS)

    McMurtry, Craig W.; Lee, D.; Beletic, J.; Chen, C.; Demers, R.; Dorn, M.; Edwall, D.; Bacon Fazar, C.; Forrest, W. J.; Liu, F.; Mainzer, A. K.; Pipher, J.; Yulius, A.

    2013-01-01

    The Near Earth Object Camera (NEOCam) is a proposed space mission designed to discover and characterize most of the potentially hazardous asteroids that orbit near the Earth. NEOCam consists of an infrared telescope and a passively cooled wide-field camera operating at thermal infrared wavelengths. NASA has funded technology development for NEOCam, including the development of long wavelength infrared detector arrays that will have excellent performance at NEOCam’s zodiacal emission-limited background. Teledyne Imaging Sensors has developed and delivered for test at the University of Rochester the first set of approximately 10 micron cutoff, 1024 x 1024 HgCdTe detector arrays in accord with NEOCam requirements. The first measurements of these arrays show the development to be extremely promising: noise, dark current, quantum efficiency and well depth goals have been met by this technology at focal plane temperatures of 40K, readily attainable with passive cooling. The next set of arrays to be developed will address changes suggested by the first set of deliverables.

  20. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  1. Detector arrays for photometric measurements at soft X-ray, ultraviolet and visible wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The construction and modes of operation of the Multi-Anode Microchannel Array (MAMA) detectors are described, and the designs of spectrometers utilizing them are outlined. MAMA consists of a curved microchannel array plate, an opaque photocathode (peak quantum efficiency of 19% at 1216 A), and a multi-anode (either discrete- or coincidence-anode) readout array. Designed for use in instruments on spaceborne telescopes, MAMA can be operated in a windowless configuration in extreme-ultraviolet and soft X-ray wavelengths, or in a sealed configuration at UV and visible wavelengths. Advantages of MAMA include low applied potential (less than 3.0 kV), high gain (greater than 10 to the 6th electrons/pulse), low sensitivity to high-energy charged particles, and immunity to external magnetic fields of less than 500 Gauss

  2. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  3. Microelectrode Arrays with Overlapped Diffusion Layers as Electroanalytical Detectors: Theory and Basic Applications

    PubMed Central

    Tomčík, Peter

    2013-01-01

    This contribution contains a survey of basic literature dealing with arrays of microelectrodes with overlapping diffusion layers as prospective tools in contemporary electrochemistry. Photolithographic thin layer technology allows the fabrication of sensors of micrometric dimensions separated with a very small gap. This fact allows the diffusion layers of single microelectrodes to overlap as members of the array. Various basic types of microelectrode arrays with interacting diffusion layers are described and their analytical abilities are accented. Theoretical approaches to diffusion layer overlapping and the consequences of close constitution effects such as collection efficiency and redox cycling are discussed. Examples of basis applications in electroanalytical chemistry such as amperometric detectors in HPLC and substitutional stripping voltammetry are also given. PMID:24152927

  4. Experimental study of double-{beta} decay modes using a CdZnTe detector array

    SciTech Connect

    Dawson, J. V.; Goessling, C.; Koettig, T.; Muenstermann, D.; Rajek, S.; Schulz, O.; Janutta, B.; Zuber, K.; Junker, M.; Reeve, C.; Wilson, J. R.

    2009-08-15

    An array of sixteen 1 cm{sup 3} CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-{beta} decay searches with such devices. As one of the double-{beta} decay experiments with the highest granularity the 4x4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-{beta} decay modes of Cd, Zn, and Te isotopes are obtained. No signal has been found, but several limits beyond 10{sup 20} years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the {beta}{sup +}/EC decay of {sup 120}Te is given.

  5. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    SciTech Connect

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific detectors. To

  6. Three-dimensional modeling and inversion of x-ray pinhole detector arrays

    SciTech Connect

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.

    2006-10-15

    X-ray pinhole detectors are a common and useful diagnostic for high temperature and fusion-grade plasmas. While the measurements from such diagnostics are line integrated, local emission can be recovered by inverting or modeling the data using varying assumptions including toroidal symmetry, flux surface isoemissivity, and one-dimensional (1D) chordal lines of sight. This last assumption is often valid when the structure sizes and gradient scale lengths of interest are much larger than the spatial resolution of the detector elements. However, x-ray measurements of, for example, the strong gradients in the H-mode pedestal may require a full three-dimensional (3D) treatment of the detector geometry when the emission of the plasma has a significant variation within the field of view, especially in a high-triangularity, low aspect ratio plasma. Modeling of a high spatial resolution tangential edge array for NSTX has shown that a proper 3D treatment can improve the effective spatial resolution of the detector by 10%-40% depending on the modeled signal-to-noise ratio and gradient scale length. Results from a general treatment of arbitrary detector geometry will provide a guideline for the amount of systematic error that can be expected by a 1D versus 3D field of view analysis.

  7. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  8. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  9. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    PubMed

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  10. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  11. Real-time scintillation array dosimetry for radiotherapy: The advantages of photomultiplier detectors

    SciTech Connect

    Liu, Paul Z. Y.; Suchowerska, Natalka; Abolfathi, Peter; McKenzie, David R.

    2012-04-15

    Purpose: In this paper, a photomultiplier tube (PMT) array dosimetry system has been developed and tested for the real-time readout of multiple scintillation signals from fiber optic dosimeters. It provides array dosimetry with the advantages in sensitivity provided by a PMT, but without the need for a separate PMT for each detector element. Methods: The PMT array system consisted of a multianode PMT, a multichannel data acquisition system, housing and optic fiber connections suitable for clinical use. The reproducibility, channel uniformity, channel crosstalk, acquisition speed, and sensitivity of the PMT array were quantified using a constant light source. Its performance was compared to other readout systems used in scintillation dosimetry. An in vivo HDR brachytherapy treatment was used as an example of a clinical application of the dosimetry system to the measurement of dose at multiple sites in the rectum. The PMT array system was also tested in the pulsed beam of a linear accelerator to test its response speed and its application with two separate methods of Cerenkov background removal. Results: The PMT array dosimetry system was highly reproducible with a measurement uncertainty of 0.13% for a 10 s acquisition period. Optical crosstalk between neighboring channels was accounted for by omitting every second channel. A mathematical procedure was used to account for the crosstalk in next-neighbor channels. The speed and sensitivity of the PMT array system were found be superior to CCD cameras, allowing for measurement of more rapid changes in dose rate. This was further demonstrated by measuring the dose delivered by individual photon pulses of a linear accelerator beam. Conclusions: The PMT array system has advantages over CCD camera-based systems for the readout of scintillation light. It provided a more sensitive, more accurate, and faster response to meet the demands of future developments in treatment delivery.

  12. Real-time scintillation array dosimetry for radiotherapy: the advantages of photomultiplier detectors.

    PubMed

    Liu, Paul Z Y; Suchowerska, Natalka; Abolfathi, Peter; McKenzie, David R

    2012-04-01

    In this paper, a photomultiplier tube (PMT) array dosimetry system has been developed and tested for the real-time readout of multiple scintillation signals from fiber optic dosimeters. It provides array dosimetry with the advantages in sensitivity provided by a PMT, but without the need for a separate PMT for each detector element. The PMT array system consisted of a multianode PMT, a multichannel data acquisition system, housing and optic fiber connections suitable for clinical use. The reproducibility, channel uniformity, channel crosstalk, acquisition speed, and sensitivity of the PMT array were quantified using a constant light source. Its performance was compared to other readout systems used in scintillation dosimetry. An in vivo HDR brachytherapy treatment was used as an example of a clinical application of the dosimetry system to the measurement of dose at multiple sites in the rectum. The PMT array system was also tested in the pulsed beam of a linear accelerator to test its response speed and its application with two separate methods of Cerenkov background removal. The PMT array dosimetry system was highly reproducible with a measurement uncertainty of 0.13% for a 10 s acquisition period. Optical crosstalk between neighboring channels was accounted for by omitting every second channel. A mathematical procedure was used to account for the crosstalk in next-neighbor channels. The speed and sensitivity of the PMT array system were found be superior to CCD cameras, allowing for measurement of more rapid changes in dose rate. This was further demonstrated by measuring the dose delivered by individual photon pulses of a linear accelerator beam. The PMT array system has advantages over CCD camera-based systems for the readout of scintillation light. It provided a more sensitive, more accurate, and faster response to meet the demands of future developments in treatment delivery.

  13. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    SciTech Connect

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; Camarda, Giuseppe; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Utpal, Roy; Yang, Ge; James, Ralph

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.

  14. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources usingmore » a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  15. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Vasan, S N Swetadri; Cartwright, A N; Titus, A H; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic x- ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm(2) (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of- interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  16. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Swetadri Vasan, S. N.; Cartwright, A. N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We have designed and developed from the discrete component level a high resolution dynamic x-ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 ×1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2 (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of-interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  17. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  18. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  19. Poster - Thur Eve - 32: Water tank referenced calibration method for detector array devices.

    PubMed

    Foottit, C; Gerig, L

    2012-07-01

    Detector array devices, such as the I'mRT Matrixx (IBA Dosimetry), provide a means of evaluating beam profiles with respect to gantry for a range of dose rates and monitor units. The relative calibration of these devices is typically highly susceptible to even relatively small variations in beam output. An alternative method is proposed here, which directly references the device detector response to water tank data. The Matrixx response was measured at the four cardinal angles for three devices. A calibration factor was determined for each orientation of the Matrixx device by dividing a water tank measured profile by the Matrixx response for the in-plane and cross-plane detectors. A geometric mean of each orientation was used as the estimate of the calibration coefficient. Before calibration, the three-detector average of the deviation from the profile measured in the water tank centered on each of the horns was 0.4% (SD 0.2%); applying the calibration procedure reduced this to 0.1% (SD 0.1%). The energy independence of the proposed relative calibration was also confirmed. A comparison of the linac output for relatively short Matrixx acquisitions to the longer water tank acquisition suggested some difference. This difference was mitigated by averaging. The proposed water tank reference calibration procedure is an effective means of determining the relative calibration of a detector array and mitigates the effect of compound error by avoiding the recursive algorithm of typical calibration methods. In addition it has the benefit of being directly relatable to commissioning beam data. © 2012 American Association of Physicists in Medicine.

  20. The multi-element mercuric iodide detector array with computer controlled miniaturized electronics for EXAFS

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Szczebiot, R.; Maculewicz, G.; Wang, M.; Wang, Y.J.; Hedman, B.; Hodgson, K.O.; Cox, A.D. |

    1995-08-01

    Construction of a 100-element HgI{sub 2} detector array, with miniaturized electronics, and software developed for synchrotron applications in the 5 keV to 35 keV region has been completed. Recently, extended x-ray absorption fine structure (EXAFS) data on dilute ({approximately} 1mM) metallo-protein samples were obtained with up to seventy-five elements of the system installed. The data quality obtained is excellent and shows that the detector is quite competitive as compared to commercially available systems. The system represents the largest detector array ever developed for high resolution, high count rate x-ray synchrotron applications. It also represents the first development and demonstration of high-density miniaturized spectroscopy electronics with this high level of performance. Lastly, the integration of the whole system into an automated computer-controlled environment represents a major advancement in the user interface for XAS measurements. These experiments clearly demonstrate that the HgI{sub 2} system, with the miniaturized electronics and associated computer control functions well. In addition it shows that the new system provides superior ease of use and functionality, and that data quality is as good as or better than with state-of-the-art cryogenically cooled Ge systems.

  1. A PCI Based Data Acquisition System for Ground Array Detectors with Wireless Synchronization through GPS

    NASA Astrophysics Data System (ADS)

    Assis, P.; Brogueira, P.; Melo, L.; Pimenta, M.; Silva, J. C.; Varela, J.

    2003-07-01

    The synchronization of ground based cosmic ray detectors is a recurring problem. Traditional acquisition systems usually drive signal cables from each station of an array of detectors to a central acquisition system. In the context of ULTRA, a support experiment for the EUSO mission, a distributed wireless acquisition system based on a PCI board with synchronization through GPS was developed. The System is composed by several units, one per station and timetags each event on each station. The time differences between the several stations are computed offline. Each unit includes a low-cost, commercial GPS receiver (GPSboard), a custom PCI board (LIP-PAD) and a Personal Computer. The PCI board performs the fine time-tagging and also acquires the PMT signals of the ground array detector. PMT signals are shaped, amplified and then digitized by a 10 bits flash ADC with a frequency of 100 MHz. A digital trigger unit allows to implement several online trigger conditions. On trigger, event data is stored on an onboard memory. The board control and data readout is performed using the PCI bus. The overall time accuracy has been estimated to be better than 5ns.

  2. The Indiana silicon sphere 4 π charged-particle detector array

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Bracken, D. S.; Morley, K. B.; Brzychczyk, J.; Foxford, E. Renshaw; Komisarcik, K.; Viola, V. E.; Yoder, N. R.; Dorsett, J.; Poehlman, J.; Madden, N.; Ottarson, J.

    1995-02-01

    A low threshold charged particle detector array for the study of fragmentation processes in light-ion-induced reactions has been constructed and successfully implemented at the IUCF and Saturne II accelerators. The array consists of 162-triple-element detector telescopes mounted in a spherical geometry and covering 74% of 4π in solid angle. Telescope elements are composed of (1) an axial-field gas ionization chamber operated with C3F8 gas; (2) a 0.5 mm thick passivated silicon detector, and (3) a 2.8 cm thick CsI(TI) scintillation crystal with photodiode readout. Discrete element identification is obtained for ejectiles up to Z ~ 16 over the dynamic range 0.7 <= E/A <= 95 MeV/nucleon. Isotopes are also distinguished for H, He, Li and Be ejectiles with 8 <~ E/A <~ 95 MeV. Custom-designed electronics are employed for bias supplies and linear signal processing. Data are acquired via a CAMAC/VME/Ethernet system.

  3. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  4. Development of low dark current SiGe-detector arrays for visible-NIR imaging sensor

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Richwine, Robert A.; Puri, Yash R.; DiLello, Nicole; Hoyt, Judy L.; Akinwande, Tayo I.; Horn, Stuart; Balcerak, Ray S.; Bulman, Gary; Venkatasubramanian, Rama; D'Souza, Arvind I.; Bramhall, Thomas G.

    2009-05-01

    SiGe based Focal Plane Arrays offer a low cost alternative for developing visible- NIR focal plane arrays that will cover the spectral band from 0.4 to 1.6 microns. The attractive features of SiGe based IRFPA's will take advantage of Silicon based technology, that promises small feature size, low dark current and compatibility with the low power silicon CMOS circuits for signal processing. This paper discusses performance comparison for the SiGe based VIS-NIR Sensor with performance characteristics of InGaAs, InSb, and HgCdTe based IRFPA's. Various approaches including device designs are discussed for reducing the dark current in SiGe detector arrays; these include Superlattice, Quantum dot and Buried junction designs that have the potential of reducing the dark current by several orders of magnitude. The paper also discusses approaches to reduce the leakage current for small detector size and fabrication techniques. In addition several innovative approaches that have the potential of increasing the spectral response to 1.8 microns and beyond.

  5. Population density estimated from locations of individuals on a passive detector array

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.; Borchers, David L.

    2009-01-01

    The density of a closed population of animals occupying stable home ranges may be estimated from detections of individuals on an array of detectors, using newly developed methods for spatially explicit capture–recapture. Likelihood-based methods provide estimates for data from multi-catch traps or from devices that record presence without restricting animal movement ("proximity" detectors such as camera traps and hair snags). As originally proposed, these methods require multiple sampling intervals. We show that equally precise and unbiased estimates may be obtained from a single sampling interval, using only the spatial pattern of detections. This considerably extends the range of possible applications, and we illustrate the potential by estimating density from simulated detections of bird vocalizations on a microphone array. Acoustic detection can be defined as occurring when received signal strength exceeds a threshold. We suggest detection models for binary acoustic data, and for continuous data comprising measurements of all signals above the threshold. While binary data are often sufficient for density estimation, modeling signal strength improves precision when the microphone array is small.

  6. Digital data acquisition for the Low Energy Neutron Detector Array (LENDA)

    NASA Astrophysics Data System (ADS)

    Lipschutz, S.; Zegers, R. G. T.; Hill, J.; Liddick, S. N.; Noji, S.; Prokop, C. J.; Scott, M.; Solt, M.; Sullivan, C.; Tompkins, J.

    2016-04-01

    A digital data acquisition system (DDAS) has been implemented for the Low Energy Neutron Detector Array (LENDA). LENDA is an array of 24 BC-408 plastic-scintillator bars designed to measure low-energy neutrons with kinetic energies in the range of 100 keV-10 MeV from (p,n)-type charge-exchange reactions. Compared to the previous data acquisition (DAQ) system for LENDA, DDAS offers the possibility to lower the neutron detection threshold, increase the overall neutron-detection efficiency, decrease the dead time of the system, and allow for easy expansion of the array. The system utilized in this work was XIA's Digital Gamma Finder Pixie-16 250 MHz digitizers. A detector-limited timing resolution of 400 ps was achieved for a single LENDA bar. Using DDAS, the neutron detection threshold of the system was reduced compared to the previous analog system, now reaching below 100 keV. The new DAQ system was successfully used in a recent charge-exchange experiment using the 16C(p,n) reaction at the National Superconducting Cyclotron Laboratory (NSCL).

  7. Prototype of Field Waveform Digitizer for BaF2 Detector Array at CSNS-WNS

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cao, Ping; Zhang, Deliang; Qi, Xincheng; Yu, Tao; Jiang, Di; He, Bing; Zhang, Yaxi; An, Qi

    2017-07-01

    At the China spallation neutron source-white neutron sources (CSNS-WNS), the BaF2 (barium fluoride) detector array in planning is designed for neutron capture cross section measurements with high accuracy and efficiency. Once proton beam collides with the spallation target, the neutrons will fly from the target to specimen surrounded by BaF2 array and produce cascaded γ rays eventually. The time of flight (TOF) corresponds to the neutron energy. To identify γ signals from the high α-particle background, pulse shape discrimination (PSD) technique is usually used according to the ratio of fast to slow component in the signal. Waveform digitization is a valid supporting technology for PSD. In order to precisely obtain the wave and time information carried by detector signal, and to maximally cover the signal dynamic range, a universal digitizer with 1 GSps sampling rate and 12-b resolution has been designed based on a 3U PXIe platform in this paper. Besides waveform digitization, this customized digitizer also measures TOF precisely based on the digitized waveform data and technique of time-to-digital converting on field-programming gate array. Test results show that this digitizer can achieve good static and dynamic performance. The specification of effective number of bits is better than 9.43 b within 198 MHz. Digitizer proposed in this paper can meet the requirements for BaF2 spectrum at CSNS-WNS.

  8. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    SciTech Connect

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  9. Fabrication and Characterization of Linear Terahertz Detector Arrays Based on Lithium Tantalate Crystal

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Wang, Jun; Gou, Jun; Huang, Zehua; Jiang, Yadong

    2015-01-01

    Two samples of 30-pixel linear terahertz detector arrays (TDAs) were fabricated based on lithium tantalate (LT) crystals. Pixel readout circuit (ROC) was designed to extract the weak current signal of TDAs. A test platform was established for performance evaluation of TDA+ROC components. By using a 2.52THz laser as radiation source, the test results reveal that average voltage responsivities of the components were larger than 7000V/W and non-uniformity no more than 2.1%. Average noise equivalent power ( NEP) of one sample was measured to be 1.5×10-9 W/Hz1/2, which is low enough and desirable for high performance THz detector.

  10. A new linear array detector for high resolution and low dose digital radiography

    NASA Astrophysics Data System (ADS)

    Bettuzzi, Matteo; Cornacchia, Samantha; Rossi, Massimo; Paltrinieri, Enrica; Morigi, Maria Pia; Brancaccio, Rosa; Romani, Davide; Casali, Franco

    2004-01-01

    At the Department of Physics of the University of Bologna a new intensified linear array detector is under development. The core of the system is a digital intensified CCD camera, the electron bombarded charge coupled device (EBCCD). The main innovation is a coherent rectangular-to-linear fiber optics adapter coupling the 1 in. diameter photocathode of the camera with a linear 129 mm × 1.45 mm strip of Gd 2O 2S:Tb. In this way a high spatial resolution over an extended length is obtained. The detector works as an X-ray scanner by means of a high-precision translation mechanical device to inspect a 13 cm × 18 cm area. A complete characterisation of the system has been made in terms of linearity, dynamic range, modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). At last, radiographic tests on a set of samples have been made and will be presented.

  11. Mosaic wedge-and-strip arrays for large format microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Rasmussen, Andrew

    1989-01-01

    The authors present a novel method for joining wedge-and-strip patterns on single anodes in a mosaic array. With only a modest increase in complexity over three-conductor anodes currently in use, the ultimate detector position resolution can be significantly improved, and large-format microchannel plate detectors with pore-size-limited resolution are made possible. The problem of the transition from one anode to the next has been solved with a novel linear encoding scheme, which exhibits essentially distortionless behavior at boundaries parallel to the conducting elements and only slight distortion at the orthogonal boundaries. The ultimate resolution for two anode designs, one designed for large-format imaging and the other for high-resolution spectroscopy, is also predicted.

  12. β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)

    NASA Astrophysics Data System (ADS)

    Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.

    Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.

  13. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  14. Mosaic wedge-and-strip arrays for large format microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Rasmussen, Andrew

    1989-01-01

    The authors present a novel method for joining wedge-and-strip patterns on single anodes in a mosaic array. With only a modest increase in complexity over three-conductor anodes currently in use, the ultimate detector position resolution can be significantly improved, and large-format microchannel plate detectors with pore-size-limited resolution are made possible. The problem of the transition from one anode to the next has been solved with a novel linear encoding scheme, which exhibits essentially distortionless behavior at boundaries parallel to the conducting elements and only slight distortion at the orthogonal boundaries. The ultimate resolution for two anode designs, one designed for large-format imaging and the other for high-resolution spectroscopy, is also predicted.

  15. Faraday cup detector array with electronic multiplexing for multichannel mass spectrometry

    NASA Astrophysics Data System (ADS)

    Scheidemann, A. A.; Darling, R. B.; Schumacher, F. J.; Isakharov, A.

    2002-05-01

    A Faraday cup detector array (FCDA) and electronic multiplexing circuit have been developed for position sensitive ion beam detection. The entire FCDA always remains open to intercept the incident ion beam flux, and each cup is periodically and sequentially discharged through the electronic multiplexer. This produces true multichannel ion beam detection since none of the incident ion beam flux is lost, as is the case for scanning position sensitive detectors, and higher sensitivity detection is thus obtained. The FCDA consists of a one-dimensional or two-dimensional array of individual cups which are electrostatically isolated from each other by means of an intervening ground conductor, with resulting fill factors F of 58% to 85%. Each cup acts as a charge collector and integrator which is quickly discharged during the readout to create a time-multiplexed output signal that gives the position distribution of the ion beam. When N cups are sequentially scanned and read out, the ion collection efficiency is F(1-r/N), where r is the fraction of a clock cycle that is used for resetting the integrating capacitor. With a typical r=0.2, a 64 element array thus provides an ion collection efficiency of better than 0.997F. The device measures absolute ion currents, and has a wide dynamic range from less than 1 pA to more than 100 nA with less than 70 dB of cross talk between cups. The integration of the electronic multiplexer with the FCDA allows the combined unit to operate within a vacuum chamber by means of only a six-pin feedthrough. The FDCA and electronic multiplexer have been used as a position sensitive ion detector in a compact mass spectrometer to produce better than 1 amu resolution over a 200 amu span with a sensitivity of less than 0.8 pA at a 10:1 signal-to-noise ratio.

  16. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  17. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  18. In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.

    PubMed

    Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2011-11-01

    Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.

  19. Radioactive Background Measurements in the Neutral Current Detector Array at SNO

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Doe, P. J.; Formaggio, J. A.; McGee, S.; Stonehill, L. C.; Robertson, R. G. H.; Wall, B. L.; Wilkerson, J. F. W.; Hallin, A. L.; Poon, A. W. P.; Wouters, J. M.

    2003-10-01

    The third phase of data taking at the Sudbury Neutrino Observatory (SNO) is currently scheduled to begin in the autumn of 2003 with the installation of the Neutral Current Detectors (NCD). The NCDs, an array of ^3He proportional counters constructed from ultra-pure nickel, will measure the flux of ^8B solar neutrinos at SNO. The major sources of internal backgrounds in the NCD counters arise from U and Th chain decays. Analysis techniques have been developed to determine the level of these contaminations. These techniques and the impact of the U and Th levels on the neutral current flux measurement will be discussed.

  20. Evaluation of a far infrared Ge:Ga multiplexed detector array

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of a multielement Ge:Ga linear array under low-background conditions is investigated. On-focal plane switching is accomplished by MOSFET switches and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the responsivity was measured to be nominally 584 A/W, and the NEP was 1.0 x 10 exp -16 W/sq rt Hz. A detailed description of the test setup and the procedure is presented.

  1. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements.

    PubMed

    McCallum, Stephen; Clowes, Peter; Welch, Andrew

    2005-09-07

    Scintillation detectors developed for PET traditionally use relatively thick crystals coupled to photomultiplier tubes. To ensure good efficiency the crystals typically measure between 10 and 30 mm thick. Detectors also require good spatial resolution so the scintillator is normally made up of a densely packed array of long thin crystals. In this paper, we present a novel design in which the detection crystal is divided into a number of layers along its length with an avalanche photo diode (APD) inserted between each layer. With thin layers of crystal, it is possible to use a continuous rather than a pixelated crystal. The potential advantages of this design over a conventional PMT-based detector are: (i) improved light collection efficiency, (ii) reduced dependency on dense crystal to achieve good stopping power, (iii) ease of crystal manufacture, (iv) reduced detector dead-time and increased count rate, and (v) inherent depth of interaction. We have built a four-layer detector to test this design concept using Hamamatsu S8550 APD arrays and LYSO crystals. We used the centre 16 pixels of each of the arrays to give an active area of 9.5 mm x 9.5 mm. Four crystals 9.5 mm x 9.5 mm were used with thickness increasing from 2 mm at the front to 2.5 mm, 3.1 mm and 4.3 mm at the back, to ensure a similar count rate in each layer. Calculations for the thickness of the four layers were initially made using the linear attenuation coefficient for photons at 511 keV of LYSO. Experimental results and further simulation demonstrated that a correction to the thickness of each layer should be considered to take into account the scattered events. The energy resolution for each of the layers at 511 keV was around 15%, coincidence-timing resolution was 2.2 ns and the special resolution was less than 2 mm using a statistical-based positioning algorithm.

  2. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  3. DENSITY: software for analysing capture-recapture data from passive detector arrays

    USGS Publications Warehouse

    Efford, M.G.; Dawson, D.K.; Robbins, C.S.

    2004-01-01

    A general computer-intensive method is described for fitting spatial detection functions to capture-recapture data from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the population density of 10 species of breeding birds sampled by mist-netting in deciduous forest at Patuxent Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ? 0.6 ha-1 mean ? SE) appeared to decline over time (slope -0.41 ? 0.15 ha-1y-1). The mean precision of annual estimates for all 10 species pooled was acceptable (CV(D) = 14%). Spatial analysis of closed-population capture-recapture data highlighted deficiencies in non-spatial methodologies. For example, effective trapping area cannot be assumed constant when detection probability is variable. Simulation may be used to evaluate alternative designs for mist net arrays where density estimation is a study goal.

  4. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  5. Graphical user interface for a dual-module EMCCD x-ray detector array

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  6. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    PubMed

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  7. WE-AB-BRB-09: Real Time In Vivo Scintillating Fiber Array Detector for Medical LINACS

    SciTech Connect

    Knewtson, T; Pokhrel, S; Hernandez-Morales, D; Loyalka, S; Rangaraj, D; Izaguirre, E; Price, S

    2015-06-15

    Purpose: An in vivo transmission scintillation fiber detector was developed to monitor patient treatment in real time for the enhancement of patient safety and treatment accuracy. The detector system is capable of monitoring each pulse from a medical LINAC during treatment to determine the dose delivered as treatment progresses. Methods: The detector system consists of 60 parallel scintillating fibers coupled to fast data processing optoelectronics that can monitor the beam fluence in real time. Each 2.5mm{sup 2} square fiber is aligned with an MLC leaf pair and is long enough to capture a 40cm field. The fibers are embedded within a water equivalent polymer substrate that is secured in the LINAC accessory tray. The fibers are coupled to high speed photosensors and front end amplifiers that filter noise and pass each pulse to a high speed analog-to-digital converter. The system components are capable of detecting pulse repetition times shorter than what is delivered by a medical LINAC to ensure true real time data acquisition. Results: The system was able to capture and record the signal from each linac pulse and display the information in real time with no pulse pile up. It was found that the fiber array attenuates 2.65% of the beam which can easily be compensated for in treatment planning. The fibers responded linearly with dose, are independent of clinical beam energies, and are independent of dose rate. Calibration of the system was performed as a function of beam energy, beam size, dose rate, and monitor units to optimize beam fluence error detection. Conclusion: The detector system presented provides true real time in vivo beam monitoring to enhance patient safety and treatment delivery accuracy. Furthermore, the detector can be used for current patient specific QA.

  8. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  9. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  10. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  11. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  12. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    NASA Astrophysics Data System (ADS)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  13. Characterizing the astrometric precision limit for moving targets observed with digital-array detectors

    NASA Astrophysics Data System (ADS)

    Bouquillon, S.; Mendez, R. A.; Altmann, M.; Carlucci, T.; Barache, C.; Taris, F.; Andrei, A. H.; Smart, R.

    2017-10-01

    Aims: We investigate the maximum astrometric precision that can be reached on moving targets observed with digital-sensor arrays, and provide an estimate for its ultimate lower limit based on the Cramér-Rao bound. Methods: We extend previous work on one-dimensional Gaussian point-spread functions (PSFs) focusing on moving objects and extending the scope to two-dimensional array detectors. In this study the PSF of a stationary point-source celestial body is replaced by its convolution with a linear motion, thus effectively modeling the spread function of a moving target. Results: The expressions of the Cramér-Rao lower bound deduced by this method allow us to study in great detail the limit of astrometric precision that can be reached for moving celestial objects, and to compute an optimal exposure time according to different observational parameters such as seeing, detector pixel size, decentering, and elongation of the source caused by its drift. Comparison to simulated and real data shows that the predictions of our simple model are consistent with observations. Based on data taken with the VST of the European Southern Observatory, programme 092.B-0165 and 095.B-0046.

  14. Far infrared thermal detectors for laser radiometry using a carbon nanotube array

    SciTech Connect

    Lehman, John H.; Lee, Bob; Grossman, Erich N.

    2011-07-20

    We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 {mu}m, 150 {mu}m, and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 {mu}m(760 GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4 mA/W) was equal to that by optical heating (98.0 mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector's surface is, to our knowledge, unprecedented.

  15. Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya

    2014-10-01

    Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.

  16. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    PubMed

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  17. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    NASA Astrophysics Data System (ADS)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  18. Growth of ZnO Nanowire Arrays for Advanced Ultraviolet Detectors

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq; Anwar, A. F. Mehdi; Sood, Ashok K.

    2012-02-01

    Zinc oxide (ZnO) provides a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the solar blind ultraviolet (UV) spectral band (240-280 nm). We have grown highly ordered vertical arrays of ZnO nanowires using the metal organic chemical vapor deposition (MOCVD) technique on Si, silicon dioxide, c-plane sapphire, and GaN epitaxial substrates. UV detectors based on ZnO nanowires offer the highest UV sensitivity and lowest visible sensitivity for applications such as missile plume detection and threat warning. The development of UV detectors based on vertical nanowire arrays requires an innovative fabrication approach involving precise deposition of metal contacts, where UV sensor performance depends to a large extent on the growth conditions as well as on the substrate used. We will present experimental results on the structural, electrical, and optical properties of ZnO nanowires grown for UV sensing applications.

  19. Uncooled Thermopile Infrared Detector Linear Arrays with Detectivity Greater Than 10(super script9) cmHZ(super script 1/2)/W

    NASA Technical Reports Server (NTRS)

    Foote, Marc C.; Jones, Eric W.; Caillat, Thierry

    1997-01-01

    We have fabricated 63-element linear arrays of micromachined thermopile infrared detectors on silicon substrates. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi-Te and Bi-Sb-Te films.

  20. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    SciTech Connect

    Peng, J.; Tuemer, T.O.; Petrini, B.M.; Kravis, S.D.; Yin, S.; Parnham, K.B.; Glick, B.; Willson, P.D.

    1996-12-31

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using {sup 57}Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging.

  1. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance.

    PubMed

    Gagnon, Jean-Christophe; Thériault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc

    2012-01-01

    To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S(c,p)) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 × 10 cm(2) field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S(c,p) within 1.4% and 0.7% for 5 and 35 mm diameter cone, respectively. Furthermore

  2. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance

    SciTech Connect

    Gagnon, Jean-Christophe; Theriault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc

    2012-01-15

    Purpose: To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. Methods: The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S{sub c,p}) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Results: Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 x 10 cm{sup 2} field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S{sub c,p} within 1.4% and 0.7% for 5 and 35 mm diameter cone

  3. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  4. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  5. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  6. A micro GC detector array based on chemiresistors employing various surface functionalized monolayer-protected gold nanoparticles.

    PubMed

    Jian, Rih-Sheng; Huang, Rui-Xuan; Lu, Chia-Jung

    2012-01-15

    Aspects of the design, fabrication, and characterization of a chemiresistor type of microdetector for use in conjunction with gas chromatograph are described. The detector was manufactured on silicon chips using microelectromechanical systems (MEMS) technology. Detection was based on measuring changes in resistance across a film comprised of monolayer-protected gold nanoclusters (MPCs). When chromatographic separated molecules entered the detector cell, the MPC film absorbed vapor and undergoes swelling, then the resistance changes accordingly. Thiolates were used as ligand shells to encapsulate the nano-gold core and to manipulate the selectivity of the detector array. The dimensions of the μ-detector array were 14(L)×3.9(W)×1.2(H)mm. Mixtures of eight volatile organic compounds with different functional groups and volatility were tested to characterize the selectivity of the μ-detector array. The detector responses were rapid, reversible, and linear for all of the tested compounds. The detection limits ranged from 2 to 111ng, and were related to both the compound volatility and the selectivity of the surface ligands on the gold nanoparticles. Design and operation parameters such as flow rate, detector temperature, and width of the micro-fluidic channel were investigated. Reduction of the detector temperature resulted in improved sensitivity due to increased absorption. When a wider flow channel was used, the signal-to-noise ratio was improved due to the larger sensing area. The extremely low power consumption and small size makes this μ-detector array potentially useful for the development of integrated μ-GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The BABAR Detector

    SciTech Connect

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  8. Three-dimensional modeling and simulation of large-format hybrid indium antimonide detector arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Shao, Ming; Zhang, Xiao-Ling; Meng, Qing-Duan; Wang, Jin-Chan; Lv, Yan-Qiu

    2013-10-01

    Infrared sensors, such as indium antimonide (InSb) detectors, are generally required to be cooled to 77 K in operation. High fracture probability under thermal shock, especially in large InSb infrared focal plane arrays (IRFPAs), limits their applicability. It is necessary to establish a realistic three-dimensional (3-D) structural model of large-format InSb IRFPAs. However, few data are available on 3-D high-fidelity structural modeling and simulation of large IRFPAs due to their complicated structure and huge meshing numbers. A simple equivalent modeling method had been used in our early works, which could reduce meshing numbers, but did not consider the complicated structure, and also brought a new problem that the equivalent outer region of the model was not consistent with the actual IRFPAs. To solve the problems, an improved equivalent modeling method is proposed, where a small-format array is first split into two parts and then employed to equivalently replace the real large-format array. A 3-D high-fidelity structural model of large-format hybrid InSb IRFPAs is developed; here, a 32×32 array is adopted to replace the real 128×128 array. The results show that the simulated stress and strain distribution characteristics of InSb chip are well in agreement with the fracture photograph of actual 128×128 InSb IRFPAs in testing, verifying the validity and feasibility of the 3-D structural model of large-format IRFPAs. All these are beneficial to further explore fracture mechanisms and improve the reliability of large-format hybrid InSb IRFPAs.

  9. Diagnostic and quality-assurance tools for low-contrast images obtained from array detectors

    NASA Technical Reports Server (NTRS)

    Hatfield, D. B.; Sandel, Bill R.

    1993-01-01

    We investigate methods of estimating a background image frame for subtraction from a data frame for use when a more suitable measured background frame is not available. We define background as any signal component that is not attributable to the phenomenon currently under investigation. We describe a technique that is based on pixel-by-pixel least-squares regression of images for computing a background frame from available data. We argue that the same technique can be a useful quality-assurance tool for evaluating instrument performance. For example, it can help to separate image structure resulting from the reading process from structure resulting from the characteristics of the detector itself. We demonstrate that background estimation can be nontrivial by comparing the results of different background estimation procedures by using data obtained from a CCD array detector. We investigate the temperature-dependent contributions of the detector and readout electronics to the total signal as a demonstration of the diagnostic capabilities of least-squares image regression.

  10. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  11. Diagnostic and quality-assurance tools for low-contrast images obtained from array detectors

    NASA Technical Reports Server (NTRS)

    Hatfield, D. B.; Sandel, Bill R.

    1993-01-01

    We investigate methods of estimating a background image frame for subtraction from a data frame for use when a more suitable measured background frame is not available. We define background as any signal component that is not attributable to the phenomenon currently under investigation. We describe a technique that is based on pixel-by-pixel least-squares regression of images for computing a background frame from available data. We argue that the same technique can be a useful quality-assurance tool for evaluating instrument performance. For example, it can help to separate image structure resulting from the reading process from structure resulting from the characteristics of the detector itself. We demonstrate that background estimation can be nontrivial by comparing the results of different background estimation procedures by using data obtained from a CCD array detector. We investigate the temperature-dependent contributions of the detector and readout electronics to the total signal as a demonstration of the diagnostic capabilities of least-squares image regression.

  12. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  13. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    DOE PAGES

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less

  14. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    SciTech Connect

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; Reno, John L.

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

  15. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees.

  16. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Tümer, Türmay; Yaffe, Martin J

    2002-02-01

    We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).

  17. Development of a unit cell for a Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.

  18. Analyzing the performance of ArcCHECK diode array detector for VMAT plan

    PubMed Central

    Thiyagarajan, Rajesh; Nambiraj, Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Kumar, Ashok; Subramani, Vikraman; Kothandaraman

    2016-01-01

    Aim The aim of this study is to evaluate performance of ArcCHECK diode array detector for the volumetric modulated arc therapy (VMAT) patient specific quality assurance (QA). VMAT patient specific QA results were correlated with ion chamber measurement. Dose response of the ArcCHECK detector was studied. Background VMAT delivery technique improves the dose distribution. It is complex in nature and requires proper QA before its clinical implementation. ArcCHECK is a novel three dimensional dosimetry system. Materials and methods Twelve retrospective VMAT plans were calculated on ArcCHECK phantom. Point dose and dose map were measured simultaneously with ion chamber (IC-15) and ArcCHECK diode array detector, respectively. These measurements were compared with their respective TPS calculated values. Results The ion chamber measurements are in good agreement with TPS calculated doses. Mean difference between them is 0.50% with standard deviation of 0.51%. Concordance correlation coefficient (CCC) obtained for ion chamber measurements is 0.9996. These results demonstrate a strong correlation between the absolute dose predicted by our TPS and the measured dose. The CCC between ArcCHECK doses and TPS predictions on the CAX was found to be 0.9978. In gamma analysis of dose map, the mean passing rate was 98.53% for 3% dose difference and 3 mm distance to agreement. Conclusions The VMAT patient specific QA with an ion chamber and ArcCHECK phantom are consistent with the TPS calculated dose. Statistically good agreement was observed between ArcCHECK measured and TPS calculated. Hence, it can be used for routine VMAT QA. PMID:26900358

  19. Fourier transform spectroscopic imaging using an infrared focal-plane array detector.

    PubMed

    Lewis, E N; Treado, P J; Reeder, R C; Story, G M; Dowrey, A E; Marcott, C; Levin, I W

    1995-10-01

    A powerful new mid-infrared spectroscopic chemical imaging technique combining step-scan Fourier transform Michelson interferometry with indium antimonide focal-plane array (FPA) image detection is described. The coupling of an infrared focal-plane array detector to an interferometer provides an instrumental multiplex/multichannel advantage. Specifically, the multiple detector elements enable spectra at all pixels to be collected simultaneously, while the interferometer portion of the system allows all the spectral frequencies to be measured concurrently. With this method of mid-infrared spectroscopic imaging, the fidelity of the generated spectral images is limited only by the number of pixels on the FPA detector, and only several seconds of starting time is required for spectral image acquisition. This novel, high-definition technique represents the future of infrared chemical imaging analysis, a new discipline within the chemical and material sciences, which combines the capability of spectroscopy for molecular analysis with the power of visualization. In particular, chemical imaging is broadly applicable for noninvasive, molecular characterization of heterogeneous materials, since all solid-state materials exhibit chemical nonuniformity that exists either by design or by development during the course of material preparation or fabrication. Imaging, employing Raman and infrared spectroscopy, allows the precise characterization of the chemical composition, domain structure, and chemical architecture of a variety of substances. This information is often crucial to a wide range of activities, extending from the fabrication of new materials to a basic understanding of biological samples. In this study, step-scan imaging principles, instrument design details, and infrared chemical imaging results are presented. Since the prospect of performing high-resolution and high-definition mid-infrared chemical imaging very rapidly has been achieved with the step-scan approach

  20. SU-E-P-24: Simplified EDW Profile Measurements Using Two Commonly Available Detector Arrays

    SciTech Connect

    Reynolds, T; Arentsen, L; Watanabe, Y; Alaei, P

    2015-06-15

    Purpose: Enhanced dynamic wedge (EDW) profiles are needed as part of the commissioning of a treatment planning system. This work compares the acquisition of EDW profiles using a linear diode array (LDA) with two commonly used detector arrays available in the clinics, with the goal of identifying the simplest approach for these measurements. Methods: The measurements of EDW profiles were performed on a Varian TrueBeam linear accelerator for 6, 10, and 18 MV photon beams for all seven wedge angles at four depths. The measurements were done using the LDA 99 in Blue Phantom2 (IBA Dosimetry), and IC Profiler and MapCHECK2 (Sun Nuclear) in solid water phantoms. The water phantom was set up at 100 cm SSD, whereas the two other devices were set up at 75 cm due to the size limitations of the devices. The largest possible field size was used. The average and maximum percentage differences were examined within the central 90% of the field and in the penumbra. Results: Dose profiles measured with IC Profiler were in a good agreement with LDA 99 data. The average percentage difference within the field did not exceed 0.5% for all energies. MapCHECK2 measurements matched well with LDA 99 for 10 and 18 MV (within 0.3%) with discrepancies of up to 1.4% observed for the 6 MV beam. The maximum percentage differences for both devices in the penumbra exhibited larger variations than LDA 99 results due to differences in detector spacing and high dose gradient, as expected. Conclusion: Common linac QA devices such as IC Profiler or MapCHECK2 provide EDW beam profile data of reasonable accuracy as compared to measurements performed using a linear diode array in a water phantom, saving the expense and time involved in acquiring and setting up a LDA.

  1. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  2. High-performance SPAD array detectors for parallel photon timing applications

    NASA Astrophysics Data System (ADS)

    Rech, I.; Cuccato, A.; Antonioli, S.; Cammi, C.; Gulinatti, A.; Ghioni, M.

    2012-02-01

    Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.

  3. Fabrication of 721-pixel silicon lens array of a microwave kinetic inductance detector camera

    NASA Astrophysics Data System (ADS)

    Mitsui, Kenji; Nitta, Tom; Okada, Norio; Sekimoto, Yutaro; Karatsu, Kenichi; Sekiguchi, Shigeyuki; Sekine, Masakazu; Noguchi, Takashi

    2015-04-01

    We have been developed a lens-integrated superconducting camera for millimeter and submillimeter astronomy. High-purity silicon (Si) is suitable for the lens array of the microwave kinetic inductance detector camera due to its high refractive index and low dielectric loss at low temperatures. The camera is an antenna-coupled Al coplanar waveguide on a Si substrate. Thus the lens and the device are made of the same material. We report a fabrication method of a 721-pixel Si lens array with an antireflection (AR) coating. The Si lens array was fabricated with an ultraprecision cutting machine. It uses TiAlN-coated carbide end mills attached with a high-speed spindle. The shape accuracy was less than 50 μm peak-to-valley and the surface roughness was arithmetic average roughness (Ra) of 1.8 μm. The mixed epoxy was used as an AR coating to adjust the refractive index. It was shaved to yield a thickness of 185 μm for 220 GHz. Narrow grooves were made between the lenses to prevent cracking due to the different thermal expansion coefficients of Si and the epoxy. The surface roughness of the AR coating was Ra of 2.4 to 4.2 μm.

  4. A 2×2 array of EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  5. CSI: Immigrant Children--Clues for Teacher Education

    ERIC Educational Resources Information Center

    Larke, Patricia J.

    2012-01-01

    The metaphor of the popular television shows "CSI: New York," "CSI: Miami," and "CSI: Las Vegas" (CSI stands for "crime scene investigation") is applicable to investigating issues of immigrant children in teacher preparation programs (TPP). One of the fundamental principles of CSI is to solve the crime by…

  6. CSI: Immigrant Children--Clues for Teacher Education

    ERIC Educational Resources Information Center

    Larke, Patricia J.

    2012-01-01

    The metaphor of the popular television shows "CSI: New York," "CSI: Miami," and "CSI: Las Vegas" (CSI stands for "crime scene investigation") is applicable to investigating issues of immigrant children in teacher preparation programs (TPP). One of the fundamental principles of CSI is to solve the crime by…

  7. Performance of an X-ray imaging detector based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Svenonius, Olof; Sahlholm, Anna; Wiklund, Per; Linnros, Jan

    2009-08-01

    Structured scintillator plates have been fabricated by filling thallium-doped caesium iodide (CsI) into a silicon pore array. Their X-ray imaging properties have been characterized using a standard dental X-ray source and a charge coupled device (CCD) detector. Results indicate that finer structured pore arrays provide superior imaging resolution while their light output is lower. Direct absorption of X-ray quanta in the CCD is a significant contributor of detector noise. This can be avoided by using a thick fibre optic plate or, in certain cases, by using a hot-pixel software algorithm.

  8. X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer

    PubMed Central

    Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi

    2012-01-01

    The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance. PMID:23093759

  9. X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer.

    PubMed

    Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi

    2012-11-01

    The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.

  10. STARS/LiBerACE: Segmented silicon and high-purity germanium detector arrays for low-energy nuclear reaction and structure studies

    NASA Astrophysics Data System (ADS)

    Lesher, S. R.; Phair, L.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Church, J. A.; Fallon, P.; Gibelin, J.; Scielzo, N. D.; Wiedeking, M.

    2010-09-01

    The Silicon Telescope Array for Reaction Studies (STARS) consists of large-area annular double-sided silicon detectors for charged-particle identification. The Livermore Berkeley Array for Collaborative Experiments (LiBerACE) is an array of six Compton-suppressed high-purity germanium Clover detectors for efficient detection of γ-rays. These detector arrays are versatile tools for studies of neutron-induced reaction cross-sections, fission, light neutron-rich nuclei, and other low-energy nuclear physics topics through transfer, fusion, incomplete-fusion, and inelastic-scattering reactions. The STARS and LiBerACE arrays and typical experimental configurations are described in detail.

  11. Development of linear array ROIC for InGaAs detector arrays with wavelength response to 2.5 microns for NIR spectroscopy and machine vision

    NASA Astrophysics Data System (ADS)

    Malchow, Douglas S.; Brubaker, Robert M.; Hansen, Marc P.

    2008-04-01

    The design and development of a new, flexible, linear array readout integrated circuit (ROIC) for a new family of linear array detectors are described in this paper. The detector technology used is based on indium-gallium-arsenide (InGaAs) and includes low dark current versions with room temperature wavelength response cutoff of 1.7 microns and versions with altered stoichiometry to shift the room temperature absorbance cutoff wavelength to 2.55 microns. Discussion includes choice of features to cover many applications, testing methods, and evaluation of the first versions produced. The result will be a highly flexible linear array family, with versions matched to biological imaging, hot process inspection, pharmaceutical pill inspection, agricultural sorting and contaminant rejection, plastics recycling, moisture monitoring of continuous web processes.

  12. Nuclear Structure of Radioactive Neutron-Rich Nuclei with 4pi Detector Arrays

    SciTech Connect

    Wu, C Y; Becker, J A; Cline, D

    2005-05-10

    In-beam studies of {gamma}-ray spectroscopy of radioactive neutron-rich nuclei using the 4{pi} TIGRESS array at TRIUMF requires a ''tag'' to improve the selectivity of the detected {gamma} rays in the high {gamma}-ray background produced by radioactive beams and the need for Doppler-shift correction. We propose development of two types of large solid angle auxiliary charged particle detectors to be used in conjunction with TRIGRESS in order to provide the required tag. The initial phase of detector development will focus on research involving light-mass radioactive beams with Z {le} 20. Gas avalanche detectors, such as CHICO, are not the ideal detector for lighter ions. Therefore, a new detector system, called Bambino, is being developed that is based on commercially available CD type position-sensitive silicon detectors. Three CD-S2 detectors, with a thickness of 140 {micro}m, have been ordered from Micron Semiconductor Ltd. A split spherical target chamber will be built in Rochester to accommodate two of those CD detectors in both forward and backward directions. These detectors will be placed 3 cm from the target, providing an angular coverage from 20.1{sup o} to 49.4{sup o} for the forward hemisphere and from 130.6{sup o} to 159.9{sup o} for the backward hemisphere. The detectors will us ten 8-channels preamplifiers, from Swan Research, that will be mechanically mounted on both the entrance and exit beam pipes. The work on both the internal and external cables connecting the detectors to the preamplifiers, vacuum feedthrough etc. is in progress. In addition, a vacuum chamber has been ordered from Kurt J. Lesker Company for testing these detectors. Bambino should be ready by the spring 2006. The second phase will involve the development of a next generation CHICO-like gas avalanche detector for experiments involving heavier radioactive beams. CHICO, a highly segmented parallel-plate avalanche counter, has proven to be very successful when used in conjunction

  13. 1024 × 1024 Si:As IBC detector arrays for JWST MIRI

    NASA Astrophysics Data System (ADS)

    Love, Peter J.; Hoffman, Alan W.; Lum, Nancy A.; Ando, Ken J.; Rosbeck, Joe; Ritchie, William D.; Therrien, Neil J.; Holcombe, Roger S.; Corrales, Elizabeth

    2005-08-01

    1K × 1K Si:As Impurity Band Conduction (IBC) arrays have been developed by RVS for the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI). MIRI provides imaging, coronagraphy, and low and medium resolution spectroscopy over the 5 - 28 μm band. The IBC devices are also suitable for other low-background applications. The Si:As IBC detectors have a pixel dimension of 25 μm and respond to infrared radiation between 5 and 28 μm, covering an important Mid-IR region beyond the 1 - 5 μm range covered by the JWST NIRCam and NIRSpec instruments. Due to high terrestrial backgrounds at the longer Mid-IR wavelengths, it is very difficult to conduct ground-based observations at these wavelengths. Hence, the MIRI instrument on JWST can provide science not obtainable from the ground. We describe results of the development of a new 1024 × 1024 Si:As IBC array that responds with high quantum efficiency over the wavelength range 5 to 28 μm. The previous generation's largest, most sensitive infrared (IR) detectors at these wavelengths were the 256 × 256 / 30 μm pitch Si:As IBC devices built by Raytheon for the SIRTF/IRAC instrument1. Detector performance results will be discussed, including relative spectral response, Responsive Quantum Efficiency (RQE) vs. detector bias, and dark current versus temperature. In addition, Sensor Chip Assembly (SCA) data will be presented from the first Engineering SCAs. The detector ROIC utilizes a PMOS Source Follower per Detector (SFD) input circuit with a well capacity of about 2 × 105 electrons. The read noise of the "bare" MUX is less than 12 e- rms with Fowler-8 sampling at an operating temperature of 7 K. A companion paper by Craig McMurtry (University of Rochester) will discuss the details of SB305 MUX noise measurements2. Other features of the IBC array include 4 video outputs and a separate reference output with a frame rate of 0.36 Hz (2.75 sec frame time). Power dissipation is about 0.5 mW at a 0.36 Hz frame rate

  14. Robust Linear Transmit/Receive Processing for Correlated MIMO Downlink with Imperfect CSI

    NASA Astrophysics Data System (ADS)

    Li, Hao; Xu, Changqing; Fan, Pingzhi

    In this paper we investigate designing optimal linear transmit/receive processing filters for multiuser MIMO downlinks with imperfect channel state information (CSI) and spatial fading correlation between antenna array at BS. A robust scheme is proposed to obtain the optimal linear transmit/receive filters in the sense of minimizing the average sum mean square error (SMSE) conditional on noisy channel estimates under a per-user transmit power constraint. Using an iterative procedure, the proposed scheme extends the existing optimization algorithm for uncorrelated single-user MIMO systems with perfect CSI to solve the problem of minimizing SMSE in spatially correlated MIMO downlinks with imperfect CSI. Comparing with non-robust scheme, we show that robust scheme efficiently mitigates the BER loss induced by imperfect CSI. In addition, the impact of fading correlation at BS on the performance of the proposed robust scheme is analyzed.

  15. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    PubMed Central

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  16. Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla

    NASA Astrophysics Data System (ADS)

    Perez, E.; Salazar, H.; Villasenor, L.; Martinez, O.; Conde, R.; Murrieta, T.

    Field programmable gate arrays (FPGAs) are playing an increasing role in DAQ systems in cosmic ray experiments due to their high speed and integration and their low cost and low power comsumption. In this paper we describe in detail the new electronics and data acquisition system based on FPGA boards of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this detector array is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 10 liquid scintillator detectors and 6 water Cherenkov detectors (of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described also makes use of analog to digital converters with a resolution of 10 bits and sampling speeds of 100 MS/s to digitize the PMT signals. We also discuss the advantages of discriminating the PMT signals inside the FPGAs with respect to the conventional use of dedicated discrimination circuits.

  17. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    PubMed

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  18. Linear charge coupled device detector array for imaging light propagating in an integrated thin-film optical waveguide

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Boyd, J. T.

    1976-01-01

    Device design, fabrication, and operation of a linear charge coupled device (CCD) detector array integrated with a thin film optical waveguide and applications of this structure to integrated optical signal processing and fiber optical communications were discussed. A two phase, overlapping-gate CCD is connected in parallel by means of a series of gates to an array of photodiodes. The photodiode provides an electrode free surface region so that a highly efficient waveguide detector coupling technique can be implemented. A thermally-oxidized layer of SiO2 forms an effective substrate for the optical waveguide.

  19. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  20. Physics-based simulation of the modulation transfer function in HgCdTe infrared detector arrays.

    PubMed

    Pinkie, Benjamin; Schuster, Jonathan; Bellotti, Enrico

    2013-07-15

    We have developed a numerical technique for performing physics-based simulations of the modulation transfer function (MTF) of infrared detector focal plane arrays. The finite-difference time-domain and finite element methods are employed to determine the electromagnetic and electrical response, respectively. We show how the total MTF can be decomposed to analyze the effect of lateral diffusion of charge carriers and present several methods for mitigation of such effects. We employ our numerical technique to analyze the MTF of a HgCdTe two-color bias-selectable infrared detector array.

  1. Coherent summation of spatially distorted laser Doppler signals by using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin P.; Killinger, Dennis K.

    1992-01-01

    Phase-sensitive coherent summation of individual heterodyne detector array signals was demonstrated for the enhanced detection of spatially distorted laser Doppler returns. With the use of a 2 x 2 heterodyne detector array, the phase and amplitude of a time-varying speckle pattern was detected, and the signal-to-noise ratio of the Doppler shift estimate was shown to be improved by a factor of 2, depending on the extent of spatial coherence loss. These results are shown to agree with a first-order analysis and indicate the advantage of coherent summation for both short-range laser Doppler velocimetry and long-range atmospheric coherent lidar.

  2. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  3. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  4. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    DOE PAGES

    Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.; ...

    2016-07-19

    Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonalmore » polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  5. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    SciTech Connect

    Holland, Wayne S.; Zmuidzinas, Jonas; Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-19

    Now, detectors for cosmic microwave background (CMB) experiments are background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. We present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's T-c is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Our results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these

  6. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  7. Surface roughness studies with DALLAS-detector array for laser light angular scattering

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Teague, E. C.; Scire, F. E.; Mclay, M. J.; Gilsinn, D. E.

    1984-01-01

    An attempt is made to develop a better mathematical description of optical scattering phenomena, in order to construct an optical scattering apparatus for reliable and routine measurements of roughness parameters without resorting to comparator standards. After a brief outline of optical scattering theory, a description is presented of an experimental instrument for measuring surface roughness which incorporates optical scattering principles. The instrument has a He-Ne laser which illuminates the test surface at a variable angle of incidence. Scattered light distribution is detected by an array of 87 fiber-optic sensors positioned in a rotating semicircular yoke. The output from the detector is digitized and analyzed in a laboratory computer. For a comparison with experimental data, theoretical distributions are calculated by substituting the roughness profiles into the operand of and integral equation for electromagnetic scattering developed by Beckmann and Spizzichino (1963). A schematic diagram of the instrument is provided and the general implications of the experimental results are discussed.

  8. On the estimation of target depth using the single transmit multiple receive metal detector array

    NASA Astrophysics Data System (ADS)

    Ho, K. C.; Gader, P. D.

    2012-06-01

    This paper investigates the use of the Single Transmit Multiple Receive (STMR) metal detector (MD) array to estimate the depth of metal targets, such as 155mm shells. The depth estimation problem using MD has been investigated by a number of researchers and the processing was performed along the down-track. The proposed method takes a different approach by exploring the MD responses in cross-track to achieve the depth estimation. It is found that the normalized energy spread of the MD output is narrower for shallow targets and wider for deeper targets. Based on this observation, a method is derived to estimate the depth of a target. Experimental results from the data collected at an U.S. Army test site validate the performance of the proposed depth estimator.

  9. In situ two-dimensional imaging quick-scanning XAFS with pixel array detector

    PubMed Central

    Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2011-01-01

    Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio. PMID:21997918

  10. 3D scanning characteristics of an amorphous silicon position sensitive detector array system.

    PubMed

    Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel

    2012-02-13

    The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

  11. Performance of multiplexed Ge:Ga detector arrays in the far infrared

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of two multi-element, multiplexed Ge:Ga linear arrays under low-background conditions was investigated. The on-focal switching is accomplished by MOSFET switches, and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns, and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the highest responsivity was 584 A/W, the noise equivalent power was 1.0 x 10(exp -16) W/square root of Hz, and the read noise was 6100 electrons/sample. A detailed description of the test setup and procedure is presented.

  12. The bursts of high energy events observed by the telescope array surface detector

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-08-01

    The Telescope Array (TA) experiment is designed to detect air showers induced by ultra high energy cosmic rays. The TA ground Surface particle Detector (TASD) observed several short-time bursts of air shower like events. These bursts are not likely due to chance coincidence between single shower events. The expectation of chance coincidence is less than 10-4 for five-year's observation. We checked the correlation between these bursts of events and lightning data, and found evidence for correlations in timing and position. Some features of the burst events are similar to those of a normal cosmic ray air shower, and some are not. On this paper, we report the observed bursts of air shower like events and their correlation with lightning.

  13. Development of Multilayer Analyzer Array Detectors for X-ray Fluorescence at the Third Generation Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Rosenbaum, G.; Liu, R.; Liu, C.; Carmeli, C.; Bunker, G.; Fischer, D.

    2004-05-01

    The development of Multilayer Analyzer Array Detector (MAAD) for X-ray fluorescence eliminates the count rate limitation encountered with multi-element Ge detectors. A 24-element multilayer detector has been fabricated that is tunable in a large energy region. This detector has been operational for more than two years at the BioCAT Beamline of the Advanced Photon Source at Argonne National Laboratory. Here we report our recent progress in developing multilayer detectors working in lower energy regions, in particular, performance at Ca Kα fluorescence energy and test results at soft x-ray energies. The band width of the analyzer response is found to be 3-4% of the fluorescence energy. Namely, at the Ca Kα energy, the band width is 140 eV; it is reduced to about 60 eV at Al Kα fluorescence energy. The throughput of the detector in this energy region (1.5-3.6 KeV) is 20% to 30%. These results demonstrate the feasibility for constructing multilayer analyzer array detectors for use in the soft x-ray region.

  14. Characterization of a Small Animal PET Detector Block Incorporating a Digital Photon Counter Array

    NASA Astrophysics Data System (ADS)

    Stortz, Greg; Thompson, Christopher J.; Retière, Fabrice; Goertzen, Andrew L.; Kozlowski, Piotr; Shams, Ehsan; Thiessen, Jonathan D.; Walker, Matthew D.; Sossi, Vesna

    2015-06-01

    A Small Animal PET detector block made with a Dual Layer Offset crystal array with 1.27 mm wide LYSO crystals on a Philips PDC3200-22-44 Digital Photon Counter (DPC) array was characterized while operating near room temperature. Crystal map peak to valley ratio, energy resolution, and timing resolution were characterized as a function of various device settings of the DPC and temperature. In addition, rates of count loss due to the phenomena of incomplete neighbor logic and dark-readout deadtime were measured. Device settings of interest were: Trigger scheme-defining the threshold of when a DPC will generate a timestamp and enter a readout cycle, inhibit fraction-the fraction of noisy cells which are disabled, and RTL-refresh-a setting which reduces the probability of the DPC being triggered from dark noise. At 15°C, peak to valley ratios were measured to be around 11, and energy resolution around 11.5% regardless of device settings. Timing resolution ranged from near 300 ps to 1.5 ns. Count loss from dark readout deadtime was insignificant compared to incomplete neighbor logic, which ranged from as high as 95% to 5% of coincidences. It was found that trade-offs had to be made between timing resolution and count loss. With the most optimal device settings for small animal PET, a timing resolution of 1.4 ns and coincidence losses of 5% were achieved. At these settings, the detector block had little sensitivity to a 5°C temperature fluctuation.

  15. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    SciTech Connect

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W.; Gruner, Sol M.

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  16. Detection of ultra-high energy neutrino interactions in ice: comparing radio detector array designs

    NASA Astrophysics Data System (ADS)

    Bechtol, Keith; Vieregg, Abigail

    2014-08-01

    Ultra-high energy (UHE, >10^18 eV) cosmic neutrinos are anticipated to reveal the most distant, most obscured, and highest energy particle accelerators in the Universe. An almost guaranteed flux of UHE neutrinos is predicted from the interactions of UHE cosmic rays with the cosmic microwave background, and additional contributions may arise from prompt emission at individual sources. The spectrum of UHE neutrinos is a sensitive discriminator of the cosmological evolution of UHE sources, as well as the composition of UHE cosmic rays. At the same time, UHE neutrinos will enable several tests of fundamental physics, including constraints on the neutrino-nucleon interaction cross section at center-of-momentum energies ~100 TeV, and searches for Lorentz invariance violation.Theoretical predictions and subsequent laboratory measurements of coherent radio emission from showers initiated by neutrino interactions in dielectric media (e.g., ice, sand, salt, lunar regolith) have motivated diverse experimental approaches involving "detectors" comprised of up to millions of cubic kilometers of natural materials. I will discuss simulation results comparing the expected performance of several proposed radio detector array designs with subterranean, ice shelf, and above ice configurations.

  17. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  18. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  19. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  20. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    NASA Astrophysics Data System (ADS)

    Kagaya, M.; Katagiri, H.; Enomoto, R.; Hanafusa, R.; Hosokawa, M.; Itoh, Y.; Muraishi, H.; Nakayama, K.; Satoh, K.; Takeda, T.; Tanaka, M. M.; Uchida, T.; Watanabe, T.; Yanagita, S.; Yoshida, T.; Umehara, K.

    2015-12-01

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m2 radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  1. Effects of 1-MeV gamma radiation on a multi-anode microchannel array detector tube

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1979-01-01

    A multianode microchannel array (MAMA) detector tube without a photocathode was exposed to a total dose of 1,000,000 rads of 1-MeV gamma radiation from a Co-60 source. The high-voltage characteristic of the microchannel array plate, average dark count, gain, and resolution of pulse height distribution characteristics showed no degradation after this total dose. In fact, the degassing of the microchannels induced by the high radiation flux had the effect of cleaning up the array plate and improving its characteristics.

  2. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-07-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  3. Device localization and dynamic scan plane selection using a wireless MRI detector array

    PubMed Central

    Riffe, Matthew J.; Yutzy, Stephen R.; Jiang, Yun; Twieg, Michael D.; Blumenthal, Colin J.; Hsu, Daniel P.; Pan, Li; Gilson, Wesley D.; Sunshine, Jeffrey L.; Flask, Christopher A.; Duerk, Jeffrey L.; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A.

    2013-01-01

    Purpose A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T MRI system. Methods The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and doesn’t require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. Results When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image-guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. Conclusion The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. PMID:23900921

  4. Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays

    NASA Astrophysics Data System (ADS)

    Bommena, R.; Velicu, S.; Boieriu, P.; Lee, T. S.; Grein, C. H.; Tedjojuwono, K. K.

    2007-04-01

    Inductively coupled plasma (ICP) chemistry based on a mixture of CH 4, Ar, and H II was investigated for the purpose of delineating HgCdTe mesa structures and vias typically used in the fabrication of second and third generation infrared photo detector arrays. We report on ICP etching uniformity results and correlate them with plasma controlling parameters (gas flow rates, total chamber pressure, ICP power and RF power). The etching rate and surface morphology of In-doped MWIR and LWIR HgCdTe showed distinct dependences on the plasma chemistry, total pressure and RF power. Contact stylus profilometry and cross-section scanning electron microscopy (SEM) were used to characterize the anisotropy of the etched profiles obtained after various processes and a standard deviation of 0.06 μm was obtained for etch depth on 128 x 128 format array vias. The surface morphology and the uniformity of the etched surfaces were studied by plan view SEM. Atomic force microscopy was used to make precise assessments of surface roughness.

  5. Effect of scattered electrons on the ‘Magic Plate’ transmission array detector response

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.

    2017-02-01

    Transmission type detectors can provide a measure of the energy fluence and if they are real-time systems that do not significantly attenuate the radiation beam have a distinct advantage over the current method as Quality Assurance (QA) could in principle be done during the actual patient treatment. The use of diode arrays in QA holds much promise due to real-time operation and feedback when compared to other methods e.g. films which are not real-time. The goal of this work is to describe the characterization of the radiation response of a silicon diode array called the Magic Plate (MP) when operated in transmission mode (MPTM). The response linearity of MPTM was excellent (R2=1). When the MP was placed in linac block tray position; the change in PDD at phantom surface (SSD 100 cm) for a 10 × 10 cm2 was -0.037 %, -0.178 % and -0.949 % for 6 MV, 10 MV and 18 MV beams. Therefore, MP does not provide a significant increase in skin dose to the patient and the percentage depth doses showed an excellent agreement with and without MPTM for 6 MV, 10 MV and 18 MV beams.

  6. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  7. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100-106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100-10000 PEs and 2000-1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  8. MOCVD growth and characterization of ZnO nanowire arrays for advanced ultraviolet detectors

    NASA Astrophysics Data System (ADS)

    Rivera, Abdiel; Zeller, John; Manzur, Tariq; Sood, Ashok; Anwar, Mehdi

    2012-10-01

    Zinc oxide (ZnO) provides a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties, and is a versatile functional material that has a diverse group of growth morphologies. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the solar blind ultraviolet (UV) spectral band (240-280 nm). We have grown highly ordered vertical arrays of ZnO nanowires (NWs) and nanorods using a metal organic chemical vapor deposition (MOCVD) growth process on Si(111), SiO2, and sapphire substrates. The structural and optical properties of the grown vertically aligned ZnO nanostructure arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. The unique diffraction pattern for ZnO(002) concurred with the SEM inspection indicating vertical orientation of the NWs and nanorods. UV detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity for applications such as missile plume detection and threat warning. An analytical model that can predict sensor performance with and without gain for a desired UV band of interest has also been developed that has the potential for substantial improvements in sensor performance and reduction in size for a variety of threat warning applications. In addition, testing and characterization of photomultiplier tubes (PMTs) exposed to eight individual UV LEDs having peak wavelengths ranging from 248 nm to 370 nm has been performed to provide a relative UV detection performance benchmark. Compared to PMTs, the NW arrays are expected to exhibit low noise, extended lifetimes, high quantum efficiency, and very low power requirements.

  9. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  10. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  11. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  12. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  13. Design and development of hard x-ray imaging detector using scintillator and Si photomultiplier

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Naik, Amisha P.; Mithun, N. P. S.; Vadawale, S. V.; Acharya, Y. B.; Patel, A. R.; Ladiya, T.; Devashrayee, Niranjan M.

    2016-07-01

    There are various astrophysical phenomena which are of great importance and interest such as stellar explosions, Gamma ray bursts etc. There is also a growing interest in exploring the celestial sources in hard X-rays. High sensitive instruments are essential to perform the detailed studies of these cosmic accelerators and explosions. Hard X-ray imaging detectors having high absorption efficiency and mm spatial resolution are the key requirements to locate the generation of these astrophysical phenomenon. We hereby present a detector module which consists of a single CsI scintillation detector of size 15 x 15 x 3 mm3. The photon readout is done using an array of Silicon Photomultipliers (SiPMs). SiPM is a new development in the field of photon detection and can be described as 2D array of small (hundreds of μm2) avalanche photodiodes. We have achieved a spatial resolution of 0.5 mm with our initial setup. By using the array of these detector modules, we can build the detector with a large sensitive area with a very high spatial resolution. This paper presents the experimental details for single detector module using CsI (Tl) scintillator and SiPM and also presents the preliminary results of energy and position measurement. The GEANT4 simulation has also been carried out for the same geometry.

  14. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  15. Room-temperature InGaAs detector arrays for 1.0 - 1.7 microns spectroscopy

    NASA Technical Reports Server (NTRS)

    Olsen, G. H.; Joshi, A. M.; Mykietyn, E.; Colosi, J.; Woodruff, K. M.

    1989-01-01

    Linear arrays of 256 element InGaAs detectors with 100 x 30 micron pixels were mounted in multiplexer packages and tested in an optical multichannel analyzer (OMA). Typical performance characteristics include dark current (-5V) of 400 picoamps and responsivities of 0.75 A/W (1.3 microns) and 0.14 A/W (0.85 microns). The 256 element exhibited a mean room-temperature dark current of under 400 picoamps when mounted in the OMA and a dynamic range over 11 bits (2000:1). Future applications, including room-temperature detector arrays for 2.5 microns and avalanche photodiode arrays for 1.0-1.7 microns, are discussed.

  16. Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Farnum, E.H.; McDonald, T.E.; Summa, D.A.; Sheats, M.J.; Stupin, D.M.; Sievers, W.L.

    1998-07-19

    The use of the EG and G-Heimann RTM 128 or dpiX FS20 amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 pm with the RTM and 127 pm with the dpiX array with a dynamic range in excess of 2,800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and then need to be digitized with a scanner. The flat panel can therefore acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams, this is the first reported implementation of such a detector for neutron imaging.

  17. Design, development, characterization and qualification of infrared focal plane area array detectors for space-borne imaging applications

    NASA Astrophysics Data System (ADS)

    Jain, Ankur; Banerjee, Arup

    2016-05-01

    This paper discusses the design, development, characterization and qualification aspects of large format Infrared Focal Plane Arrays (IRFPA) required for panchromatic, multi-, hyper- and ultra-spectral imaging applications from a space-borne imager. Detection of feeble radiant flux from the intended target in narrow spectral bands requires a highly sensitive low noise sensor array with high well capacity. For this the photodiode arrays responsive in desired spectral band are grown using different growth techniques and flip-chip bonded with a suitable Si Read-out ICs (ROICs) for signal conditioning. IR detectors require cryogenic cooling to achieve background limited performance. Although passive radiative cooling is always the preferred choice of cooling in space, it is not suitable for cooling IRFPAs due to high thermal loads. To facilitate characterization of IRFPAs and cool them to desired cryogenic temperature, an Integrated Detector Dewar Cooler Assembly (IDDCA) is essential where the detector array sits over the cold tip of an active cooler and the detector cooler assembly is vacuum sealed in a thermally isolated Dewar. A cold shield above the sensor array inside the Dewar restricts its field-of-view and a cold filter fine tunes its spectral response. In this paper, various constituents of an IRFPA like sensor array materials, growth techniques, ROICs, filters, cold shields, cooling techniques etc., their types and selection criteria for different applications are discussed in detail. Design aspects of IRFPA characterization test bench, challenges involved in radiometric and spectral characterization and space qualification of such IDDCA based IRFPAs are also discussed.

  18. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  19. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan L.; Pipher, Judith; Cabrera, Mario S.

    2016-06-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  20. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.